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Measuring  Optical  Transfer  Functions of Lenses 
with  the Aid of a Digital  Computer 

Abstract: The  problems  involved  in  lens  testing,  as  opposed  to  the  testing  of  one  lens  under  one  set  of  conditions, are of  sufficient 
magnitude and complexity that the use  of a computer  is  almost  imperative to make the job practical. A machine  and  method  for  evalua- 
tion of lenses  is  described  which  employs a digital  computer  as a major  component,  has no restrictions  as to the quality of  lenses  which 
may  be accomodated,  and  requires  no  precision  targets or auxiliary  optics of any  type.  The  results are in a form  directly  applicable to 
predictions  of  performance of  complicated  systems  where the lens  is  one of several  linear  dissipators. 

The  reader  is  introduced to lens  testing  considerations  and a brief  discussion  of  methods,  followed  by a detailed  description  of a 
specific  implementation and computerized  approach.  Next, the basic  mathematics  involved,  including a practical  procedure for truncat- 
ing a Fourier  series, are explained  in  some  detail.  Finally,  examples of measured  output  and  machine  accuracy  and  stability  examination 
are given. 

Introduction 
The purpose of testing a lens is to permit a user to predict 
its performance under some specified  conditions-for 
example, to predict the energy distribution in the image of 
a given object. There are two types of ultimate use for 
lenses for which predictions of performance are desirable. 
Examples of these are ordinary pictorial photography and 
applications wherein the lens is a component of a system in 
which signals are transferred. While these are basically the 
same in  their purely physical aspects, the first includes a 
subjective element for which a theoretical guide is basically 
lacking-hence it  is specifically ruled out of consideration. 
We confine ourselves then to  the evaluation of lenses which 
are used as components of purely physical systems. 

There are  at least three  major areas through which the 
ultimate lens use dictates the  form  and quantity of the  data 
which must be taken and reduced, and  the method of 
obtaining such data. These areas involve the characteristics 
of image formation, the wide ranges of resolution which 
may be built into lenses in general, and the accuracy and 
reliability of the measurement methods, as determined by 
the end use of the measurements. 

1. There is general agreement that  the optical  transfer 
function (OTF) is a suitable merit function for a lens. Let 
it be clearly understood that  no single measurement, OTF 
or otherwise, is sufficient to characterize a lens. To have 
any practical meaning an OTF must  be accompanied by a 
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set of specifications indicating the conditions  under which 
it was measured, including wavelength of the light  radiated 
from  the object, conjugate distances, field angle, degree of 
coherence, aperture, defect of focus, azimuth angle, etc. 
Each  combination of these may yield a significantly 
different OTF. With several steps of each  parameter, the 
number of possible combinations can easily be several 
hundred.‘ 

The  OTF is merely a Fourier  interpolation  function 
which, when inverted, gives the shape of the physical 
energy distribution in the image of a line source. Regardless 
of the theory of how the phenomenon comes about,  the 
image of a point in the object field  is a  distribution of 
energy in the image space-the shape and size of this 
distribution is by no means an invariant  property of a 
particular lens under study. A close examination of an 
average photograph will show that the  quality falls off in 
the corners of the frame or with lack of proper focus, and 
may vary with the color of light, as noted above. The 
shape and size  of the dissipation function clearly is not 
invariant, and this is a major part of the lens testing 
problem. These observations being true, given a lens and 
the command “Test it,” one can measure an almost 
infinite number of OTF’s. The ultimate use  of the lens is an 
inseparable part of the test, serving to define a restricted 
set of consitions which, in turn, define a number of OTF’s 
to be measured. 

2. The second area involves the wide resolution range 
for which lenses are designed. Two extremes from the 93 
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experience of our laboratory will illustrate  this point. One 
case is represented by a lens for  an optical  character 
reader, deliberately designed to cut off at 20 cycles/milli- 
meter over a wide field and great depth of focus  in order to 
filter against  paper noise. At  the  other extreme was an 
example of the lens designer’s art used in the photo- 
engraving production of small parts. In  the first case, the 
emphasis was on a wide range at the red end of the spec- 
trum, a great depth of focus, and a deliberate resolution 
restriction. In  the  other case, the main concern was the 
highest possible resolution, with critical focus  control and 
monochromatic light assumed. The testing method  must 
be able to accomodate  this broad range of requirements. 

3. The  third  area embraces the  fact  that measurements 
without an indication of accuracy and reliability are 
worthless in  an engineering context. The measuring 
machine and  data reduction  method  must be capable of 
evaluating and exhibiting their own errors, and preferably 
must be adjustable to accomodate these continuously to 
the h a 1  use. This  matter will be treated in some detail  in a 
subsequent section. 

