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Parallel  Methods for Approximating  the  Root 
of a  Function 

Abstract: We  present a class of methods for approximating  the  root of a function.  The  methods  are  designed for execution  on a 
parallel  processor  and  when  they  are so executed,  the  speed of the approximation  process  is  increased.  The  increase in speed is estimated 
analytically by computations of the  order of convergence of the  various  methods  presented. 

1. Introduction 
In this paper we consider the problem of speeding up the 
process of approximating a root of a function by iterative 
methods which  use  function  values  only. The increase  in 
speed  is  achieved through the use of a parallel  computer, 
i.e., a computer  with a number of arithmetic processors 
capable of simultaneous and independent operation. We 
do not discuss all of the problems that pertain to the 
organization of parallel  methods on a parallel  machine. 
Rather, we show  how the logical  independence of the 
subparts of a class of algorithms may  be  exploited to in- 
crease  speed of computation. 

The method  presented  here  produces an iterative se- 
quence of r-vectors,  each of  whose components  is  supposed 
to converge to the root in question. The actual computation 
process  parcels out the computing  among,  say, r processors 
in the computer. The j-th processor  makes a function 
evaluation at the j-th component of the n-th iterate. Then 
the  j-th processor  computes the j-th component of the 
n + 1-st iterate as  an appropriate function of the function 
values just obtained by all of the processors. The process 
continues until a convergence  test  is  satisfied.  Many 
variations of this basic  procedure are possible. 

In  Section 2 the class of methods  is  described. In Section 
3 the order of convergence of the methods  is obtained. For 
example, the standard method of Regula  Falsi  has order 
of convergence (1 f “2, but the simplest  two  processor 
method  presented  here has order 2.2, approximately. In 
Section 4 an asymptotic  calculation  is  made to compare 
the gains in speed of some of the methods  described. In 
addition, a numerical  example and suggestions for other 
parallel  methods are given. 
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2. Description of method  and  order of convergence 
Let f(x) be the function whose root z is sought and let 
x, = (xi, . , x:) be an r-vector,  each of  whose compo- 
nents is considered as an approximation to z. The next 
approximation x,+1, is determined as follows:  choose an 
integer m 2 2. The integer m is independent of n. Deter- 
mine r Lagrange interpolation polynomials, L,+&) of 
d e g r e e s m + j - 2 , j = = 1 , 2 , - . ~ , r . F o r e a c h j , j = l ; . . ,  
Y ,  L,+{(x) interpolates the points 

(x:, f ( x 9  E <x:, f t 3  (1) 

with 

= n - [(r - O/dl 
y = 1 , 2 , - - .  , m $ - j -  1. 

Here the square brackets  denote the integer part and 
the 6 is the Kronecker  delta of its  two  arguments. Let 
x:+1, j = 1 , . . , r be a root of L,, ;(x). We denote this 
prescription for determining x,+~ by the function F, of 
2 + [(m - l ) / r ]  vector  variables, viz: 

L C 1  = F,(x,, %1-1, . . .  > x , - l - [ h - l m ) .  (2) 

Figure 1 illustrates the method for r = 2, m = 2. 
The associated  vector F2 = F2(x,, x,-l) is  given  by 

We  see that two  new approximations xi+, and x:+, to 
the root are obtained from three current approximations 297 
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Figure 1 A step in the case r = rn = 2. 

x:-,, xi and x:. Geometrically, we  see that is deter- 
mined from the chord  associated  with x', and x: while 
x:+, is  determined  from the parabola associated  with 
x:-l ,  xi and x:. 

Heuristic  description of calculation: The parameter r may 
be chosen in many  ways. To fix ideas, let it be the number 
of processors  available for the root calculation.  At a given 
stage in the algorithm, we have  produced a finite  sequence 
of approximations to the root (of  which  only the last 
m + r - 1 need  be kept in  memory).  The  first  processor 
uses the last m approximations and computes a new ap- 
proximation by means of the interpolation polynomial 
L,,, as described  above.  Simultaneously, the second 
processor  uses the last m + 1 approximations to compute 
a new approximation by means of Lm+2. In this manner, 
the r processors  produce r new approximations to the 
root which are appended to the full list of approximations. 
The first  processor appends first, the second  processor 
appends the second,  etc. (The r oldest  members of the list 
retained  in  memory may then be  erased.)  These iterations 
are to continue until a convergence test is  passed. 

