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A General  Method  for  Obtaining 
Impedance  and  Coupling  Characteristics of Practical 
Microstrip  and  Triplate  Transmission  Line  Configurations 

Abstract: In  order to design an interconnection  system for nanosecond-risetime  logic  circuitry, it is  necessary to obtain a balance 
between  impedance  variations,  propagation  velocities, and crosstalk levels so as to achieve the best  system  speed  as  well as system  speed 
control. To accomplish this, it is necessary to relate the electrical  material  properties  and  physical  dimensions  of  the  connections to 
characteristic impedances, propagation velocities, and  crosstalk  coupling  coefficients. 

Two practical  transmission  line  configurations: the microstrip  line,  which is  coated  for physical protection, and the offset or un- 
symmetrical  triplate  line,  are  being  fabricated by  mass production  techniques.  Because of the  close  control  required and the many factors 
affecting  impedance and coupling,  these  configurations  require  accurate  means  for  predicting  their  characteristics. 

An  improved  “subintervals”  technique and a series  approximating the Green’s function have  been  combined to yield a single  practical 
computer  algorithm.  Excellent  agreement  has  been  obtained in comparing the results  of computations with  large  scale-model 
transmission  line  measurements.  The  method  is  quite  general  because  dimensions,  conductor  shapes,  and  dielectric  properties  may  vary 
widely. 

Introduction 
The close control of the overall performance of the logic 
circuits in a high performance computer is a function of 
the variations of internal circuit parameters, connection 
characteristics, operating  temperatures, and power supply 
voltages. The variation  in connection characteristics is a 
matter of load-point  distribution and system intercon- 
nection design. In particular,  this  paper  relates to the 
latter problem, that of designing interconnecting trans- 
mission lines. The characteristics that must be predicted 
and controlled are  the (1) characteristic impedances, 
(2) propagation velocities, and (3) crosstalk  coupling 
coefficients. 

Two transmission line configurations are  the microstrip 
line and  the triplate line outlined  in Figs. la and  lb, 
respectively. As shown in Fig. la,  the microstrip line is 
embedded in a dielectric slab. This condition is a result 
of a post-etch coating which is intended for physical 
protection of the line. The lines are shown with  trapezoidal 
cross sections, a characteristic of etched lines. This figure 
also indicates that coupling between lines of different 
widths is required. Figure l b  shows that  the triplate con- 
figuration may be highly unsymmetrical. 

For preliminary design, curves are required that give 
impedance, propagation velocity, and crosstalk  param- 
eters to an accuracy of a few percent. For product  control, 
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If the actua tion velocity characteristics o 11 line configuration 
to an accuracy of within 1% of their true values. This 
paper describes the multiple-image/subintervals (MISI) 
technique that, when programmed for a computer like 
the  IBM System/360 Model 65, enables the user to obtain 
this  information. 

The relation of this paper to the large amount of existing 
literature on  the subject will be detailed by referring to 
instances in which aspects of our solution have been 
handled. First,  the solution  presented in this paper makes 
use of a Green’s function in infinite series form  that is 
analogous to Maxwell’s solution for  the field of a point 
source in  the presence of, but outside, two parallel material 
boundaries.’ Second, our solution employs an improved 
finite subinterval  technique  related to that employed by 
Black and Higgins? and we extend this technique to cover 
the crosstalk coefficients.  Crista13 computes  crosstalk 
parameters for special triplate cases and approximates 
Neumann  boundary conditions. The technique  in our 
paper  avoids  approximate boundary conditions and uses 
completely defined Dirichlet boundary conditions. 
Wheeler4 has presented solutions for  the impedance 
of rectangular lines in  and  on dielectric slabs using con- 
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formal  transformations.  Cohn5" has provided solutions 
for  the  odd-  and even-mode impedances of symmetric 
coupled triplate lines. Gucke17 has bounded the im- 
pedances of single, rectangular,  triplate lines with good 
accuracy. Finally, Arvanitakis,  Kolias, and Radzelovage' 
indicate  how the crosstalk coupling coefficients can be 
used in a rather general way to predict crosstalk wave- 
forms. 

The MIS1 technique is proposed  in  this  paper as a 
single method providing impedance, velocity, and cou- 
pling coefficients for  the cases covered in the papers men- 
tioned, and  for  arbitrary line cross sections and line loca- 
tions  as well. 

The transmission line approximation 
We propose to derive characteristic impedances, propaga- 
tion velocities, and coupling coefficients by providing a 
two-dimensional solution of Laplace's equation  for  the 
electric field. The following arguments show that this is 
applicable. 

