
J. V. Dave 

302 

J. V. DAVE 

Scattering of Electromagnetic  Radiation by a 
Large,  Absorbing  Sphere 

Abstract: Details  are  provided for two  subroutines  with  which one can  compute  the  various  characteristics of the  electromagnetic 
radiation  scattered by an  absorbing,  homogeneous  sphere  of  any  reasonable  size.  The  necessary  expressions  for  this  purpose  were 
first  derived  by Mie. The  method  of  computations  used  is  the  so-called  method  of  logarithmic  derivative  of  one  of  the  complex  functions, 
introduced by Infeld.  The  main  difference  between  the  two  subroutines  is  in  the  procedure  used  in  computations  of  one  of  the  functions. 
This  function is computed  by  an  upward  recurrence  procedure in one  subroutine  and by a downward  recurrence  procedure  in  the  other. 

Sufficient  results  for  demonstrating  the  reliability  of  these  programs  are  presented  and  discussed  for a sphere of lOpm  radius il- 
luminated  by  an  unpolarized  radiation  of  0.4pm  wavelength. 

1. Introduction 
The passage of electromagnetic radiation through a 
medium  is  generally  accompanied by the removal of a 
fraction of the energy from the incident beam. This 
fraction may  be  partly  absorbed  within the medium, and 
may  become  partly  scattered,  i.e.,  reappear in the same 
direction as well as in other directions. The characteristics 
of the scattered radiation are determined by the wave- 
length X of the incident radiation, the complex refractive 
index (rn = n, - inz) of the medium,  and the size  as  well as 
the shape of the discrete  particles in the medium.  Because 
of this, measurements and proper interpretation of the 
characteristics of the scattered radiation offer a very  good 
opportunity for obtaining  information about the state 
of the medium.  Hence,  numerical  determination of the 
characteristics of the scattered radiation for a given  model 
is of prime  importance  in  several diversified  fields such 
as  planetary and atmospheric optics; astrophysics;  laser, 
radar, and searchlight applications; and physical  chemistry. 
To this end, the first step is the evaluation of the charac- 
teristics of the radiation scattered by a single  particle. 

The numerical  evaluation of the parameters of the 
radiation scattered by a particle very small  compared to X 
is  very  simple  and  straightforward.’ The expressions for 
the radiation scattered by a sphere whose radius (r) is 
comparable to, or greater than, X were  first  derived  by 
Mie.’ The expressions for Mie scattering  involve  series 
whose  terms  contain  Bessel  functions of half-integral 
order (spherical Bessel functions) with  complex argument, 
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and first and second  derivatives of the Legendre  poly- 
nomials. Furthermore, the number of terms  required for 
evaluating the series  is of the order of the size parameter 
x (i.e., 2ar/X). Hence, the reliable Mie scattering  compu- 
tations for large  spheres  can  be  described as difficult, 
tedious, and time  consuming. 

The derivations of the Mie  expressions as well as a 
catalog of its  available  numerical  solutions in some 
specific  cases  can  be found in the treatise,  “Light  Scattering 
by Small  Particles,” by  Van de H ~ l s t . ~  Prior to this 
publication,  numerical  evaluation of the Mie  expressions 
was  confined to small  values  of ~ ( ~ 1 0 )  for absorbing 
(n2 > 0) spheres. For nonabsorbing  spheres (n2 = 0), 
the most  outstanding  work  is that of Gumprecht and 
Sliep~evich,4’~ who carried  their  calculations to x = 400. 
As has been pointed out by  Van  de  Hulst; the work of 
these authors cannot be  considered to be  complete  since 
the laws of geometric and physical  optics  can  be  applied 
to the transfer  problem in a water  sphere  with  some 
reasonable  confidence  only if x is of the order of 2000. 
Even for x this high,  Van de Hulst points out some  limita- 
tions of such a ray  optics treatment and a need for checking 
such  results  against  those  obtained  using the exact  solu- 
tion.’ Furthermore, the number of directions for which 
the radiation parameters are given  by these authors5 is 
too small to give any insight into the fine structure of the 
radiation field.  Besides,  many  fields  of application  demand 
extensive  numerical data for values of refractive  indices 
other than those  used by these  authors.‘ 

Since the publication of  Van de Hulst’s book, several 
 author^^"^ (references are by no means  exhaustive)  have 
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published  useful  results for absorbing  spheres of moderate 
size ( x  - 50). For nonabsorbing  spheres, the trend  is 
to obtain a much  more  detailed  picture of the field  of the 
scattered radiation than was available before16"' and 
to compute the average  characteristics of the radiation 
scattered by a unit volume  containing an arbitrary size 
distribution of small  spherical  particles ( x  < 200).19"22 
Very recently, Fahlen and Bryantz3 have reported  results 
of some of their  computations for x - 3000 but for only 
one  direction of scattering ( 8  = 180 "). 

