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Scattering of Electromagnetic Radiation by a

Large, Absorbing Sphere

Abstract: Details are provided for two subroutines with which one can compute the various characteristics of the electromagnetic
radiation scattered by an absorbing, homogeneous sphere of any reasonable size. The necessary expressions for this purpose were
first derived by Mie. The method of computations used is the so-called method of logarithmic derivative of one of the complex functions,
introduced by Infeld. The main difference between the two subroutines is in the procedure used in computations of one of the functions.
This function is computed by an upward recurrence procedure in one subroutine and by a downward recurrence procedure in the other.

Sufficient results for demonstrating the reliability of these programs are presented and discussed for a sphere of 10um radius il-

luminated by an unpolarized radiation of 0.4um wavelength.

1. Introduction
The passage of electromagnetic radiation through a
medium is generally accompanied by the removal of a
fraction of the energy from the incident beam. This
fraction may be partly absorbed within the medium, and
may become partly scattered, i.e., reappear in the same
direction as well as in other directions. The characteristics
of the scattered radiation are determined by the wave-
length M of the incident radiation, the complex refractive
index (m = n; — iny) of the medium, and the size as well as
the shape of the discrete particles in the medium. Because
of this, measurements and proper interpretation of the
characteristics of the scattered radiation offer a very good
opportunity for obtaining information about the state
of the medium. Hence, numerical determination of the
characteristics of the scattered radiation for a given model
is of prime importance in several diversified fields such
as planetary and atmospheric optics; astrophysics; laser,
radar, and searchlight applications; and physical chemistry.
To this end, the first step is the evaluation of the charac-
teristics of the radiation scattered by a single particle.
The numerical evaluation of the parameters of the
radiation scattered by a particle very small compared to A
is very simple and straightforward." The expressions for
the radiation scattered by a sphere whose radius (r) is
comparable to, or greater than, N were first derived by
Mie” The expressions for Mie scattering involve series
whose terms contain Bessel functions of half-integral
order (spherical Bessel functions) with complex argument,

The author is located at the IBM Scientific Center, 2670 Hanover Street,
Palo Alto, California

and first and second derivatives of the Legendre poly-
nomials. Furthermore, the number of terms required for
evaluating the series is of the order of the size parameter
x (i.e., 27r/)\). Hence, the reliable Mie scattering compu-
tations for large spheres can be described as difficult,
tedious, and time consuming.

The derivations of the Mie expressions as well as a
catalog of its available numerical solutions in some
specific cases can be found in the treatise, “Light Scattering
by Small Particles,” by Van de Hulst.® Prior to this
publication, numerical evaluation of the Mie expressions
was confined to small values of x(~10) for absorbing
(n; > 0) spheres. For nonabsorbing spheres (n, = 0),
the most outstanding work is that of Gumprecht and
Sliepcevich,*® who carried their calculations to x = 400.
As has been pointed out by Van de Hulst,® the work of
these authors cannot be considered to be complete since
the laws of geometric and physical optics can be applied
to the transfer problem in a water sphere with some
reasonable confidence only if x is of the order of 2000.
Even for x this high, Van de Hulst points out some limita-
tions of such a ray optics treatment and a need for checking
such results against those obtained using the exact solu-
tion.” Furthermore, the number of directions for which
the radiation parameters are given by these authors® is
too small to give any insight into the fine structure of the
radiation field. Besides, many fields of application demand
extensive numerical data for values of refractive indices
other than those used by these authors.”

Since the publication of Van de Hulst’s book, several
authors®™® (references are by no means exhaustive) have
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published useful results for absorbing spheres of moderate
size (x ~ 50). For nonabsorbing spheres, the trend is
to obtain a much more detailed picture of the field of the
scattered radiation than was available before'®™*® and
to compute the average characteristics of the radiation
scattered by a unit volume containing an arbitrary size
distribution of small spherical particles (x < 200).'*"%
Very recently, Fahlen and Bryant®™ have reported results
of some of their computations for x ~ 3000 but for only
one direction of scattering (6 = 180°).

This slowness of progress in obtaining the radiation
field for large spheres may be attributed partly to the
limited requirements of previous workers. However, since
Mie computations involve evaluation of series whose
terms differ by several orders of magnitude with increase
of n and change their signs in rather uneven manner, it is
essential to carry out basic arithmetic in double precision
if x is large. The other factor is the large storage require-
ments. Computations of the radiation scattered in 37
different directions [0°(5°)180°] by a sphere having size
parameter x = 1000 with straightforward programming
procedure can require use of more than 100,000 double-
precision words of storage, a requirement too large to
be fulfilled by the main storage area of any modern
computer. Hence, one is required to use magnetic tapes
or disks.

