R. Gereth M. E. Cowher

# New Annealing Effects on the Bulk Corrosion Potential of Germanium

**Abstract:** The corrosion potential  $(U_k)$  of n-type Ge with donor concentrations less than  $10^{18}$  cm<sup>-2</sup> was drastically changed (" $\Delta U_k$  effect") by heat treatments between 600 and 800 °C. The formation of recombination centers due to Cu contamination is probably the principal cause.

#### Introduction

The corrosion potential,  $U_k$ , of n-type Ge electrodes immersed in appropriate aqueous solutions depends strongly on the donor concentration present. <sup>1-3</sup> Thus  $U_k$  can be used to monitor impurity profiles<sup>2,4</sup> in bulk, diffused, or epitaxial n-type Ge layers. In studies of this measurement technique it was observed that  $U_k$  of n-type Ge, having donor concentrations of less than  $10^{18}$  cm<sup>-3</sup>, can be drastically changed by heat treatment at temperatures between 600 and 800 °C. This communication reports investigations of this new effect which is hereafter referred to as the " $\Delta U_k$  effect."

# **Experimental results**

The solid curve in Fig. 1 shows previously published  $U_k$  measurements.<sup>2,3</sup> The corrosion potential of polished<sup>5</sup> Ge samples was measured potentiometrically referenced to a saturated calomel electrode. The electrolyte consisted of  $0.1M \text{ K}_3[\text{Fe}(\text{CN})_6]$ , 0.1N NaOH, and  $1.0N \text{ NaNO}_3$ . The dashed lines in Fig. 1 illustrate how the  $U_k$  curve shifts if the measurements are carried out on samples which were previously heat treated for 100 min in forming gas (90% N<sub>2</sub> and  $10\% \text{ H}_2$ ) at 600, 700, and 800 °C, respectively. No changes in  $U_k$  were observed with p-type and heavily doped n-type wafers subjected to the same heat treatments.

### Forming-gas annealing

Figure 2 presents details of the  $\Delta U_k$  effect observed on an n-type sample with resistivity of 0.025  $\Omega$ -cm. Here  $\Delta U_k$  is plotted vs. the annealing time in forming gas. Correspond-

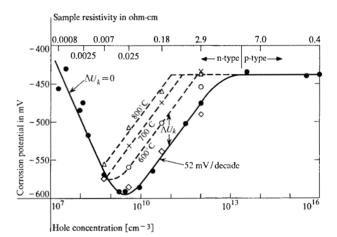



Figure 1 Corrosion potential  $(U_k)$  of Ge vs. hole concentration. The solid curve refers to  $U_k$  measurements<sup>2,3</sup> before, and the dashed lines to  $U_k$  measurements after, 100 min forming-gas treatment at 600, 700, and 800 °C. The open squares represent data subsequent to that of Refs. 2 and 3.

ing results have been obtained with 0.18  $\Omega$ -cm, n-type samples. The  $U_k$  measurements following the heat treatments were carried out after 2 mils of surface layer had been removed. All measured  $\Delta U_k$  values represent, therefore, a true bulk effect. Another feature to be noted is that  $\Delta U_k$  was only a function of temperature when annealing times in excess of 40 min were employed. On the other hand, heat treatments between 400 and 500 °C did not alter  $U_k$  at all. Repetition of the forming-gas experiments in vacuum,  $H_2$ ,  $H_2$ ,  $H_2$ ,  $H_3$ ,  $H_4$ ,  $H_4$ ,  $H_4$ ,  $H_5$ ,  $H_6$ ,  $H_4$ ,  $H_4$ ,  $H_5$ ,  $H_6$ ,  $H_6$ ,  $H_7$ ,  $H_8$ ,

R. Gereth's present address is: AEG-Telefunken, Heilbronn, Germany; M. E. Cowher is located at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

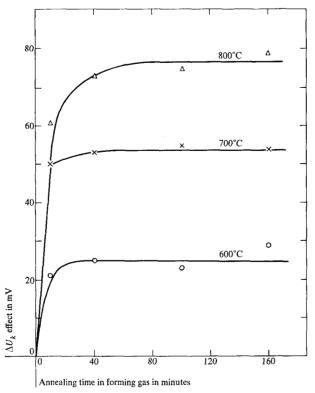



Figure 2 The  $\Delta U_k$  effect observed in 0.025  $\Omega$ -cm, n-type Ge after forming-gas treatments for periods up to 160 min;  $\Delta U_k$  remained constant during heat treatments of 64 h.

