W. L. Miranker

Parallel Methods for Approximating the Root

of a Function

Abstract: We present a class of methods for approximating the root of a function. The methods are designed for execution on a
parallel processor and when they are so executed, the speed of the approximation process is increased. The increase in speed is estimated
analytically by computations of the order of convergence of the various methods presented.

1. Introduction

In this paper we consider the problem of speeding up the
process of approximating a root of a function by iterative
methods which use function values only. The increase in
speed is achieved through the use of a parallel computer,
ie., a computer with a number of arithmetic processors
capable of simultaneous and independent operation. We
do not discuss all of the problems that pertain to the
organization of parallel methods on a parallel machine.
Rather, we show how the logical independence of the
subparts of a class of algorithms may be exploited to in-
crease speed of computation.

The method presented here produces an iterative se-
quence of r-vectors, each of whose components is supposed
to converge to the root in question. The actual computation
process parcels out the computing among, say, r processors
in the computér. The j-th processor makes a function
evaluation at the j-th component of the n-th iterate. Then
the j-th processor computes the j-th component of the
n - 1-st iterate as an appropriate function of the function
values just obtained by all of the processors. The process
continues until a convergence test is satisfied. Many
variations of this basic procedure are possible.

In Section 2 the class of methods is described. In Section
3 the order of convergence of the methods is obtained. For
example, the standard method of Regula Falsi has order
of convergence (1 + +/ E)/ 2, but the simplest two processor
method presented here has order 2.2, approximately. In
Section 4 an asymptotic calculation is made to compare
the gains in speed of some of the methods described. In
addition, a numerical example and suggestions for other
parallel methods are given.
mis a staff member at the IBM Watson Research Center, York-

town Heights, New York. He is Visiting Professor, Institute of Mathematics,
The Hebrew University of Jerusalem, until June 1969,

MAY 1969

2. Description of method and order of convergence
Let f(x) be the function whose root z is sought and let
%, = (x}, --+ , x]) be an r-vector, each of whose compo-
nents is considered as an approximation to z. The next
approximation X,,,, is determined as follows: choose an
integer m > 2. The integer m is independent of n. Deter-
mine r Lagrange interpolation polynomials, L,,(x) of
degreesm—+ j— 2,j=1,2,--- ,r.Foreachj,j=1,---,
7, L. ;(x) interpolates the points

(x&, 1xB) = (£, 1)) (1)
with

e BB a0

a=n—[(y —1)/n]
vy=1,2,--- ,m+4 j— L

Here the square brackets denote the integer part and
the ¢ is the Kronecker delta of its two arguments, Let
X ., j=1,---,rbearoot of L,.,(x). We denote this
prescription for determining x,., by the function F,, of

2 + [(m — 1)/¥] vector variables, viz:
Xn+1 = Fm(xru Xn-15 " xn—l—[(m—l)/"])‘ (2)

Figure 1 illustrates the method for r = 2, m = 2.
The associated vector F, = Fy(x,, X,.1) is given by

B — (x,tf: = Xufs fufaXa
: fo—fo (ocs —) (for — 12)
fooafoxs faifaxs)
R A I () B - 17 g
(3

We see that two new approximations x,,, and xZ,, to
the root are obtained from three current approximations

297

PARALLEL METHODS FOR FINDING ROOTS

298

L3(x)

1 2 2
T+l xx"+1 "ln
]

!
1
|
I
|
1
{
1

Interpolation polynomial

I
i
i
i
i
E
Ly(x) i

1
|
|
1
{
|
1
I}
|
|
|
|
!

|
|
|
|
I
)
]
|
1
]
)
|
1
1
I
{
|
|
I
|
!
z

!
I
i
!
i
2
*n-1 *n

Figure 1 A step in the case r = m = 2.

x2_,, x; and x2. Geometrically, we see that x.,, is deter-
mined from the chord associated with x. and x> while
x2,, is determined from the parabola associated with

1
x2_,, x} and x2.

Heuristic description of calculation: The parameter r may
be chosen in many ways. To fix ideas, let it be the number
of processors available for the root calculation. At a given
stage in the algorithm, we have produced a finite sequence
of approximations to the root (of which only the last
m -+ r — 1 need be kept in memory). The first processor
uses the last m approximations and computes a new ap-
proximation by means of the interpolation polynomial
L., as described above. Simultaneously, the second
processor uses the last m | 1 approximations to compute
a new approximation by means of L,,... In this manner,
the r processors produce r new approximations to the
root which are appended to the full list of approximations.
The first processor appends first, the second processor
appends the second, etc. (The r oldest members of the list
retained in memory may then be erased.) These iterations
are to continue until a convergence test is passed.