This slowness  of  progress  in obtaining the radiation 
field for large  spheres may  be attributed partly to the 
limited  requirements of previous  workers.  However,  since 
Mie computations  involve  evaluation of series  whose 
terms  differ by several orders of magnitude  with  increase 
of n and change  their  signs  in rather uneven manner, it is 
essential to carry out basic  arithmetic  in  double  precision 
if x is  large. The other factor is the large  storage  require- 
ments. Computations of the radiation scattered in 37 
different  directions [0"(5")180"] by a sphere  having  size 
parameter x = 1000 with straightforward  programming 
procedure  can  require  use of more than 100,000 double- 
precision  words of storage, a requirement too large to 
be  fulfilled  by the main  storage area of any  modern 
computer.  Hence,  one is required to use  magnetic  tapes 
or disks. 

The main  difficulty  in  evaluation of the characteristics 
of the radiation scattered by a large  absorbing  sphere 
is the very rapid propagation of the errors when the 
function A,(rnx) (Sec. 2.1) is  computed  using an upward 
recurrence  relationship (Sec. 2.2). A recurrence  relationship 
provides a very powerful  computing tool, especially  in 
automatic work.  However,  since  generation  is  carried out 
perforce  with rounded values, the errors may or may not 
grow  relative to the size  of the wanted function. If the 
errors do grow, the recurrence scheme  is  said to be  un- 
stable. When the upward  recurrence  scheme  [i.e., starting 
with the value of Ao(rnx), one  computes successively 
higher  values of A,(mx) by making  use of a recurrence 
formula] is unstable,  in  general the downward  recurrence 
scheme is found to be  very stable.24 It is not necessary 
to know the initial value for starting the downward 
recurrence  scheme;  one  can  make use  of the ratio method 
first  described  by  Miller.25  Reference  may  also  be  made 
of an independent later work in this  direction by Corbat6 
and  Uretsky?'  who have applied the downward  recurrence 
procedure for generation of spherical Bessel functions 
on digital  computers. Kattawar and Plass"  seem to be 
the first to use this downward  recurrence  procedure in 
Mie scattering  calculations. 

After a careful  analysis of the various  problems of 
the Mie scattering computations described  above,  two 
computer  subroutine  programs (FORTRAN IV G language) 
were  developed  recently  by the author."  They were  then 
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used to study the characteristics of the radiation scattered 
by large (x  - 800), nonabsorbing spheres." The  purpose 
of this paper  is to describe  some major features of these 
subroutine programs and to present  some of the results 
for a large, absorbing sphere. 

2. A second look at the Mie expressions 
From the expressions for the radiation scattered by a 
sphere given  in the Appendix, it can  be  seen that the 
computational problem  reduces to  that of evaluating 
the following four quantities: The complex quantities 
a, and b,, (Eqs. 32 and 33) which are functions of the 
size parameter (x)  and refractive  index (rn = n, - inz) 
of the material of the sphere, and the functions rn and 
T~ (Eqs. 41 and 42) which are functions  of the scattering 
angle (e). 

2.1 a,andb,,: 
The expressions for the functions a, and b, [Eqs. (32) 
and (33)] for comp1e:x values  of the parameter rn contain 
the spherical Bessel functions j,(rnx) which  in turn require 
hyperbolic  sine and hyperbolic  cosine  functions  sinh (nzx) 
and cosh (nzx). Since all computers  deal only with finite 
numbers, the evaluation of the expressions  in the present 
form can  result in an overflow. For IBM  System/360 
computers, this overflow occurs when n,x - 170. 

This overflow can be avoided by dividing both numerator 
and denominator of the expression for a, as well as that 
of b, by j,(rnx) as all the terms  contain j,(rnx) or jn-,(rnx). 
I ~ ~ f e l d ? ~  who  seems to have been the first to recognize this, 
introduced the so-called  logarithmic  derivative of \k,,(rnx) 
and .$,(x) functions given  by  Eqs. (34) and (35), respec- 
tively.  Some  of the properties of these  logarithmic  deriva- 
tive functions have  been  discussed  by  Aden.34 The function 

is  denoted as a,(mx), A,(rnx), or as D,(rnx) function 
in Refs. 34, 9, and 12, respectively. By  use  of this ratio, 
which  we will call A,(rnx), the expression for u,(x, rn) 
can  be  written as follows: 

a,(x, m) 

and 
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After  making use  of the recurrence  relationship given  by 
Eq. (38), it can be  shown that the functions A,(rnx) and 
A,-,(rnx) are related  as  follows: 

n + 1 - - " 

The following initial value for setting up this recurrence 
can  be  obtained after making  use of Eqs. (39) and (40): 

The values of the function &(X) can  be  computed after 
making use  of the following  recurrence  relationship 
based on Eqs. (38) to (40). 

with 

&,(x) = cos x - i sin x ,  (7) 

and 

t0(x)  = sin x + i cos x .  (8) 

At first  sight, modified  expressions  of %(x, rn) and 
b,(x, rn) as given  by Kattawar and Plass" appear to be 
different from those given  by Deirmendjian and Clasen.' 
This  is not really the case and one  can  check their equiva- 
lence by making  use  of  Table 1. 

