314

A General Method for Obtaining
Impedance and Coupling Characteristics of Practical
Microstrip and Triplate Transmission Line Configurations

Abstract: In order to design an interconnection system for nanosecond-risetime logic circuitry, it is necessary to obtain a balance
between impedance variations, propagation velocities, and crosstalk levels so as to achieve the best system speed as well as system speed
control. To accomplish this, it is necessary to relate the electrical material properties and physical dimensions of the connections to
characteristic impedances, propagation velocities, and crosstalk coupling coefficients.

Two practical transmission line configurations: the microstrip line, which is coated for physical protection, and the offset or un-
symmetrical triplate line, are being fabricated by mass production techniques. Because of the close control required and the many factors
affecting impedance and coupling, these configurations require accurate means for predicting their characteristics.

An improved “subintervals” technique and a series approximating the Green’s function have been combined to yield a single practical
computer algorithm. Excellent agreement has been obtained in comparing the results of computations with large scale-model
transmission line measurements. The method is quite general because dimensions, conductor shapes, and dielectric properties may vary

widely.

Introduction

The close control of the overall performance of the logic
circuits in a high performance computer is a function of
the variations of internal circuit parameters, connection
characteristics, operating temperatures, and power supply
voltages. The variation in connection characteristics is a
matter of load-point distribution and system intercon-
nection design. In particular, this paper relates to the
latter problem, that of designing interconnecting trans-
mission lines. The characteristics that must be predicted
and controlled are the (1) characteristic impedances,
(2) propagation velocities, and (3) crosstalk coupling
coefficients.

Two transmission line configurations are the microstrip
line and the triplate line outlined in Figs. 1a and 1b,
respectively. As shown in Fig. 1a, the microstrip line is
embedded in a dielectric slab. This condition is a result
of a post-etch coating which is intended for physical
protection of the line. The lines are shown with trapezoidal
cross sections, a characteristic of etched lines. This figure
also indicates that coupling between lines of different
widths is required. Figure 1b shows that the triplate con-
figuration may be highly unsymmetrical.

For preliminary design, curves are required that give
impedance, propagation velocity, and crosstalk param-
eters to an accuracy of a few percent. For product control,
it must be possible to predict the impedance and propaga-
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tion velocity characteristics of the actual line configuration
to an accuracy of within 19, of their true values. This
paper describes the multiple-image/subintervals (MISI)
technique that, when programmed for a computer like
the IBM System/360 Model 65, enables the user to obtain
this information.

The relation of this paper to the large amount of existing
literature on the subject will be detailed by referring to
instances in which aspects of our solution have been
handled. First, the solution presented in this paper makes
use of a Green’s function in infinite series form that is
analogous to Maxwell’s solution for the field of a point
source in the presence of, but outside, two parallel material
boundaries." Second, our solution employs an improved
finite subinterval technique related to that employed by
Black and Higgins,” and we extend this technique to cover
the crosstalk coefficients, Cristal’ computes crosstalk
parameters for special triplate cases and approximates
Neumann boundary conditions. The technique in our
paper avoids approximate boundary conditions and uses
completely defined Dirichlet boundary conditions.
Wheeler* has presented solutions for the impedance
of rectangular lines in and on dielectric slabs using con-
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formal transformations. Cohn®°® has provided solutions
for the odd- and even-mode impedances of symmetric
coupled triplate lines. Guckel’ has bounded the im-
pedances of single, rectangular, triplate lines with good
accuracy. Finally, Arvanitakis, Kolias, and Radzelovage®
indicate how the crosstalk coupling coefficients can be
used in a rather general way to predict crosstalk wave-
forms.

The MISI technique is proposed in this paper as a
single method providing impedance, velocity, and cou-
pling coefficients for the cases covered in the papers men-
tioned, and for arbitrary line cross sections and line loca-
tions as well.

The transmission line approximation

We propose to derive characteristic impedances, propaga-
tion velocities, and coupling coefficients by providing a
two-dimensional solution of LaPlace’s equation for the
electric field. The following arguments show that this is
applicable.