Point of view: There are many problems of a technical
nature concerning the class of algorithms just described.
For example: a denominator in (3) might vanish so that
the algorithm is not defined, the algorithm might not
converge, the iterates might not be real even for real func-
tions f(x), etc. These problems are not a novel character-
istic of the methods presented here, but are intrinsic

W. L. MIRANKER

difficulties of iterative methods for finding roots. See, for
example, the text of J. Traub® where these questions are
treated by a variety of means. Our point of view is to
study the special feature of parallelism contained in our
algorithms. We thus assume that the algorithms are well
defined, that they converge, and if necessary, that the
iterates are real. We are interested only in determining by
how much we increase the speed of computation when we
use the parallel mode of computation. The speed of com-
putation is characterized by means of the order of con-
vergence of the sequence of iterates. The order of con-
vergence is assumed to exist, and in the next section we
study the orders of our algorithms.

The question of determining iterates which are roots of
high order polynomials may be raised as a serious limita-
tion on all higher order extrapolatory methods including
the ones presented here. As is well known, the device of
inverse interpolation is a practical way of dealing with this
problem. This technique replaces polynomial root finding
by polynomial evaluation.

3. Order of convergence

Let p, be the Euclidean distance between the r-vectors
x,(x;, -+ , x7) and z(z, - - , z), where the latter denotes
r copies of a root z of f(x), i.e.,

o0 = p(x,7) = [Z @ — zy]%. (3.1

i=1
Let A and C be positive constants such that
pn s CVL (3.2)

The largest A for which (3.2) holds is the order of con-
vergence of the sequence of iterates {x,}. (This notion is
useful only if C < 1 and A > 1))

In order to apply higher-order interpolation methods
and to derive orders of convergence, it is usual to assume
that the functions being interpolated are sufficiently dif-
ferentiable. We henceforth assume that our functions
have as many derivatives as are necessary for our argu-
ments. We also assume that the iterative scheme is con-
vergent, and so considerations may be viewed as confined
to a fixed compact interval about the root z of f(x). The
following theorem characterizes the order of convergence
of our methods.

Theorem 1: The order of convergence of the sequence
{x.} corresponding to the method with parameters (r, m)
is the largest positive root of the polynomial

d

det | A" — X BATH = 0. (3.3)
k=0

Here d = [(m + r — 1)/r] and A and the B, are r X r

matrices. A = (g;;) and the B, = (b’,‘-,-) are defined as
follows:

IBM J. RES. DEVELOP.

i=j
i=j+1 (3.4)

0 otherwise,

0 otherwise,
j=i+m+ 10— dr
i=r (3.6)
0 otherwise,

i=j+ m—vrd, i#r

L.
RE
b'fi={l k=0,---,d—2 (3.5
I
|
I

bl = i=r, j=m+ 0 —dr—1 (.7
1 0 otherwise.

Remark: 1In the known nonparallel cases corresponding
tor = 1 and d = m the matrix B, becomes the scalar
zero. The polynomial (3.3) becomes N times the usual
polynomial defining the order of convergence in this case.
The null root is extraneous.

Examples of the polynomial (3.3) and its positive root
are:

Forr=m= 2,

MY — 22— 1) (3.8)
with positive root A = 2.19.

Forr=3,m= 2,
NP =34 N -1 (3.9)
with positive root A = 2.57.

Forr=3,m=3,
M — 3N =3 — 1) (3.10)

with positive root A = 3.59.

The following theorem gives lower bounds for the orders
of convergence. In the case r > m an analytic expression
for the order of convergence is readily obtainable from
the theorem. This expression will be used in Section 4 to
characterize the gain in speed per processor used.

Theorem 2: A lower bound for the order of convergence
of the sequence {x,} corresponding to the method with
parameters (r, m) is the largest positive root of

A —)___"_12_” if r> m, (3.11)
or
2imyr] [m/r—1] r (1=k
)\mr_ <_)\2m/r__l
Z 2
2 [m/r]
Z \2lm/rl=k=f- 1) , if r< m. (3.12)
8=
MAY 1969

The roots of (3.11) corresponding to the three examples,
(3.8)(3.10), are respectively N = 2., 2.3, 2.38. We see
that the bounds provided by Theorem 2 are poor. How-
ever, the order of magnitude results obtained from Theo-
rem 2 for use in Section 4 are probably as good as can
be obtained.