The main difficulty in evaluation of the characteristics
of the radiation scattered by a large absorbing sphere
is the very rapid propagation of the errors when the
function A,(mx) (Sec. 2.1) is computed using an upward
recurrence relationship (Sec. 2.2). A recurrence relationship
provides a very powerful computing tool, especially in
automatic work. However, since generation is carried out
perforce with rounded values, the errors may or may not
grow relative to the size of the wanted function. If the
errors do grow, the recurrence scheme is said to be un-
stable. When the upward recurrence scheme [i.e., starting
with the value of A, (mx), one computes successively
higher values of A,(mx) by making use of a recurrence
formula] is unstable, in general the downward recurrence
scheme is found to be very stable.”* It is not necessary
to know the initial value for starting the downward
recurrence scheme; one can make use of the ratio method
first described by Miller.”® Reference may also be made
of an independent later work in this direction by Corbaté
and Uretsky,*® who have applied the downward recurrence
procedure for generation of spherical Bessel functions
on digital computers. Kattawar and Plass” seem to be
the first to use this downward recurrence procedure in
Mie scattering calculations.

After a careful analysis of the various problems of
the Mie scattering computations described above, two
computer subroutine programs (FORTRAN IV G language)
were developed recently by the author.”” They were then
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used to study the characteristics of the radiation scattered
by large (x ~ 800), nonabsorbing spheres.”® The purpose
of this paper is to describe some major features of these
subroutine programs and to present some of the results
for a large, absorbing sphere.

2. A second look at the Mie expressions

From the expressions for the radiation scattered by a
sphere given in the Appendix, it can be seen that the
computational problem reduces to that of evaluating
the following four quantities: The complex quantities
a, and b, (Egs. 32 and 33) which are functions of the
size parameter (x) and refractive index (m = n, — iny)
of the material of the sphere, and the functions =, and
7. (Egs. 41 and 42) which are functions of the scattering
angle (6).

e 21 a,andb,:

The expressions for the functions a, and b, [Eqs. (32)
and (33)] for complex values of the parameter m contain
the spherical Bessel functions j,(mx) which in turn require
hyperbolic sine and hyperbolic cosine functions sinh (#,x)
and cosh (n;x). Since all computers deal only with finite
numbers, the evaluation of the expressions in the present
form can result in an overflow, For IBM System/360
computers, this overflow occurs when n,x ~ 170.

This overflow can be avoided by dividing both numerator
and denominator of the expression for a, as well as that
of b, by j.(mx) as all the terms contain j,(mx) or j,_,(mx).
Infeld,?® who seems to have been the first to recognize this,
introduced the so-called logarithmic derivative of ¥ ,(mx)
and £,(x) functions given by Egs. (34) and (35), respec-
tively. Some of the properties of these logarithmic deriva-
tive functions have been discussed by Aden.** The function

d[log ¥.(mx)] _ ¥i(mx) (1)
d(mx) ,(mx)

is denoted as o.(mx), A,(mx), or as D,(mx) function
in Refs. 34, 9, and 12, respectively. By use of this ratio,
which we will call A4,(mx), the expression for a.(x, m)
can be written as follows:

a(x, m)

{ALm) 4 1) po ] - Re i)

m

]

- A (mx) | n &
{_n__ —I— ;}gn(x) - gn—-l(x)

m
and

b.(x, m)

{m An(mx) + g} Re [gn(x)] — Re [gn—-l(x)]
= . (3)
{maim9 + e - e
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After making use of the recurrence relationship given by
Eq. (38), it can be shown that the functions A,(mx) and
A,_(mx) are related as follows:

_ ___L jn——l(mx)
Alms) = = Jn(mx)
n 1
- : @
e _n%x - An~1(mx)

The following initial value for setting up this recurrence
can be obtained after making use of Eqgs. (39) and (40):

j—l(mx)

Jo(mx)

The values of the function £,(x) can be computed after
making use of the following recurrence relationship
based on Egs. (38) to (40).

Ao(mx) = = cot (mx). (5)

B0 = 2 ) — 6, ©
with
£_1(x) = cos x — isin x, )
and
£o(x) = sin x + i cos x. ®)

At first sight, modified expressions of a,(x, m) and
b.(x, m) as given by Kattawar and Plass™ appear to be
different from those given by Deirmendjian and Clasen.’
This is not really the case and one can check their equiva-
lence by making use of Table 1.