2.2 A,  and tn 
The initial value for setting up the recurrence  procedure 
for computations of A,(rnx) is  given  by Eq. (5). With 
m = n, - inz, it can  be  written in either of the following 
forms : 

Ao(mx) = 
sin (2nlx)  + i sinh (2n,x) 
cosh (2nzx) - cos (2n lx )  ' 

or 

A d m x )  

- - sin (nix) cos (n,x) + i sinh (.,x) cosh (nzx) 
sin" (n,x) + sinh" (nzx) * (10) 

If n,x = 0 and n,x is an integer  multiple of a, either of 
these  forms will give  rise to a division by zero, and hence 
a possible  termination of the program, or wrong  results. 
(This  problem  does not arise if the downward  recurrence 
procedure is  used.) This is not a hypothetical  case, as 
several situations can  be  visualized  where 2n,r/X can 
be an integer.  Because  of the generation of the roundoff 
errors in a particular way, the expression for Ao(mx) 

Table 1 Notations  as  used by Deirmendjian  and  Clasene 
and by Kattawar  and  Plass." 

given  by E q .  (10) was found to be  more  suitable for 
computational purposes.  However, it will  be  necessary 
to apply  due  caution if 2n,r/X is  very  close to an integer, 
since  roundoff errors are generated  differently  in  different 
computers. 

If n2 # 0, a straightforward  evaluation of Ao(mx) will 
again run into trouble if nzx - 90 or more.  Since for these 
large  values of nzx, sinh (nzx) - cosh (nzx) - +e(""), 
we  may make use  of the following approximation: 

Ao(rnx) = 0.0 + 1.0 i. (1 1) 

A use  of this approximation immediately  leads to the 
question of propagation of errors, as the successive  values 
of A,(rnx) are computed by upward  recurrence [Eq. (4)]. 
As mentioned  earlier (Sec. l),  Kattawar and Plassl'  have 
already  pointed out  that a numerical  instability  develops 
in this case. For setting  up the downward  recurrence 
procedure,  they  have  suggested the use of 0.0 + 0.Oi as 
the initial value of A,(mx) for some  value of N > Imxl. 
Since the computational error decreases  very  rapidly at 
each step of downward  recurrence  in this particular case, 
the calculations are insensitive to the assumed starting 
value and converge  very  rapidly to the correct value. 
The following criterion for selecting the value of N at 
which the downward  recurrence  should  be started was 
arrived at after trial and error: 

N = I.I(n? + ni)*x + I. (12) 

The real part of the function A,(mx) for rn = 1.342 - 
1.Oi and x = 5 0 . 0 ~  as obtained after using the upward 
recurrence (thin solid  curve) and downward  recurrence 
(broken curve)  procedures,  is plotted in Fig. 1 as a function 
of n. It can  be  seen that a numerical  instability  develops 
in the upward  recurrence scheme  when n = 111. Between 
112 and 125, large  oscillations  develop. The amplitude 
of these  oscillations  decreases when n is about 130. 
For n = 136 and higher, a stabilization  occurs, but the 
real part of A,(mx) achieves a value  which  is  completely 
different from the correct  value given  by the broken curve. 
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The ultimate effect of this instability is to increase the 
values of the efficiency factor Q. [Eq. (44)]. Eventually, 
Q. becomes greater than Q. leading to negative values 
for Qa [Es. (45)]. An example of this is provided in  Table 2, 
where the values of Q. as  obtained using the upward 
recurrence procedure, and  as obtained using the downward 
recurrence procedure for computations of A,(mx), are 
tabulated for several values of n2. The assumed values 
of n1 and x are 1.342 and 50.0r, respectively. The values of 
Q,, as obtained using two different computational  pro- 
cedures agree to four significant figures for n2 up to 0.2. 
For n, = 0.3, a difference of one unit is noticeable in 
the  fourth significant place. Thereafter, the difference 
increases very rapidly, and  for n2 2 0.5, the use of upward 
recurrence procedure results in  erroneous negative values 

The computations of the function fn(x), which always 
has a real  argument, are straightforward. The problem 
of the propagation of error  is  not serious if all the basic 
arithmetic is  done in  double precision. 

of Q,. 

2.3 T,, and rn 
The phase  functions r&) and r , (p)  given by Eqs. (41) 
and (42) can be computed  after  making use of the following 
recurrence relationship based on  the properties of the 
Legendre polynomials and their derivatives: 

Figure 1 Variation of the real part of the  complex  function 
A,(rnx) as a function of n. Broken  curve  represents  values 
obtained by using  downward  recurrence  procedure. Thin 
solid  curve  represents  values  obtained  using  upward recur- 
rence  procedure. rn = 1.342 - 1.0 i, x = 5 0 . 0 ~ .  

m=1.342-1.0i 
x = 5 0 r  - -0.10 

In 
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Table 2 The values of the efficiency factor for absorption 
Q. as a function of na : rn = 1.342 - nzi, r = 10.0~~ 
A = 0.4p, x 5 0 . 0 ~ .  