As a preliminary to proving these theorems, we recall
two known properties of Lagrange interpolation poly-
nomials (see Ref. 1, where these properties are derived).
Let ¢/ be the scalar, ¢l = |z — x!|. The first property is

€, < C|f(2) = Lnsi(@)|- (3.13)

Here, C is some constant and L,,.; is the Lagrange inter-
polation polynomial of degree m 4+ j — 2 associated with
the scalar iterate x..

r

@ = Lus@ < Coey 11 e (3.14)

Eq. (3.14) is the standard error estimate for Lagrange
interpolation polynomials. In (3.14) the superscript of
e’ may take on nonpositive values. The meaning of this is
clear and is given by e = ¢]_,, &, =€}, -+, e;" =
e, _,, --- . This convention will be used in what follows.
In (3.13) and (3.14), we have not denoted the dependence
of the Lagrange polynomials on the given points (x£, 139
which they interpolate. Since the dependence may be
identified from the context, we have, for clarity, eliminated

the expression of this dependence.

Proof of Theorem 1:
(3.13) and (3.14) to get

r - r 1 r m+{1—-d)r—-1
Cne1 = CCm+ren T Cpfpy "t Cped (3.15)

To prove Theorem 1, we combine

From this we readily derive the following relations:

»

1 o Coir_1 €ni1

€n+1 mF(1—d)r—1
Cm+r €n—d

n—j+1
Cm+r*1' Cnt1 6
m+(1—d)r—j (31)

Cm+'r—j+1 €n—-d

r—q
ep1 = C

2
T C§_1 €t
Cnr1 = C, mtl-rlim+1/r]
2€n—[(m+1)/7]

Next we take the logarithm of the equations (3.15) and
(3.16). This gives a system of difference equations whose
characteristic polynomial is (3.3). This completes the
proof of Theorem 1.

Proof of Theorem 2: To prove Theorem 2, we combine
(3.1) and (3.13) to get

pri1 < C[Z (f(z) - Lm+i(z>>2]i- (3~17)

299

PARALLEL METHODS FOR FINDING ROOTS

300

Then we combine (3.14) and (3.17) to get
r r 2 13
Par1 < C[Z <Cm+i H e:)] : (318)
i=1 k=r—m—j+2
From (3.18) we may derive the difference inequalities

prr1 < Cou/2prr{? r>m (3.19)

(m/r]—1 , lm/7] .
par < C I <p;1;, p;_/,f_ﬁ> r < m. (3.20)

k=0

B=1

These derivations are given below. From (3.19) and (3.20),
trial solutions for p, of the form (3.2) give the character-
istic equations (3.8) and (3.9) for A.

In what follows, C will stand for a floating constant
which changes its value as the arguments proceed.

Derivation of (3.19) from (3.18). We write (3.18) as

pmgc[zciﬂ(1I)
i=1

k=n—m—7+2

'(im_ljli”)(i:n};l”z ei)]% (3.21)

r—m=—i+2 r—m—7+250

Since the iteration process converges, we may absorb the
last product here into C. In the next to the last product,
we estimate e: by combining (3.13) and (3.14). Then, (3.21)
becomes

anSC[ZCEW-(II eﬁ)

i=1 k=r—m—j+2

11 (Cmﬂ- II ei_lﬂi, (3.22)
i=n—m—7+2 l=r—m—i+2

r—m—j+2>0

where the constant appearing in (3.14) raised to an ap-
propriate power has been absorbed into C. Next we factor
(3.22) and introduce the symbol R for one of the factors.

pméC[(H ef,) fI

k=r—m+1 i=r—m+1

-(CM 11 e,i_1>R] (3.23)
l=r—m-—1+2

We next absorb R and the C,.; into C and break the
middle product up to get

pair < C[(I eﬁ)(IT eLl)
k=r—m+1 1=2—-m
r—1 r 3
x JI II ef,_l]- (3.24)

i=n—m+1 l=n—m—1i+2

In the first product, we bound €* by p,. In the second prod-
uct, we absorb the terms with nonpositive / into C and
bound the remaining e’._, by p,,. The last two products
are absorbed into C. This gives

Pn+1 S CP;””P:LT{Z, (3 25)
which is (3.19).

