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Algebraically Generalized Recursive  Function Theory* 

Abstract: The Uniformly  Reflexive Structure  (URS)  introduced by E. G. Wagner is,  for  this  paper, a nonassociative  algebra  consisting 
of a domain  and a binary  operation  satisfying  the  following  axioms: 

0. (3*)(Va)[a.X = * - . a  = XI; 
1 .  (31C.)(VU, b, c, dm # # & ((0 f * b f X & c f X & d f *) + 

((a = d &  (((1C..a).b).c).d = b) or 
(a  # d & (((+.a).b).c).d = c)))]; and 

2. (3.1)(Vb, c, 41.1 f \1. 8~ ((b f t & c f X & d f #) 4 
((cx.b).C # .Ac & ((.I.b).c).d = (b.d).(c.d)))]. 

Wagner  showed that these structures generalize  much  of  Recursive Function  Theory (RFT). 
In  this  paper the functions  “computed” by a URS are the  functions  given by left  multiplications by elements  of the URS. A family 

of  functions  is  said to form a URS if it is the family  of  left  multiplications  of  some URS. Axioms  for  Basic  Recursive Function  Theory 
are given  characterizing  those  families  of  functions  which  form  URS’s.  The Partial  Metarecursive  Functions  and  the  Computable  Func- 
tionals of McCarthy are shown to form  URS’s. 

An investigation  of  notions  analogous to the “recursively  enumerable”  notion  in RFT shows that if any  splinter  (“successor  set”) 
of  a URS  is  semicomputable,  then  all  are. A partial  analogue to the  Rice-Myhill-Shapiro  Theorem is proved for URS’s  satisfying  an 
axiom  corresponding  to  Kleene’s  “indefinite  description.”  Finally, a study  of  pairing  functions  leads to work  analogous to Rogers’  on 
Godel  numberings  and  generalizes  similar  work of Wagner. 

Introduction 
This  paper is an investigation of algebraic structures satis- 
fying a set of axioms for  a generalized theory of recursive 
functions. The axiom system was introduced by Wagner‘ 
who conceived of these structures as pairs, (U,  G), such 
that U is an “arbitrary infinite domain” and G is a map 
from U to a family of functions from U into U. He called 
the  pairs, (U,  G), satisfying the axioms Uniformly Reflexive 
Structures (URS’s) and showed that  the partial A-recursive 
functions  (for  any subset A of the  natural numbers) could 
be made to form a  URS. 

The axioms presented in this paper have been rewritten 
so that they are satisfied by nonassociative algebras con- 
sisting of a domain, U,  and a binary operation, . . The re- 
lationship between the binary operation, ., and the index- 
ing, G, is II . v = (G(u)) (v); so the set of functions involved 
becomes the set of left multiplications of the algebra. Thus 
there is a natural  one-to-one correspondence between 
Wagner’s  URS’s and  +he algebras satisfying the axioms of 
this  paper.  Hence these algebras will be called URS’s. 
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The difference between the axioms presented at the be- 
ginning of the next section and those of Ref. l is one of 
notation (except for the  one  point discussed after their 
presentation). Once the problem is overcome of conceiving 
of the notation, x, as representing both an element of a 
URS  and the function, +z, denoting multiplication on the 
left by this element, the  notation  shortens several of the 
proofs of theorems from Recursive Function  Theory 
(RFT). 
In Section 1 some of the basic results of the theory of 

recursive functions are obtained  for URS’s, paralleling 
those of Ref. 1. In Section 2 necessary and sufficient condi- 
tions  are given for  a family of functions to be associated 
with a URS (as the set of left multiplications). These con- 
ditions are stated  in terms of properties of partial recursive 
functions which are more familiar than the “blend” opera- 
tion of Wagner’s axioms. They are given in the form of 
axioms for Basic Recursive Function  Theory  (BRFT). 