n2 Column 2 Column 3 

0.0 
o.oO01 
0.001 
0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

o.oO0o 
0.0535 
0.4149 
0.9649 
0.9653 
0.9542 
0.9389 
0.4913 

-0.4925 
-0.5265 
-1.1592 
- 2.3079 
-1.4379 
- 1.3789 

O.oo00 
0.0535 
0.4149 
0.9649 
0.9653 
0.9542 
0.9390 
0.9211 
0.9016 
0.8808 
0.8592 
0.8369 
0.8141 
0.7910 

Column 2 :  Values of Q- as obtained after computing the function A.(mx) 

Column 3: Values of Q. as obtained after computing the function A,(mx) 
using an upward  recurrence  procedure. 

using a downward recurrence  procedure. 

and 

rnb) = A r n G )  - r s -b ) l  

- (2n - 1)(1 - p 2 ) r n - l ( p )  + Tn-z(pCl), (14) 

where 

a o ( d  = 0 ,  

Tl(PCL) = 1, . 
rob) = 0, 

Tl(PCL) = c1 I (1 5 )  

Computations of the values r3000(p) and r3000(p) 
starting with those of' ao(p), etc., given by Eq. (15) results 
in a loss of  six to seven significant figures. Hence, it is 
again necessary to carry out basic arithmetic  in  double 
precision. 

The values of a,(l) and r,(l) obtained after making 
use of Eqs. (13),  (14), and (15), can  be checked against 
those  obtained from  the following very simple expressions 
for  the 

~ ~ ( 1 )  = rn(l)  = +n(n + 1). (1 6) 

For 0 = 90°, i.e., p = 0, it can be shown that 

T J O )  = O (if n is even) 
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The values of gamma functions for large  values of n 
can  be found in one of the tables  in the series of mathe- 
matical tables published by the U. S. National Bureau 
of Standards.35 

If the values of n,(p) and ~, , (p)  for p > 0 have  already 
been  computed, it is not necessary to compute  those of 
a,(--) and ~ , ( - p ) ,  as has been done by some  investi- 
gators (e.g., Ref. 4). Instead, one can  make  use of the 
following  relationships : 

7rn(-p) = (-1y-l T n G )  (1 8) 

and 

7,(-p) = (-1YTn&). (19) 

These  relationships  can  be  derived  easily by making 
use of the following  well-known  properties of the Legendre 
polynomials: 

PA-p) = (- l>nPn&), (P 2 0) (20) 

and 

P X - p )  = (- l)n-lP;(p), 01 2 01, (21) 

where PL represents the derivative of P,, with  respect to p. 

However, it appears that  the above  mentioned  properties 
have  gone  unnoticed  in this particular field.  Van de Hulst3 
has not given them explicitly,  even though he does  make 
use of these  relationships for p = -1 at several  places. 
The later investigators (e.g.,  Refs. 6, 9, 12, 13, and 16) 
do not refer to them either. The advantages of making 
use  of  these  relationships  should be more  evident after 
studying the published data of various authors and after 
recognizing the ease of obtaining data for the supple- 
mentary angles." 

3. Results of computation 

3.1 Some characteristics of the  subroutine programs 
After  making  use of the formulas and the procedure 
outlined in Sec. 2 above,  two  double-precision  sub- 
routines were written in FORTRAN IV G language.  In  one 
of these  subroutines, all the basic functions [i.e., A,(mx), 
E&), a,(mx), bn(mx)y nn(p) and ~ n ( ~ ) l  are computed 
using the upward  recurrence  procedure. In order to cut 
down on  the exorbitant and unnecessary  storage  demand, 
the s e f o r  &(x, m, 01, &(x, m, 01, Q,(x, m), PAX, m), 
and cos 0. QAx, m) given  by  Eqs. (28), (29), (43), (44), 
and (46), respectively are updated after computation of 
the basic functions of a current order, and the storage 
space for the basic functions is re-used  unless their values 
are required at a later stage. The computations are ter- 
minated when the following  criterion is satisfied: 

la,(x, m)I2 + Ib,(x, m)l" < 1.0 X (22) 

Table 3 Average  time ( I  in seconds) which  the first sub- 
routine  takes to return  values  of  four elements of the 
transformation  matrix for 182 values of e as well as values 
of Q., Q8,  and cos 6 * Q. for various  values  of  size 
parameter x .  Computing facility used: IBM System/360 
Model 50, FORTRAN IV G compiler,  Level 1, Mod. 2. 

- 

X t in sec 

0.1 0.7 
1.0 

10.0 
1 . 1  
3.7 

100.0 22. 
1Ooo.o 194. 
5000.0 945. 

The sparing use  of storage  space and the use  of relation- 
ships given  by  Eqs. (18) and (19) resulted in obtaining the 
values of the elements of the transformation matrix  in 
as many as 200 different  directions  with a nominal  storage 
requirement of 11,962 bytes (FORTRAN IV G, Level 1, 
Mod 2). It should  be  noted that this subroutine was  used 
to obtain reliable  numerical  results for a nonabsorbing 
sphere  with size parameter up to 5000. 

