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Measuring Optical Transfer Functions of Lenses
with the Aid of a Digital Computer

Abstract: The problems involved in lens testing, as opposed to the testing of one lens under one set of conditions, are of sufficient
magnitude and complexity that the use of a computer is almost imperative to make the job practical. A machine and method for evalua-
tion of lenses is described which employs a digital computer as a major component, has no restrictions as to the quality of lenses which
may be accomodated, and requires no precision targets or auxiliary optics of any type. The results are in a form directly applicable to
predictions of performance of complicated systems where the Iens is one of several linear dissipators.

The reader is introduced to lens testing considerations and a brief discussion of methods, followed by a detailed description of a
specific implementation and computerized approach. Next, the basic mathematics involved, including a practical procedure for truncat-
ing a Fourier series, are explained in some detail. Finally, examples of measured output and machine accuracy and stability examination

are given.

Introduction

The purpose of testing a lens is to permit a user to predict
its performance under some specified conditions—for
example, to predict the energy distribution in the image of
a given object. There are two types of ultimate use for
lenses for which predictions of performance are desirable.
Examples of these are ordinary pictorial photography and
applications wherein the lens is a component of a system in
which signals are transferred. While these are basically the
same in their purely physical aspects, the first includes a
subjective element for which a theoretical guide is basically
lacking—hence it is specifically ruled out of consideration.
We confine ourselves then to the evaluation of lenses which
are used as components of purely physical systems.

There are at least three major areas through which the
ultimate lens use dictates the form and quantity of the data
which must be taken and reduced, and the method of
obtaining such data. These areas involve the characteristics
of image formation, the wide ranges of resolution which
may be built into lenses in general, and the accuracy and
reliability of the measurement methods, as determined by
the end use of the measurements.

1. There is general agreement that the optical transfer
function (OTF) is a suitable merit function for a lens. Let
it be clearly understood that no single measurement, OTF
or otherwise, is sufficient to characterize a lens. To have
any practical meaning an OTF must be accompanied by a
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set of specifications indicating the conditions under which
it was measured, including wavelength of the light radiated
from the object, conjugate distances, field angle, degree of
coherence, aperture, defect of focus, azimuth angle, etc.
Each combination of these may yield a significantly
different OTF. With several steps of each parameter, the
number of possible combinations can easily be several
hundred.!

The OTF is merely a Fourier interpolation function
which, when inverted, gives the shape of the physical
energy distribution in the image of a line source. Regardless
of the theory of how the phenomenon comes about, the
image of a point in the object field is a distribution of
energy in the image space—the shape and size of this
distribution is by no means an invariant property of a
particular lens under study. A close examination of an
average photograph will show that the quality falls off in
the corners of the frame or with lack of proper focus, and
may vary with the color of light, as noted above. The
shape and size of the dissipation function clearly is not
invariant, and this is a major part of the lens testing
problem. These observations being true, given a lens and
the command “Test it,”” one can measure an almost
infinite number of OTF’s. The ultimate use of the lens is an
inseparable part of the test, serving to define a restricted
set of consitions which, in turn, define a number of OTF’s
to be measured.

2. The second area involves the wide resolution range
for which lenses are designed. Two extremes from the
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experience of our laboratory will illustrate this point. One
case is represented by a lens for an optical character
reader, deliberately designed to cut off at 20 cycles/milli-
meter over a wide field and great depth of focus in order to
filter against paper noise. At the other extreme was an
example of the lens designer’s art used in the photo-
engraving production of small parts. In the first case, the
emphasis was on a wide range at the red end of the spec-
trum, a great depth of focus, and a deliberate resolution
restriction. In the other case, the main concern was the
highest possible resolution, with critical focus control and
monochromatic light assumed. The testing method must
be able to accomodate this broad range of requirements.

3. The third area embraces the fact that measurements
without an indication of accuracy and reliability are
worthless in an engineering context. The measuring
machine and data reduction method must be capable of
evaluating and exhibiting their own errors, and preferably
must be adjustable to accomodate these continuously to
the final use. This matter will be treated in some detailin a
subsequent section.

