
Communication 

R. E. Norwood 

Effects of  Bending  Stiffness  in  Magnetic Tape 

Abstract: The  elasticity of  magnetic ta?e is an  important  factor in determining the shape of a tape loaded  over a magnetic  head 
Over a single  apex the radius of curvature of the  tape is  inversely proportional to the wrap  angle  and to the  square root of the ratio 
of tape  tension to bending  stiffness.  If a constant-pressure  support  is  assumed  instead of a kni€e  edge, the  radius of curvature  increases 
considerably. A chart is  provided  for  use  in  calculating  the  radius of curvature  under  different  loading  conditions. 

Over a double apex the  results  are the same  as  for a single  apex  except  when the distance  between  apexes  becomes  small. By in- 
creasing  the  radius of curvature of the head to conform to the radius of curvature of the tape,  the rate of head  wear  can be greatly 
reduced. 

Introduction 
The purpose of this  communication is to describe some of 
the effects of tape elasticity or bending stiffness on  the con- 
formity between a magnetic recording head and  the  tape 
passing over it. Only the static tape  shape is considered; 
that is, actual air bearing effects are approximated by 
assuming that  air pressure is constant throughout  the 
region between the  tape  and  the head. Dynamic effects 
have been ignored. 

Most previous analyses of tape  shape have been based 
on  the assumption that  the tape is perfectly flexible. On 
visual examination it certainly appears flexible; in appli- 
cation, however, the  radii over which the  tape is loaded 
are so small that stiffness takes on primary importance. 

In this  communication, the basic equations are derived 
and  then applied to loading over a double-apex representa- 
tion of a real  head  contour. The effect of spacing between 
apexes is illustrated and two special cases are shown to cor- 
respond to two different single-apex configurations. 

Although  this note  in itself  will not enable one  to 
design an optimum  head, it should  enable a designer 
to determine the upper and lower bounds of the  radius 
of curvature of the tape  at  the gap in  an  actual application. 

Basic  equations 
We begin by considering the differential equation that 
describes the shape w of the  tape when loaded by an 
arbitrary pressure distribution P(x): 

where D is the bending stiffness of the  tape  and T is the 
tension  in the tape. We consider the problem  in the x 
direction only, ignoring effects across the width of the  tape 
such as anticlastic  curvature. Also, we are considering 
relatively small displacements from  the x axis, so that 
the curvature of the  tape can be represented by the second 
derivative. In practice, most tape wrap angles are small 
enough to meet this criterion. 

Dividing by D and introducing the  parameter X for dm, we have 

For this  equation the homogeneous solution, or  the case 
when the pressure is zero, is 

w(x)  = Ae-'" + Be'" + Cx + G, (3) 

where A ,  B, C and G are constants to be determined by 
the boundary conditions. To find the complete solution 
for  an  arbitrary pressure distribution, P(x),  we apply 
the method of variation of parameters' and  obtain  the 
desired result : 

w(x) = ALA= + Be" + Cx + G 

d4 w dZ w 
dx dx2 - D -;i - T __ - P(x) ,  
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Figure 1 Schematic representation of tape configuration 
over a double-apex  head. 

Analysis 
Most  actual magnetic heads consist of two apexes, one 
containing the read gap  and  the  other  the write gap. 
In practice there is an  air bearing between the  tape  and 
the apex, which creates the pressure supporting the 
tape. To simulate  this  condition we will assume that 
pressure is uniform over a certain distance 2g. Of course 
pressure is not uniform in practice, but this  assumption 
enables us to obtain a reasonable estimate of the  tape 
shape  without detailed consideration of the effects of 
the air bearing. 

It is of interest to determine how the  contour of the 
tape  at  the apex being considered is affected by the prox- 
imity of the  other apex and  the pressure supporting 
the tape. The problem is sketched in  Fig. 1. We will 
consider the shape of the tape over the right-hand  constant- 
pressure region. 

