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Mechanisms of Stress Relief in Polycrystalline Films

Abstract: The stress required to operate dislocation sources within a grain, at a grain boundary, and at surfaces is found to be larger
than the intrinsic stresses observed in polycrystalline films. It is therefore unlikely that a dislocation flow mechanism can relieve stresses
in films. Grain boundary sliding and diffusional creep can, however, relieve stresses in films and equations describing the kinetics of
stress relaxation are derived. It is suggested that stress relief occurs primarily by a diffusion-creep mechanism. Growth of hillocks during
annealing of a film is briefly discussed in terms of the diffusion-creep mechanism.

Introduction

It is observed that thin films prepared by evaporation
onto a substrate contain stresses.”” The stresses are
considered to originate from defects generated during
growth of a film (growth stresses), from mismatch at the
interface between substrate and film, and from differ-
ential thermal expansion.’ This paper considers some
mechanisms of plastic flow by which the elastic strains
can be relieved. It confines itself primarily to films in
which the grain size is very small and the thickness of
the film is much greater than the grain size. For the purpose
of discussion we divide this paper into four parts: analysis
of stress in film and substrate; dislocation mechanisms
of flow; grain boundary sliding; and diffusional creep.

Stress analysis

In the following it is assumed that: (a) the elastic con-
stants of film and substrate are the same; (b) isotropic
elasticity theory is valid; and (c) the film and substrate are
bonded at their common interface. The film and substrate
are shown schematically in Fig. 1. The film lies in the x,, x
plane. The origin is chosen at the surface of the film and
the thickness of the film measured in the x; direction
is 2C. The thickness of the film plus that of the substrate is
2D.

The stresses in the film and substrate can be obtained
by replacing the discrete positions of defects by a continu-
ous distribution of infinitesimal defects. The stress distri-
bution can then be calculated in a manner analogous to
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Substrate

Figure 1 The geometry of a film and substrate.

that for thermal stresses.” This procedure gives the stress
distribution in a film as

E 1 2C
1 [fu(xs) -5 /; €11(%3) dx;

i(_xi_—_D_)_
2D®

011 = 032 =

+ ‘/; (x5 — D)eg(xs) dx3:| s (1a)

and the stress distribution in the substrate is

—_ 3_(JC§_D_—2_D)‘/; (x5 — D)en(xs) dx3:| ’ (1b)

011 = O3 =

where €,(= ex) is the normal elastic strain associated
with the defects (or differential thermal expansion) in a
film; €;,(x;) is a function that describes the variation of
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Figure 2 Stress distribution in film and substrate for several
values of the ratio of film thickness to substrate thickness.

strain components €, Or €, as a function of x;; ¢,.(=030)
is the normal stress; o33 = 0; v is the Poisson’s ratio and
E the Young’s modulus. Equation (1) accurately describes
the stress distribution far away from the ends of the film
and substrate edges.

In the simple case for which the strain is uniform and
independent of x;, €,,(x;) = ¢, and Eq. (1a) gives the
stress in a film as

Oy = Ogg = enk {l—g
11 22 I_V D

x[14X€=Bn=DL

and Eq. (1b) the stress in the substrate as

Oy = 022

e EC [1 4 3C = D —

(1 —»D D

D)]- (2b)

The variation of ¢, (or a4,) with x; for several values of
the ratio C/D is shown in Fig. 2. For C << D the com-
ponents of the stress tensor in the film corresponding to a
planar stress have the following values:

€11E
—_— ~ ot
011 = 099 — 1 —
o33 = 0,

012 = 013 = 03 = 0.