For computer  interconnections it seems reasonable to 
assume a TEM mode  in spite of the dielectric slab in- 
homogeneity. The very high speed, closely timed logic 
nets  tend to be  in the  order of one  foot in  length. This 
distance is long with respect to wave travel  during the 
switching transition time, T,, but  short enough so that 
appreciable  distortion of the pulse edge due  to separate 
air  and dielectric propagation velocities does not  take 
place. As computer speeds increase, it is reasonable to 
expect that circuit densities will increase and line lengths 
will decrease. Thus, dispersion effects should  remain 
approximately constant. 

There is also the question of whether the conductor skin 
impedance is so appreciable as to affect measurements. An 
exact resolution of this question is beyond the scope of 
this  paper. However, using simple round-wire relation- 
s h i p ~ , ~  one can  estimate appreciable skin impedance to 
occur when the internal line inductance, Li,  approaches a 
small fraction of the external line inductance, Le.  Here 

and 

where d is the wire diameter, p the permeability, n the 
conductivity, 6; the  apparent relative permittivity, u,, the 
velocity in vacuum, and f the frequency. Assuming the use 
of copper lines and L, = 0.015 Le, it is possible to derive 
the useful expression, 

€2 
m dielectric  interface 

t 

7 V Y ground  plane 

(b) 

/////,~~//////,/,//////////V//,////,///,~ 
Figure 1 Transverse:  cross  sections of typical  lines; (a) 
microstrip  lines, (b) triplate lines. 

Thus,  for rv = 200 picoseconds, E: = 4 and 2, = 50Q, 
d > 57 pm(m2.3 mils). This suggests that  for these condi- 
tions, the impedance results of this paper should  be re- 
fined for skin effects when a conductor dimension is in 
this  range or smaller. 

If Maxwell's equations  hold and,  in particular, if 
E, B, p, A, and 4 represent the electric field, the magnetic 
field, the permeability, the vector potential and  the scalar 
potential respectively, then 

V x E + - = O .  dB 
d t  

Also, if 

B = V  x A ,  

then 

Since V x (-V4) = 0,  where 4 is some scalar point 
function,  then 

E = -V,$ - -. dA 
at 

In terms of the charge and current density, we then have 
for  the field at time t and at r: 

where p' and J' are  the charge and current densities in the 
volume element du' a.t time [ t  - (Ir - r'l/u)]. Also, u is 
the propagation velocity in the medium  with permittivity 
E and permeability p. 31 5 
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The exact calculation of the electric field involves a 
knowledge of the  retarded source distributions. In our 
problem, the retarded effects appear negligible since the 
sources of interest are only a few thousandths of an inch 
away from each  other, and since the pulse transition 
distance, I ,  = UT,, is several inches long. Also, estimating 
magnitudes of the two  terms in the expression for E 
leads to  the conclusion that  the contribution of the second 
term may be safely neglected. Therefore, the electric field 
at  any position along the line may be calculated from 

and since the longitudinal component is  negligible, it is 
possible to use a two-dimensional solution of Laplace's 
equation when the transmission line cross section is 
constant. 

Knowing the electric field at any point, we can  compute 
the  total charge on a conductor by integrating the normal 
component of the electric displacement over the conductor. 
Also, we can integrate  the electric field from one  conductor 
to the other to find the  potential difference between con- 
ductors. Then in general, we can calculate the capacitance 
per  unit  length of line as 

jS (Dsii) ds 
C =  

L E - d l  ' 

where d is a unit vector normal  to  the conductor surface 
element ds, S is a unit length of conductor surface, and dl is 
a directed element of path P ,  which joins the two con- 
ductors. 

If we neglect losses, current penetration and internal 
inductance effects, we can make use of the following rela- 
tions for a single, isolated line: 

v = vo@, 

where 

2, = characteristic impedance of the line, 
Li = self-inductance per unit length of line i, 
u = propagation velocity in  the medium, 

u0 = propagation velocity in vacuum. (The  subscript 0, 
when used with velocities, capacitances and cou- 
pling coefficients, is used to denote the absence of 
dielectrics, i.e., vacuum.) 

Ci = self-capacitance per unit length of line i. (No other 
line present.) 

Cia= self-capacitance per unit length of line iin  avacuum. 

Potential  assignments 

1 
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Figure 2 Interpretation of MIS1 results for two-conductor 
case. 