For computer interconnections it seems reasonable to
assume a TEM mode in spite of the dielectric slab in-
homogeneity. The very high speed, closely timed logic
nets tend to be in the order of one foot in length. This
distance is long with respect to wave travel during the
switching transition time, 7,, but short enough so that
appreciable distortion of the pulse edge due to separate
air and dielectric propagation velocities does not take
place. As computer speeds increase, it is reasonable to
expect that circuit densities will increase and line lengths
will decrease. Thus, dispersion effects should remain
approximately constant.

There is also the question of whether the conductor skin
impedance is so appreciable as to affect measurements. An
exact resolution of this question is beyond the scope of
this paper. However, using simple round-wire relation-
ships,” one can estimate appreciable skin impedance to
occur when the internal line inductance, L;, approaches a
small fraction of the external line inductance, L,. Here

L1 L=
T nd 47ro' o 47r¢7042

and

L, = Z, \/E: ,
Do
where d is the wire diameter, u the permeability, ¢ the
conductivity, €/ the apparent relative permittivity, v, the
velocity in vacuum, and { the frequency. Assuming the use
of copper lines and L, = 0.015 L., it is possible to derive
the useful expression,
400
d > P E/

Z (MKS units).

MAY 1969

€2
00 dielectric interface

o0 ground plane

Z 7

00 upper
ground plane

o0’ lower
ground plane

(b)

Figure 1 Transverse cross sections of typical lines; ()
microstrip lines, (b) triplate lines.

Thus, for 7, = 200 picoseconds, ¢/ = 4 and Z, = 509,
d > 57 um(~2.3 mils). This suggests that for these condi-
tions, the impedance results of this paper should be re-
fined for skin effects when a conductor dimension is in
this range or smaller.

If Maxwell’s equations hold and, in particular, if
E, B, i, A, and ¢ represent the electric field, the magnetic
field, the permeability, the vector potential and the scalar
potential respectively, then

0B
V x E + a 0
Also, if

=V % A,
then

\%4 x<E+%>==o.

Since V' x (—V¢) = 0, where ¢ is some scalar point
function, then

E=-Vs— 20

In terms of the charge and current density, we then have
for the field at time 7 and at r:
e [).
r—r

E_‘z <47ref ]rp—dli' |>

where p’ and J’ are the charge and current densities in the
volume element dv’ at time [t — ([r — r’|/v)]. Also, v is
the propagation velocity in the medium with permittivity
¢ and permeability u.
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The exact calculation of the electric field involves a
knowledge of the retarded source distributions. In our
problem, the retarded effects appear negligible since the
sources of interest are only a few thousandths of an inch
away from each other, and since the pulse transition
distance, I, = vr,, is several inches long. Also, estimating
magnitudes of the two terms in the expression for E
leads to the conclusion that the contribution of the second
term may be safely neglected. Therefore, the electric field
at any position along the line may be calculated from

E=—-V¢,

and since the longitudinal component is negligible, it is
possible to use a two-dimensjonal solution of LaPlace’s
equation when the transmission line cross section is
constant,

Knowing the electric field at any point, we can compute
the total charge on a conductor by integrating the normal
component of the electric displacement over the conductor.
Also, we can integrate the electric field from one conductor
to the other to find the potential difference between con-
ductors. Then in general, we can calculate the capacitance
per unit length of line as

. L(D-ﬁ) ds

f E-dl
P

where A is a unit vector normal to the conductor surface
element ds, S is a unit length of conductor surface, and 41 is
a directed element of path P, which joins the two con-
ductors.

If we neglect losses, current penetration and internal
inductance effects, we can make use of the following rela-
tions for a single, isolated line:

where

Z, = characteristic impedance of the line,
L; = self-inductance per unit length of line i,
v = propagation velocity in the medium,

v, = propagation velocity in vacuum. (The subscript 0,
when used with velocities, capacitances and cou-
pling coefficients, is used to denote the absence of
dielectrics, i.e., vacaum.)

C,; = self-capacitance per unit length of line i. (No other
line present.)

316 C o= self-capacitance per unit length of line /in a vacuum.
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Figure 2 Interpretation of MISI results for two-conductor
case.