The values of the normal stresses in a film where C << D
obtained in the present analysis differ from those quoted
frequently in the literature by the factor (1 — ») in the
denominator. This factor arises from the presence of a
biaxial system of stress in the film, rather than from the
uniaxial stress usually assumed.
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In the following development the driving force for
plastic flow is provided by the shear component of stress.
We shall, however, present our final results in terms of
normal components of stress to facilitate comparison
with experimental information. Similarly, the components
of strain contained in the equations are transformed from
shear to normal strains. The transformations are carried
out by the second-rank-tensor transformation law; for
example, the shear stress ¢ on a plane inclined at an
angle « to the normal of the plane of the film is given by
0 = oy, Sin @ cos a. It is also convenient in the present
analysis to relate stresses to strains in terms of the shear
modulus p rather than Young’s modulus E using the
relation E = 2u(1 -+ »).

Dislocations

The value of ¢,, determined experimentally in films is
found to depend on several factors such as the tempera-
ture of deposition, rate of deposition, and the physical
properties of the films. Values of ¢;,/u as high as 107°
have been observed.? This value is to be compared with
the critically resolved shear stress of most bulk single
crystals which lies in the range of (10~° to 10 *)u. Therefore
the question we wish to address in this section is: Why do
films retain these high elastic strains in view of the rela-
tively low value of the critically resolved shear stress in
bulk materials?

Elastic strains in films can be relieved by flow either in
the substrate or in the film. For the case of a uniform and
constant strain in a film the stress in a substrate is given
by Eq. (2b) and is shown in Fig. 2 for several values of the
ratio C/D. We note that in most cases of deposition the
condition C << D exists, so that the stress in a substrate
is a very small fraction of the stress in a film. For a film
thickness of one micrometer and a substrate thickness of
one millimeter, the maximum value of stress in the sub-
strate is less than one-half percent of the stress in the film.
A stress as large as 10% 4 in a film means that the maximum
value of stress in the substrate is barely in the range
of the critically resolved shear stress of soft, single-
crystal substrates. For films where C/D < 10™* we may
therefore neglect plastic flow by a dislocation mechanism
in substrates. When the ratio C/D is larger than 107%
deformation of the substrate can occur. In these cases the
plastic flow properties of the particular substrate have to
be considered to determine the extent to which dislocations
in it can relieve the elastic strains in film and substrate.

The inability of dislocations in films to relieve high
elastic strains can be due to difficulties in generating
dislocations or to the immobility of dislocations.* In what
follows it is shown that high elastic strains in films can be
sustained (from the point of view of dislocation theory)
because of the difficulty in operating dislocation sources.
This difficulty is attributed to the fine grain size in films.
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There are three places where dislocation sources can be
located. These are: (a) within the volume of a grain;
(b) at the grain boundary; and (c) at free surfaces. A
dislocation source located within a grain generates a
dislocation loop, the size of which is determined by the
dimensions of the grain. Consider a cylindrically shaped
grain of diameter d and height 4 (Fig. 3a) in which a
dislocation loop has been generated. The plane of the loop
is inclined at an angle « with respect to the free surface.

The theoretical normal stress ¢ required to generate
a dislocation loop of the type shown in Fig. 3a can be
calculated and compared with the experimentally deter-
mined value of ¢,,. The theoretical value is obtained by
equating the energy of a loop to the work done by the
stress in generating the loop. The energy of an elliptical
loop is given by’

Eo . mwbed {[1 _ VLl:pﬁia_)}
27(1 — ») cos @ sin” a

Xln< 4d >+(1—p)(1—2v) cot” a

ebV cos 2(1 — v)
_ o(l —v —2|— cos” a)} , (3)
where e = 2,71828--- , p = X/&, and & and X are

complete elliptic integrals of the first and second kind,
respectively, of modulus sin «, and b is the magnitude of
the Burgers vector. The work done by the stress in
generating the loop is

W = = ¢bd" sin a. (4)

T
4
The value of ¢ isobtained from the condition[6(E— W)/dd],
= 0. The value of ¢ is shown in Fig. 4a as a function
of d keeping « constant and in Fig. 4b as a function of «
keeping d constant. The value of ¢ decreases with in-
creasing grain size and, as shown in Fig. 4a, it is approxi-
mately proportional to the inverse of the grain diameter d.
The relative minimum in the curve of ¢ as a function of «
keeping 4 constant is attributed to the dependence of the
shear stress in the slip-plane on the angle « and the
dependence of the energy of an elliptical loop on its
modulus.