For coupled parallel lines, coupling coefficients are 
defined as follows: 

where 

Mii = mutual inductance per unit  length of line i with 
respect to line j ,  

Cii = mutual capacitance per unit length between line i 
and line j in the presence of  specified dielectric 
materials, 

Cii = direct capacitance per unit length of line i to 
ground in the presence of specified dielectric 
materials and other signal conductors charged to 
the  potential of line i. 
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We will assume KL i i  = Kciio in view  of the negligible 
current  penetration  during the time of crosstalk produc- 
tion. 

In dealing with multiconductor systems, one must be 
aware that several "capacitances" can be calculated or 
measured depending on  the charge/voltage assignments 
of the conductors. For instance, in a two-line over ground 
plane system, C:, the capacitance per unit length of 
line 1 with the  other line floating and uncharged, can 
be calculated or measured as 

when C,, = Czz. 
Of course, C{ 3 C, as Kclz  --f 0 since we are now re- 

turning to the single isolated line case. Other  potential 
assignments and resultant capacitances will be discussed 
in the following paragraphs. 

I t  is  the task of the MIS1 technique to provide a means 
for computing the various capacitances Ci, C i i ,  Cio, C i i o  
and  the coupling coefficients Kciio and Kci ;. The ap- 
propriate capacitances are determined in the following 
manner : 

a. The perimeter of each  conductor cross section is 
divided into subintervals, each having an unknown 
constant charge density. 

b. The required charge  distribution is that distribution 
which, in the presence of the prescribed ground plane(s) 
and dielectric interface, produces the specified con- 
ductor potentials. 

c. The capacitances (per unit length) are calculated as  the 
ratios of Conductor charge (per unit length) to conduc- 
tor potential. 

d. The  appropriate coupling coefficient is found  as  the 
ratio of the voltage induced on  an inactive conductor 
to the voltage specified on  an active conductor.  Figure 2 
outlines possible potential assignments and specifies 
the computation necessary for each Cii and K i j .  In 
the figure, wi = width of the i-th subinterval, ut = 
surface charge density on  the i-th subinterval, and 
EN indicates a summation of charge on  the subinter- 
vals of conductor N.  

The  subintervals  technique 
A formal description of the subintervals technique is now 
presented. The two-dimensional solution to Laplace's 
equation, namely, 

V(r) = -- I u(r') In Ir - r'I ds', 
2T€ 
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Figure 3 Subdivision of conductor  boundaries. 

may  be viewed as  an integral  equation  in a(r) for which 
we can specify the boundary  conditions explicitly on  the 
active conductors and implicitly on  the inactive con- 
ductors.  Each inactive conductor, Q l ,  adds  an unknown 
potential, V g ,  and  an  additional integral  equation 

0 = IQl u(r) ds, where I = 1 ,  2 ,  9 4' (2) 

We can subdivide the perimeters of the conductors 
into n subintervals as in Fig. 3, each of width wi and each 
having an unknown but  constant surface  charge  density 
ui. For  the  moment disregard the infinite ground  plane 
and dielectric interface  in Fig. 3. The subdivision allows 
Eqs. (1) and (2) to be  approximated  by discrete sums as 
follows : 

and 

0 = wicTi, I == 1 ,  2 ,  * * * , 4, (5 )  
Q I  

where the sum xQ, is taken over the subintervals of each 
inactive conductor 1. Vi is calculated at  the midpoint of 
the i-th subinterval. 



This  can  lead to serious errors for subintervals o If dif- 
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Figure 4 Infinite dielectric  interface. 

For physical  reasons  in the transversely  finite conductor 
case  being  considered, it is  necessary that 

2 wjuj = 0, 
j-1 

where the summation  extends  over all conductors. 
But  with  Eqs. (3), (5), and (6), there are n + q + 1 

equations in n f q unknowns.  Making use of the fact 
that a constant also  satisfies  Laplace's equation, we can 
form 

n 

vi - V,  = (pii - plj)uj, i = 2, 3 ,  n . 0  n, 
j = 1  

( 7) 

where the summation  extends  over all conductors, and 
IZ + q equations result. Thus, the transversely  finite 
conductor case  can  be  solved. 

In order to treat problems  involving  one or more 
infinite ground planes, we  will not make  explicit  use of 
Eqs. (6) and (7). For instance, let the infinite ground plane, 
but not the dielectric  interface,  exist  in  Fig. 3 ; and let it 
be  required to solve the resultant problem. By substituting 
for Eq. (4), 

where ri is the image of position rj  with  respect to the 
ground  plane, we can  solve for the charge  densities ui 
required to satisfy the potential values on the conductors 
as well as the boundary conditions  along the infinite 
ground plane. By the use of images,  Eq. (6) is implicitly 
satisfied. Also, this  procedure  means that subintervals 
are needed  only for the conducting  surfaces that are apart 
from the ground  plane. 