Practical methods 
The various  methods which have been either implemented 
or proposed for  the measurement of OTF fall into two 
general categories-those requiring interferometry and 
those utilizing moving targets. Interferometric measure- 
ment  in  general is limited to monochromatic light. The 
moving target approach demands precise manufacture and 
evaluation of the targets to be used as measurement 
standards. All methods claiming utility as engineering tools 
should give results which are easily combined with other 
data, implying interpolation and  thus extensive computa- 
tion. This is a major  reason for  the existence of the OTF. 

A serious limitation appears in those measurement im- 
plementations which employ auxiliary optical elements in 
the test path. The accuracy of the final result is, of course, 
defined in part by the accuracy with which these elements 
are characterized. The upper limit of resolution of the 
entire system is dictated by the quality of these same ele- 
ments. To accurately evaluate lenses of the highest quality, 
such as commercial microscope objectives, all  auxiliary 
elements must be eliminated. 

It is not  the intent of this  paper to review all  methods of 
lens evaluation which may be considered. The interested 
reader  may find them  in the fairly voluminous literature.’ 

As far  as is known, these devices have been strictly 
analog machines, yielding an  output  on a paper  chart, 
oscilloscope, photographic plate, or meter reading. These 
output  forms  are distinctly disadvantageous. When one 
wishes to employ the computational power of the  OTF  for 
general system performance prediction, these data must  be 

94 reduced to computer  readable  form. In addition, the 
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Figure 1 Measuring  system  schematic. 

Figure 2 Typical edge function-6” f/2.8 lens, on axis at 
3:  1 magnification, using Wratten #55 filter. 

extraction of the phase information to a degree of accuracy 
approaching that of the  modulation measurement is 
extremely difficult by strictly analog or mechanical means, 
and impossible in some cases. 

When one considers the fact that all of the information 
necessary to obtain  both  the modulus and phase  portions 
of an  OTF  is contained  in the edge function, it is  apparent 
that  the recording system may be simple in principle, 
requiring only the minimum of analog instrumentation, by 
placing the burden of the necessary analysis on a high- 
speed digital computer. Significant problems  in metrology 
must  be considered, but these are inherent  in  all  photo- 
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electric measurements and  are immediately exposed, rather 
than being disguised in  the instrumentation. The desired 
information may be  extracted through properly controlled 
computational processes to the limit of the measurement 
accuracy. We shall now describe a physical implementation 
which has been specifically engineered to encompass as 
much of the general lens testing problem as is practical. 

Edge  function implementation 
The essentials of the measuring technique are shown in 
Fig. 1. An incoherently illuminated slit of known small 
dimensions is imaged by the lens under  test in the neighbor- 
hood of a knife edge and is moved in a direction normal  to 
the edge. As the energy distribution moves past the edge, 
the  radiant flux is collected by a photomultiplier as a func- 
tion of the position of the energy distribution relative to 
the edge. The resultant waveform, shown for a typical case 
in Fig. 2, is the edge function E(x) for  the lens under  one 
set of conditions. In practice, E(x) is defined by discretely 
measured points on this  function. 

Either the slit or  the knife may be moved to accomplish 
the above process. Mechanical considerations  dictate that 
the critical motion be on the long conjugate of the lens. 

Figures 3a and  3b  are views  of the mechanical parts of 
the machine, made  in two sections and assembled on rigid 
ways at right angles. In  the center of Fig. 3a is shown the 
illuminator and  the slit housing. The illuminator is a 
ribbon-filament tunsten  lamp, imaged by a high-aperture 
condenser into  the plane of the moveable slit. The high 
aperture of the condenser is necessary to insure filling of 
the aperture of the lens under examination. Filters of any 
desired bandwidth within the range of radiation of the 
tungsten source. may be inserted between the condenser 
lens and  the slit to permit measurement under  various 
chromatic conditions. 

The slit is moved across the optical axis by a flexure 
pivot torque motor.  Calibration of the slit displacement 
independent of the flexure motor drive current is furnished 
by a 22-cycle/millimeter ruling, moving with the slit in an 
auxiliary optical path formed by a microscope objective, 
lamp, and photodiode. The entire slit mounting and 
illuminator assembly may be pivoted around a vertical 
axis through  the slit to accomodate off-axis measurements, 
and also is capable of rotation about  the optical  axis to 
permit sweeps at various azimuths. 

As shown in Fig. 3a, the slit housing may be  tilted out 
of the mounting to remove the slit from  the optical axis, 
allowing the  operator to insure that  the  aperture of the 
of the lens under  examination is filled. 