Point of view: There are many  problems of a technical 
nature concerning the class of algorithms just described. 
For example: a denominator  in (3) might  vanish so that 
the algorithm  is not defined, the algorithm  might not 
converge, the iterates  might not be  real even for real  func- 
tions f(x), etc.  These  problems are not a novel character- 
istic of the methods  presented  here, but are intrinsic 298 
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difficulties  of iterative  methods for finding roots. See, for 
example, the text of J. Traub'  where  these  questions are 
treated by a variety of  means. Our point of  view is to 
study the special feature of parallelism  contained in our 
algorithms. We thus assume that  the algorithms are well 
defined, that they  converge, and if necessary, that the 
iterates are real. We are interested  only in determining by 
how much we increase the speed of computation when  we 
use the parallel  mode of computation. The speed  of  com- 
putation is  characterized by means of the order of con- 
vergence  of the sequence of iterates. The order of  con- 
vergence  is  assumed to exist, and in the next  section we 
study the orders of our algorithms. 

The question of determining iterates which are roots of 
high order polynomials  may  be  raised as a serious  limita- 
tion on all higher order extrapolatory methods including 
the ones  presented  here. As is  well known, the device of 
inverse interpolation is a practical way of dealing  with this 
problem.  This  technique  replaces  polynomial root finding 
by polynomial  evaluation. 

3. Order of convergence 
Let pn be the Euclidean  distance  between the r-vectors 
x,(x;, a , xi) and z(z, . , z), where the latter denotes 
r copies of a root z of f(x), i.e., 

+ 
pn = p(x,z) = (2; - Z Y ]  . [1 (3 .1)  

Let X and C be positive constants such that 
X" 

P n 5 C  (3.2) 

The  largest X for which (3.2) holds is the order of con- 
vergence of the sequence of iterates {xn}. (This notion is 
useful  only if C < 1 and X > 1.) 

In order to apply  higher-order interpolation methods 
and to derive orders of  convergence, it is  usual to assume 
that  the functions  being interpolated are sufficiently dif- 
ferentiable. We henceforth  assume that  our functions 
have as many  derivatives  as are necessary for our argu- 
ments. We also  assume that  the iterative  scheme is con- 
vergent, and so considerations  may  be viewed as confined 
to a fixed compact interval about the root z of f (x) .  The 
following  theorem  characterizes the order of convergence 
of our methods. 

Theorem 1: The order of convergence of the sequence 
{ x ,  1 corresponding to the method  with  parameters (r ,  m)  
is the largest  positive root of the polynomial 

det 1 Ahd+' - 5 Bkhd-kl = 0. (3 .3)  
k-0 

Here d = [(m + r - 1)/r] and A and the Bk are r X r 
matrices. A = (aii) and the Bk = (bti) are defined as 
follows : 
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1 i = j  

a,; = -1 i = j +  1 

0 otherwise, 

1 i = r  

0 otherwise, 

-1  j = i + r n + ( I - d ) r  

bk. k = 0 ,  . * *  , d - -  2 

b::' = 1 i = r  

0 otherwise, 

[-1 i = j f m - r d ,  i # r  

1 i = r ,  j = rn + (1 - d)r  - 1 (3.7) 

0 otherwise. 

Remark: In  the known  nonparallel cases corresponding 
to r = 1 and d = rn the matrix Bd becomes the scalar 
zero. The polynomial (3.3) becomes X times the usual 
polynomial-defining the  order of convergence in  this case. 
The null root is extraneous. 

Examples of the polynomial (3.3) and its positive root 

For r = m = 2 ,  
are : 

X(k3 - 2x' - 1) (3.8) 

with positive root X = 2.19. 

For r = 3, m = 2 ,  

X"h* - 3x3 + xz - 1) 

with positive root X = 2.57. 

For r = 3, m = 3, 

(3.9) 

X(X5 - 3h4 - 3X2 - 1) (3.10) 

with positive root X = 3.59. 
The following theorem gives lower bounds for  the orders 

of convergence. In  the case r 2 rn an analytic expression 
for  the  order of convergence is readily obtainable from 
the theorem.  This expression will be used in Section 4 to 
characterize the gain in speed per processor used. 