« 22 A,and &,

The initial value for setting up the recurrence procedure
for computations of A4,(mx) is given by Eq. (5). With
m = n, — in,, it can be written in either of the following
forms:

sin (2n,x) + i sinh (2n,x)

Ao(mx) = cosh (2n,x) — cos (2myx) ’ ©)
or

Ao(mx)

_ sin (mx) cos (nyx) + isinh (n,%) cosh (ny%) (10)

sin® (m,x) + sinh® (n,x)

If nox = 0 and n,x is an integer multiple of 7, either of
these forms will give rise to a division by zero, and hence
a possible termination of the program, or wrong results.
(This problem does not arise if the downward recurrence
procedure is used.) This is not a hypothetical case, as
several situations can be visualized where 2mr/M\ can
be an integer. Because of the generation of the roundoff
errors in a particular way, the expression for A (mx)

Table 1 Notations as used by Deirmendjian and Clasen®
and by Kattawar and Plass.”®

Deirmendjian and Clasen Kattawar and Plass

Re [W{(x)] W(x)
Wa(x) £(x)
An(mx) D.(mx)
Re [Woi(x)] n
Re )] » Dn(x)
Wn—l(x) n
Wn(x) - ; Gn(x)

given by Eq. (10) was found to be more suitable for
computational purposes. However, it will be necessary
to apply due caution if 2n,r/\ is very close to an integer,
since roundoff errors are generated differently in different
computers.

If n, 5% 0, a straightforward evaluation of Ay(mx) will
again run into trouble if #,x ~ 90 or more. Since for these
large values of mpx, sinh (mx) ~ cosh (m;x) ~ 1e*®,
we may make use of the following approximation:

Afmx) =004 1.0 11

A use of this approximation immediately leads to the
question of propagation of errors, as the successive values
of A,(mx) are computed by upward recurrence [Eq. (4)].
As mentioned earlier (Sec. 1), Kattawar and Plass'® have
already pointed out that a numerical instability develops
in this case. For setting up the downward recurrence
procedure, they have suggested the use of 0.0 4+ 0.0i as
the initial value of A4 y(mx) for some value of N > |mx|.
Since the computational error decreases very rapidly at
each step of downward recurrence in this particular case,
the calculations are insensitive to the assumed starting
value and converge very rapidly to the correct value.
The following criterion for selecting the value of N at
which the downward recurrence should be started was
arrived at after trial and error:

N = 11(22 + nd)ix + 1. 12

The real part of the function A,(mx) for m = 1.342 —
1.0i and x = 50.0r as obtained after using the upward
recurrence (thin solid curve) and downward recurrence
(broken curve) procedures, is plotted in Fig. 1 as a function
of n. It can be seen that a numerical instability develops
in the upward recurrence scheme when n = 111. Between
112 and 125, large oscillations develop. The amplitude
of these oscillations decreases when n is about 130.
For n = 136 and higher, a stabilization occurs, but the
real part of A,(mx) achieves a value which is completely
different from the correct value given by the broken curve.
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The ultimate effect of this instability is to increase the
values of the efficiency factor Q, [Eq. (44)]. Eventually,
Q, becomes greater than Q, leading to negative values
for Q, [Eq. (45)]. An example of this is provided in Table 2,
where the values of Q, as obtained using the upward
recurrence procedure, and as obtained using the downward
recurrence procedure for computations of A,(mx), are
tabulated for several values of n,. The assumed values
of n, and x are 1.342 and 50.0, respectively. The values of
Q. as obtained using two different computational pro-
cedures agree to four significant figures for s, up to 0.2.
For n, = 0.3, a difference of one unit is noticeable in
the fourth significant place. Thereafter, the difference
increases very rapidly, and for n, > 0.5, the use of upward
recurrence procedure results in erroneous negative values
of Q..

The computations of the function £,(x), which always
has a real argument, are straightforward. The problem
of the propagation of error is not serious if all the basic
arithmetic is done in double precision.

23 m,and T,

The phase functions ,(u) and 7,(u) given by Egs. (41)
and (42) can be computed after making use of the following
recurrence relationship based on the properties of the
Legendre polynomials and their derivatives:

ma () = 2:—:-1—1 Uty () — . i 1 Ta—2(p), (13)

Figure 1 Variation of the real part of the complex function
An.(mx) as a function of n. Broken curve represents values
obtained by using downward recurrence procedure. Thin
solid curve represents values obtained using upward recur-
rence procedure. m = 1.342 — 1.0 i, x = 50.0m.
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Table 2 The values of the efficiency factor for absorption
Q. as a function of na : m = 1342 — nid, r = 10.04,
N = 04y, x = 50.0m.