No change in the resistivity could be detected at room temperature in the heat-treated 0.025 and 0.18  $\Omega$ -cm samples. The resistivity of lightly doped, n-type samples, however, had changed after the 600 °C forming-gas treatments from 2.9 to 4  $\Omega$ -cm. Perhaps even more significant was the observation that heat treatments in forming gas at 700 or 800 °C converted the conductivity type of this 2.9  $\Omega$ -cm sample from n- to p-type.

## Oxygen annealing

The  $\Delta U_k$  effect exhibited a complicated time-temperature dependence when the heat treatments were carried out in oxygen. Data for the  $0.025~\Omega$ -cm, n-type samples are presented in Fig. 3 as a function of the annealing time in  $O_2$ . Again it was found that the  $\Delta U_k$  effect is a bulk effect and that it is not accompanied by a measurable change in the room-temperature resistivity of the Ge wafers. A pre-bake in hydrogen at  $800~\mathrm{C}$  for  $100~\mathrm{min}$  prior to an  $O_2$  treatment did not modify the  $\Delta U_k$  changes following the  $O_2$  treatment. The  $\Delta U_k$  value at each annealing temperature for such sequential gas treatments is denoted by a full square. Two major differences are apparent in Fig. 3 compared to the  $\Delta U_k$  results seen after forming-gas treatments: (1) The value

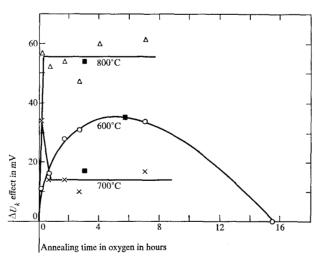



Figure 3 The  $\Delta U_k$  effect observed in 0.025  $\Omega$ -cm, n-type Ge after oxygen treatments for periods up to 15.5 h. The solid squares represent samples which received a pre-bake in H<sub>2</sub> for 100 min at 800 °C.

of  $\Delta U_k$  can be larger at 600 °C than at 700 °C and (2) the  $\Delta U_k$  curve for 600 °C reaches a maximum for an annealing time of approximately 5 h.

#### Discussion

The marked difference in the temperature dependence of the  $\Delta U_k$  effect after oxygen and forming-gas treatments, respectively, is also reflected in the appearance of the heattreated wafer surfaces. The forming-gas exposures leave the polished surfaces unchanged while the 600 °C O<sub>2</sub> treatments cover the polished Ge surface with an oxide film that increases in thickness with increase in annealing time. At 700 °C the O<sub>2</sub>-treated wafers are covered with a clean surface film, 6 the appearance of which does not change with annealing time. The 800 °C O<sub>2</sub> treatments result in heavy thermal etching of the Ge wafers. Therefore 5 to 6 mils of surface had to be removed after the O<sub>2</sub> treatments before reliable  $U_k$  measurements could be made in the absence of surface damage.

The observation of a bulk  $\Delta U_k$  effect and its time-temperature dependence rules out the possibility that the effect is caused by the diffusion of gas molecules\* or substitutional impurities. The unchanged resistivity represents further evidence that the  $\Delta U_k$  effect cannot be explained on the basis of a doping process.