Practical methods

The various methods which have been either implemented
or proposed for the measurement of OTF fall into two
general categories—those requiring interferometry and
those utilizing moving targets. Interferometric measure-
ment in general is limited to monochromatic light. The
moving target approach demands precise manufacture and
evaluation of the targets to be used as measurement
standards. All methods claiming utility as engineering tools
should give results which are easily combined with other
data, implying interpolation and thus extensive computa-
tion. This is a major reason for the existence of the OTF.

A serious limitation appears in those measurement im-
plementations which employ auxiliary optical elements in
the test path. The accuracy of the final result is, of course,
defined in part by the accuracy with which these elements
are characterized. The upper limit of resolution of the
entire system is dictated by the quality of these same ele-
ments. To accurately evaluate lenses of the highest quality,
such as commercial microscope objectives, all auxiliary
elements must be eliminated.

It is not the intent of this paper to review all methods of
lens evaluation which may be considered. The interested
reader may find them in the fairly voluminous literature.”

As far as is known, these devices have been strictly
analog machines, yielding an output on a paper chart,
oscilloscope, photographic plate, or meter reading. These
output forms are distinctly disadvantageous. When one
wishes to employ the computational power of the OTF for
general system performance prediction, these data must be
reduced to computer readable form. In addition, the
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Figure 1 Measuring system schematic.

Figure 2 Typical edge function—6” /2.8 lens, on axis at
3:1 magnification, using Wratten #55 filter.

extraction of the phase information to a degree of accuracy
approaching that of the modulation measurement is
extremely difficult by strictly analog or mechanical means,
and impossible in some cases.

When one considers the fact that all of the information
necessary to obtain both the modulus and phase portions
of an OTF is contained in the edge function, it is apparent
that the recording system may be simple in principle,
requiring only the minimum of analog instrumentation, by
placing the burden of the necessary analysis on a high-
speed digital computer. Significant problems in metrology
must be considered, but these are inherent in all photo-
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electric measurements and are immediately exposed, rather
than being disguised in the instrumentation. The desired
information may be extracted through properly controlled
computational processes to the limit of the measurement
accuracy. We shall now describe a physical implementation
which has been specifically engineered to encompass as
much of the general lens testing problem as is practical.

Edge function implementation

The essentials of the measuring technique are shown in
Fig. 1. An incoherently illuminated slit of known small
dimensions is imaged by the lens under test in the neighbor-
hood of a knife edge and is moved in a direction normal to
the edge. As the energy distribution moves past the edge,
the radiant flux is collected by a photomultiplier as a func-
tion of the position of the energy distribution relative to
the edge. The resultant waveform, shown for a typical case
‘in Fig. 2, is the edge function E(x) for the lens under one
set of conditions. In practice, E(x) is defined by discretely
measured points on this function.

FEither the slit or the knife may be moved to accomplish
the above process. Mechanical considerations dictate that
the critical motion be on the long conjugate of the lens.

Figures 3a and 3b are views of the mechanical parts of
the machine, made in two sections and assembled on rigid
ways at right angles. In the center of Fig. 3a is shown the
illuminator and the slit housing. The illuminator is a
ribbon-filament tunsten lamp, imaged by a high-aperture
condenser into the plane of the moveable slit. The high
aperture of the condenser is necessary to insure filling of
the aperture of the lens under examination. Filters of any
desired bandwidth within the range of radiation of the
tungsten source may be inserted between the condenser
lens and the slit to permit measurement under various
chromatic conditions.

The slit is moved across the optical axis by a flexure
pivot torque motor. Calibration of the slit displacement
independent of the flexure motor drive current is furnished
by a 22-cycle/millimeter ruling, moving with the slit in an
auxiliary optical path formed by a microscope objective,
lamp, and photodiode. The entire slit mounting and
illuminator assembly may be pivoted around a vertical
axis through the slit to accomodate off-axis measurements,
and also is capable of rotation about the optical axis to
permit sweeps at various azimuths.

As shown in Fig. 3a, the slit housing may be tilted out
of the mounting to remove the slit from the optical axis,
allowing the operator to insure that the aperture of the
of the lens under examination is filled.