It has been  suggested' that  for pii where i # j ,  Eq. (4) 
be  replaced  by 

1 
2ne pi i  = -- In I f i  - Til. w j ,  

WINNER 

ferent  lengths and arbitrary placement.  Considerable 
advantage is gained by the numerical  evaluation of the 
integral  in  Eq. (4). 

Next, we consider the problem of meeting the boundary 
conditions  along the ground  plane and a second  parallel 
boundary which  may either be a dielectric  interface or 
second ground plane. 

A series  for  the Green's function of a dielectric 
interface parallel to an infinite  ground plane 
The problem  is to replace the function 

with a potential function that simultaneously  satisfies the 
boundary  conditions on the dielectric  interface and on the 
ground  plane.  Such a function will  be  used to compute 
the p i i  in the presence of the interface and ground plane. 

The boundary  conditions at each  point on a dielectric 
interface between regions  having el and e2 permittivities 
are 

d V  
€1 - dn 

and 
l3V 
dS 
- I. 

I. 

=;"I , 
R I  R a  

where n is a position  vector taken in the direction normal 
to the dielectric  interface, s is a position  vector  taken 
parallel to the interface, and R1 and Rz are points arbi- 
trarily  close to the interface  in the and c2 regions  re- 
spectively. This assumes no surface  charge. 

The boundary  conditions at each  point on an interface 
between a dielectric and a conductor are 

and 

where n is  in the outward normal direction from the 
conductor surface, and s is  parallel to the surface; Ri 
is arbitrarily close to the surface but in the e2 region. 
u is the surface  charge  density on the conductor. 

We shall now  consider a simple  dielectric  interface. 
It is easy to show,  following the method  outlined" for 
point charges, that, for the arrangement  shown in Fig. 4, 
the potential in the el region  is  given  by 
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Figure 5 C c  - mstruction o 

( 6 )  K u ~  dsi(xp "2h"yi)  

(7) K2uidsi(x i .  -4h'+-yi) 8 

sf an infinite  series of image  charges 
L - 

for two parallel infinite  plane  boundaries. 

where 

K = d  e -  

€1 + €2 

and a is the vector from dsi to  the interface. 
Many useful capacitance  problems can be solved by 

using the preceding equations to  form  the basis of a 
computer  algorithm.  As suggested in Fig. 2, capacitances 
and coupling coefficients can be calculated by assigning 
appropriate potentials and solving for  the ui (and Vl). 

In  order  to satisfy the boundary  conditions on a parallel 
ground plane  as well as  the dielectric interface, an in- 
finite set of image charges is derived for each charge 
element ui dsi. With reference to Fig. 5,  first, reflect the 
original line charge ui dsj at ( x i ,  y i )  about  the dielectric 
interface, second, reflect about  the  ground plane, third 
reflect about  the interface, etc. to obtain a sequence of 
line image charges as follows: 

Reflection Resultant line image charge 
About  the interface: Kuj dsj at ( x i ,  2h' - y j )  

About  the ground  plane: -ui dsi at ( x i ,  -y i )  and 
-Kui dsi at (xi, -2h' + y i )  

"" 

hl=h2=0.256in.  

t=0.03l in .  

Wl=w2=~~: ,=wq=0 . l60 in .  

E, =4.65 

E 2 = 1 . 0  

0.2 [ s=0.409 f "  
0 Measured  value\ 

A Calculated values 

S =center to center  spacing in inches 

I 

I I I 
1.5 2.0 2.5 3.1 

Figure 6 Calculated and  measured  capacitive  coupling  coef- 
ficient, Kc vs. height  of  dielectric interface above  ground 
divided  by height of line  above  ground, h'/hl. 

About  the  interface: -Kui dsj at (xi, 2h' + y i )  and 
- K 2  ui dsj at ( x i ,  4h' - y i )  

About the  ground plane: Kui ds, at ( x i ,  -2h' - y i )  and 
K2ui dsi at (xi, -4h' + yi) .  