Theorem 2: A lower bound for  the  order of convergence 
of the sequence (xn} corresponding to the method with 
parameters (r, m) is the largest positive root of 

(3.11) 

The roots of  (3.11) corresponding to  the three examples, 
(3.8)-(3.10), are respectively X = 2., 2.3,  2.38.  We see 
that  the bounds provided by Theorem 2 are poor.  How- 
ever, the  order of magnitude results obtained from Theo- 
rem 2  for use in Section 4 are probably as good as can 
be obtained. 

As a preliminary to proving these theorems, we recall 
two  known  properties of Lagrange  interpolation poly- 
nomials (see Ref. 1, where these properties are derived). 
Let e: be the scalar, e; = Iz - x:[. The first property is 

e: < c If(z) - ~ , + i ( z > I .  (3.13) 

Here, C is some  constant and L,+< is the Lagrange  inter- 
polation polynomial of degree m + j - 2 associated with 
the scalar iterate xi. 

Eq. (3.14)  is the  standard  error estimate for Lagrange 
interpolation polynonlials. In (3.14) the superscript of 
e: may take on nonpositive values. The meaning of this is 
clear and is given by e: = e:-l, e;' = e:::, . . , e;' = 
e:+, . . . . This convention will be used in  what follows. 
In (3.13) and (3.14),  we have not denoted the dependence 
of the Lagrange polynomials on  the given points (x:, f:) 
which they interpolate. Since the dependence may be 
identified from  the context, we have, for clarity, eliminated 
the expression of this dependence. 

Proof of Theorem 1 : To prove Theorem 1, we combine 
(3.13) and (3.14) to get 

e:+l = CCm+7e: * ' . enen-l . . en-d 

From  this we readily derive the following relations: 

l r  m + ( l - - d ) r - l  (3.15) 

= c ~ C m c r - 1  t':+l 

em+, en-d 
m + ( l - d ) Y - l  

. . .  

(3.16) 

. . .  

Next we take  the logarithm of the  equations (3.15) and 
(3.16). This gives a system of difference equations whose 
characteristic polynomial is (3.3). This completes the 
proof of Theorem 1. 

or 
Proof of Theorem 2: 'To prove Theorem 2, we combine 
(3.1) and (3.13) to get 

(3.17) 299 
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Then we combine (3.14) and (3.17) to get 

From (3.18) we  may  derive the difference  inequalities 
m/Z mr/2  

Pn+l I: Cpn Pn-1 r 2 m (3.19) 

Pn+l  - < C IT (p:!: IT pn:T-p) r < m. (3.20) 
Im/71-1 I m / r l  

k = O  8-1 

These  derivations are given  below. From (3.19) and (3.20), 
trial solutions for pn of the form (3.2) give the character- 
istic equations (3.8) and (3.9) for X. 

In what  follows, C will stand for a floating constant 
which  changes its value as the arguments  proceed. 

Deriuation of (3.19) from (3.18). We write (3.18) as 
r .  I r  \ 

- (  h, )( h e t ) ]  
i=r--m--t+2 i=n--m--i+Z 

(3.21) 
r--m--i+2 r-m-i+l<O 

Since the iteration process  converges, we  may absorb the 
last product here into C. In  the next to the last product, 
we estimate ef by combining (3.13) and (3.14). Then, (3.21) 
becomes 

r ,  \ 

r - m - i + 2 > 0  

where the constant appearing  in (3.14) raised to an ap- 
propriate power has been absorbed into C. Next we factor 
(3.22) and introduce the symbol R for one of the factors. 

(3.23) 

We next absorb R and the into C and break the 
middle product up to get 

x 5 fi F l 1 ] .  
i -n -m+l  Z=n-m"i+Z 

(3.24) 

In the first product, we bound e: by pa. In the second prod- 
uct, we absorb the terms  with  nonpositive 1 into C and 
bound the remaining  by pn- ,. The last  two products 
are absorbed into C. This gives 

Pn+l  I Cpn  Pn-1 9 

m/Z rm/2 (3.25) 

which  is (3.19). 

Deriuation of (3.20) from (3.18). This derivation  proceeds 
similarly to the previous  one  with factoring, a bootstrap 
step, absorption of terms into the leading constant, and 
estimating e: by pn. We  will do the case r 1 m and sketch 
the steps  without  comment. We write (3.18) as 

Pn+ 1 

which  is (3.20). Inspection of this derivation  shows that if 
r does not divide m, the steps are correct if m/r is  replaced 
by [m/r] .  The extra multiplicative  terms, which  will appear 
and which are omitted, may (and  legitimately so) be  con- 
sidered to be  absorbed into C. 