Figure 3b shows the assembly which supports the lens
under examination, the knife edge, photomultiplier, and
viewing microscope. The knife edge is adjustable in rota-
tion to bring it perpendicular to the motion of the slit. The
photomultiplier and viewing microscope are mounted on a
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Figure 3(a) (left to right) Lens under test in lens mount, slit
housing, condenser and illuminator assemblies with cover
removed.

(b) Knife edge, photomultiplier, and viewing microscope.
Slit housing and illuminator in background, right.

bar slide so that either may be placed directly behind the
image of the slit formed by the lens. The entire lens and
knife edge mounting assembly may be moved to the left for
off-axis measurements.

Because of the lack of auxiliary optics in the test path,
the upper limit of lens quality which may be accommodated
is determined primarily by the quality of the knife edge and
the slit, and the parallelism between them. This limit can
conceivably be in excess of 1000 cycles/millimeter.

The characteristics of the controls in the present machine
were dictated by the measurements that must be performed
to obtain data from an edge trace. Past experience with
earlier versions indicated that extensive control over the
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Figure 4 Calibration ruling waveform, with 4 complete
cycles intensified.

range of slit movement and the density and number of data
points is required for maximum ease and utility. For
calibration purposes, it is necessary to determine the slit
displacement in the image plane between the first and last
recorded data points. This implies an ability to measure
the object plane slit displacement, thus finding the image
displacement by a priori knowledge of the system magni-
fication, or some method of measurement in the image
plane. In the cases where measurement of the lens magni-
fication is desired, a means of relating distances in both
image and object planes is necessary.

These requirements were met with a digital drive system
for the flexure pivot motor. A 1000-level digital/analog
converter drives the flexure motor and a monitor oscillo-
scope in parallel. The x-displacement of the monitor
oscilloscope is thus synchronized to the slit and ruling
motions. Digital control and clocking circuits, combined
with a series of manual switch registers, allow the operator
to intensify the trace of the monitor oscilloscope at points
representing any of the 1000 addresses of the flexure motor,
or over areas bounded by known addresses. By displaying
the waveform of the photodiode in the auxiliary optical
path, the relationship between the ruling and the flexure
motor addresses may be determined. A typical measure-
ment of this type is shown in Fig. 4, where four complete
cycles of the calibration ruling waveform have been
intensified by the control circuits. The number of flexure
motor addresses represented by this intensified region thus
establishes the width of the fundamental measurement
interval in the object plane.

The fundamental interval may be measured in the image
plane by inserting therein parallel slits of known separation.
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Figure 5 Magnification measurement slits separated by 260
microns. 6 in. f/4 lens, on axis at 1.25:1 magnification,
Wratten #55 filter.

If the image of the object slit is swept across the parallel
slits, and the output waveform from the photomultiplier
is displayed on the monitor oscilloscope, the above
procedure leads to the establishment of the fundamental
interval width in the image plane. The ratio of the object
and image widths is, of course, the system magnification.
This procedure may also be applied to set the system
magnification at some desired value for a series of tests. A
typical magnification measurement is shown in Fig. 5.
Slit separation in this example is 260 microns.

With the knife edge in the image plane, and the object
slit in motion, the photomultiplier waveform is the edge
trace of the lens. The operator may adjust the machine for
focus and centering of the trace within the sweep range of
the flexure motor. Care must be taken to insure that the
sweep of the image is from minimum to maximum
intensity, encompassing all of the observable flare which
may be present in the lens. Several ranges of sweep width
are available to the operator to insure that this condition is
met.

While an approximate focal setting for the lens under
test may be found by visual inspection of the image, this
depends on a subjective judgement by the operator and is
not sufficiently accurate for the final measurement. Critical
focal adjustment is done electronically, by peaking an
approximate derivative of the edge trace. This adjustment
is very sensitive and largely independent of the operator,
yielding excellent repeatability both in mechanical posi-
tioning and OTF measurements. The derivative waveforms
at and near focus for a typical case are shown in Figs.
6(a), 6(b), and 6(c). The image is swept rapidly back and
forth across the knife edge, so that a family of derivative
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Figure 6 Derivative waveforms. Same lens as in Fig. 5 (a) Knife edge positioned 0.030” behind best focal position (b)
Knife edge at best focal position (c) Knife edge positioned 0.030” ahead of best focal position.

curves is generated on the monitor oscilloscope screen,
allowing the operator to ascertain the immediate result of
his adjustments.