W. L. MIRANKER

Derivation of (3.20) from (3.18). This derivation proceeds
similarly to the previous one with factoring, a bootstrap
step, absorption of terms into the leading constant, and
estimating e’ by p,. We will do the case r | m and sketch
the steps without comment. We write (3.18) as

Pari1

il IA
a Q
TN M
§ ~
=
- 9}
3
N g
m »
=
TN
= =
D
::1 <
/—A—\ =
=y
4L
=
3& o
Co=
w

2
“ms.
)

i

3

[

2

3

S

<

1

-
——
~—
™M
TN

A

3

T
h “
o

0

34

[

RS

S

-

o
[I
o

m/r—1 m/r—1 r m/r 3
<c| II p;_k< Pr—tc—BPn—k-m/r—1)
k=0 k=0 =1 \g=1

m/r—1 m/r~=1 m/r
< c(p;fi)< II 11 p"’”) (3.26)
k=0 k=0 B=1
which is (3.20). Inspection of this derivation shows that if
r does not divide m, the steps are correct if m/r is replaced
by [m/r]. The extra multiplicative terms, which will appear
and which are omitted, may (and legitimately so) be con-
sidered to be absorbed into C.

4, Discussion and numerical results

The order of convergence enables us to make asymptotic
comparisons (large n and large r) between the methods.
Let two methods be used to approximate a root. Let these
methods be characterized by m;, r;, \;, i = 1, 2. Suppose
the methods take n, and n, steps respectively to achieve
an approximation of a certain accuracy. Let x,, be the
vector iterate of the first method after », iterations, and
let x,, be the vector iterate of the second method after
ny iterations, Since x,, and x,, are approximations to x of
comparable accuracy, then p(x,, x) and p(x,,, x) are
approximately equal. Then from (3.2), we see that the
following equality is approximately true:

o (4.1)
Then
log C
nl/nZ = logy, A\: + 1/”2 log,, (é(_}_z) (4-2)
1

For example, if m = 2 for both methods and method 2
uses r processors while method 1 uses one processor, (4.2)
becomes

1+ 1+ 4r> . const

nl/”z = loguiva e < 2 P ' (4-3)

Here we have used the lower estimate for A, derivable
from (3.11).

IBM J. RES. DEVELOP.

Table 1 A comparison of three methods for the function 9 x» (see text).

[\S 3]

[

r
m

=

3~
[
o —

|
!

[
© = =

[
- o
o

COCRARUND W —O
|

WNU—, RO OSD

XAHXXXX XX

bk kv ek

5555555

A &

=

—

For r and n, large, we have the asymptotic result

’71/”2 >3 logasva,e r + 0(1)- (4-4)

We see then that while there is a gain in speed for parallel
methods, it may be only logarithmic in the number of
processors. A numerical experiment using three methods:
m = 2and r = 1, 2, 3 respectively, was tried out on the
function Ei‘ x". The results are given in Table 1, where
the entries are the vectors x, with components displayed
horizontally.

5. Remarks

Regula Falsi and the Lagrange interpolation polynomials
were the basis of the algorithms in this paper. Any other
iterative procedure for finding roots, such as Newton’s
method, could be treated and made into a parallel method
along the lines presented here. For Newton’s method the
Hermite interpolation polynomials play the role of La-
grange’s interpolation polynomials. Indeed, hybrid versions
of a parallel method combining Lagrange and Hermite
polynomials are possible.

At first sight, the orders of the methods presented here
seem to contradict the known result that the order of
convergence of a method using Lagrange polynomials
varies between (1 4 \/ g)/ 2 (for Regula Falsi) and 2. For

MAY 1969

example, A = 3.59 for r = m = 3 (see (3.12)). The explana-
tion is that the order for the standard method assumes that
one step in the algorithm corresponds to one evaluation of
f(x). One step in a parallel r-processor algorithm, how-
ever, corresponds to r evaluations of f(x). Thus, the order
of convergence of a parallel method should be discounted
to A", For the example cited 3.59"% = 1.53. This number
is less than the order of convergence of the usual sequential
algorithm corresponding to m = 3 and r = 1. However,
the sequential algorithm cannot even at the expense of
computing power (i.e., more processors) be speeded up,
whereas the parallel method can be speeded up.

Finally we point out that the higher order methods,
which make up the components of the vector iterates,
require more computations then lower order methods, even
though all require one functional evaluation. We have
not analyzed these costs.

References

1. L. Collatz, Functional Analysis and Numerical Mathe-
matics, Academic Press, New York, 1966, (see espe-
cially Section 18).

2. J. Traub, Iterative Methods for the Solution of Equations,
Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

Received August 28, 1969

301

PARALLELL. METHODS FOR FINDING ROOTS