Hy Column 2 Column 3
0.0 0.0000 0.0000
0.0001 0.0535 0.0535
0.001 0.4149 0.4149
0.01 0.9649 0.9649
0.1 0.9653 0.9653
0.2 0.9542 0.9542
0.3 0.9389 0.9390
0.4 0.4913 0.9211
0.5 —0.4925 0.9016
0.6 —0.5265 0.8808
0.7 —1.1592 0.8592
0.8 —2.3079 0.8369
0.9 —1.4379 0.8141
1.0 —1.3789 0.7910

Column 2: Values of Q. as obtained after computing the function An(mx)
using an upward recurrence procedure.

Column 3: Values of Qs as obtained after computing the function An(mx)
using a downward recurrence procedure.

and
7o) = plra(u) — wao(p)]
— @n— 1)1 — @acr(p) + Taca),  (14)

where

770(1-‘) = 0,

7"1(“') = 1’ . (15)
To(ﬂ) = 0,

T1(ﬂ) = MK

Computations of the values wjoe(t) and Tagpo(1)
starting with those of 7,(u), etc., given by Eq. (15) results
in a loss of six to seven significant figures. Hence, it is
again necessary to carry out basic arithmetic in double
precision.

The values of 7,(1) and 7,(1) obtained after making
use of Egs. (13), (14), and (15), can be checked against
those obtained from the following very simple expressions
for the same:®

(1) = 7,(1) = jn(n + 1). (16)
For 6 = 90°, i.e.,, u = 0, it can be shown that

m.(0) = 0 (if n is even)

and

o - 2(—1)‘"‘””21“(5 + 1)

(if n is odd)
1
o3+ s (17
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The values of gamma functions for large values of n
can be found in one of the tables in the series of mathe-
matical tables published by the U. S. National Bureau
of Standards.*®

If the values of w,(x) and 7,.(x) for p > 0 have already
been computed, it is not necessary to compute those of
mo(—u) and 7,(—pu), as has been done by some investi-
gators (e.g., Ref. 4). Instead, one can make use of the
following relationships:

T— ) = (—1)"'m(w) (18)
and
T— 1) = (—D'7.(0). (19)

These relationships can be derived easily by making
use of the following well-known properties of the Legendre
polynomials:

P (—w) = (—1)"Pu(w), (uw=>0) (20)
and
Pl—p) = (= 1) Pi(w), =0, 1)

where P/ represents the derivative of P, with respect to u.

However, it appears that the above mentioned properties
have gone unnoticed in this particular field. Van de Hulst®
has not given them explicitly, even though he does make
use of these relationships for u = —1 at several places.
The later investigators (e.g., Refs. 6, 9, 12, 13, and 16)
do not refer to them either. The advantages of making
use of these relationships should be more evident after
studying the published data of various authors and after
recognizing the ease of obtaining data for the supple-
mentary angles.27

3. Results of computation

o 3.1 Some characteristics of the subroutine programs
After making use of the formulas and the procedure
outlined in Sec. 2 above, two double-precision sub-
routines were written in FORTRAN IV G language. In one
of these subroutines, all the basic functions [i.e., 4,(mx),
£.(x), a(mx), b(mx), m () and 7,(u)] are computed
using the upward recurrence procedure. In order to cut
down on the exorbitant and unnecessary storage demand,
the series for Si(x, m, 8), Sx(x, m, 6), Q,(x, m), Q.(x, m),
and cos 6. Q.(x, m) given by Egs. (28), (29), (43), (44),
and (46), respectively are updated after computation of
the basic functions of a current order, and the storage
space for the basic functions is re-used unless their values
are required at a later stage. The computations are ter-
minated when the following criterion is satisfied:

(au(x, m)> + 1b(x, m)|* < 1.0 X 107,

(22

Table 3 Average time (7 in seconds) which the first sub-
routine takes to return values of four elements of the
transformation matrix for 182 values of ¢ as well as values
of Q., Q., and cos ¢ « Q, for various values of size
parameter x. Computing facility used: IBM System/360
Model 50, FORTRAN 1Iv G compiler, Level 1, Mod. 2.

x t in sec
0.1 0.7
1.0 1.1
10.0 3.7
100.0 22.
1000.0 194,
5000.0 945,

The sparing use of storage space and the use of relation-
ships given by Eqgs. (18) and (19) resulted in obtaining the
values of the elements of the transformation matrix in
as many as 200 different directions with a nominal storage
requirement of 11,962 bytes (FORTRAN 1Iv G, Level 1,
Mod 2). It should be noted that this subroutine was used
to obtain reliable numerical results for a nonabsorbing
sphere with size parameter up to 5000.

In the other subroutine where one of the basic functions,
A (mx) is computed by downward recurrence, the storage
requirement is rather high as all the values of 4,(mx) have
to be stored for later use. It is 123,868 bytes if recurrence
is to be started at an order as high as 7000 and output
is desired in 200 different directions. Furthermore, even
for this much core storage, the maximum value of x for
which output can be obtained is determined by values
of n; and n; as can be seen from Eq. (12).