The system magnification, sweep range, and focus having
been established, the operator must determine that a
sufficient number of data points will be recorded from the
edge trace. The digital control circuits are used to intensify
the trace at each address where a data point will be taken.
The number of fundamental intervals between the data
points is under control of the operator, as is the beginning
and end of the data gathering area within the entire sweep
range. An edge function with displayed data points is
shown in Fig. 7.

The final operation prior to the data collection is to
insure the reliability of the photoelectric measurement. The
photomultiplier load and the machine sample time are
simultaneously selected to insure the accuracy and reli-
ability dictated by the ultimate use of the measurements,
and are determined by the statistics of random photon
arrival® The minimum sample time which may be em-
ployed is determined by seismic vibrations in the building
and is set to minimize these contributions.

All remaining operations proceed under computer
control. The object slit is moved sequentially over intervals
of equal length, and the photocurrent representing the
total flux passing the knife edge at each point is digitized.
The flexure motor address at each data point, and the
photomultiplier current readings, are transferred directly
to the computer to become the x and E(x) values of the
edge function.

Computer interface

A modified IBM 1620-1 computer serves as the data
acquisition and reduction system. Peripheral units, one
of which is the lens tester, communicate with the central
processing unit by simulating either a paper tape punch
or paper tape reader, through an external control system
attached to the paper tape channel. The lens tester is one
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Figure 7 Edge function of Fig. 2 with intensified data points
shown.

of several selectable input devices, supplying x and E(x)
values directly into core memory through the use of the
standard computer instruction set.

To facilitate off-line use of the tester for non-computa-
tional measurements, such as field curvature, and to allow
data acquisition via punched cards when the computer is
not immediately available, the basic controls were imple-
mented in the machine hardware, rather than being incor-
porated into the computer software. This approach pro-
vides an efficient balance between computer software,
external hardware, and operator control.

Computer program

A conversational program written in conventional FORTRAN
provides flexibility and operational ease, both in the setup
phase and the data reduction operations. The control
system previously described provides certain constants
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which the operator enters at the console typewriter. For
instance, entry of the number of calibration ruling cycles
intensified over a certain number of intervals causes
calculation of the fundamental interval width in the object
plane. The system magnification and the number of funda-
mental intervals in the image between the parallel slits are
directly related. Specifying either parameter will thus cause
calculation and display of the other. All parameters
calculated or entered during the setup phase are retained in
the computer memory for use in the data reduction. The
operator is free to repeat the adjustments of the machine
until the desired measurement conditions have been
established, with the burden of the necessary arithmetic
being assumed by the computer.

The program allows the operator to specify parameters
for the calculations and the quantity and form of the output
data, prior to the data taking. For example, he may enter
at the typewriter demands for any or all of the following:
direct measurement of the edge function, or entry from a
previously punched card deck; tabulations of the edge
function, line spread function, and the amplitude and
phase of the OTF at arbitrary intervals; visual display and
graphic plots of these functions; and a punched card deck
containing the edge function data and essential parameters
for possible future use. The computer fills these requests
automatically. When the metrological job is completed,
and data reduction begins, the operator is free to set up
the next test while the computer finishes the calculations.
However, the operator may intervene at any point to alter
the course of the computer operation.

It should be noted that the burden of the mathematical
analysis has been relegated to the computer, both for the
setup operations and the data reduction. Calculations
involved in the edge function approach, properly imple-
mented, are of such magnitude that execution by any other
means is a practical impossibility. Employment of the com-
puter in this manner reduces the complexity required in the
metrological unit, while simultaneously providing extreme
flexibility and computational accuracy.

The flexibility available to the operator by virtue of the
computer is of greatest value when the desired test condi-
tions for a given lens are only partially defined. In this case,
preliminary tests may dictate the quantity and nature of
subsequent tests, with detailed analysis of any one or all
tests possible at will until the desire result is obtained. In
addition, the computer program maintains a continuing
check on the measurement and reduction process to extract
all of the information from the data, within limits set by
the machine or the ultimate use of the measurements, and
to report the magnitude of any errors that may be present.
Finally, the computer performs a small amount of operator
error checking. For example, a request for the calculation
of the OTF at a frequency in excess of the highest reliable
frequency is indicated by an appropriate error message
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and the setting to zero of all requested amplitudes at and
beyond that frequency. Also, the presence of extreme
system or measurement errors may be easily noted.

