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Effects of Bending Stiffness in Magnetic Tape

Abstract: The elasticity of magnetic tape is an important factor in determining the shape of a tape loaded over a magnetic head
Over a single apex the radius of curvature of the tape is inversely proportional to the wrap angle and to the square root of the ratio
of tape tension to bending stiffness. If a constant-pressure support is assumed instead of a knife edge, the radius of curvature increases
considerably. A chart is provided for use in calculating the radius of curvature under different loading conditions.

Over a double apex the results are the same as for a single apex except when the distance between apexes becomes small. By in-
creasing the radius of curvature of the head to conform to the radius of curvature of the tape, the rate of head wear can be greatly

reduced.

Introduction

The purpose of this communication is to describe some of
the effects of tape elasticity or bending stiffness on the con-
formity between a magnetic recording head and the tape
passing over it. Only the static tape shape is considered;
that is, actual air bearing effects are approximated by
assuming that air pressure is constant throughout the
region between the tape and the head. Dynamic effects
have been ignored.

Most previous analyses of tape shape have been based
on the assumption that the tape is perfectly flexible. On
visual examination it certainly appears flexible; in appli-
cation, however, the radii over which the tape is loaded
are so small that stiffness takes on primary importance.

In this communication, the basic equations are derived
and then applied to loading over a double-apex representa-
tion of a real head contour. The effect of spacing between
apexes is illustrated and two special cases are shown to cor-
respond to two different single-apex configurations.

Although this note in itself will not enable one to
design an optimum head, it should enable a designer
to determine the upper and lower bounds of the radius
of curvature of the tape at the gap in an actual application.

Basic equations

We begin by considering the differential equation that
describes the shape w of the tape when loaded by an
arbitrary pressure distribution P(x):

dw _ o dw

P T—3 = P(x), (1)

D =
dx*
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where D is the bending stiffness of the tape and T is the
tension in the tape. We consider the problem in the x
direction only, ignoring effects across the width of the tape
such as anticlastic curvature. Also, we are considering
relatively small displacements from the x axis, so that
the curvature of the tape can be represented by the second
derivative. In practice, most tape wrap angles are small
enough to meet this criterion.

Dividing by D and introducing the parameter \ for
\/ m, we have

4 2
% -\ % = P(x)/D. (2)
For this equation the homogeneous solution, or the case
when the pressure is zero, is

w(x) = Ae™ + B + Cx + G, (3)

where 4, B, C and G are constants to be determined by
the boundary conditions. To find the complete solution
for an arbitrary pressure distribution, P(x), we apply
the method of variation of parameters’ and obtain the
desired result:

wx) = de™ + B 4+ Cx + G

e

¥4 ¥ )\;
2D)\3‘/; P(x)e" dx

Az z x
. R
+ 2DV A P(x)e " dx DN ‘/(; P(x) dx

1 X
+ D—)\g/; P(x)x dx. (4)
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Figure 1 Schematic representation of tape configuration
over a double-apex head.

Analysis

Most actual magnetic heads consist of two apexes, one
containing the read gap and the other the write gap.
In practice there is an air bearing between the tape and
the apex, which creates the pressure supporting the
tape. To simulate this condition we will assume that
pressure is uniform over a certain distance 2g. Of course
pressure is not uniform in practice, but this assumption
enables us to obtain a reasonable estimate of the tape
shape without detailed consideration of the effects of
the air bearing.

It is of interest to determine how the contour of the
tape at the apex being considered is affected by the prox-
imity of the other apex and the pressure supporting
the tape. The problem is sketched in Fig. 1. We will
consider the shape of the tape over the right-hand constant-
pressure region.

First we consider region 1, between the coordinate
axis and the beginning of the constant-pressure region.
The shape of the tape in this region is given by

w(x) = Ade™ 4 B 4+ Cx + G. (5)
From symmetry conditions we know that the curvature
at x = —(b — g) is equal to the curvature at x = b — g.
Therefore

- — - ~A(— A~
Ae Mb—g) + Be)\(b 9 _ Ae A(—b+g) + Be( b+y). (6)
Combining and rearranging terms, we have
— —2\ Ao A — —2X
Aeme)‘b(e 2N e 2 g) = B¢ ge b(e 286 e 2 g) . (7)

Thus we see that 4 must be equal to B.
By applying a similar symmetry condition on the shape
at —b + g and b — g, we can write

A0 4 BT+ C(b — g
— Ae—)x(»b*rg) _+_ Be)\(—b+g) + C(_b + g)' (8)

We know that 4 = B; hence C must be zero.
We could also evaluate G, by arbitrarily setting w(x)
equal to zero at x = 0; but since we are interested mainly
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in the first and second derivatives rather than in the
exact shape, we will leave G undetermined.

In region 3, to the right of the constant-pressure region,
the expression for the tape shape is

W(X) — A(e—)\z + e)\z) + G (e)\(g+b)

" 2D\
. 2gxP

—Az
—e P Mb—9)
— ¢ )

2D\
Az

€ ~A(b+g)
i (3

— M)y

2gP(b + g
DN

+ 9)

DN

The second derivative is given by

W”(X) — )\2 A(e—)\:: + e)\z)

—\z
Ne P \(b A(b—
— G ( (b+g) e ( a))

2D)

e)\z)\zp A
2Dn €

— N, (10)

At the end of the tape we assume that the applied torque
is zero, so that w'(L) is zero. Next we let L approach
infinity, and obtain

0 = 4

Thus we can find 4 as

e)\LP .
_ 2D>\4 (e—)\(b+g) _ e#)\(b—g/). (11)
= —— e M — &Y. (12)

If we substitute for 4 and set the shape at L equal to —a,
then as L approaches infinity we obtain

a/L = 2Pg/D\°. (13)

As L approaches infinity, w'(L) approaches —a/L;
hence the above equation confirms the overall vertical
force balance.