Figure 3b shows the assembly which supports  the lens 
under examination, the knife edge, photomultiplier, and 
viewing microscope. The knife edge is adjustable  in  rota- 
tion to bring it perpendicular to  the motion of the slit. The 
photomultiplier and viewing microscope are mounted on a 
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Figure 3(a) (left to right) Lens under  test in lens mount, slit 
housing,  condenser  and illuminator assemblies  with  cover 
removed. 
(b) Knife  edge, photomultiplier, and  viewing  microscope. 
Slit  housing  and illuminator in background,  right. 

bar slide so that either may be placed directly behind the 
image of the slit formed by the lens. The  entire lens and 
knife edge mounting assembly may be moved to the left for 
off-axis measurements. 

Because of the lack of auxiliary optics  in the test path, 
the upper limit of lens quality which may be  accommodated 
is determined primarily by the quality of the knife edge and 
the slit, and  the parallelism between them. This limit can 
conceivably be in excess of 1000 cycles/millimeter. 

The characteristics of the controls  in the present machine 
were dictated by the measurements that must  be performed 
to obtain data  from  an edge trace. Past experience with 
earlier versions indicated that extensive control over the 95 
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Figure 4 Calibration ruling  waveform,  with 4 complete 
cycles  intensified. 

range of slit movement and the density and number of data 
points is required for maximum ease and utility. For 
calibration purposes, it is necessary to determine the slit 
displacement in the image plane between the first and last 
recorded data points. This implies an ability to measure 
the object plane slit displacement, thus finding the image 
displacement by a priori knowledge of the system magni- 
fication, or some  method of measurement in the image 
plane. In  the cases where measurement of the lens magni- 
fication is desired, a means of relating distances in both 
image and object planes is necessary. 

These requirements were met with a digital drive system 
for  the flexure pivot motor. A 1000-level digital/analog 
converter drives the flexure motor  and a monitor oscillo- 
scope in parallel. The x-displacement of the monitor 
oscilloscope is thus synchronized to the slit and ruling 
motions. Digital  control and clocking circuits, combined 
with a series of manual switch registers, allow the  operator 
to intensify the trace of the monitor oscilloscope at points 
representing any of the 1000 addresses of the flexure motor, 
or over areas bounded by known addresses. By displaying 
the waveform of the photodiode in the auxiliary optical 
path,  the relationship between the ruling and  the flexure 
motor addresses may be determined. A typical measure- 
ment of this  type is shown in Fig. 4, where four complete 
cycles  of the calibration ruling waveform have been 
intensified by the control circuits. The number of flexure 
motor addresses represented by this intensified region thus 
establishes the width of the fundamental measurement 
interval in the object plane. 

The fundamental interval may be measured in the image 
96 plane by inserting therein parallel slits of known separation. 
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Figure 5 Magnification  measurement  slits  separated by 260 
microns. 6 in. f/4 lens, on axis at 1.25: 1 magnification, 
Wratten #55 filter. 

If the image of the object slit is swept across the parallel 
slits, and  the  output waveform from  the photomultiplier 
is displayed on  the monitor oscilloscope, the above 
procedure leads to the establishment of the fundamental 
interval width in the image plane. The  ratio of the object 
and image widths is, of course, the system magnification. 
This  procedure may also be applied to set the system 
magnification at some desired value for a series of tests. A 
typical magnification measurement is shown in Fig. 5. 
Slit separation  in  this example is 260 microns. 

With  the knife edge in the image plane, and  the object 
slit in motion, the photomultiplier waveform is the edge 
trace of the lens. The  operator may adjust the machine for 
focus and centering of the trace within the sweep range of 
the flexure motor. Care must  be  taken to insure that  the 
sweep of the image is from minimum to maximum 
intensity, encompassing all of the observable flare which 
may be present in the lens. Several ranges of  sweep width 
are available to  the  operator  to insure that this  condition is 
met. 

While an approximate  focal  setting for  the lens under 
test may be found by visual inspection of the image, this 
depends on a subjective judgement by the  operator  and is 
not sufficiently accurate for  the final measurement. Critical 
focal  adjustment is done electronically, by peaking an 
approximate derivative of the edge trace. This  adjustment 
is very sensitive and largely independent of the operator, 
yielding excellent repeatability both in mechanical posi- 
tioning and  OTF measurements. The derivative waveforms 
at  and near  focus for a typical case are shown in Figs. 
6(a), 6(b), and 6(c). The image is swept rapidly back and 
forth across the knife edge, so that a family of derivative 
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Figure 6 Derivative  waveforms.  Same  lens as in Fig. 5 (a) Knife edge positioned 0.030” behind  best focal position (b )  
Knife edge at best focal position (c) Knife edge positioned 0.030” ahead of best focal position. 

curves is generated on the  monitor oscilloscope screen, 
allowing the  operator to ascertain the immediate result of 
his adjustments. 