Average time (¢ in seconds) which the first subroutine
takes to return values of four elements of the transforma-
tion matrix for 182 values of 8, as well as values of Q,, Q,,
and cos 6. Q, is given in Table 3 as a function of the
size parameter x. Because of the use of the downward
recurrence procedure in the computations of A,(mx), the
average time for the second subroutine depends upon the
values of ny, ng, and x. For 1.0 < (n® + n®)} < 1.5, this
subroutine requires, on average, about 10 to 209, more
time than the first one.

Because of the nature of the problem, it is not possible
to make a positive statement about the reliability of a
given value. However, after comparison of the values
obtained using these subroutines with some published
and unpublished results®*®'® and, after detailed
investigation of the error propagation problem, it is
felt that the first six significant figures should be generally
reliable if the sphere is not very large. For a very large
sphere (x ~ 3000 and higher), only the first four or five
significant figures should be considered reliable.
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Further confidence in the numerical results can be
gained by comparing some values given by these sub-
routines with those which can be obtained from some
simple formulas applicable in extreme cases. One of such
formulas is given on pages 264 and 265 of Ref. 3. Ac-
cordingly, for a large sphere made of material with
refractive index m = 1.342 — 0.0i, Q,, the efficiency
factor for scattering, can be calculated from the following
“best” formula:

Q. = 2.0 — 7.680x™" sin (0.684x) + 1.84(x)"t

-+ “ripple”. 23)

For x = 50.0x and 500.0w, the values of Q, obtained
from this formula are 2.0345 4~ “ripple” and, 2.0136 -+
“ripple”, respectively, which compare well with the
respective values of 2.0305 and 2.0129 given by the
subroutines.

The other such formula is for the intensity of the radia-
tion backscattered by a sphere made of highly absorbing
material. In the absence of any contribution by the rays
travelling through the sphere, the intensity of the back-
scattered radiation (J3_,5°) can be obtained from the
following formula, based on Fresnel’s law of reflection:

— {_2 (nl — 1)2 + n_g].
Tyarget = 4 [(Yh + 1)2 + nz (24)

Using this equation, we have I,_;5° = 1.06246 X 10° and
1.42526 X 10* for x = 50.0m, m = 1.342 — 1.0i, and,

= 500.0m, m = 1.342 — 0.1i, respectively. The cor-
responding values as obtained using the subroutines are
1.06248 X 10° and 1.42526 X 10* respectively. These
comparisons aptly support the reliability claims described
earlier in this section.

o 3.2 Scattering by an absorbing sphere

In a recent paper,”® the author has demonstrated the
usefulness of these subroutine programs in carrying
out exhaustive studies of the characteristics of the radia-
tion scattered by large, nonabsorbing spheres. In this
section, we propose to present and to discuss the results
for an absorbing sphere with r = 10.0um and illuminated
by a parallel beam of unpolarized, monochromatic
radiation having A = 0.4um. The sphere is assumed to be
made of a material whose refractive index with respect
to its surrounding is given by m = 1.342 — n,i. The value
of n, is varied from 107° to 1.0. This particular case is
selected to study the effects of varying absorption on
some prominent optical features such as the rainbow and
glory.

Before going into the details of the characteristics of
the scattered radiation field, we shall look into the effect
of varying absorption on some of the specific and in-
tegrated optical properties of the sphere. In Fig. 2, the
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Figure 2 Variation of the cos 6, Qs Q. Qe le=0> and
To-1s0-y as a function of the imaginary part of the refractive
index.

second curve from the bottom (marked Q.) represents the
variation of the efficiency factor for absorption (Eq. 45)
as a function of n,. For n, ~ 107°, the sphere absorbs a
very minute fraction of the radiation incident upon it;
in fact, for n, = 1.0 X 107°, Q, = 0.0055. As the imaginary
part of the refractive index (n,) is increased from 107*
to 107%, Q, increases rather rapidly from 0.054 to 0.965.
For a further order-of-magnitude increase in the value
of n,, Q. shows very little change. For still larger values
of n,(>>0.1), a significant decrease in the absorbing power
of the sphere is due to an increase in reflecting properties
of the material of the sphere (Fresnel’s law). The efficiency
factor for scattering (Q,, Eq. 44) decreases with increase
of absorption, attains a constant value when Q, is in-
dependent of n,, and increases with n, when the reflecting
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Figure 3 Variation of the scattered intensity as a function
of the scattering angle; 0° < g < 45°,

power of the sphere increases. The middle curve, marked
Q., shows the variations in the efficiency factor for
extinction (Eq. 43) as a function of n,. As mentioned
in the Appendix, Q, is the sum of Q, and Q,.