Mathematical considerations

A point in the object plane of a lens is represented in the
image plane by a dissipation function P(x, y). The line
spread function L(x) is defined as

1) = [ PG a.

The OTF is the Fourier transform of L(x).
The edge function E(x) is defined as

E(x) = f:o ‘/: P(x, y) dy dx = /:D L(x) dx

and hence L(x) = d/dx E(x). These relationships are well
known in the literature, notably R. V. Shack® and E. H.
Linfoote.”

The first job that the computer must perform is to “fit”
the discrete data points gathered in the metrological
operation to an analytical function E(x). Since the final
result is to be a Fourier transform, it is natural to choose a
trigonometric polynomial to represent the edge function
data points.

MAX

y=mx+ b+ Z B(k) sin wkx/ L.
k=1
In this representation of a function initially described by
discrete points, the critical link between the geometrical
model and the real world of physical measurements is the
rule which determines the truncation of the approximating
series. Consider only

MAX

H(x) = 2 B(k) sin mkx/ L,

i.e., the edge function with the linear trend removed.®
Rewritten to emphasize the discreteness of the data and
the computational form, we have

MAX

H(J) = D B(k) sinwk(J — 1)/(N — 1). (1)

k=1
The coefficients B(k) are determined from

MAX

B(k) = [2/(N — D] 2 H(J)

k=1
-sinwk(J — 1)/(N — 1).
The mechanics of the fitting operation are discussed in
detail in Lanczos® and, hence, will not be repeated here.

The essential conditions amount to ensuring that the sum-
orthogonality conditions always prevail, namely
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i sin [ARG (J)] = 0

J=1

N—1

i sin” [ARG (J)] =

Rigorous imposition of these conditions implies the
constraint H(1) = H(N).

The critical problem is the determination of the param-
eter MAX in Eq. (1) in order to secure the best represen-
tation of the signal in the presence of noisy data. (If the
data is not noisy, the metrologist is immensely lucky and
cannot count on it happening again, or the measurement
process is inefficient). If MAX is too small, information is
lost, and data recovered from H(x), regarded as an inter-
polation function, is unduly smoothed. If MAX is too
large, the error (e.g; equivocation and noise) will be too
heavily included in the approximating function. This may
have disastrous results in the application of H(x) to
certain practical problems. If MAX = N — 1, the greatest
value it can have, the approximating function will pass
through every measured point identically (2 points per
shortest wave) and hence it will include all of both signal
and noise. From the physical point of view, this approxima-
tion, which is purely geometrical, is dangerous because no
degrees of freedom are left for estimation of the error.
There are problems where H(x) with MAX = N — 1 can
be the whole of the legitimate experience. In fact, it can be
argued that all problems of measurement are of this type.
In these cases no alternate source of estimate of error is
possible outside of the measurements which determine
H{(x). The critical problem, then, in measuring the optical
transfer properties of lenses is that of cutting off the
approximating series at MAX. This problem is not unique
to the edge function method, but is common to approxima-
tion functions in general.

When MAX = N — 1, H(x) is identical with the
observations, i.e., H(x) = H(J) observed. When the series
is terminated at MAX = N — 1 — M, M being the
number of terms in (1) rejected by truncation,

N—-1-M

H(D e = 2, B)sinwk(J — /(N —1);