First we consider region 1, between the coordinate 
axis and  the beginning of the constant-pressure region. 
The shape of the  tape in  this region is given  by 

w(x) = A L A ”  + Be’” + Cx + G .  ( 5 )  

From symmetry conditions we know that  the curvature 
at x = “(b - g)  is equal  to  the curvature at x = b - g. 
Therefore 
A e - X ( b - Y )  + B e X ( b - R )  = A e - h ( - b + g )  + . ( 6 )  

Combining and rearranging terms, we have 

Thus we see that A must be equal to B. 

at ”b + g and b - g,  we can write 
By applying a similar symmetry condition on  the shape 

We  know that A = B ;  hence C must  be zero. 
We could also  evaluate G, by arbitrarily  setting w(x) 

206 equal  to zero at x = 0 ;  but since we are interested mainly 

in the first and second derivatives rather  than in the 
exact shape, we will leave G undetermined. 

In region 3, to the right of the constant-pressure region, 
the expression for  the  tape shape is 

At  the end of the  tape we assume that  the applied torque 
is zero, so that w”(L) is zero.  Next we let L approach 
infinity, and  obtain 

Thus we can find A as 

If we substitute for A and set the shape at L equal to -a,  
then  as L approaches infinity we obtain 

a / L  = 2 P g / D X 2 .  ( 1  3) 

As L approaches infinity, w’(L) approaches -a /L ;  
hence the above equation confirms the overall vertical 
force balance. 

We can  now write the complete equations for  the 
shape of the  tape within the constant-pressure  region: 

= --z e-”(e-’Y - eXg)(e-’z + e’%) + p 
p [  

2 DGX4 
2 DX 
- 2 + e-XzeX(b-s )  

+ e’ze-h(b-y) - (x - b i- g)’X’] ; 

w’ (x )  = - [ - ehg)(-Xe-Xz + ~ 2 )  P 
~ D X ~  e 

- X e  e 

- 2 ( ~  - b + g)X2];  

-Xz X ( b - 8 )  + Ae’ze-X(b-u) 

P W’’(X) = __- [ -Xb(e-Xo - e A ~ ) ( ~ 2 e - A z  + X’eXz) 2DX4 e 
+ XZe-XzeX(b-o) + ~ 2 ~ X z ~ - X ( b - o )  - 2X2]. (14) 
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Since we are primarily interested in the curvature at 
x = b, we substitute and  obtain 

w”(b) = __ 
P 

2 DX’ [2(LXg - 1) + e-2x6(e-xg - e”)]. (1 5 )  

Let us now consider some special cases. As b becomes 
very large, 

which represents the case in which the tape is wrapped 
over a single apex  with  a total angle of wrap of tan“ (a/L). 
We next take  the radius of curvature R as the inverse of 
the second derivative, and 0 as the  total angle of wrap. 
Then R at  the center of the constant-pressure region is 

We  see that  the radius of curvature is negative as expected, 
and  that  it  is inversely proportional to  tan 0 and X. 
When g approaches  zero,  as would occur over a knife 
edge, the modifying factor Xg/(l - e-Xg) approaches 
unity. When Xg becomes large, about 5 or more, we can 
express R as 

R(b) = -2g/tan e. (1  8) 

Figure 2 shows the dependence of R on X, g, and 0. 
The parameters are presented in nondimensional form 
for simplification. 

Figure 2 Dimensionless plot of tape radius of curvature 
vs. angle of wrap, for various  loading  conditions. 
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Let us consider a typical case.  We first assume  a total 
wrap angle of 7 ” ,  obtaining  a value for  (tan 0)/2 of 0.061. 
For  wrap over a knife edge, where g = 0, we employ 
the Xg = 0 curve in  Fig.  2 and  obtain a  value for RX 
of 16.5. We will assume that  the tension  in the  tape is 
0.7 lb/inch and  that  the bending stiffness is 5 X 
lb/inch. We then obtain a value for X of 37.4. Now we 
can calculate R, obtaining a value of 0.44 inch. 