The intensity of the radiation scattered in the forward
direction (broken curve in Fig. 2) shows a significant
increase in the region 10™* < n, < 107% where the ab-
sorption plays an increasingly important role. The radia-
tion in this direction is a resultant of an interaction
between the radiations diffracted, transmitted and reflected
by the sphere (anomalous diffraction, Sec. 13.41 of Ref. 3).
Even though the diffracted component plays the most
important role, the contribution due to the other two
is evident. Furthermore, since the reflected component
undergoes very little change, an increase in Ij.q° as a
function of #, in the range 107 to 10™* can be explained
by postulating a destructive interference between the
radiations diffracted and transmitted by the sphere.

The variations of I;.,5,° as a function of n, (top curve)
can also be similarly explained. A strong decrease in the
magnitude of the backscattered intensity, in the region
where absorption starts playing an increasingly more
important role, is due to the strong attenuation of the
radiation which returns from the sphere after suffering
one internal reflection (p = 2 in Fig. 7).

The lowermost curve in Fig. 2 (marked cos 6) represents
the variations of the so-called asymmetry factor (Eq. 46)
as a function of n,. This factor gives a gross indication
about the way in which the scattered energy is distributed

around a plane at right angle to the incident radiation,
e.g., for isotropic and Rayleigh scattering, this quantity
vanishes. The variations in cos 6 as a function of »n, are
better understood after examining the details of the
characteristics of the scattered radiation field.

The variations of the intensity and degree of polarization
of the radiation scattered by a 10.0u sphere are shown
in Figs. 3 and 4 for the angular region 0°-45°. Similar
results for the angular regions 45°-90°, 90°-135°, and
135°-180° are shown in Figs. 5, 6, and 9-12. As mentioned
earlier, the sphere is assumed to be illuminated by a plane
parallel beam of unpolarized radiation with A = 0.4u.
The computations were carried out for the 1801 values
of # given by 9 = 0.0°(0.1°)180.0°. The results presented
in these diagrams were plotted using an IBM 1627 plotter

Figure 4 Variation of the degree of polarization of the
scattered radiation as a function of the scattering angle;
0° < 9 < 45°,
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and the successive points were joined by straight lines.
Because of the finite number of angular positions at
which the computations were made, the actual maxima
and minima can be much more pronounced than shown,
especially if they appear very pointed in these diagrams.

After a careful study of the detailed output for about
20 values of #, in the range 107 to 1.0, output for four
different values of ny(1.0 X 107°, 5.0 X 107% 0.01 and
1.0) was selected to study the effect of varying absorption
on the characteristics of the scattered radiation. In the
region 0°-15°, the pronounced contribution due to dif-
fraction is very evident. Because of this, the intensity
(Fig. 3) and degree of polarization (Fig. 4) of the scattered
radiation show only minor changes as the imaginary part
of the refractive index is increased by five orders-of-
magnitude. With increase in 8, the contribution due to
diffracted radiation decreases rapidly, and the contribution
due to interaction between the radiations reflected and
transmitted by the sphere plays an important role. For
8 > 45°, and ny = 1.0, the reflected radiation is a prime
contributor as can be seen from very strong damping
of the oscillations.

In the angular region 45°-90°, the interesting feature
is the maximum in the degree of polarization curve
(Fig. 6) at the pseudo-Brewster angle [180° — 2 tan™" [m]]
as predicted by ray optics. As expected, the position of this
maximum shifts towards the forward direction with
increase of n,.

Some of the features of the scattered intensity field
in the angular region 90°-180° are predicted by ray
optics. If the radius of the sphere is large compared to
the wavelength of the incident radiation, the incident
beam can be broken up into several narrow sub-beams
or rays whose width is much greater than \ but small
compared to r. Let us consider one such ray making an
angle = with the surface (Fig. 7). + = 90° for the central
ray and 7 = 0° for the edge ray. The incident ray is
partly reflected along the direction marked 0, and is
partly refracted along the direction making an angle 7'
with the surface. The relation between 7, 7’ and refractive
index m is given by Snell’s law. The refracted ray suffers
several internal reflections and at each reflection, a part
of the energy leaves in the directions marked p = 1,
2, 3, etc.

In Fig. 8, we have shown the variations in scattering
angle # at which the ray emerges after undergoing one
(p = 2) or two (p = 3) internal reflections. For p = 2,
the central ray bounces back, and emerges in a direction
marking an angle of 180° with that of the incident radia-
tion. @ decreases with 7, passes through a minimum
value of 139.2° at + = 31.1°, and then increases for
further decrease in 7. The edge ray (+ = 0°) emerges at
6 = 167.3°. The position of the minimum deviation is
generally referred to as that of the primary rainbow.
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Figure 5 Variation of the scattered intensity as a function
of the scattering angle; 45° < ¢ < 90°.