In  the other subroutine where one of the basic functions, 
A,(mx) is  computed by downward  recurrence, the storage 
requirement is rather high as all the values of A,(mx) have 
to be stored for later use. It is 123,868 bytes if recurrence 
is to be started at  an order as high as 7000 and output 
is desired  in 200 different  directions. Furthermore, even 
for this much core  storage, the maximum  value of x for 
which output can  be  obtained  is  determined by values 
of n, and na as can  be  seen from Eq. (12). 

Average  time ( t  in seconds)  which the first subroutine 
takes to return values of four elements of the transforma- 
tion matrix for 182 values of 0, as well as values  of Q.,  Q., 
and cos 0. Q ,  is  given in Table 3 as a function of the 
size parameter x. Because of the use of the downward 
recurrence  procedure in the computations of A,(mx), the 
average  time for the second subroutine depends upon the 
values  of n,,  n,, and x.  For 1.0 < (n; + ni)' < 1.5, this 
subroutine requires, on average, about 10 to 20% more 
time than the first  one. 

Because of the nature of the problem, it is not possible 
to make a positive  statement about the reliability of a 
given  value.  However, after comparison of the values 
obtained using  these subroutines with  some  published 
and unpublished r e s ~ l t s ' ~ ~ ~ * ~ " ~ '  and, after detailed 
investigation of the error propagation problem, it is 
felt that  the first six significant  figures  should  be  generally 
reliable if the sphere is not very  large. For a very large 
sphere ( x  - 3000 and higher),  only the first four or five 
significant  figures should be considered  reliable. 

- 
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Further confidence  in the numerical  results can be 
gained by comparing  some  values given  by these  sub- 
routines  with those which  can  be obtained from some 
simple formulas applicable  in  extreme cases. One of such 
formulas is given on pages 264 and 265 of Ref. 3. Ac- 
cordingly, for a large  sphere  made of material with 
refractive  index m = 1.342 - O.Oi, QI,  the efficiency 
factor for scattering,  can  be  calculated from the following 
“best” formula: 

Q .  = 2.0 - 7.680~” sin (0.684~) f 1.84(x)-$ 

+ “ripple”. (23) 

For x = 50.0~ and 500.0s, the values of Q. obtained 
from this formula are 2.0345 + “ripple” and, 2.0136 f 
“ripple”, respectively,  which  compare  well  with the 
respective  values of 2.0305 and 2.0129 given  by the 
subroutines. 

The other such formula is for  the intensity of the radia- 
tion backscattered by a sphere  made of  highly absorbing 
material. In the absence of any contribution by the rays 
travelling through the sphere, the intensity of the back- 
scattered radiation (Ze=lso~)  can  be obtained from the 
following formula, based on Fresnel’s  law  of reflection: 

Using this equation, we  have Ze=180~ = 1.06246 X lo3 and 
1.42526 X lo4 for x = 50.0~, m = 1.342 - l.Oi, and, 
x = 500.0?r, m = 1.342 - O.li, respectively. The cor- 
responding  values as obtained  using the subroutines are 
1.06248 X lo3 and 1.42526 X lo4, respectively.  These 
comparisons  aptly support the reliability  claims  described 
earlier  in this section. 

3.2 Scattering by an  absorbing sphere 
In a recent papery the author has  demonstrated the 
usefulness of these subroutine programs in carrying 
out exhaustive  studies of the characteristics of the radia- 
tion scattered by large,  nonabsorbing  spheres. In this 
section, we propose to present and to discuss the results 
for an absorbing  sphere with r = 10.Opm and illuminated 
by a parallel  beam of unpolarized,  monochromatic 
radiation having X = 0.4pm. The sphere is assumed to be 
made of a material whose refractive  index  with  respect 
to its surrounding is  given  by m = 1.342 - n2i. The value 
of n2 is varied from to 1.0. This particular case  is 
selected to study the effects  of  varying absorption on 
some  prominent optical features  such as the rainbow  and 
glory. 

Before  going into the details of the characteristics  of 
the scattered radiation field, we shall look into the effect 
of varying absorption on some of the specific and in- 
tegrated  optical  properties of the sphere. In Fig. 2, the 

4.0 
r=lO.Op;A=O.4p 

3.0 - x=50.0?r = 157.08 
T 
0 
& 

8 - ;; 1.0 

rn=1.342-+z2i x 2.0 - 
h 

0 
v 
.-r 0 1 [ [ ] I  I I I , I , , I  

? I -  s 1.650 

1.600 

0.8 1 
I I l l  I I I l l  I I I l l  1 111 .  