For coupled parallel lines, coupling coefficients are
defined as follows:

M.,

K [ B —“— ’
VL
C..
Koy = ——1—,
T C Gy
CiiO
Koyo = —H0
e C:l'iﬂ + CiiO
where

M;; = mutual inductance per unit length of line i with
respect to line j,

C,; = mutual capacitance per unit length between line
and line j in the presence of specified dielectric
materials,

C;; = direct capacitance per unit length of line i to
ground in the presence of specified dielectric
materials and other signal conductors charged to
the potential of line i.
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We will assume K ;; = K, ;o in view of the negligible
current penetration during the time of crosstalk produc-
tion.

In dealing with multiconductor systems, one must be
aware that several “‘capacitances” can be calculated or
measured depending on the charge/voltage assignments
of the conductors. For instance, in a two-line over ground
plane system, C}, the capacitance per unit length of
line 1 with the other line floating and uncharged, can
be calculated or measured as

Cl 2C22

Cl=Cu+ Cis + Co.
12 22

= Cu(l + Kc”)
when C;; = Cy,.

Of course, C; — C, as K¢ — O since we are now re-
turning to the single isolated line case. Other potential
assignments and resultant capacitances will be discussed
in the following paragraphs.

It is the task of the MISI technique to provide a means
for computing the various capacitances C;, C;;, Cio, Cijo
and the coupling coefficients K¢,;o and K¢,;;. The ap-
propriate capacitances are determined in the following
manner:

a. The perimeter of each conductor cross section is
divided into subintervals, each having an unknown
constant charge density.

b. The required charge distribution is that distribution
which, in the presence of the prescribed ground plane(s)
and dielectric interface, produces the specified con-
ductor potentials.

¢. The capacitances (per unit length) are calculated as the
ratios of conductor charge (per unit length) to conduc-
tor potential.

d. The appropriate coupling coefficient is found as the
ratio of the voltage induced on an inactive conductor
to the voltage specified on an active conductor. Figure 2
outlines possible potential assignments and specifies
the computation necessary for each C;; and KX;;. In
the figure, w; = width of the i-th subinterval, o, =
surface charge density on the i-th subinterval, and
>y indicates a summation of charge on the subinter-
vals of conductor N.

The subintervals technique

A formal description of the subintervals technique is now
presented. The two-dimensional solution to LaPlace’s
equation, namely,

Vi) = —if o) In [r — 1’| ds’, (1)
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Figure 3 Subdivision of conductor boundaries,

may be viewed as an integral equation in ¢(r) for which
we can specify the boundary conditions explicitly on the
active conductors and implicitly on the inactive con-
ductors. Each inactive conductor, Q;, adds an unknown
potential, V;, and an additional integral equation

Ozf o(r) ds, where I =1,2,---,q. 2
Q:

We can subdivide the perimeters of the conductors
into # subintervals as in Fig. 3, each of width w; and each
having an unknown but constant surface charge density
o;. For the moment disregard the infinite ground plane
and dielectric interface in Fig. 3. The subdivision allows
Eqgs. (1) and (2) to be approximated by discrete sums as
foliows:

Vizilp”af, i=1,2,-,n, (3)
where

1
iy = —5— ‘[Wi In [r. — 1| ds;; (4)
and
0= > woy, =1,2,+,4q, (5

Qi
where the sum ZQ, is taken over the subintervals of each

inactive conductor /. V; is calculated at the midpoint of
the i-th subinterval.
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Figure 4 Infinite dielectric interface.

For physical reasons in the transversely finite conductor
case being considered, it is necessary that

> wio; = 0, (6)
i=1
where the summation extends over all conductors.

But with Eqgs. (3), (5), and (6), there are n + g + 1
equations in # 4+ g unknowns. Making use of the fact
that a constant also satisfies LaPlace’s equation, we can
form

Vi_ V1= Z(pii—pli)gh i:2’3s“'n’
i=1
(7)

where the summation extends over all conductors, and
n + g equations result. Thus, the transversely finite
conductor case can be solved.