4. Discussion  and  numerical  results 
The order of convergence  enables us to make  asymptotic 
comparisons  (large n and large r)  between the methods. 
Let  two  methods  be  used to approximate a root. Let  these 
methods  be  characterized by mi, ri, Xi, i = 1, 2. Suppose 
the methods take n1 and n2 steps  respectively to achieve 
an approximation of a certain  accuracy.  Let x,, be the 
vector iterate of the first  method after n1 iterations, and 
let x,, be the vector iterate of the second  method after 
n2 iterations. Since x,, and x,, are approximations to x of 
comparable  accuracy, then Ax,,, x) and p(x,,, x )  are 
approximately  equal.  Then from (3.2), we  see that the 
following  equality  is  approximately true: 

- 
1 -  2 -  (4.1) 

Then 

For example, if m = 2 for both methods and method 2 
uses r processors while method 1 uses one processor, (4.2) 
becomes 

Here we  have  used the lower estimate for X2 derivable 
from (3.11). 300 
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Table 1 A comparison of three  methods for the  function 1; xn (see  text). 

3 
4 
5 
6 
7 
8 
9 

10 

r = l  
m = 2  m = 2  
r = 2  

-1.0 
.9  

-1.0 
0.9 . 1  

- .6  

. 3  x 10-17 .8 x 10-17 - .4 x 10-1 

. 3  x lo-; .4 x 10-7 .9 x 10-1 

.6 X lo-' .6  x 10-3 - . 5  

.8 x 1 0 - 2  .8 x 10" 

- .6  X 10-2 

- .5 x 10-6 
- .7 x 10-10 

. 3  x 10-16 

. I  x 10-3 

1 

For r and rta large, we have the asymptotic  result 

(4.4) 

We  see then that while there is a gain  in  speed for parallel 
methods, it may  be  only  logarithmic  in the number of 
processors. A numerical  experiment  using three methods: 
rn = 2 and r = 1,  2, 3 respectively,  was tried out on the 
function x: x". The  results are given in Table 1, where 
the entries are the vectors x,, with components  displayed 
horizontally. 

5. Remarks 
Regula Falsi and the Lagrange interpolation polynomials 
were the basis of the algorithms in this paper.  Any other 
iterative  procedure for finding roots, such as Newton's 
method,  could be treated and made into a parallel  method 
along the lines  presented here. For Newton's  method the 
Hermite interpolation polynomials  play the role of La- 
grange's interpolation polynomials.  Indeed,  hybrid  versions 
of a parallel  method  combining  Lagrange and Hermite 
polynomials are possible. 

At  first  sight, the orders of the methods  presented  here 
seem to contradict the known result that the order of 
convergence of a method  using  Lagrange  polynomials 
varies  between (1 + &)/2 (for Regula  Falsi) and 2. For 

0.9 
- .8 

- . l  x 10" 
.1 x 10-8 

.L 

- . I  x 10-3 

r = 3  
m = 3  

-0.8 
- 1 . 5  
- .2 x 10" 
- .5 x 10-1 

. I  x 10-4 

.2 x 10-7 

-1.0 
.7 

- .8 
- .2 x 10" 

- .l x 10-8 
. 2  x 10-16 

- .I x 10-3 

example, X = 3.59 for r = m = 3 (see (3.12)). The explana- 
tion is that the order for the standard method  assumes that 
one step in the algorithm  corresponds to one evaluation of 
f (x) .  One step in a parallel  r-processor  algorithm, how- 
ever,  corresponds to r evaluations of f(x). Thus, the order 
of convergence  of a parallel  method should be  discounted 
to Allr. For  the example  cited 3.59113 = 1.53. This  number 
is  less than the order of convergence  of the usual sequential 
algorithm  corresponding to rn = 3 and r = 1. However, 
the sequential  algorithm cannot even at the expense of 
computing  power (i.e., more processors)  be  speeded  up, 
whereas the parallel  method  can  be  speeded up, 

Finally we point out that  the higher order methods, 
which make up the components of the vector iterates, 
require  more  computations then lower order methods, even 
though all require  one functional evaluation. We have 
not analyzed  these  costs. 
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