The system magnification, sweep range, and focus having 
been established, the  operator must determine that a 
sufficient number of data points will be recorded from  the 
edge trace. The digital control circuits are used to intensify 
the  trace at each address where a data point will be  taken. 
The number of fundamental intervals between the  data 
points is under  control of the  operator, as is the beginning 
and end of the data gathering area within the entire sweep 
range. An edge function with displayed data points is 
shown in Fig. 7. 

The final operation prior to  the  data collection is to 
insure the reliability of the photoelectric measurement. The 
photomultiplier load  and  the machine  sample  time are 
simultaneously selected to insure the accuracy and reli- 
ability dictated by the ultimate use of the measurements, 
and  are determined by the statistics of random  photon 
a r r i ~ a l . ~  The minimum sample time which may  be em- 
ployed is determined by seismic vibrations  in the building 
and  is set to minimize these contributions. 

All remaining operations proceed under  computer 
control. The object slit is moved sequentially over intervals 
of equal length, and  the photocurrent representing the 
total flux passing the knife edge at each  point is digitized. 
The flexure motor address at each data point, and  the 
photomultiplier current readings, are transferred directly 
to  the computer to become the x and E(x) values of the 
edge function. 

Computer interface 
A modified IBM 1620-1 computer serves as  the  data 
acquisition and reduction system. Peripheral units, one 
of which is the lens tester, communicate with the central 
processing unit by simulating either a paper tape punch 
or paper  tape  reader,  through an external control system 
attached to the paper tape channel. The lens tester is one 

Figure 7 Edge  function of Fig. 2 with  intensified data points 
shown. 

of several selectable input devices, supplying x and E(x) 
values directly into core memory through the use of the 
standard computer  instruction set. 

To facilitate off-line use of the tester for non-computa- 
tional measurements, such as field curvature, and  to allow 
data acquisition via punched cards when the computer is 
not immediately available, the basic controls were imple- 
mented in the machine hardware,  rather than being incor- 
porated into  the computer software. This approach pro- 
vides an efficient balance between computer software, 
external  hardware, and  operator control. 

Computer  program 
A conversational program written in conventional FORTRAN 

provides flexibility and operational ease, both in the setup 
phase and the data reduction operations. The control 
system previously described provides certain constants 

LENS JANUARY 1969 



which the  operator enters at the console typewriter. For 
instance, entry of the number of calibration ruling cycles 
intensified over a certain number of intervals causes 
calculation of the  fundamental interval width in the object 
plane. The system magnification and the number of funda- 
mental intervals in the image between the parallel slits are 
directly related. Specifying either parameter will thus cause 
calculation and display of the  other. All parameters 
calculated or entered during the setup phase are retained in 
the computer memory for use in the data reduction. The 
operator is free to repeat the adjustments of the machine 
until  the desired measurement conditions have been 
established, with the  burden of the necessary arithmetic 
being assumed by the computer. 

The program allows the  operator to specify parameters 
for  the calculations and the  quantity and form of the output 
data, prior to the data taking. For example, he  may enter 
at the typewriter demands for any or all of the following: 
direct measurement of the edge function, or entry from a 
previously punched card deck; tabulations of the edge 
function, line spread function, and the amplitude and 
phase of the OTF  at arbitrary intervals; visual display and 
graphic plots of these functions; and a punched card deck 
containing the edge function data and essential parameters 
for possible future use. The computer fills these requests 
automatically. When the metrological job is completed, 
and  data reduction begins, the  operator is free to set up 
the next test while the computer finishes the calculations. 
However, the  operator may intervene at any point to alter 
the course of the computer operation. 

It should be noted that the burden of the mathematical 
analysis has been relegated to the computer, both for  the 
setup operations and the data reduction. Calculations 
involved in the edge function approach, properly imple- 
mented, are of such magnitude that execution by any other 
means is a practical impossibility. Employment of the com- 
puter in this manner reduces the complexity required in the 
metrological unit, while simultaneously providing extreme 
flexibility and computational accuracy. 

The flexibility available to  the operator by virtue of the 
computer is of greatest value when the desired test condi- 
tions  for a given lens are only partially defined. In this case, 
preliminary tests may dictate  the  quantity and  nature of 
subsequent tests, with detailed analysis of any one or all 
tests possible at will until  the desire result is obtained. In 
addition, the computer program  maintains a continuing 
check on  the measurement and reduction process to extract 
all of the information from  the data, within limits set by 
the machine or the ultimate use of the measurements, and 
to report  the magnitude of any errors  that may be present. 
Finally, the computer performs a small amount of operator 
error checking. For example, a request for the calculation 
of the OTF  at a frequency in excess  of the highest reliable 
frequency is indicated by an appropriate  error message 98 
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and the setting to zero of all requested amplitudes at  and 
beyond that frequency. Also, the presence  of extreme 
system or measucement errors may be easily noted. 