Provided that ¢,, < &, dislocation loops cannot be
generated in the film because the work done by o, during
plastic flow (expansion of the loop) is less than the energy
expended in generating the loop. Experimentally one
finds that values of o, as high as 107°u are associated
with growth stresses in films that have a grain size of
several hundred angstroms. For these values of grain
diameter o, < ¢, so that dislocation sources within the
volume of a grain do not play a significant role in relieving
the observed elastic strains.
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Figure 3 Dislocation sources in polycrystalline materials.
(a) Source within a grain. (b) Grain boundary source asso-
ciated with a ledge. (¢) Dislocation loop within a grain op-
erated from a grain boundary source. (d) Dislocation source
at an atomically flat free surface. Dislocation half-loop
moves into film-generating step (shaded area) on surface.
(e) Dislocation source at a step on a free surface. Disloca-
tion half-loop moves into film and removes step; remain-
ing area (shaded) left on surface.

Dislocation sources at grain boundaries are present at
ledges. A dislocation loop generated from a ledge is
shown schematically in Figs. 3b, c. The energy E’ re-
quired to generate a dislocation loop from a ledge is
equal to the energy of an elliptical loop given by Eq. (3)
minus a correction term. The latter is associated with the
absence of the segment AA’ and the change in grain
boundary energy when a loop is generated. The self-
energy of the segment AA’ and its interaction with the
rest of the loop can be calculated using Blin’s formula” for
the interaction energy E;; between two loops ¢; and ¢;:

E. = _LS{; (b, X b))-(dl, X d1,)
S 27 R

ci €j

i o)

ci ¢j

+ E(l_u__T) % 9§ (b; X dL)-T-(b; X dl,), (5

ci cj

where b, and dl; are the Burgers vector and an infinitesimal

199

STRESS RELIEF




200

10~1

(a)

b=3A
[3(E-wy/3d4], =0

G/

0.040

(b)

0.035

0.030 —

d =1000A
0.025

0.020

0.015

0.010

~
% 0.005

200 500 1000 2000 5000

d in angstroms

a in degrees

Figure 4 Stres§ divided py s.hear modulu_s required to operate dislocation source in grain. (a) Stress divided by shear modu-
lus as a function of grain diameter keeping « constant. (b) Stress divided by shear modulus as a function of « keeping

grain diameter constant.

line element of the loop c;, respectively. In Eq. (5) T is a
tensor with components

Tos = R | 86X, 6 X5 (6)
here
R*= X] + Xi+ Xxi, @)

X, = x; — Xx;, Xy = yi — Vi, X3 = 2, — 25,

and x;, y;, z; are the Cartesian coordinates of the line
element dl;. The energy of the dislocation segment AA’
according to Blin’s formula is®

E;; = (;‘—biLT) In (‘:—II)‘) , (8)

where L is the length of the segment. The interaction
energy of the segment AA’ with the rest of the loop can be
calculated by making the simplification that the energy of
a smooth loop is equal to that of a piecewise loop when
their areas are equal.’ With this simplification the integrals
involved in Blin’s formula [Eq. (5)] can be evaluated in a
straightforward manner. For our case the interactions
between the segments AA’ and AB, AA’ and BC, AA’
and CD, AA’ and DE, and AA’ and EA’ were determined.
If we write this interaction energy as E;;, the energy of a
loop generated from a ledge can be calculated using the
following equation:

E' = E — (E; + Ei; + vLb), ©)]

where « is the grain boundary ledge energy per unit area.
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Using Eqgs. (4) and (9), we calculated the value of the
theoretical normal stress ¢’ required to operate a source for
several values of v as a function of d and «. This is shown
in Figs. 5a, b. We note that, to a first approximation,
¢’ also varies inversely with the diameter of the grain and
has a minimum as a function of «. The value of ¢’ is smaller
than ¢ for a given value of d and «. Thus grain boundary
sources can be operated at lower values of stress than
those required for volume sources. A comparison of ¢,;
with ¢’ reveals, however, that the experimentally found
values of growth stress cannot operate grain boundary
sources in films because of their fine grain size.