N 2
3 Hoe = Hard _ 35, B0 = 5% O
J=1

Half the sum of the squares of the rejected terms is the
mean squared residue between the observed and the
calculated values. This is the residue which is minimized
when the B(k) are computed directly by the method of
least squares. The orthogonality conditions lead to alter-
native procedures for computing S* when the data points
appear only as components of partial sums, where the
approximating series is computed on-line and the original
data are not retained in memory.
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If the range, L, is properly chosen to embrace the whole
of the edge function from zero slope to zero slope, and
if the machine is designed and operated in a manner which
randomizes the error,” and if the approximating function
is truncated so that (H,,,, — H.,,.) is essentially all noise;
S? is an estimate of the variance of error, and M less correc-
tions for additional constraints is the number of degrees of
freedom (d.f.)) available for its estimate. The number of
d.f. can range from zero upwards, a small number, and
hence the probability associated with the error is evaluated
through the “Student” cumulative distribution function,®
rather than the Normal distribution. A reliability specifica-
tion clarified as an error rate relative to a null hypothesis
regarding deviation from the approximating function
defines the “Student” T in a given application. Thus,
u = T A/S%/M is the range of error + and — about a
zero mean estimated from S” on the basis of M d.f., when
the probability of deviations outside this range is deter-
mined by T.

These considerations lead, then, to the following
procedure for truncating the series (1). For each value
of M = (N — 1) — kK — 1 (number of data intervals—
number of coefficients used— 1 constraint) the computer
calculates the value 7(M) 4/8%/ M and finds the value k
corresponding to the minimum in this function. Xk = MAX
is then the number of coefficients representing H(x) with
minimum reliable error. The values of T(M) are taken
from a standard table corresponding to the desired reli-
ability specification, and the minimum found from the
application of this technique is a measure of the random
contributions from the metrological system. A sudden
change in this quantity is cause for inspection of the
machine.

The two principal sources of error which must be
randomized are the photon-arrival noise and the seismic
noise due to vibrations in the building. These are controlled
by the photomultiplier load and machine sample time, as
noted above. All other known spurious signals have been
carefully reduced to negligible proportions by such
techniques as adequate grounding and bonding, light leak
elimination, etc. The result of the fitting and truncation
operations is an interpolation function which fits the data
within a minimum reliable error as determined by the
measurements themselves.

All remaining operations are purely mathematical
manipulations. The series is differentiated with or without
sigma smoothing® as desired, to yield an interpolation
function for L(x). This in turn may be evaluated in — pi to
~+pi corresponding to the slit displacement, tabulated if
desired, and the data transformed on any arbitrary
frequency intervals to yield the OTF. At this point,
provided the frequencies of interest are not too near the
zeros of the object slit, the contributions of the slit may
be removed and the result inverted to yield the true L(x)
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Table 1 Comparison of calculated values of Fourier trans-
form of pulse with independent calculation of sin (x) /x.

Cycles /millimeter Transform Sin (x)/x
1.70 0.9835 0.9836
3.40 0.9351 0.9354
5.10 0.8576 0.8583
6.80 0.7557 0.7568
8.50 0.6352 0.6366

10.20 0.5029 0.5045
11.90 0.3663 0.3678
13.60 0.2325 0.2338
15.30 0.1085 0.1092
17.00 0.0000 0.0000
18.70 0.0884 0.0894
20.40 0.1539 0.1559
22.10 0.1951 0.1980
23.80 0.2125 0.2162
25.50 0.2080 0.2122
Figure 8 Simulated edge function—a ramp. 27.20 0.1849 0.1892
28.90 0.1476 0.1514
30.60 0.1010 0.1039
32.30 0.0501 0.0517
34.00 0.0000 0.0000
35.70 0.0450 0.0468
37.40 0.0814 0.0850
39.10 0.1068 0.1119
40.80 0.1198 0.1261
42.51 0.1204 0.1273
44.21 0.1096 0.1164
45.91 0.0893 0.0953
47.61 0.0623 0.0668
49.31 0.0314 0.0339
51.01 0.0000 0.0000

Table 2(a) Measurement data: 10X, 0.25N.A.microscope ob-
jective tested at 20, Wratten No. 55 filter. (See text for
explanation of data in this and subsequent tables.)