] Imaginary part of  the  refractive  index (n2) 

- 
Figure 2 Variation of the  cos 8, Qa,  Qs, Q e ,  I W , ~ . ,  and 
Ztozm-, as a function of the imaginary  part of the refractive 
index. 

second  curve from th.e bottom (marked Qa) represents the 
variation of the efficiency factor for absorption (Eq. 45) 
as a function of n2. For n2 - the sphere absorbs a 
very minute  fraction of the radiation incident  upon it; 
in fact, for n2 = 1.0 X: lo-‘, Qa = 0.0055. As the imaginary 
part of the refractive  index (nz) is  increased from 
to lo-’, Q. increases rather rapidly from 0.054 to 0.965. 
For a further order-of-magnitude  increase in the value 
of nz, Qe shows very little change. For still larger  values 
of n,(> O.l), a significant  decrease in the absorbing power 
of the sphere  is  due to an increase in reflecting  properties 
of the material of the sphere  (Fresnel’s  law). The efficiency 
factor for scattering (Q., Eq. 44) decreases  with  increase 
of absorption, attains a constant value when Q. is in- 
dependent of nz, and increases  with nz when the reflecting 307 
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Figure 3 Variation of the scattered  intensity as a function 
of the  scattering  angle; 0" 5 6 5 45". 

power  of the sphere  increases. The middle  curve,  marked 
Q,, shows the variations in the efficiency factor for 
extinction (Fq. 43) as a function of n,. As  mentioned 
in the Appendix, Q,  is the sum  of Qo and Q,. 

The intensity of the radiation scattered  in the forward 
direction (broken curve in Fig. 2) shows a significant 
increase in the region < n, < lo-' where the ab- 
sorption plays an increasingly important role. The radia- 
tion in this direction  is a resultant of an interaction 
between the radiations diffracted, transmitted and reflected 
by the sphere  (anomalous  diffraction, Sec. 13.41 of Ref. 3). 
Even though the diffracted  component  plays the most 
important role, the contribution due to the other two 
is evident. Furthermore, since the reflected  component 
undergoes  very  little  change, an increase  in Z e - o o  as a 
function of n2 in the range to lo-' can  be  explained 
by postulating a destructive  interference between the 
radiations diffracted and transmitted by the sphere. 

The variations of Zs - l so~  as a function of n2 (top curve) 
can  also  be  similarly  explained. A strong decrease  in the 
magnitude of the backscattered  intensity, in the region 
where absorption starts playing an increasingly  more 
important role,  is  due to the strong attenuation of the 
radiation which returns from the sphere after suffering 
one internal reflection (p = 2 in  Fig. 7). 

The lowermost  curve  in  Fig. 2 (marked COS 0) represents 
the variations of the so-called  asymmetry factor (Eq. 46) 
as a function of n2. This factor gives a gross  indication 
about the way  in  which the scattered  energy  is distributed 

~ 

around a plane at right  angle to the incident radiation, 
e.g., for isotropic and Rayleigh  scattering, this quantity 
vanishes. The variations in cos 0 as a function of n2 are 
better understood after examining the details of the 
characteristics of the scattered radiation field. 

The variations of the intensity and degree of polarization 
of the radiation scattered by a 1 0 . 0 ~  sphere are shown 
in Figs. 3 and 4 for the angular region 0'-45'. Similar 
results for the angular regions 45'-90',  90'-135', and 
135"-180' are shown in Figs. 5,6, and 9-12. As  mentioned 
earlier, the sphere is assumed to be  illuminated by a plane 
parallel  beam of unpolarized radiation with X = 0 . 4 ~ .  
The computations were carried out for the 1801 values 
of 0 given  by 0 = O.Oo(O.lo)lSO.Oo. The results  presented 
in these  diagrams were plotted  using an IBM 1627 plotter 

~ 

Figure 4 Variation of the  degree of polarization of the 
scattered  radiation  as a function of the  scattering angle; 
0" 5 6 5 45". 
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and  the successive points were joined by straight lines. 
Because of the finite number of angular  positions at 
which the computations were made, the  actual maxima 
and minima can be much  more  pronounced than shown, 
especially if they appear very pointed  in  these diagrams. 

After a careful  study of the detailed output  for  about 
20 values of n, in  the range to 1.0, output  for  four 
different values of ~ ( 1 . 0  X 5.0 X 0.01 and 
1.0) was selected to study the effect of varying absorption 
on  the characteristics of the scattered  radiation. In  the 
region 0"-15", the pronounced  contribution due to dif- 
fraction is very evident. Because of this, the intensity 
(Fig. 3) and degree of polarization (Fig. 4)  of the scattered 
radiation show only  minor changes as  the imaginary part 
of the refractive index is increased by five orders-of- 
magnitude. With increase in 8, the contribution due to 
diffracted radiation decreases rapidly, and  the contribution 
due to interaction between the radiations reflected and 
transmitted by the sphere plays an  important role. For 
8 2 45O, and na = 1.0, the reflected radiation is a prime 
contributor  as can be seen from very strong damping 
of the oscillations. 

In  the angular region 45'-90°, the interesting feature 
is the maximum in  the degree of polarization curve 
(Fig. 6 )  at the pseudo-Brewster angle [180° - 2 tan-' lml] 
as predicted by ray optics. AS expected, the position of this 
maximum shifts towards  the forward direction with 
increase of n,. 