Mathematical  considerations 
A point in the object plane of a lens is represented in the 
image plane by a dissipation function P(x, y ) .  The line 
spread function L(x)  is defined as 

The OTF is the  Fourier transform of L(x). 
The edge function E(x) is defined as 

E(x) = [ Irn P ( x ,  y )  dy  dx = s_& L(x) dx 

and hence L(x) = d/dx E(x). These relationships are well 
known in the literature, notably R. V. Shack4 and E. H. 
~ i n f o o t e . ~  

The first job  that the computer must perform is to "fit" 
the discrete data points gathered in the metrological 
operation to  an analytical function E(x). Since the final 
result is to be a Fourier transform, it is natural  to choose a 
trigonometric polynomial to represent the edge function 
data points. 

--m - m  

M A X  

y = mx + b + B(k) sin ?rkx/L.  
k==l 

In this representation of a function initially described by 
discrete points, the critical link between the geometrical 
model and the real world of physical measurements is the 
rule which determines the truncation of the approximating 
series. Consider only 

M A X  

H(x)  = B(k) sin ?rkx/L,  
k = l  

i.e., the edge function with the linear trend removed.' 

the computational  form, we have 
Rewritten to emphasize the discreteness of the  data  and 

M A X  

H( J )  = B(k) sin ?rk( J - l)/(N - 1). ( 1) 
k=1 

The coefficients B(k) are determined from 

.sin?rk(J - 1 ) / ( N  - 1). 

The mechanics of the fitting operation are discussed in 
detail in Lanczos' and, hence, will not be repeated here. 
The essential conditions amount  to ensuring that the sum- 
orthogonality conditions always prevail, namely 
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N 

sin [ARG ( J ) ]  = o 
.I-1 

N 

sin2 [ARG ( J ) ]  = -. N -  1 
J = l  2 

Rigorous imposition of these conditions implies the 
constraint H(1) = H(N). 

The critical problem is the determination of the param- 
eter MAX in Eq. (1) in order to secure the best represen- 
tation of the signal in the presence  of noisy data. (If the 
data is not noisy, the metrologist is immensely lucky and 
cannot count on  it happening again, or the measurement 
process is inefficient). If MAX is too small, information is 
lost, and  data recovered from H(x), regarded as  an inter- 
polation function, is unduly smoothed. If MAX is too 
large, the error (e.g; equivocation and noise)  will be too 
heavily included in the approximating function. This may 
have disastrous results in the application of H(x) to 
certain practical problems. If MAX = N - 1, the greatest 
value it can have, the approximating function will pass 
through every measured point identically ( 2  points per 
shortest wave) and hence it will include all of both signal 
and noise. From the physical point of view, this approxima- 
tion, which is purely geometrical, is dangerous because no 
degrees of freedom are left for estimation of the  error. 
There are problems where H(x) with MAX = N - 1 can 
be the whole  of the legitimate experience. In fact, it can be 
argued that all problems of measurement are of this type. 
In these cases no alternate source of estimate of error is 
possible outside of the measurements which determine 
H(x). The critical problem, then, in measuring the optical 
transfer properties of  lenses is that of cutting off the 
approximating series at MAX. This problem is not unique 
to the edge function method, but is common to approxima- 
tion functions in general. 

When MAX = N - 1, H(x) is identical with the 
observations, i.e., H(x) = H(J) observed. When the series 
is terminated at MAX = N - 1 - M, M being the 
number of terms in (1) rejected by truncation, 

H ( J ) c a , c  = B(k) sin ?rk( J - l ) / (N - 1); (2) 
N-1--M 

k = l  

Half the sum of the squares of the rejected terms is the 
mean squared residue between the observed and the 
calculated values. This  is  the residue which is minimized 
when the B(k) are computed directly by the  method of 
least squares. The orthogonality conditions lead to alter- 
native procedures for computing S2 when the data points 
appear only as components of partial sums, where the 
approximating series is computed on-line and the original 
data are not retained in memory. 