025 NA 47 pts 1

Figure 9 Line spread function. Derivative of waveform in Gmag=20.00 XLU=9.10 Microns, N=47
Fig. 8. 17 Error =0.759
Shift =11.27 degrees
Frequency Amplitude Phase
35.00 .97691 0.000
70.00 .91549 .476
105.00 .83424 1.615
140.00 .75108 3.134
175.00 .67477 4.476
210.00 .60535 5.318
245.00 .54034 5.860
280.00 .47893 6.554
315.00 .42133 7.613
350.00 .36663 8.828
385.00 .31293 9.880
420.00 .26011 10.751
455.00 .21136 11.711
490.00 .17097 12.847
525.00 .14037 13,648
560.00 .11679 13.517
595.00 .09592 12.824
630.00 .07535 13.018
665.00 .05576 15.685
Figure 10 Modulation transfer function: Fourier transform 700.00 03922 20.947

100 of line spread function in Fig. 9.
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due to the lens alone. The object slit in the subject machine
has a width of 10.5 microns, giving a first zero in the
neighborhood of 95 cycles/millimeter at 1 to 1 magnifica-
tion. Since in most cases the contributions are negligible,
the operator has the option of eliminating this final step.

The display of the minimum reliable error and the ability
to adjust the number of recorded data points provides the
operator with a means of altering the system throughput
speed to meet accuracy requirements which may be less
than the best that the machine can deliver.

Typical results

To investigate the validity of the mathematics in the
program, simulated edge function and appropriate calibra-
tion data in the form of a ramp were punched in cards. The
line spread function resulting from this simulated edge
function should be a pulse, and the Fourier transform
should be sin (x)/x. The graphs in Figs. 8 and 9 show the
edge function and the resultant line spread function. The
sine series contained 50 terms. The steep rise of the pulse
and the very small overshoot are evident. The width of the
pulse at the half-amplitude points was determined from a
tabulation of the line spread function. This width of
0.05881 millimeters corresponds to a frequency of 17 .004
cycles/millimeter. This frequency should have zero ampli-
tude in the Fourier transform, as should the second and
third harmonics. The tabulated Fourier transform, and an

Table 2(b) Repeat of Table 2(a). No mechanical changes.

independent calculation of sin (x)/x are given in Table
1 for comparison purposes. A graph of the transform is
shown in Fig. 10.

A test of the stability of the machine and the validity of
the focal adjustment procedure was made using the micro-
scope objective lens taken from a commerical micro-
densitometer. The test was conducted at a nominal
magnification of 20X, which is the normal operating
condition for the microdensitometer. The tabulated data
in Tables 2(a), (b) and (c) were repeated measurements with
no mechanical changes other than thermal drifts. The data
in Tables 3(a), (b) and (c) were taken by moving the lens out
of focus and then refocussing each time.

Each of the tabulations in Tables 2 and 3 were taken
from the console typewriter. The first line gives the identify-
ing information for the particular measurement. The second
line gives the system magnification, the length of the sweep
in the image plane, and the number of data points taken.
The third line shows the number of terms in the approxi-
mating function and the error, in parts per thousand,
between the series and the parent data. The fourth line is
the amount of decentration between the maximum slope
of the edge function and the center of the measurement
interval, expressed in degrees of the first OTF frequency.
This is used as a normalizing factor to remove the linear
trend in the phase angle. The three columns of data below
the fourth line are the frequencies in cycles/millimeter, the
amplitude, and the phase angle in degrees of the OTF.

Table 2(c) Repeat of Table 2(a). No mechanical changes.

0.25 NA 47 pts 2

Gmag=20.00 XLU=9.10 microns, N =47
22 Error =0.885

Shift =12.60 degrees

0.25 NA 47 pts 3

Gmag=20.00 XLU=9.10 microns, N=47
15 Error =0.641

Shift=13,02 degrees

Frequency Amplitude Phase Frequency Amplitude Phase
35.00 0.97767 0.000 35.00 0.97806 0.000
70.00 0.91798 448 70.00 0.91853 .389

105.00 0.83804 1.519 105.00 0.83699 1.385
140.00 0.75459 2.974 140.00 0.75051 2.881
175.00 0.67633 4.341 175.00 0.67018 4.448
210.00 0.60444 5.352 210.00 0.59863 5.629
245.00 0.53789 6.154 245.00 0.53339 6.294
280.00 0.47646 7.051 280.00 0.47163 6.724
315.00 0.41978 8.102 315.00 0.41247 7.320
350.00 0.36574 9.076 350.00 0.35643 8.268
385.00 0.31189 9.806 335.00 0.30393 9.404
420.00 0.25857 10.469 420.00 0.25491 10.411
455.00 0.20955 11.412 455.00 0.20972 11.142
490.00 0.16902 12.638 490.00 0.16977 11.750
525.00 0.13774 13.570 525.00 0.13665 12.539
560.00 0.11274 13.823 560.00 0.11054 13.705
595.00 0.09046 14.195 595.00 0.08961 15.392
630.00 0.06968 16.446 630.00 0.07134 18.152
665.00 0.05147 21.782 665.00 0.05441 23.334
700.00 0.03653 28.754 700.00 0.03958 32.826
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Table 3(a) Measurement data: 10X, 0.25 N.A. microscope
objective at 20X Wratten No. 55 filter, refocused.