We now consider the third possibility, which is surface
sources. Dislocation sources at a good surface, that is, an
atomically flat surface, require a value of stress to operate
that is comparable to those for sources within a grain
(volume sources). This is due to image terms and the
extra energy required to create a step on the surface. The
operation is shown schematically in Fig. 3d. For the
special case of @ = 90° the energy of a half-loop generated
at a surface is equal to that of a full loop within a grain."
With the energy needed to generate a step on the surface,
the theoretical stress required to operate a surface source
is larger than the stress needed to generate a similar loop
within a grain. For loops lying on planes with normals at
an angle « less than 90°, the image terms lead to some-
what more complex expressions for the energy. An ap-
proximate analysis shows that the energy in these cases is
still comparable to that for volume sources. A lower
energy is required to operate a surface source where a
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Figure 5 Stress divided by shear modulus required to operate dislocations at a grain boundary ledge. (a) Stress divided by
shear modulus as a function of grain diameter keeping « constant with y/u = 0.1. (b) Stress divided by shear modulus as

a function of « keeping v/« constant with d — 1000 A.

step is already present. This is due to the reduction in
free-surface areas and, through that, a reduction in surface
energy when a dislocation half-loop is nucleated (Fig. 3e).
Hirth' has calculated the stress required to nucleate a
dislocation half-loop at various types of surfaces and
concludes that the stress required to do so is about one-
third the value of the theoretical stress at room tempera-
ture. This value is lowered somewhat by the stress con-
centration at a step that acts like a notch."" Even if a
loop could be nucleated at a surface, the size of such a
loop is limited by the grain size. In polycrystalline films
where the grain diameter 4 is much smaller than the
film thickness, sources located at the surface can at most
relieve stresses confined to a thin layer of the dimensions
of a grain. We therefore conclude that the observed levels
of stress can be maintained in films with a fine grain size
because of the large values of stress required to operate
dislocation sources.

Our calculations so far have not included the contribu-
tion from thermal fluctuations. Inclusion of thermal energy
shows that for temperature T, where T > 0, the value of
¢ is lowered. However, this decrease is not sufficient to
change the conclusions reached earlier. Inclusion of
temperature effects in the calculation of ¢ shows that ¢ is a
function not only of temperature, but also of the rate of
deposition. The limiting value of the observed stress at
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T = 0 or at very high rates of deposition is ¢, provided
dislocation mobility is high and other physical character-
istics of the film, such as grain size, remain constant.'?
Although the effect of temperature is to reduce the critical
stress for generation of a source, the presence of obstacles
to the motion of dislocations tends to increase the critical
stress. In most thin films, point defects in excess of the
equilibrium concentration are probably present so that
the critical stress to generate a dislocation may be larger
than those shown in Figs. 4 and 5.

The present calculations show that the critical stress to
operate dislocation sources is larger than the observed
values. They do not show what the maximum value of
elastic strain in a film may have been. For, clearly, had
the stress in a film been larger than the critical stress to
operate a source, dislocation motion would have led to
plastic flow and subsequent reduction in elastic strain
until the stresses were nearly equal to those for generation
of sources. Any dislocation source mechanism that
requires a critical stress to operate cannot relax the stresses
in a film beyond approximately the critical stress. It
follows then that dislocation mechanisms such as those
considered here cannot entirely relieve the elastic strains
in films. We therefore consider next two mechanisms of
plastic flow that do not require dislocation motion and
may relax the strains in a film completely.
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Grain boundary sliding

The elastic strains in films which give rise to stresses are
less than one percent. It is therefore conceivable that
grain boundary sliding without appreciable flow of bulk
material could relieve the elastic strain. The rate of defor-
mation or, alternatively, the relaxation of the elastic
strains can be derived from the grain boundary sliding
formulation considered by Nabarro.”> We have