If the range, L, is properly chosen to embrace the whole 
of the edge function from zero slope to zero slope, and 
if the machine is designed and operated in a manner which 
randomizes the error,’ and if the  approximating function 
is truncated so that (Hobs - Heal is essentially all noise; 
S2 is an estimate of the variance of error,  and M less correc- 
tions  for  additional  constraints is the number of degrees of 
freedom (d.f.) available for its estimate. The number of 
d.f. can range from zero upwards, a small number, and 
hence the probability associated with the  error is evaluated 
through  the  “Student” cumulative distribution function,’ 
rather  than  the  Normal distribution. A reliability specifica- 
tion clarified as an error rate relative to a null hypothesis 
regarding deviation from  the approximating function 
defines the “Student” T in a given application. Thus, 
p = T d S 2 / M  is the range of error f and - about a 
zero mean estimated from S2 on the basis of M d.f., when 
the probability of deviations outside this range is deter- 
mined by T. 

These considerations lead, then, to the following 
procedure for trunca.ting the series (1). For each value 
of M = ( N  - 1) - k - 1 (number of data intervals- 
number of  coefficients  used- 1 constraint) the computer 
calculates the value T(M) d S 2 / M  and finds the value k 
corresponding to the minimum in this function. k = MAX 
is then the number of coefficients representing H(x) with 
minimum reliable error. The values of T(M) are taken 
from a standard table corresponding to the desired reli- 
ability specification, and the minimum found from the 
application of this technique is a measure of the  random 
contributions from the metrological system. A sudden 
change in this quantity is cause for inspection of the 
machine. 

The two principal sources of error which must be 
randomized are the photon-arrival noise and the seismic 
noise due to vibrations in the building. These are controlled 
by the photomultiplier load and machine sample time, as 
noted above. All other known spurious signals have been 
carefully reduced to negligible proportions by such 
techniques as adequate  grounding and bonding, light leak 
elimination, etc. The result of the fitting and truncation 
operations is an interpolation function which fits the  data 
within a minimum reliable error  as determined by the 
measurements themselves. 

All remaining operations are purely mathematical 
manipulations. The series is differentiated with or without 
sigma smoothing‘ as desired, to yield an interpolation 
function for L(x). This in  turn may be evaluated in -pi  to 
+pi corresponding to the slit displacement, tabulated if 
desired, and  the  data transformed on  any arbitrary 
frequency intervals to yield the OTF. At this point, 
provided the frequencies of interest are  not too near the 
zeros of the object slit, the contributions of the slit may 
be removed and the result inverted to yield the  true L(x) 

”” 

” 
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Figure 8 Simulated edge function-a ramp. 

Figure 9 Line  spread  function.  Derivative of waveform  in 
Fig. 8. 

Figure 10 Modulation transfer function: Fourier  transform 
of line spread  function  in  Fig. 9. 100 
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Table 1 Comparison of calculated  values of Fourier trans- 
form of pulse with independent  calculation of sin ( x ) / x .  

Cycles/millimeter Transform Sin (x) / .x  

1.70 0.9835 0.9836 
3.40 0.9351 0.9354 
5.10 0.8576 0.8583 
6.80 0.7557 0.7568 
8.50 0.6352 0.6366 

10.20 0.5029 0.5045 
11.90 0.3663 0.3678 
13.60 0.2325 0.2338 
15.30  0.1085 0.1092 
17.00 O.oo00 0.0000 
18.70 0.0884 0.0894 
20.40  0.1539 0.1559 
22.10  0.1951 0.1980 
23.80 0.2125 0.2162 
25.50 0.2080 0.2122 
27,20 0.1849 0.1892 
28.90  0.1476 0.1514 
30.60 0.1010 0.1039 
32.30 0.0501 0.0517 
34.00 O.oo00 0.0000 
35.70 0.0450 0.0468 
37.40 0.0814 0.0850 
39.10 0.1068 0.1119 
40.80 0.1198 0.1261 
42.51 0.1204 0.1273 
44.21 0.1096 0.1164 
45.91  0.0893 0.0953 
47.61  0.0623 0.0668 
49.31  0.0314 0.0339 
51.01 O.oo00 O.oo00 

Table 2(a) Measurement data: lox, 0.25N.A.microscope ob- 
jective tested at 2 0 x ,  Wratten No. 55 filter. (See text for 
explanation of data in this and subsequent tables.) 

0.25 NA 47 pts 1 
Gmag = 20.00 XLU = 9.10 Microns, N = 47 
17 Error = 0.759 
Shift = 11.27 degrees 

Frequency Amplitude Phase 

35.00 .9769 1 0.000 
70.00 .91549 .476 

105 .OO .a3424 1.615 
140.00 .75108 3.134 
175 .OO .67477 4.476 
210.00 .a535 5.318 
245 .OO .54034 5.860 
280.00 .41893 6.554 
315.00 .42133 7.613 
350.00 .36663 8.828 
385.00 .31293 9.880 
420.00 .26011 10.751 
455 .OO .21136 11.711 
490.00 .17097 12.847 
525.00 .14037 13.648 
560.00 .11679 13.517 
595.00 .09592 12.824 
630.00 .07535 13.018 
665.00 .05576 15.685 
700 .OO .03922 20.947 
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due  to  the lens alone. The object slit in the subject machine 
has  a width of 10.5 microns, giving a first zero in the 
neighborhood of 95 cycles/millimeter at 1 to 1 magnifica- 
tion. Since in  most cases the  contributions are negligible, 
the operator has the  option of eliminating this final step. 