Continuing the above  procedure, the final result will be 
an infinite sequence of line image charges. The potential 
of such a sequence of line charges (including the original) 
within the region bounded by  the  ground plane and  the 
dielectric interface is as follows: 

+ 5 ( - 1 ) " K "  
,,= 1 

- In [ ( x i  - xi)' + (yi + 2nh' + yi)']} . 1 
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Figure 7 Design curves for microstrip  lines; (a) characteristic impedance, (b) capacitive coupling coefficient, (c) inductive 
coupling coefficient, (d) velocity of propagation. 
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Figure 8 Design curves for triplate lines;  (a) characteristic impedance, (b) coupling  coefficient. 

Table 1 Comparison of experimental and calculated  values for Clo 

CMem - CCale 
x 100 

W t h h’ 
in  in. in in, in in. in in. in pF in pF in percent 

CIO(Calo) CIO(Meaa) c c a l o  

0.400 0.080 0.230 0.611 1.240 1.265 +2.0 
0.400 0.080 0,450 1.343 0.784 0.791 +0.9 
0.400 0.080 0.830 1.800 0.649 0.656 +1.1 

This expression can be shown to satisfy the  appropriate 
boundary  conditions  along the  ground plane, as well as 
along the dielectric interface. The simplest argument is 
to note  that, in Fig. 5, equal  and opposite charges are 
equidistant  above and below the  ground plane, while for 
the interface, the equidistant charges are always in the 
ratio 1 : K. Thus, assuming linearity and invoking super- 
position, we have satisfied the  boundary conditions. It is 
also possible to construct a potential  function valid in the 
region of ez and by differentiation prove that  the  boundary 
conditions are met. We will compare predictions with 
measurements in  order to further validate results. 

Comparison with measurements for microstrip KO 
Attempting to prove the adequacy of a computational 
technique by using actual etched lines presents  many 
difficulties attendant with measuring and/or controlling 
very small line cross sections and conductor spacings, 
and with determining the electrical characteristics of  very 
thin epoxy glass laminates and coatings. For this  reason, 
it has proven instructive to build large, scale-model line 

configurations and  then to make bridge capacitance 
measurements at  1 MHz. Models were constructed with 
appropriately  guarded end sections. The dielectric con- 
stant of the liquid was measured  in a precision sample 
holder at the frequency of the scale-model measurement. 
Corrections were estimated for mechanical set up errors. 
Figure 6 shows how calculated and measured values of 
Kcii = Ci i /(Ci f Ci i) compare for various dielectric 
heights, h’. 

Triplate theory  and  comparison  with  measurements 
Note  that  the dielectric interface may be replaced by a 
second ground  plane by setting K=(el- cZ)/( elf ez)= - 1. 
This results in  the triplate  solution. In  order  to verify the 
triplate results, another large scale model is currently 
being used. The dielectric is air. The results for Clo, 
available at  this time, are shown in Table 1. 

Computation  results 
The MIS1 technique has been used to produce graphs 
for Zo, Kc, KL, and u. Figures 7a-d  give results for certain 32 1 
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microstrip configurations and Figs. Sa and b are results 
for triplate configurations. The impedance and velocity 
information for  the triplate configurations in  the presence 
of an  arbitrary dielectric can be obtained from  the follow- 
ing equations : 

2 0  = Z o o / v L  

= D o / & ,  

where Zoo is  the characteristic  impedance in vacuum. 
The curves of Figs. 7a and 7d, when compared to  the 

existing results for uncoated lines, predict that impedances 
and velocities of coated 40 to 60-ohm configurations 
will be decreased by about 8 to 10% for t / w  = 0.25, 
(12‘- h,)/t = 1.32, and E, = 4.4. 

The triplate curves of Fig. 8 are new results in  that 
asymmetrical cases, h, # (h’ - t ) / 2 ,  are covered for 
Zo, and coupling for  the worst case, hl = (h’ - t)/2, is 
covered. 

A great  number of curves might be generated. The 
effort has been to cover some of the more interesting and 
useful cases. 

Earlier we mentioned that trapezoidal  line cross sections 
might be accommodated. The effect has been investigated 
in a 50-ohm triplate design where t / w  = 0.15 and hl/h’ = 
0.3. The base angle was varied between 60” and 90°, and 
the average change in 2, was 2~2 .1% for a 7 15’ change 
in angle. 

Conclusions 
A new computational technique for uniform  transmission 
lines has been presented. This technique gives results that 
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agree very  well with experimental data for capacitance 
and coupling coefficients in cases that, to the authors’ 
knowledge, have not been presented before. The  method 
has a wide range of application because one can obtain 
highly accurate  results for characteristic impedance, prop- 
agation velocity, and crosstalk  coupling coefficients for 
practical  microstrip and  triplate line configurations. 
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