If we assume that  the pressure is distributed over a 
length of 0.060 inch, we have a value of 0.030 inch for g 
and a value of 1.12 for kg. For this value of Xg, Fig. 2 
gives a value of 27.5 for RX and a value of 0.73 inch for R. 

Instead of letting b become large, let us now allow Xg 
to  approach zero. After substituting for P, we have 

w”(b) = - ( I  + e--2Xb) . - aX 
2L 

The above expression illustrates the effect of the second 
apex upon  the first when both apexes are knife edges. 
As b becomes small, we approach  the case of a single 
apex with total wrap of 2a/L;  as b becomes large, we 
approach  the case of a single apex with a total wrap of 
just  a/L. Since Xb occurs as a negative exponent of e, 
Ab need not be very large before its effect can be neglected. 
For example, if X is taken  as 40 in.-’ and b as 0.075 inch, 
e equals 0.00249 and the effect  of b can be neglected. 

To determine the effect  of b with a finite constant- 
pressure region, we factor out  the expression for w”(b), 
when b is large, to  obtain 

- A b  

Taking g as 0.030 inch, and X and b as before, we have 

~ ” ( b )  = --2 P (0.301 -- 1.0) 
DX 

. [ L O  + - 0.00249(0.301 - 3.32) 
2(0.301 - 1.0) 

hence the effect of b can again be neglected. 

considering the slope of  the tape at x = b:  
Another interesting point  can be brought to light by 

We see that  the slope of the  tape  at the apex is not neces- 
sarily equal to half of -a/L,  as  one might expect. A 
practical effect  is that  the static  point of tangency of the 
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tape with the recording  head contour may not occur at 
the read and write  gaps.  However, so long as Xb is  rela- 
tively large, the slope will  be  nearly  half of -a /L .  

Conclusions 
The major result obtained from these  calculations is 
that tape stiffness is an important factor in  determining 
the shape taken by a tape passing  over a recording  head. 
The radius of curvature of the tape at the apex of a typical 
head, for example,  can  be  calculated to be of the order 
of 0.5 inch.  Since the head  is  often  ground to a radius 
of 0.1 inch or less, the tape and the head are nearly  in 
line contact. This  condition  produces  good  signal output, 
but it also  produces a high  wear rate because of the 
small  clearance  and the high unit pressure between the tape 
and the head. As the head  wears, the head radius of 
curvature  increases and the head  begins to conform to 
the tape shape. At the same  time the air  bearing  is  de- 
veloped  over a larger area, thus increasing the radius 
of curvature of the tape. As these  two effects proceed, the 
unit pressure  eventually  becomes so low, and the head- 
to-tape separation so  large, that the wear rate is  very 
much  reduced. 

One  criterion for good  head  design, then, is that the 
radius of curvature of the head at the gap should  be 
nearly equal to the radius of curvature of the tape. Though 
this condition  results  in a low  wear rate, it may also 

produce too much head-to-tape separation, because it 
makes the air  bearing  more efficient. In this case it may 
be  necessary to destroy or diminish the air bearing effec- 
tiveness by means of intertrack, longitudinal  slots in 
the head. Thus it is  possible to obtain a low  wear rate, by 
virtue of the good  conformity between head and tape 
and the large wear area and associated low unit pressure, 
while at the same  time  achieving a small head-to-tape 
separation for good  signal output and resolution. 

Another  criterion  is that the head  should  be  symmetric. 
That is,  if an observer  could “stand” at one  gap,  he 
should  “see” the same  condition up the tape path as 
down it; the adjacent  apexes  should  be  located at the 
same  distance from the observer, and the angle of wrap 
over  each of these  apexes  should  be the same. The static 
tape shape  would  then  be  tangent to the head at the gap, 
and the forward and backward  behavior  would  be the 
same. 
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