ﬂf_f_l Dyo 11b3

—_ e ilT 2
dt = akT Sl & COS «

when ¢, sin @ cos ¢ < kT, (10)

where D, = Dy, exp (— U,/kT) is the boundary diffusion
coefficient, U, the activation energy for grain boundary
diffusion, & the Boltzmann constant, and 7T the tempera-
ture. The value of ¢,, sin « cos « is expected to be small
because most of the grain boundaries in a film are nearly
perpendicular to the free surface of the film. If all grain
boundaries were exactly perpendicular to the free surface,
the plastic strain contribution from grain boundary sliding
would be zero because, under biaxial tension or compres-
sion, no shear stress acts on these boundaries.
The rate of annealing is given by

doy _ __DyEo,b’ sin a cos” & (11a)
dt (1 — kT
or

D, Ebt si i
» Ebt sin a cos a] ’ (11b)

o1 = ol exp [_ (1 = »)akT

where ¢}, is the initial value of the elastic stress and ¢
the time. We note that the annealing rate is a function of
the projection of the grain diameter on the film surface
and is independent of the height of the grain.

Diffusional creep

Diffusional creep or Nabarro-Herring creep occurs by the
movement of point defects (usually vacancies) under a
concentration gradient generated by the applied stress.”* ™'
In thin films under biaxial stress this concentration
gradient is present between grain boundaries parallel and
perpendicular to the free surface. The analysis of diffu-
sional creep in thin films under uniaxial stress has been
carried out'”; we therefore consider only the annealing
kinetics and make comparison with grain boundary sliding.
The plastic strain rate is given by

b4 D 3
s~ B2 oo (2) — 1 120
or

» B’ Db b°
'(% =T [exp (%lT_> - l:l ’ (120)
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Figure 6 Schematic representation of diffusion currents in
a film. (a) Volume diffusion is rate-controlling. (b) Grain
boundary diffusion is rate-controlling.

where D, is the volume diffusion coefficient, B and B’ are
constants which can be determined,"” and # is the height
of a grain. The annealing rate is

doi, EBD

i “m [eXp (‘217{73> — 1] (13a)

if volume diffusion predominates, and is

doi; EB' D,b [ <onb ) ]
= =2 — 13b
dt (1 —» ar® LZP \ kT ! (13b)

if grain boundary diffusion is dominant. The stress as a
function of time for the case of volume diffusion is given by

[1 — ex <_0'11b3>] ex [b3(‘7(1)1 - U11>]
P\ kT p kT
_ [1 e <_0?1b3>] o [_ EBbD,t ]
B PAT kT Pl T =) dn kT

(14a)

and for grain boundary diffusion is

[1 — exp <_0'11b3>:‘ expl:b3(0'(1)1 — 0’11)}
kT kT
3 [1 e <_a‘1’1b3)] o l:_ EB’b4Dét__:|
= PA\T kT Pl T =) ar kry

(14b)

When o‘l’,b3kT<< 1, Eqgs. (14a) and (14b) reduce to the
form (11b). Compared with Eq. (11b), the difference in the
annealing kinetics between grain boundary sliding and
diffusional creep by grain boundary diffusion is the de-
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pendence of the latter on the height of a grain. The two
forms of diffusional creep can be distinguished not only
by their dependence on grain height, but also by their
temperature dependence through the activation energies
associated with the diffusion coefficients.

We have outlined above the kinetics of annealing by a
diffusion-creep mechanism in a polycrystalline film con-
taining elastic strains. In doing this it was implicitly
assumed that, on the average, all areas of the free surface
of a film are equally efficient sources and sinks of vacancies.
If this property of the film is eliminated, then a diffusion-
creep mechanism can lead to the formation of hillocks
(or growths) on a film surface.