In order to treat problems involving one or more
infinite ground planes, we will not make explicit use of
Eqgs. (6) and (7). For instance, let the infinite ground plane,
but not the dielectric interface, exist in Fig. 3; and let it
be required to solve the resultant problem. By substituting
for Eq. (4),

1
pi; = ——Zr;f [11’1 |r1- d r,’l — In |ri - l‘;l] dS,',

where r/ is the image of position r; with respect to the
ground plane, we can solve for the charge densities o;
required to satisfy the potential values on the conductors
as well as the boundary conditions along the infinite
ground plane. By the use of images, Eq. (6) is implicitly
satisfied. Also, this procedure means that subintervals
are needed only for the conducting surfaces that are apart
from the ground plane.

It has been suggested® that for p:; Where i 5 j, BEq. (4)
be replaced by

1
D= ——— Inlr, — ;| -w;.

2me
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This can lead to serious errors for subintervals of dif-
ferent lengths and arbitrary placement. Considerable
advantage is gained by the numerical evaluation of the
integral in Eq. (4).

Next, we consider the problem of meeting the boundary
conditions along the ground plane and a second parallel
boundary which may either be a dielectric interface or
second ground plane.

A series for the Green’s function of a dielectric
interface parallel to an infinite ground plane

The problem is to replace the function

- ds.
av, = == (nfr, — ;] — In |r, — 1}])

2me
with a potential function that simultaneously satisfies the
boundary conditions on the dielectric interface and on the
ground plane. Such a function will be used to compute
the p;; in the presence of the interface and ground plane.

The boundary conditions at each point on a dielectric

interface between regions having ¢, and e, permittivities
are

av| _ . ov
“on g, 2 9n g,
and

| _ov

9s |g, ds |r,’

where n is a position vector taken in the direction normal
to the dielectric interface, s is a position vector taken
parallel to the interface, and R, and R, are points arbi-
trarily close to the interface in the ¢, and e, regions re-
spectively. This assumes no surface charge.

The boundary conditions at each point on an interface
between a dielectric and a conductor are

avl _
“on |p 7
and

oV

i =0,

s g,

where n is in the outward normal direction from the
conductor surface, and s is parallel to the surface; R}
is arbitrarily close to the surface but in the e, region.
o Is the surface charge density on the conductor.

We shall now consider a simple dielectric interface.
It is easy to show, following the method outlined'® for
point charges, that, for the arrangement shown in Fig. 4,
the potential in the ¢, region is given by

_g; ds;

dVv; = —2;1—[1n [r; — 1]

+ Klnlr, —r; — 2al], (8)
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E Figure 6 Calculated and measured capacitive coupling coef-
; ficient, K¢ vs. height of dielectric interface above ground
divided by height of line above ground, A’/hi.

Figure 5 Construction of an infinite series of image charges
for two parallel infinite plane boundaries.

where About the interface: —Ko; ds; at (x;, 2’ + y;) and
_K2 ag; ds,' at (x,', 4}1’ - y,)
= & &
K = 6 + & About the ground plane: Ko ; ds; at (x;, —2#' — y;) and

K% ds; at (x;, —4K + y)).

Continuing the above procedure, the final result will be
an infinite sequence of line image charges. The potential
of such a sequence of line charges (including the original)
within the region bounded by the ground plane and the
dielectric interface is as follows:

and a is the vector from ds; to the interface.

Many useful capacitance problems can be solved by
using the preceding equations to form the basis of a
computer algorithm. As suggested in Fig. 2, capacitances
and coupling coefficients can be calculated by assigning
appropriate potentials and solving for the ¢; (and V).

In order to satisfy the boundary conditions on a parallel o; ds; { . .

. P . dv, = ————= ln[(xi_xi) + (i — ¥
ground plane as well as the dielectric interface, an in- 41e,
finite set of image charges is derived for each charge 2 2
element ¢; ds;. With reference to Fig. 5, first, reflect the — Il =) + O+ )]
original line charge ¢; ds; at (x;, y;) about the dielectric = -
interface, second, reflect about the ground plane, third + ,;1 (="K
reflect about the interface, etc. to obtain a sequence of

line image charges as follows: X {In (. X))+ (s 2nh )]

— L ) 2 R ’ ) 2
Reflection Resultant line image charge In [(x, xi) + (s 20k + i)'
About the interface: Ko; ds; at (x;, 20 — y;) + In[(x; — x)° + (yi + 200" — )]

About the ground plane: —o; ds; at (x;, —y;) and 2 , g
— Ko, ds; at (x;, —2K + ;) = Il = 2"+ (s 4 200 4 ) g 319
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Figure 7 Design curves for microstrip lines; (a) characteristic impedance, (b) capacitive coupling coefficient, (c) inductive
320 coupling coefficient, (d) velocity of propagation.
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Figure 8 Design curves for triplate lines; (a) characteristic impedance, (b) coupling coefficient.