Gerischer and Beck<sup>1</sup> have presented a model which explains  $U_k$  of n-type Ge on the basis of a quasi-photovoltaic

<sup>\*</sup> The diffusion constant of  $H_2$  in  $Ge^7$  would certainly be large enough in the temperature interval in question to account for a bulk effect; however, Ge is nearly impermeable to  $N_2$  and  $Ar^7$  and in these ambients the same  $\Delta U_k$  effect was found. Furthermore, the diffusion constant of  $O_2$  in  $Ge^8$  is much too small to cause an  $O_2$  penetration depth of 5 to 6 mils within an annealing time of only a few hours.

effect. They found that the difference between  $U_k$  of p-type and n-type Ge becomes smaller if either more holes and/or more recombination centers are present in the n-type samples. This suggests that the  $\Delta U_k$  effect might be attributable to the formation of recombination centers, the probability of a doping effect having been shown to be low. A similar argument had been employed by Weiser9 to discuss the effect of annealing on the bulk lifetime of Ge. The present observation that the 2.9  $\Omega$ -cm, n-type sample converted to p-type after 700 or 800 °C heat treatment indicates the possibility that Cu contamination could cause the  $\Delta U_k$  effect. In fact, the  $\Delta U_k$  effect of 0.02  $\Omega$ -cm, n-type samples was always either much less pronounced or not visible at all if the samples were treated in a KCN solution prior to the annealing experiments to remove Cu from the wafer surfaces. 10 The  $\Delta U_k$  effect of a deliberately Cu-contaminated sample was approximately the same as previously seen with regular n-type samples.

Based on the above evidence, we propose that Cu, acting as a recombination center, 11 is the major origin for the  $\Delta U_k$  effect. The temperature dependence of the  $\Delta U_k$  effect in forming gas could then be correlated to the temperature dependence of the solubility of Cu in Ge. 11-13 In the case of the O2 treatments, one has to distinguish between the lowand high-temperature processes. The oxide layers formed at 600 and 700 °C may act as a "getter" for the Cu impurities. Consequently an O<sub>2</sub> treatment of a 2.9 Ω-cm, ntype wafer at 700 °C for 100 min should not convert its conductivity type; this was verified experimentally. The 800 °C O<sub>2</sub> treatment is somewhat similar to the corresponding forming-gas treatment. The thermal etching during the O<sub>2</sub> run reduces the Cu concentration by either the etching process itself or by a chemical transport reaction involving  $O_2$ . Therefore  $\Delta U_k$  becomes smaller in magnitude than the value observed after forming-gas treatments.

More vigorous gettering experiments, during which Cu is totally extracted from the Ge material, should demonstrate quantitatively what fraction of the  $\Delta U_k$  effect is truly attributable to Cu contamination. Besides its importance for the practical application of the corrosion-potential method for measuring impurity profiles, the  $\Delta U_k$  effect might also become a simple but very sensitive tool for detecting electrically inactive impurities in Ge.

## **Acknowledgments**

The authors are indebted to Dr. A. Reisman for his interest and encouragement. Extensive discussions with Dr. T. O. Sedgwick were invaluable in interpreting the results. Many members of the group made their facilities available for the heat treatments in various atmospheres; their assistance is gratefully acknowledged.

## References

- 1. H. Gerischer and F. Beck, Z. Physik. Chem. Neue Folge (Frankfurt) 23, 113 (1960).
- 2. R. Gereth, J. Electrochem. Soc. 113, 318C, (1966).
- R. Gereth and M. E. Cowher, J. Electrochem. Soc. 115, 645 (1968).
- D. Just, Z. Physik. Chem. Neue Folge (Frankfurt) 35, 386 (1962).
- A. Reisman and R. L. Rohr, J. Electrochem. Soc. 111, 1425 (1964).
- J. T. Law and P. S. Meigs, J. Electrochem. Soc. 104, 154 (1957).
- 7. A. van Wieringen and N. Warmoltz, Physica 22, 849 (1956).
- 8. C. Haas, J. Phys. Chem. Solids 15, 108 (1960).
- 9. K. Weiser, J. Appl. Phys. 28, 271 (1957).
- 10. R. N. Hall and J. H. Racelte, J. Appl. Phys. 35, 379 (1964).
- N. G. Zhdanova, S. G. Kalashnikov, and A. I. Morozoo, Soviet Phys. - Solid State 1, 481 (1959).
- C. S. Fuller, J. D. Struthers, J. A. Ditzenberger, and K. B. Wolfstirn, *Phys. Rev.* 93, 1182 (1954).
- F. van der Maesen and J. A. Brenkman, J. Electrochem. Soc. 102, 229 (1955).

Received September 8, 1967; revision, July 8, 1968.