Table 3(c) Same as Table 3(a) but refocused again using
derivative.

Refocused 1

Gmag=20.00 XLU =9.10 microns, N =47
25 Error =0.909

Shift=16.11 degrees

Refocused 3

Gmag=20.00 XLU=9.10 microns, N=47
14 Error =0.784

Shift=15.53 degrees

Frequency Amplitude Phase Frequency Amplitude Phase
35.00 0.97986 0.000 35.00 0.97665 0.000
70.00 0.92490 .300 70.00 0.91595 107
105.00 0.84869 1.060 105.00 0.83862 2.319
140.00 0.76644 2.174 140.00 0.76136 4.316
175.00 0.68843 3.300 175.00 0.68808 5.944

210.00 0.61774 4,113 210.00 0.61588 7.018
245.00 0.55315 4.598 245.00 0.54519 8.031
280.00 0.49313 5.032 280.00 0.48113 9.466
315.00 0.43715 5.635 315.00 0.42682 11.126
350.00 0.38429 6.277 350.00 0.37858 12.376
385.00 0.33228 6.604 385.00 0.33002 13.070
420.00 0.27962 6.486 420.00 0.27959 13.857
455.00 0.22833 6.215 455.00 0.23208 15.478
490.00 0.18346 6.126 490.00 0.19304 17.708
525.00 0.14871 5.839 525.00 0.16269 19,240
560.00 0.12263 4.236 560.00 0.13701 19.255
595.00 0.09993 .914 595.00 0.11307 18.514
630.00 0.07635 —2.761 630.00 0.09111 18.387
665.00 0.05195 —4.007 665.00 0.07210 19.016
700.00 0.03066 .592 700.00 0.05501 18.713

Table 3(b) Same as Table 3(a) but refocused again using
derivative.

Refocused 2

Gmag=20.00 XLU =9.10 microns, N=47
13 Error =0.683

Shift=14.48 degrees

Frequency Amplitude Phase
35.00 0.97750 0.000
70.00 0.91650 .364

105.00 0.83307 1.277
140.00 0.74458 2.590
175.00 0.66196 3.865
210.00 0.58773 4.170
245.00 0.51996 5.164
280.00 0.45725 5.658
315.00 0.40005 6.563
350.00 0.34843 7.724
385.00 0.30011 8.560
420.00 0.25211 8.702
455.00 0.20455 8.473
490.00 0.16161 8.688
525.00 0.12803 9.682
560.00 0.10426 10.270
595.00 0.08550 8.693
630.00 0.06629 4.707
665.00 0.04503 —.377
700.00 0.02445 —4.741

J. B. DAVIS AND H. H. HERD

Examination of the last three sets of data shows that the
focal setting repeats to a high degree. The interpretation of
best focus is usually a matter of taste and requires several
measurements at slightly differing focal settings. The
derivative focusing method has been found to yield the
highest overall values for modulation in a large sample of
production lenses.

Conclusion

The present measuring system is an outgrowth of a need
to measure the modulation transfer properties of micro-
scope objectives of the highest quality. Due to the generally
accepted practical limit of 200 cycles/millimeter for
systems using moving targets, and the inflexibility in
wavelength afforded by the interferometric methods, these
measurement philosophies were ruled out from the very
beginning. The expected practical limit of resolution
available with the edge function analysis approach has not
been demanded by any of the lenses thus far examined,
including the best commercially available microscope
objectives.

The employment of a high-speed digital computer as the
logical connecting element between several well-known
instrumental and mathematical techniques has produced a
demonstrably stable, reproducible, and flexible tool.

IBM J. RES. DEVELOP.
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