Figures 6a and 6b show schematically the diffusion
currents that occur by a diffusion-creep mechanism when
volume diffusion and grain boundary diffusion are domi-
nant, respectively. In both cases we note that material
transfer occurs between the free surface and the interior
of the film. For a tensile stress in a film, material is trans-
ferred from the free surface into the interior and for a
compressive stress it is transferred out of the interior of a
film onto its surface. Both Figs. 6a and 6b correspond to
the case in which all areas of the free surface are, on the
average, equally efficient sources and sinks. However,
unusual behavior results from removing this condition
and allowing selected areas to be more efficient than the
remaining areas. Physically the selected areas may corre-
spond to holes or cracks in an oxide layer (or film with
low diffusion rates) on a film in which diffusional creep is
occurring. Another possibility is selected diffusion paths
(where diffusion rates are high compared with the rest of
the film) combined with low surface diffusion or high
surface energy that is strongly orientation dependent.

Consider the case of one film covered with a second
film that has a hole or crack in it (Fig. 7a). Under
biaxial stress, caused by growth defects or by differential
thermal expansion, a film relieves its elastic strains by
flow of matter between surface and interior of the film.
In the case of compressive stress in a film, matter is
transferred onto the free surface and the area of film
exposed at the crack can accommodate this “extruded”
material. The remaining area covered by the second film
(see Fig. 7b) cannot do this at a rate comparable with that
in the exposed area because of slower diffusion. Material
extruded at the crack or hole manifests itself as a “hillock™
(or growth). It is interesting to note that for a tensile
stress the present model predicts removal of matter from
the surface into the interior of the film and therefore the
formation of a depression at the exposed area (Fig. 7¢).
Although hillocks have been observed in films'™"® the
presence of depressions has not been reported.

The idea that compressive stresses in films may lead to
growth on film surfaces has been used by Pennebaker' to
explain his observations on gold. A major difference
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Figure 7 Film on a substrate covered by another film that
has lower diffusion rates. (a) Hole or crack in a local spot
in the covering film. (b) Mass flows out of the film under
a compressive stress and is deposited on the surface of cov-
ering film. (c) Mass flows into the film under a tensile stress
leaving a crater or depression near the hole or crack.

between the present model and that proposed by Penne-
baker® lies in the manner in which the driving force
provided by the stress leads to mass flow.

Our analysis so far has assumed that the stresses in a
film are uniform. A non-uniform stress distribution affects
the annealing kinetics outlined above. We consider diffu-
sion by a vacancy mechanism as an example. The elastic
strain field of a vacancy, approximated by a center of
relaxation, interacts with the hydrostatic component of
stress. If the interaction energy varies with the location,
the vacancy experiences a drift velocity given by the
Einstein relation v = —(D/kT) grad E,;, where E,; is
the interaction energy. In thin films on a substrate, a
gradient of the interaction energy is present even though
the strain caused by the defect may be uniform [see Eq.
(1a) or (2a)] and therefore a drift force on vacancies exists
in the x; direction. This drift force affects the expressions
for annealing kinetics outlined in this section. It also
provides for a mechanism of very limited hillock growth
on a single-crystal film. The vacancy migration results
not from a concentration difference, as in Nabarro-
Herring creep, but from the stress gradient.

Summary

Calculations of the stress required to operate sources of
dislocations within a grain, at grain boundaries, and at a
free surface show that in fine-grained material the stress
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to operate a source is high. This stress is approximately
proportional to the inverse of the grain diameter. Films
that contain high growth stresses are associated with very
fine grain size and in these films the observed growth
stresses are less than the stress to operate a dislocation
source. Dislocation mechanisms therefore cannot be
expected to relieve the observed growth stresses. At
temperatures where diffusion rates are appreciable, two
other mechanisms may be able to relieve the stresses in
films. One of these is grain boundary sliding. This mecha-
nism, while possible, is probably slower than the second,
a diffusion-creep mechanism. It is suggested that diffusional
creep in fine-grained films provides stress relief. The
growth of hillocks on the free surface of a film is also
discussed in terms of a diffusion-creep mechanism.
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