Some of the features of the scattered intensity field 
in the angular region 90'-180' are predicted by ray 
optics. If the radius of the sphere is large compared to 
the wavelength of the incident radiation, the incident 
beam  can be broken up  into several narrow sub-beams 
or rays whose width is much greater than X but small 
compared to r. Let us consider one such ray  making an 
angle T with the surface (Fig. 7). T = 90' for  the central 
ray and = 0' for  the edge ray. The incident ray is 
partly reflected along the direction marked 0, and is 
partly refracted along the direction making an angle T' 

with the surface. The relation between T ,  T' and refractive 
index m is given by Snell's  law. The refracted ray suffers 
several internal reflections and  at each reflection, a part 
of the energy leaves in the directions marked p = 1, 
2, 3, etc. 

In Fig. 8, we have shown the variations in scattering 
angle 0 at which the  ray emerges after undergoing one 
(p = 2) or two (p = 3) internal reflections. For p = 2, 
the central ray bounces back, and emerges in a direction 
marking an angle of  180'  with that of the incident radia- 
tion. 8 decreases with r, passes through a minimum 
value of  139.2' at r = 31.1', and  then increases for 
further decrease in r. The edge ray (T = 0') emerges at 
0 = 167.3'. The position of the minimum deviation is 
generally referred to as that of the primary rainbow. 

MAY 1969 

lo5 r r= 1 0 . 0 ~  ; A=0.4p 
x = 5 0 . 0 ~  el57.08 

1 Scattering angle, 0 ,  in dcgrccs 

Figure 5 Variation of the  scattered  intensity as a function 
of the scattering  angle; 45" 5 B 5 90". 

Figure 6 Variation of the degree of polarization of  the 
scattered radiation as a function of the  scattering  angle; 
450 5 e 5 90". 
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Figure 7 Path of a light ray through a sphere according to 
geometrical  optics. 

The rays entering the sphere at different angles but 
emerging in  the same direction 0 interfere and give rise 
to several maxima and minima in the intensity curve 
(supernumerary  bow^).^"^ For  the primary rainbow, its 
supernumerary region ends at 167.3'. Similarly, after 
two internal reflections 0, = 3),  we have a secondary 
rainbow at 0 = 126.8' with its supernumerary region 
ending at 109.1'. The exact positions of the rainbows 
and  its supernumerary maxima and minima for a sphere 
of given size can be obtained by following a procedure 
outlined by Van de HulstP 

From  the variations of Z versus 0 presented in Fig. 9 
(curve A), it  appears  that  there  are several maxima and 
minima in  the region of the secondary rainbow. However, 
from  the results presented in a recent paper? it is clear 
that  for a sphere of this size, ray optics predicts only 
two maxima, one  at  about 120' and  the  other  at  about 
110'. Thus, one concludes that  the presence of three 
maxima in  the angular region 118'-132' is due to signifi- 
cant  contributions from  the radiations resulting from 
causes other  than  two internal reflections. This pseudo- 
rainbow  feature is considerably suppressed when n, = 
5.0 X (curve B). For still higher absorption, there 
is  no evidence of the feature. From Fig.  10, it can be 
seen that  the rainbow region is strongly polarized. 

The primary rainbow and its four supernumerary 
maxima can be clearly identified in the Z vs 0 values 

310 plotted in Fig. 11 for n2 = 1.0 X Furthermore,  the 
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I Angle T (Fig. 7) in degrees 

Figure 8 Scattering  angle e at which  the ray emerges after 
suffering  one ( p  = 2 )  and two ( p  = 3 )  internal reflec- 
tions,  versus  the  angle T which  the  incident ray makes  with 
the surface of the  sphere. 

Figure 9 Variation of the scattered  intensity as a function 
of the scattering  angle; 90" 5 e 5 135". 
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region of the maxima shows very strong positive polari- 
zation (Fig. 12). For n2 = 5.0 X these features are 
much less suppressed than  those of the secondary rainbow. 
Even the curve corresponding to n, = 0.01 shows some 
ripple. This is so because the rays giving rise to the primary 
rainbow  travel  shorter  optical distances within the sphere 
than those giving rise to  the secondary rainbow. 
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Figure 10 Variation of the  degree of polarization of the 
scattered radiation as a function of the scattering  angle; 
90" i e 5 135". 

Another interesting feature of Fig. 11 is a general in- 
crease in  the scattered intensity as €' is increased from 
170' to 180". There are several distinct maxima and 
minima which are strongly polarized (Fig. 12). This is 
the region of the glory. As mentioned earlier, the region 
of the primary rainbow ends at 167.3'. Hence, there is 
no obvious  ray  optics  explanation for  the phenomenon 
of glory. For a heuristic explanation, one is therefore 
forced to invoke the notion of surface waves on  the sphere 
coupled with rays that  jump  through  the sphere at  the 
critical a r~g le .~"~  However, the propagation of the waves 
on the spherical surface is only qualitatively understood. 
Since the remnants of glory can be seen even in  the Z vs 0 
and P vs 0 curves for n2 = 0.01, it may be possible to 
obtain a better  understanding of the surface waves by 
analyzing the attenuation of the scattered  radiation  as 
a  function of n2. 

4. Concluding remarks 
Even though Mie's expressions for evaluating the charac- 
teristics of the electromagnetic radiation  scattered by a 
sphere were first derived in 1908, a  numerical  solution 
to  the problem for a general case has run  into several 
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Figure 11 Variation of the scattered  intensity as a function 
of the scattering  angle; 135" 5 0 2 180". 