Often in  the  literature RFT  has been informally axi- 
omatized by means of the Enumeration and S-m-n proper- 
ties (see Section 2). Usually the axioms have described the 
Godel numbering while properties of the family of partial 
recursive functions, such as closure under composition, 
have been taken  for granted. Basic RFT combines the usual 465 

RECURSIVE FUNCTION THEORY 



axioms of Godel numberings with a short list of additional 
properties of the family of partial recursive functions in an 
attempt  to axiomatize RFT without explicitly identifying 
the domain of the family of functions or postulating a suc- 
cessor function which exhausts that domain. 

It is convenient to incorporate the property of closure 
under “tests for equality with conditional branching” into 
the axioms of BRFT in a form paralleling Axiom 1 of the 
theory of URS’s. However, BRFT is not a rewriting of the 
axioms for a URS. The blend operation and  the Enumera- 
tion and S-m-n properties are dissimilar in  both  form and 
origin. In various  approaches to generalizing RFT, most of 
the work has been done  to show that  the approach satisfies 
BRFT.  Thus the  theorem of Section 2 ,  that  BFRT charac- 
terizes the families of functions which form URS’s, easily 
links such generalizations as  the Partial Metarecursive 
Functions and  the Computable  Functionals2 with the 
theory of URS’s. 

Results similar to those of RFT are pursued in  the  third 
section, which ends with a partial  analogue to  the Rice- 
Myhill-Shapiro T h e ~ r e m . ~  Section 4 continues exploring 
the nature of families of functions forming URS’s. Some 
results with particular emphasis on pairing functions are 
obtained, similar to those of Wagner4 on Godelizations. 

Throughout  this  paper, when not otherwise determined 
by context, the following notational conventions have been 
observed: 

(1) The symbol # denotes a particular distinguished 
element of a URS (see next section); 

(2 )  lower case Greek letters (without subscripts) denote 
important elements of URS’s  which are used in  the 
same way in every section, e.g., $, a, 0, L, p, 4, 6; 

(3) m and n denote natural numbers; 
(4) f, g, h, j ,  and IC denote functions; 
( 5 )  other lower case italic letters  denote  arbitrary  non-# 

(6) Z and J denote URS’s; 
(7) N denotes the natural numbers; 
(8) F, C, H ,  and K denote families of functions; 
(9) other capital italic letters  denote sets and families of 

elements of URS’s and  are used as variables; 

sets; and 
(10) X indicates the  end of a proof. 

1. Axioms, definitions,  and  preliminary  results 
The algebIa, I = ( A ,  *), with domain, A, and binary opera- 
tion, -, is a URS if it satisfies the following axioms: 

0. ( 3 # ) ( V U ) [ U . f  = # - a  = t l ;  

1.  ( j+wa,b,c ,d)[$# % & ( ( a #  # & b #  # k c #  # 
& d #  #)”+((a = d&((($.a).b).c).d = b)or(a # d 
& ((($.a).b)-c).d = c)))]; and 

2. (3a)Cd6,c,d)[cu#$&(((b##&c# # & d #  #) + 
466 ( (a .b ) . c  # # & ((a.b)-c).d = (b.d).(c.’d)))]. 

(In order  to axiomatize the first-order theory of URS’s 
without constants, the three axioms are conjoined into one 
with the three  initial existential quantifiers moved to  the 
front.) Note  that Axiom 2 is stronger than Wagner’s axiom 
for a since it stipulates CY # $, providing immediately 
two distinct elements of A - { # } . Wagner’ has  shown that 
the existence of at least two distinct elements of A - { # 1 
eliminates all finite models. Conversely, it  can  be shown 
that if a = $ replaces a Z $ in Axiom 2 ,  there must be 
exactly one element in A - ( % } . 