Table 1 Comparison of experimental and calculated values for Cio

CMeas - Ccale

X 100
w t h n Cucatey  Cmess) Ceale
in in. in in. in in. in in. in pF in pF in percent
0.400 0.080 0.230 0.611 1.240 1.265 +2.0
0.400 0.080 0.450 1.343 0.784 0.791 +0.9
0.400 0.080 0.830 1.800 0.649 0.656 +1.1

This expression can be shown to satisfy the appropriate
boundary conditions along the ground plane, as well as
along the dielectric interface. The simplest argument is
to note that, in Fig. 5, equal and opposite charges are
equidistant above and below the ground plane, while for
the interface, the equidistant charges are always in the
ratio 1 : K. Thus, assuming linearity and invoking super-
position, we have satisfied the boundary conditions. It is
also possible to construct a potential function valid in the
region of ¢, and by differentiation prove that the boundary
conditions are met. We will compare predictions with
measurements in order to further validate results.

Comparison with measurements for microstrip K.

Attempting to prove the adequacy of a computational
technique by using actual etched lines presents many
difficulties attendant with measuring and/or controlling
very small line cross sections and conductor spacings,
and with determining the electrical characteristics of very
thin epoxy glass laminates and coatings. For this reason,
it has proven instructive to build large, scale-model line

MAY 1969

configurations and then to make bridge capacitance
measurements at 1 MHz. Models were constructed with
appropriately guarded end sections. The dielectric con-
stant of the liquid was measured in a precision sample
holder at the frequency of the scale-model measurement.
Corrections were estimated for mechanical set up errors.
Figure 6 shows how calculated and measured values of
Kei; = Ci;/(Ci; + C;p) compare for various dielectric
heights, #'.

Triplate theory and comparison with measurements
Note that the dielectric interface may be replaced by a
second ground plane by setting K= (e;— e)/(e1+ e2)=—1.
This results in the triplate solution. In order to verify the
triplate results, another large scale model is currently
being used. The dielectric is air. The results for Ci,,
available at this time, are shown in Table 1.

Computation results
The MISI technique has been used to produce graphs
for Z,, K., K;,, and v. Figures 7a-d give results for certain
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microstrip configurations and Figs. 8a and b are results
for triplate configurations. The impedance and velocity
information for the triplate configurations in the presence
of an arbitrary dielectric can be obtained from the follow-
ing equations:

Zy = Zoo/ \/;:,
v = Uo/ \/:n

where Z,, is the characteristic impedance in vacuum.

The curves of Figs. 7a and 7d, when compared to the
existing results for uncoated lines, predict that impedances
and velocities of coated 40 to 60-ohm configurations
will be decreased by about 8 to 109, for t/w = 0.25,
W — h)/t= 132, and ¢, = 4.4.

The triplate curves of Fig. 8§ are new results in that
asymmetrical cases, b, # (W' — {)/2, are covered for
Z,, and coupling for the worst case, b, = (' — £)/2, is
covered.

A great number of curves might be generated. The
effort has been to cover some of the more interesting and
useful cases.

Earlier we mentioned that trapezoidal line cross sections
might be accommodated. The effect has been investigated
in a 50-ohm triplate design where t/w = 0.15 and h, /' =
0.3. The base angle was varied between 60° and 90°, and
the average change in Z, was £2.19, for a ~15° change
in angle.

Conclusions
A new computational technique for uniform transmission
lines has been presented. This technique gives results that
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agree very well with experimental data for capacitance
and coupling coefficients in cases that, to the authors’
knowledge, have not been presented before. The method
has a wide range of application because one can obtain
highly accurate results for characteristic impedance, prop-
agation velocity, and crosstalk coupling coefficients for
practical microstrip and triplate line configurations.
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