Figure 6 Variation of the degree of polarization of the
scattered radiation as a function of the scattering angle;
45° < 6 < 90°,
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Figure 7 Path of a light ray through a sphere according to
geometrical optics.

The rays entering the sphere at different angles but
emerging in the same direction @ interfere and give rise
to several maxima and minima in the intensity curve
(supernumerary bows).**® For the primary rainbow, its
supernumerary region ends at 167.3°. Similarly, after
two internal reflections (» = 3), we have a secondary
rainbow at 6§ = 126.8° with its supernumerary region
ending at 109.1°, The exact positions of the rainbows
and its supernumerary maxima and minima for a sphere
of given size can be obtained by following a procedure
outlined by Van de Hulst?

From the variations of I versus # presented in Fig. 9
(curve A), it appears that there are several maxima and
minima in the region of the secondary rainbow. However,
from the results presented in a recent paper,” it is clear
that for a sphere of this size, ray optics predicts only
two maxima, one at about 120° and the other at about
110°, Thus, one concludes that the presence of three
maxima in the angular region 118°-132° is due to signifi-
cant contributions from the radiations resulting from
causes other than two internal reflections. This pseudo-
rainbow feature is considerably suppressed when n, =
5.0 X 107® (curve B). For still higher absorption, there
is no evidence of the feature. From Fig. 10, it can be
seen that the rainbow region is strongly polarized.

The primary rainbow and its four supernumerary
maxima can be clearly identified in the I vs @ values
plotted in Fig. 11 for n, = 1.0 X 107°, Furthermore, the

180

m=1342

160~

140 |-

120

Scattering angle (§)

100

Angle T (Fig.7) in degrees

Figure 8 Scattering angle ¢ at which the ray emerges after
suffering one (p — 2) and two (p = 3) internal reflec-
tions, versus the angle = which the incident ray makes with
the surface of the sphere.

Figure 9 Variation of the scattered intensity as a function
of the scaftering angle; 90° < ¢ < 135°,
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region of the maxima shows very strong positive polari-
zation (Fig. 12). For n, = 5.0 X 107°, these features are
much less suppressed than those of the secondary rainbow.
Even the curve corresponding to n, = 0.01 shows some
ripple. This is so because the rays giving rise to the primary
rainbow travel shorter optical distances within the sphere
than those giving rise to the secondary rainbow.
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Figure 10 Variation of the degree of polarization of the
scattered radiation as a function of the scattering angle;
90° < ¢ < 135°.

Another interesting feature of Fig. 11 is a general in-
crease in the scattered intensity as @ is increased from
170° to 180°. There are several distinct maxima and
minima which are strongly polarized (Fig. 12). This is
the region of the glory. As mentioned earlier, the region
of the primary rainbow ends at 167.3°. Hence, there is
no obvious ray optics explanation for the phenomenon
of glory. For a heuristic explanation, one is therefore
forced to invoke the notion of surface waves on the sphere
coupled with rays that jump through the sphere at the
critical angle.>*”® However, the propagation of the waves
on the spherical surface is only qualitatively understood.
Since the remnants of glory can be seen even in the I vs 6
and P vs 8 curves for n, = 0.01, it may be possible to
obtain a better understanding of the surface waves by
analyzing the attenuation of the scattered radiation as
a function of #,.

4. Concluding remarks

Even though Mie’s expressions for evaluating the charac-
teristics of the electromagnetic radiation scattered by a
sphere were first derived in 1908, a numerical solution
to the problem for a general case has run into several
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Figure 11 Variation of the scattered intensity as a function
of the scattering angle; 135° < ¢ < 180°.

Figure 12 Variation of the degree of polarization of the
scattered radiation as a function of the scattering angle;
135° < ¢ < 180°.
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difficulties for a long time. After examining the problem
in detail, a computer program in FORTRAN IV G language
was recently developed.”” Some of the highlights of this
computer program along with sufficient numerical results
are presented in the preceding sections to demonstrate
the feasibility and reliability of such computations.
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Appendix: Expressions for Mie Scattering

In order to describe the scattering process fully, it is necessary
to represent a beam of radiation as a vector or as a one-column
matrix (I) with four elements. In the Stokes representation,??
the first two elements of this matrix noted by 7. and I, rep-
resent the specific intensities of the beam in two directions e
and r, respectively. The directions e and r are mutually at right
angles to each other, such that the e-r plane is perpendicular
to the direction of propagation of the radiation under study.
The other two elements, viz., I, and I,, are needed for defining
the direction of polarization with respect to the e-r plane, and
the ellipticity of the beam respectively. Further details about
the Stokes parameters and their relationships to the conventional
radiation parameters can be found in several places.3,30