In  an algebra satisfying Axioms 0, 1, and 2 ,  the element 
# is unique. In  the rest of this paper the non-# elements 
of a URS, rather than  the whole domain, will be named 
explicitly: the notation I = (A u {#},  .) will mean that 
the  domain of the algebra I is A U { # } and # is not an 
element of A. The  binary  operation . will, of course, be a 
functionfrom(AU { # } ) X ( A U  ( # } ) t o A U  ( # } .  

If e is an element of the  URS I = ( A  U { #], .), then 
e is an index of the partial  function  from A into A 
whose value at x is e.x  (# is equated with “undefined”). 
The set of those  partial functions (of one variable) indexed 
by elements of A is denoted Fl(Z). The element e also 
indexes partial functions of several variables: A” -+ A 
is given  by  &,(XI, ..., x,) = (( ... ((e.xI)*xd ... ).x,,--l).xn. 

The parentheses quickly get out of hand; so, since the 
operation is most often performed from  the left, i.e., in  the 
order (a. b) ’c, the expression ( a .  b) . c  is abbreviated abc; 
while a . (b  .c) is abbreviated a(bc). With the convention 
that lower case letters represent elements of  the URS not 
equal to #, the axioms become: 

0. #a = a t  = #+ = #; 

1. $ # +# &$a6cd = 
6 i f a  = d; 
c ifa # d;  

2.  a # $ & aab Z # & aabc = ac(Dc). 

The set of partial functions of n arguments indzxed by 
elements of A (in the  URS I = (A (J { # } ,  .)) is denoted 
F, ( I )  , and 

F \ I )  = F n ( I )  

is called the family of partial functions computed by I .  Let 
N be the natural  numbers and let the  map n --+ qh be a 
Godel numbering of the partial recursive functions of one 
variable. Define a - 6  = &(b) if &(b) is defined and let # 
represent “undefined” (% .a = a -  = #). Wagner‘ has 
shown that Z = (N  u ( # 1, .) is a URS;  and,  of course, 
F(1) is the family of partial recursive functions. In Section 
2 a proof similar to Wagner’s  will be used to characterize 
the families F(Z) of partial functions computed by URS’s. 

Following Wagner’ two useful constants are singled out 
besides a and + in  order to prove a general existence meta- 
theorem for functions in any URS (i.e., computed by any 
URS). Let L = a($a$)($+J.+). Then  for each a, tu = a, 

n=l  
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so L indexes the identity function. Let = CY($#)L. Then for 
each a and b, flab = a ;  so for each a, pa indexes the con- 
stant function with value a. The next result makes possible 
the construction of many useful functions without explic- 
itly writing indices as products of a and +. 

Let (xi \ be a collection of variables which range over all 
non-# elements. Define a term as follows: a,  +, and any xi 
are terms, and if r1 and t2 are terms, so is ( r l - t 2 ) .  

Theorem I .  I 
(General Existence Metatheorem) For each term t(x1, ..., 
X,), with at most xl, ..., xn as variables, there is a term f'(x1, 
..., with at most XI, ..., xn-l as variables, such that 
(vx1, ..., x,)[t'(xl, ..., ~ ~ - 1 )  # f & r ' h ,  ..., Xn-I).Xn = 
r(xl, ..., x,)] is a consequence of the axioms for a URS. 

Proof' qf Theorem 1. I 
The proof is by induction on  the number of parentheses in 
r(xl, ..., x,). Its outline follows: x,, = L'x,; if t o  is a term 
with no occurrence of xn, to = @.to).x,, also 

((rl.xn).  (12.x~)) = ((a*r1).r2).xn. 

Note  that if t o ,  rl ,  and r2  are not  equal to %, then P t o  and 
d l r 2  are  not equal to f .  Using these facts, one can easily 
construct  the desired t'(xl, ..., and show that, by  in- 
duction, it is not  equal to %. X 

It is a  good exercise to check that if r(xl, x*) = (((a e ( +  

-~1)).xp).xl)-abbreviated cy(+xl)x2xl-then the t'(x1) 
constructed is abbreviated a(a(a(pa)  CY(/^+) (6x1)))~) @XI). 