We can now write the complete equations for the
shape of the tape within the constant-pressure region:

w(x)

w'(x)

w"(x) —

— 2 MY
+ T — (v — b+ gﬁz] ;
P —Aby,h A —X Az
Spni e (€ = @) (=heTT A e
— AT + A e M)
- 2(x — b+ @N°];
Lis =\b —Mg A 2 -z 2 Az
2_5XZ[6 (e — &Y Ne ™ 4 Ne™)
4 N NN — 2N (14)
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Since we are primarily interested in the curvature at
x = b, we substitute and obtain

P

w(b) = 5

[2(6—)\y — 1) + e—2)\b(e—-)\g _ e)\u)]' (15)

Let us now consider some special cases. As b becomes
very large,

which represents the case in which the tape is wrapped
over a single apex with a total angle of wrap of tan™* (a/L).
We next take the radius of curvature R as the inverse of
the second derivative, and 6 as the total angle of wrap.
Then R at the center of the constant-pressure region is

—2 Ag >
. 1
Atan @ <1 — M (17)

We see that the radius of curvature is negative as expected,
and that it is inversely proportional to tan # and A.
When g approaches zero, as would occur over a knife
edge, the modifying factor \g/(1 — e ™) approaches
unity. When Ag becomes large, about 5 or more, we can
express R as

R(b) =

R(b) = —2g/tan . (18)

Figure 2 shows the dependence of R on A, g, and 0.
The parameters are presented in nondimensional form
for simplification.

Figure 2 Dimensionless plot of tape radius of curvature
vs. angle of wrap, for various loading conditions.
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Let us consider a typical case. We first assume a total
wrap angle of 7°, obtaining a value for (tan 6)/2 of 0.061.
For wrap over a knife edge, where g = 0, we employ
the A\g = 0 curve in Fig. 2 and obtain a value for R\
of 16.5. We will assume that the tension in the tape is
0.7 Ib/inch and that the bending stiffness is 5 X 107*
Ib/inch. We then obtain a value for A of 37.4. Now we
can calculate R, obtaining a value of 0.44 inch.

If we assume that the pressure is distributed over a
length of 0.060 inch, we have a value of 0.030 inch for g
and a value of 1.12 for Ag. For this value of \g, Fig. 2
gives a value of 27.5 for R\ and a value of 0.73 inch for R.

Instead of letting b become large, let us now allow Ag
to approach zero. After substituting for P, we have

w'/(b) =

_2? (1 + &™), (19)
The above expression illustrates the effect of the second
apex upon the first when both apexes are knife edges.
As b becomes small, we approach the case of a single
apex with total wrap of 2a/L; as b becomes large, we
approach the case of a single apex with a total wrap of
just a/L. Since Ab occurs as a negative exponent of e,
b need not be very large before its effect can be neglected.
For example, if \ is taken as 40 in.™" and 5 as 0.075 inch,
¢ " equals 0.00249 and the effect of » can be neglected.

To determine the effect of 5 with a finite constant-
pressure region, we factor out the expression for w''(b),
when b is large, to obtain

W) = 2—20%5 (€™ =1
. e*?)xb(g*)\y ___ C)\g)]'
[1 + 207 — 1) (20)

Taking g as 0.030 inch, and X and b as before, we have

W' () = 5’% (0.301 — 1.0)

s

0.00249(0.301 — 3.32)]
[1'0 T 20301 — 1.0)

hence the effect of b can again be neglected.
Another interesting point can be brought to light by
considering the slope of the tape at x = b:

w'(b) = [—2g\ — e ™M™ — )], or

_r
2D\’

—a |: e—?)\b (e~)\g - e\g)]
't e @
We see that the slope of the tape at the apex is not neces-

sarily equal to half of —a/L, as one might expect. A
practical effect is that the static point of tangency of the

w'(b)
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tape with the recording head contour may not occur at
the read and write gaps. However, so long as Ab is rela-
tively large, the slope will be nearly half of —a/L.

Conclusions

The major result obtained from these calculations is
that tape stiffness is an important factor in determining
the shape taken by a tape passing over a recording head.
The radius of curvature of the tape at the apex of a typical
head, for example, can be calculated to be of the order
of 0.5 inch. Since the head is often ground to a radius
of 0.1 inch or less, the tape and the head are nearly in
line contact. This condition produces good signal output,
but it also produces a high wear rate because of the
small clearance and the high unit pressure between the tape
and the head. As the head wears, the head radius of
curvature increases and the head begins to conform to
the tape shape. At the same time the air bearing is de-
veloped over a larger area, thus increasing the radius
of curvature of the tape. As these two effects proceed, the
unit pressure eventually becomes so low, and the head-
to-tape separation so large, that the wear rate is very
much reduced.

One criterion for good head design, then, is that the
radius of curvature of the head at the gap should be
nearly equal to the radius of curvature of the tape. Though
this condition results in a low wear rate, it may also
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produce too much head-to-tape separation, because it
makes the air bearing more efficient. In this case it may
be necessary to destroy or diminish the air bearing effec-
tiveness by means of intertrack, longitudinal slots in
the head. Thus it is possible to obtain a low wear rate, by
virtue of the good conformity between head and tape
and the large wear area and associated low unit pressure,
while at the same time achieving a small head-to-tape
separation for good signal output and resolution.

Another criterion is that the head should be symmetric.
That is, if an observer could “stand” at one gap, he
should “see” the same condition up the tape path as
down it; the adjacent apexes should be located at the
same distance from the observer, and the angle of wrap
over each of these apexes should be the same. The static
tape shape would then be tangent to the head at the gap,
and the forward and backward behavior would be the
same.
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