Figure 12 Variation of the degree of polarization of the 
scattered radiation as a function of the  scattering  angle; 
135" 5 8 < 180". 
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difficulties for a long  time.  After  examining the problem 
in  detail, a computer  program in FORTRAN IV G language 
was recently developed.” Some  of the highlights  of  this 
computer  program  along  with sufficient numerical  results 
are  presented  in  the  preceding  sections to demonstrate 
the feasibility and reliability  of such  computations. 
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Appendix:  Expressions  for Mie Scattering 
In order to describe the scattering process fully, it is necessary 
to represent a beam of radiation  as a vector or as a one-column 
matrix (I) with four elements. In  the Stokes representation,Zg 
the first two elements of this matrix noted by I ,  and I,, rep- 
resent the specific intensities of the beam in two directions e 
and r,  respectively. The directions e and r are mutually at right 
angles to each other, such that the e-r plane is perpendicular 
to  the direction of propagation of the radiation under study. 
The other two elements, viz., Z,, and I,, are needed for defining 
the direction of polarization with respect to the e-r plane, and 
the ellipticity of the beam respectively. Further details about 
the Stokes parameters and their relationships to  the conventional 
radiation parameters can be found  in several places.aJ0 

The expressions for  the radiation scattered by a sphere of 
radius r,  and of material with a complex index of refraction 
m, have been aptly derived by Van de Hulst,3 and also by Born 
and Wolf.31 We shall therefore enumerate the final results only. 
Let I< and I, respectively represent the Stokes parameters of 
the  radiation incident on,  and scattered by, a sphere with e 
component parallel to  the plane of scattering. Then 

I, = F’-Ii, (25)  

where F’ is a four-by-four matrix referred to as a “transforma- 
tion matrix” by Van de Hulst36. It has the following form: 

M 2  0 0 0 

0 M I  0 0 F’ = (26)  
0 0 X 2 1  - D21 

0 0 D21 S 2 1  

The matrix F’ and hence the matrix I, are functions of the 
following parameters: 

x = 2 ~ r / X ,  where X is the wavelength  of the incident 
radiation; 

rn = nl - inz, index of refraction of the material of the 
sphere with respect to its  surrounding; 

and e = the angle between the direction of the incident and 
that of the scattered radiation. 

Van de Hulst3 has also noted that only three elements of 
F’ are independent, the interrelationship being 

312 Sil + Oil = M2M1. (27) 
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In order to evaluate these elements, one first  defines the 
complex amplitudes Sl(x, m, 0) and S~(X, m, 0) for the scattered 
radiation. 

= COS e. 
Then, 

Mi = SlST, 

M2 = S2S,*, 

S’, = 2 (S2ST + SlSZ), 1 t *  

and 

\ I ~ ’ ( Z )  and &’(x) are  the derivatives of ?Iln(z) and En(x) with 
respect to z and x, respectively. 

* n k >  = zin(z) 

L(x>  = .[in(.) - i~n(x)l 
(34) 

(35) 

(36)  *Xz> = Z.L-l(z) - njn(z) 
and 

(;(X) = x[jn-l(X> - i~n-l(x)I 
- .[jn(X> - iYn(X>I. (37) 

The’ functions j,, and y ,  are  the spherical Bessel functions of 
the first and second kind, respectively. The following recurrence 
relationships and initial values for setting up  the recurrence 
procedure can be found  in  any of the standard mathematical 
books (e.g., Ref. 32). 

4, 

and 
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The phase functions ?r,G1) and T ~ ( / L )  appearing in Eqs. (28) and 
(29) can be expressed in terms of the Legendre polynomials as 
follows: 

and 

Besides the elements of the transformation  matrix F‘, other 
terms of considerable importance are  the dimensionless con- 
stants referred to as “efficiency factors” by Van de Hulst.37 
Qe, the efficiency factor for extinction, which is  the  ratio of the 
total  amount of energy removed from  the incident beam to the 
geometric cross-section (Tr*) of the particle, can be obtained 
from the values  of a, and b, only. 

2vf” 
Q A X ,  m) = (2n + 1)[Re(a,) + Re(b,)l. (43) 

n-1 

The symbol Re stands  for the real part of the quantity in 
parentheses. Q8, the efficiency factor  for scattering, is given by 
the following expression: 

If there  is no absorption, i.e., n2 = 0, Q .  = Q.. Otherwise, 
Qn, the efficiency factor  for  absorption, is given by 

Q. = Q, - Q s .  (45) 
Another dimensionless quantity of considerable interest is the 

so-called “asymmetry factor” represented by =e. 

As noted by  Irvine,lO and again by Kattawar and Plasslz 
[but not by  Giesee], asterisks appearing in Eq. (46) have been 
omitted in Ref. 3. 

The value Qp, efficiency factor  for  radiation pressure, can 
then be obtained using the following: 

Q, = Q,  - COS O * Q , .  (47) 
- 
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