In this construction + was replaced by ((P.+).XZ; a, by 
(@-cY).x~);  etc. 

The following examp!e shows the strength of 1.1 in 
exhibiting functions computable in a URS: let &,,, and 
+en be partial functions in F(Z) for some URS I .  An index 
for the function formed from these functions by composi- 
tion (f(x1, ..., x,) = +a2(+tn(~1, ..., X,), + e n ( ~ l ,  ..., x,))) can 
be obtained by n applications of 1.1 : there is a  term d, de- 
pending only on cy, +, a, b, and c such that d # f and 

d X l  ... Xn = a(bx1 ... X,')  (CXI ... x,) . 
Theorem 1.1  is stronger than Theorem 2.11 of Ref.  1 

since it contains  the result r'(xl, ..., x n - l )  # f .  Otherwise 
these theorems are used in the same way. The notation of 
this paper allows a slightly simpler proof. Wagner post- 
pones the rest of the  strength of  1.1 to  the level of the Itera- 
tion Theorem, his Theorem 2.15.' 

Corollary 1.2 
(Iteration or S-m-n Theorem) For all  natural  numbers 
m 2 0 and n 2 1, there is a term S," involving only a and 
+ such that, for all XO, x1, ..., xm, Y I ,  ..., Y,,  S,"XO ... Xm # f 
and  Snmx0 ... x,yl ... y ,  = x. ... y,. Moreover, SI" can be 
used for  any S,". 

NOVEMBER 1968 

Proof of Corollary 1.2 
By 1.1 there is a  term t involving only cy, +, XO, ..., and X,,, 

such that t # # and ryl = x0 ... x,yl. By m applications of 
1.1, there is a term SI" involving only a and J .  such that 
Slmxo ... xm = t; so &"x0 ... xm # f and Slmxo ... yn = x0 
... yn. X 

From now on Theorem 1.1 will be used implicitly in 
proofs  without being mentioned. 

Theorem 1.3 
(Definition by cases) (cf. 2.12 to 2.14 of Ref. 1) There is an 
q such that qabcdx is cx if bx = a, and qabcdx = dx if  bx 
# aandbx # f .  

Proof of Theorem 1.3 
Let 7 be such that qabcdx = +acd(bx)x. Then 

qabcdx = 
cx if bx = a ;  
dx if bx # a,#. X 

The next theorem is an inductively proved generalization 
of  1.3. It is more general than, but in the same spirit as, 
Wagner's 2.14.' 

Theorem 1.4 
For each pair (m, n) of natural numbers 2 1, there is a term 
qnm involving only CY and + such that, for all al,  ..., a,, bl, 
..., b,, cl, ..., c,, xlr ..., xm, qnmal ... xm-' # # and 

clxl ... xm if blxl ... xm = UI ; 
czxl ... xm if b2xl ... xm = a2 and 

blxl ... xm # U I ,  # ; 

cnxl ... xm if bnxl ... X,,, = an and 
hlxl ... xm # ai, f ,  ... , 
bn-1X1 ... X m  an-19 # ; 

<%, otherwise. 

Proof of Theorem 1.4 
Let 71" be such that qlmalblclxl ... xm-l # # and ~ I " U I  

... xm = +alclt9(blxl ... xm)xl ... xn. If qnm has been con- 
structed to satisfy 1.4, let qE+1 be such that q;+;lal ... ... 
xm-l # f and qE++lal ... X" = + u I c I ( ~ ~ " u ~  ... a,+' ... G+I) 

&xl ... x,) x1 ... xm. By induction on n, the  proof  of 1.3 
suffices for 1.4. X 

Define [a] = { (x, y )  lax = y ,  x # f , y # t 1, the graph 
of the function indexed by a. It is easy to construct (see  2.1 
of Ref. 1) a I3 # # such that [e] is the empty set. The next 
theorem is a uniform version of Wagner's 2.16.' 