The expressions for the radiation scattered by a sphere of
radius r, and of material with a complex index of refraction
m, have been aptly derived by Van de Hulst,? and also by Born
and Wolf.31 We shall therefore enumerate the final results only.
Let I; and I, respectively represent the Stokes parameters of
the radiation incident on, and scattered by, a sphere with e
component parallel to the plane of scattering. Then

I, = F-1,, (25)

where F’ is a four-by-four matrix referred to as a “transforma-
tion matrix” by Van de Hulst®, It has the following form:

M, O 0 0

0 M, O 0

F = (26)

0 0 Sa1 — Doy

0 0 D21 SZI

The matrix F’ and hence the matrix I, are functions of the
following parameters:

x = 2zr/\, where X\ is the wavelength of the incident

radiation;

n1 — ins, index of refraction of the material of the

sphere with respect to its surrounding;

and ¢ = the angle between the direction of the incident and
that of the scattered radiation.

m

Van de Hulst® has also noted that only three elements of
F’ are independent, the interrelationship being

Sy + Dy = M,M,. (27)

In order to evaluate these elements, one first defines the
corx}plpx amplitudes S1(x, m, 6) and Sy(x, m, 6) for the scattered
radiation.

2\ (2 1
Sy(x, m, 6) 2 51(—:%::——1% [a.(x, m)m, (1)
+ ba(x, m)Ta(w)] (28)
and
_ @t
SiCe, m, ) = 32 A (oG, mym)
+ au(x, myr,(u)], (29)
where
x = cos 6. (30)
Then,
M1 = SIS;k9 )
M, = SZS;k,
Su = 5 (S:5F + $i59), 31
D, = %(stf - SlSﬂ;)'J
The functions a.(x, m) and b,(x, m) are given by
_ W) V,(x) — m ()W)
w0 ) = ) = mb (e G2
and
b, m) = m¥(mx)¥,(x) — ¥, (mx)¥/(x) (33)

m¥(mx),(x) — W,(mx)E(x)

¥,'(2) and £/'(x) are the derivatives of ¥,(2) and £,(x) with
respect to z and x, respectively.

V,(2) = zja(2) (34)
En(x) = x[jn(x) - lyn(x)] (35)
V2 = 2n1(x) — nj(2) (36)
and
80 = x[jna(x) — iyn—l(x)]

- n[jn(x) - iyn(x)]' (37)

The functions j, and y, are the spherical Bessel functions of
the first and second kind, respectively. The following recurrence
relationships and initial values for setting up the recurrence
procedure can be found in any of the standard mathematical
books (e.g., Ref. 32).

2n 4+ 1

for@ = T QD — faald)
[12(@) 2 Ja2), yal(2)]. (38)
Ja@ = —xfd) = E, (39)
and
0D = yal) = H2E (40)
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The phase functions 7,(x) and 7.(u) appearing in Eqs. (28) and
(29) can be expressed in terms of the Legendre polynomials as
follows:

r) = B0 (41
and
o) = pm) — (1 — ) P8, (42)

du

Besides the elements of the transformation maitrix F’, other
terms of considerable importance are the dimensionless con-
stants referred to as “efficiency factors” by Van de Hulst.37
Q., the efficiency factor for extinction, which is the ratio of the
total amount of energy removed from the incident beam to the
geometric cross-section (xr?) of the particle, can be obtained
from the values of a, and b, only.

T " ®
2
Q.(x, m) = 32, (2n + D[Re (a) + Re (3,)]. (43)
n=1
The symbol Re stands for the real part of the quantity in
parentheses. Q., the efficiency factor for scattering, is given by

the following expression:
2
)
x

0x, m) = 5 3 n Dllal + 10T (44)

If there is no absorption, ie., n; = 0, Q, = Q,. Otherwise,
Q., the efficiency factor for absorption, is given by

0. =0, — 0,. (45)

Another dimensionless quantity of considerable interest is the
so-called “asymmetry factor” represented by cos g.

4 i {n(n + 2) Re (a"a::l + bnb;k+1)

cos f =

x2Qs n=1 n + 1
2n 4+ 1
+ . Re (anb’li)} (46)

As noted by Irvine,!° and again by Kattawar and Plass!z
[but not by Giese®], asterisks appearing in Eq. (46) have been
omitted in Ref. 3.

The value Q,, efficiency factor for radiation pressure, can
then be obtained using the following:

0, =0, — cos §-0,.
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