The display of the minimum reliable error  and  the ability 
to adjust the number of recorded data points provides the 
operator with a  means of altering the system throughput 
speed to meet accuracy requirements which may be less 
than  the best that  the machine can deliver. 

Typical results 
To investigate the validity of the mathematics  in the 
program, simulated edge function and  appropriate calibra- 
tion data in the  form of a ramp were punched in cards. The 
line spread  function resulting from this simulated edge 
function  should  be  a pulse, and  the Fourier  transform 
should  be sin ( x ) / x .  The graphs  in Figs. 8 and 9 show the 
edge function and  the resultant line spread function. The 
sine series contained 50 terms. The steep rise of the pulse 
and  the very small overshoot are evident. The width of the 
pulse at  the half-amplitude points was determined from a 
tabulation of the line spread function. This width of 
0.05881 millimeters corresponds to a frequency of 17.004 
cycles/millimeter. This frequency should have zero ampli- 
tude in the Fourier  transform, as should the second and 
third harmonics. The tabulated  Fourier  transform, and  an 

Table 2(b) Repeat of Table 2(a). No mechanical changes. 

0.25 NA 47 pts 2 
Gmag = 20.00 XLU = 9.10 microns, N = 47 

22 Error =0.885 
Shift = 12.60 degrees 

Frequency Amplitude  Phase 

35.00 0.97767 O.OO0 
70.00 0.91798 .448 

105.00 0.83804 1.519 
140.00 0.75459 2.974 
175 .OO 0.67633 4.341 
210.00 0.60444 5.352 
245.00 0.53789 6.154 
280.00 0.47646 7.051 
315.00 0.41978 8.102 
350.00 0.36574 9.076 
385.00 0.31189 9.806 
420.00 0.25857 10.469 
455.00 0.20955 11.412 
490.00 0.16902 12.638 
525 .OO 0.13774 13.570 
560.00 0.11274 13.823 
595.00 0.09046 14.195 
630.00 0.06968 16.446 
665.00 0.05147 21.782 
700.00 0.03653 28.754 
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independent calculation of sin ( x ) / x  are given in Table 
1 for comparison purposes. A graph of the transform is 
shown in Fig. 10. 

A test of the stability of the machine and  the validity of 
the focal  adjustment  procedure was made using the micro- 
scope objective lens taken from a commerical micro- 
densitometer. The test was conducted at a  nominal 
magnification of 20X, which is the  normal operating 
condition for  the microdensitometer. The tabulated data 
in  Tables 2(a), (b) and (c) were repeated measurements with 
no mechanical changes other  than thermal drifts. The  data 
in Tables 3(a), (b) and (c) were taken by moving the lens out 
of focus and then refocussing each time. 

Each of the tabulai.ions in  Tables 2 and 3 were taken 
from  the console typewriter. The first line gives the identify- 
ing information for the  particular measurement. The second 
line gives the system magnification, the length of the sweep 
in the image plane, and  the number of data points  taken. 
The  third line shows the number of terms  in the approxi- 
mating  function and  the  error, in parts per thousand, 
between the series and  the parent data.  The  fourth line is 
the amount of decentration between the maximum slope 
of the edge function and  the center of the measurement 
interval, expressed in degrees of the first OTF frequency. 
This is used as a normalizing factor to remove the  linear 
trend in the phase angle. The three  columns of data below 
the  fourth line are  the frequencies in cycles/millimeter, the 
amplitude, and  the phase angle in degrees of the  OTF. 

Table 2(c) Repeat of Table 2(a).  No mechanical  changes. 

0.25 NA 47 pts 3 
Gmag=20.00 XLU=9.10 microns, N=47 

15 Error=0.641 
Shift = 13.02 degrees 

Frequency Amplitude  Phase 

35.00 0.97806 0.000 
70.00 0.91853 

105.00 
.389 

0.83699 
140.00 

1.385 
0.75051 

175 .OO 
2.881 

0.67018 4.448 
210.00 0.59863 
245.00 

5.629 
0.53339 6,294 

280.00 0.47163 
315.00 

6.724 
0.41247 7.320 

350.00 0.35643 8.268 
385 .OO 0.30393 
420.00 

9.404 

455 .oo 
0.25491 10.411 
0.20972 11.142 

490.00  0.16977  11.750 
525 .OO 0.13665 
560.00 

12.539 
0.11054 

595.00 
13.705 

0.08961 15.392 
630.00 0.07134  18.152 
665.00 0.05441 
700.00 

23.334 
0.03958 32.826 
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Table  3(a) Measurement data: l o x ,  0.25 N.A. microscope 
objective at 2 0 x  Wratten No. 55 filter, refocused. 