Theorem 1.5 
(Uniform  Recursion or Fixed Point Theorem) There is a + 
such that, for each a, +a # # and [+a] = [a(~5a)]. 467 
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Proof of Theorem 1.5 
Let w be such that,  for all a, b, and x, wab # # and wabx 
= a(bb)x. Let + be such that,  for each a, +a = wa(wa). 
Then,  for  each a and x, +a # # and +ax = wa(wa)x = 

a(wa(wa))x = n(+a)x. Xt 

Corollary 1.6 
(Minimalization) (cf.  4.3 of Ref. 1)  There is a p such that, 
for all o, s, and p ,  if there is an element a of the sequence 
{ o, so, s(so), ...} such that pa = o and, for each 0 preceding 
u in the sequence, pb # # andpb # o, then posp = N.  

Proof of Corollary 1.6 
Let e be such that, for each t,  w, 0, s, andp, 

etwosp = 
( w  

if pw = o ;  
t(sw)osp if pw # o, #. 

[A formal  construction of e would proceed as follows: 
let bl, b2, CI, c2, and e be such that bltwosp = pw, b2twmp 
= o, cltwosp = w,  c2twosp = t(sw)osp, and etwosp = 

~ 2 5 0 0 b ~ b 2 ~ 1 ~ 2  twosp.] Let p be such that, for each o, s, and p ,  
pcwp = 4eoosp. Then 

posp = e(+e)oosp = 
if po = o ;  

+e(so)osp if po # o, # ; etc. X 

A predicate P(xl ,  ..., x,) with exactly X I ,  ..., xnc as  free 
variables is said to be semicomputable in a URS if there are 
elements a and b such that P(x1, ..., x,) if and only if bxl ... 
x ,  = a. Let PI ,  ..., P, be n predicates with X I ,  ..., x, as free 
variables which are semicomputable in Z, and  letfl, ...,.f, be 
partial functions in F,(Z). The notation (PI f .fl(x1, ..., xm), 
..., Pn - f f n ( x l ,  ..., x,)) will  be  used for the  functionfwhich 
results from these predicates and functions by application 
of 1.4 (cf. Ref. 2). The value offon XI, ..., x, is not +++ if and 
only if, proceeding from left to right, a predicate Pk is 
found to hold before +++ is introduced  in checking the predi- 
cates and  the corresponding function valuefk(x1, ..., x,) 
# #. In this casef(xl, ..., x,) = fk(xl, ..., x,). Another 
notation  for f will be 

l ( x 1 ,  ..., x,> if ~ 1 ;  

k ( x 1 ,  ..., x,) if . 

f ( x 1 ,  ..., x,) = . 

Note that ' ( f k ( x 1 ,  ..., x,) if Pk" in this notation abbreviates 
"fk(x1, ..., x,) if Pk and not P I ,  ..., and  not Pk-1.'' 

2. Basic  recursive  function  theory 
Let Z = ( A  U { #), - )  be a  URS. Recall that, for each 
integer n > 0, each element a of A indexes the partial 
function of n variables +an = Ax1 ... x,[axl ... x,]. F,(I) = 

468 {+anla E A } and F(Q = UnFn(I). 
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Let A be a set with at least two elements. Suppose, for 
each n > 0,  F, is a family of partial functions from A" into 
A and F = (JnFn. The following axioms will be shown to 
characterize the families of partial functions on A Corn- 
puted by URS's. 