Refocused 1 
Gmag = 20.00 XLU = 9.10 microns,:N = 47 

25 Error =0.909 
Shift = 16.11 degrees 

Frequency Amplitude Phase 

Table 3(c) Same as Table 3(a) but  refocused  again  using 
derivative. 

Refocused 3 
Gmag=20.00  XLU=9.10 microns, N=47 

14 Error =0.784 
Shift = 15.53 degrees 

Frequency Amplitude Phase 

35.00 
70.00 

105.00 
140.00 
175 .OO 
210.00 
245.00 
280.00 
315.00 
350.00 
385 .OO 
420.00 
455 .OO 
490.00 
525.00 
560.00 
595.00 
630.00 
665 .OO 
700.00 

0.97986 
0.92490 
0.84869 
0.76644 
0.68843 
0.61774 
0.55315 
0.49313 
0.43715 
0.38429 
0.33228 
0.27962 
0.22833 
0.18346 
0.14871 
0.12263 
0.09993 
0.07635 
0.05195 
0.03066 

O.OO0 
.300 

1.060 
2.174 
3.300 
4.113 
4.598 
5.032 
5.635 
6.277 
6.604 
6.486 
6.215 
6.126 
5.839 
4.236 

.914 
-2.761 
-4.007 

.592 

Table  3(b) Same  as Table 3(a)  but  refocused  again  using 
derivative. 

Refocused 2 
Gmag = 20.00 XLU = 9.10 microns, N = 47 

13  Error=0.683 
Shift = 14.48 degrees 

Frequency Amplitude Phase 

35.00 
70.00 

105 .OO 
140.00 
175.00 
210.00 
245.00 
280.00 
315.00 
350.00 
385.00 
420.00 
455.00 
490.00 
525.00 
560.00 
595.00 
630.00 
665.00 
700.00 

0.97750 
0.91650 
0.83307 
0.74458 
0.66196 
0.58773 
0.51996 
0.45725 
0.40005 
0.34843 
0.30011 
0.25211 
0.20455 
0.16161 
0.12803 
0.10426 
0.08550 
0.06629 
0.04503 
0.02445 

O.OO0 
.364 

1.277 
2.590 
3.865 
4.170 
5.164 
5.658 
6.563 
7.724 
8.560 
8.702 
8.473 
8.688 
9.682 

10.270 
8.693 
4.707 
- .377 

-4.741 

35 .OO 
70.00 

105.00 
140.00 
175.00 
210.00 
245 .OO 
280.00 
315.00 
350.00 
385.00 
420.00 
455.00 
490.00 
525.00 
560.00 
595 .OO 
630.00 
665.00 
700.00 

0.97665 
0.91595 
0.83862 
0.76136 
0.68808 
0.61588 
0.54519 
0.48113 
0.42682 
0.37858 
0.33002 
0.27959 
0.23208 
0.19304 
0.16269 
0.13701 
0.11307 
0.09111 
0.07210 
0.05501 

0.000 
.707 

2.319 
4.316 
5.944 
7.018 
8.031 
9.466 

11.126 
12.376 
13.070 
13.857 
15.478 
17.708 
19.240 
19.255 
18.514 
18.387 
19.016 
18.713 

Examination of the  last  three sets of data shows that  the 
focal setting repeats to a high degree. The interpretation of 
best focus is usually a matter of taste and requires several 
measurements at slightly differing focal settings. The 
derivative focusing method has been found to yield the 
highest overall values for modulation  in a large sample of 
production lenses. 

Conclusion 
The present measuring system is an outgrowth of a need 
to measure the modulation transfer properties of micro- 
scope objectives of the highest quality. Due to the generally 
accepted practical limit of 200 cycles/millimeter for 
systems using moving targets, and  the inflexibility in 
wavelength afforded by the interferometric methods, these 
measurement philosophies were ruled out  from  the very 
beginning. The expected practical limit of resolution 
available with the edge function analysis approach  has  not 
been demanded by any of the lenses thus  far examined, 
including the best commercially available microscope 
objectives. 

The employment of a high-speed digital computer as  the 
logical connecting element between several well-known 
instrumental and mathematical techniques has produced a 
demonstrably stable, reproducible, and flexible tool. 
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