Axionzs of basic recursivefunction theory (BRm) 

(1) F contains  (for  each x E A )  the constant  functions 
(Czndyl, ..., yn) = x) and  the projection functions 

(2) (3qE F4) ( v a ,  6 ,  c,  x E A )  [*(a, 6 ,  c,  x) = b i f x  = a; 

(3) F is closed under composition. 
(4) (Enumeration) For each integer rn > 0, (3@m E Fm+l) 

[F,  = xxl ... x,[@,(x, xl, ..., x,)llx E A } I ;  and 
( 5 )  (S-m-n) for  each m, n > 0, (3Snm E Fm+d c d x ,  X I ,  ..., 

X,, y l ,  ..., yn E A )  [&,(X, xl, ..., x,) is defined and 
+,(S,,(X, XI, ..., X,), y l ,  ..., ~ n )  = @'m+n(x, X I ,  ..., xrn, 
Y l ,  ... 1 Ynll .  

(U,,(Xl, ..., x,) = x,); 

c,  otherwise]; and 

Theorem 2.1 
If A and Fare  as above, there is some URS Z = (Au { # 1,. ) 
such that F = F(Z) if and only if F satisfies the axioms Of 

BRFT. 

Proof of' Theorem 2.1 

Suppose I = ( A  (J { #} ,  .) is a URS with #, a, and L as in 
Section 1, and F = F(Z). Then 4+4 satisfies (2), +',+' satis- 
fies  (4), ( 5 )  is Corollary 1.2, and (1) and (3) are consequences 
of the General Existence Metatheorem 1.1. 

Suppose F satisfies conditions (1) through (5). Define the 
binary operation . on ( A  u { +++ ) )2  as follows: if a # #, 
b # #, and @&, b) is defined, a .  b = %(a, b); otherwise, 
a .  b = x. Axiom 0 is obviously satisfied. Let +del, a,  b, C, 
x> = *(a, b, C, x). [\k is an element of FA so there is an el in 
A such that, for all a, 6, c,  and x in A ,  @del, a,  b, C, X )  = 

*(a, b, c, x).] Let 

%(en, a, b, c )  = SI (CeL ( a ,  b ,  c )  , U13(a, b, c> , 

@ ~ ( e 3 ,  a, b )  = Sl2(C;, (a ,  6 )  , U12(a, b) , Uzz(a, b ) )  
i ~ l ( e 4 ,  a )  = s1'(c;.(a) , u l ' ( a ) >  . 
Then erabcx [the abbreviation for ((((ei.a).h).c).x)] = 
*(a, b, c, x) and el satisfies Axiom 1.  Let 

@3(al,  b, c, x) = *1(@1(Ul3(b, c ,  x )  , Ch3(b, c,  x)> , 
uZ3(b ,  c,  x )  , ~ 3 * ( b ,  c, x>>) , 

,e= 

e= 

3 3  

U2'(a, b, c )  , Us3(a,  b, 4 )  , 

iPz(a2, 6 ,  C) = s~ ' (C: , (b ,  C) , U12(h, C) , Un2(b, c)) , 
iPI(a3,b) = S 1 ' ( 6 , ( b )  , Ux'(b)) . 
Then a3bc = SlZ(al, 6,  c)  # # for all b and c in A ; and 
a3bcx = bx(cx) for all b, c, and x in A .  
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Since A has more than one element, it  is easy to show 
that a3 # e4. Thus the algebra Z = (AU { % }, . ) is a URS. 

E A }  = Fl(I). Suppose Fn..l(Z) = F,-1 for some n 2 2.  If 
f i s  in F,(Z), f = for some a in A and f(xl, ..., x,) = 

x”)); so, since is in FnP1 and F is  closed under compo- 
sition,fis in F,. If g € F,, g = Ax1 ... xn[@“(b, XI, ..., x,)] 
= + i , n - ~ . b  E F“(Z), for some b E A .  So Fn(I)  = F,; and, 
by induction on n, F(I) = F. X 

NOW F1 = {XXl[@l(x, X J ~ X  E A }  = {hxl[x.xl]lx 

@l(+an-l(~lm(~l, ... ) X , ) ,  ..., ~,“-l(xl, ... ) x,)), Unn 

The following corollaries relating URS’s to  other ap- 
proaches to generalizing the theory of recursive functions 
are stated with, at most, a bare hint toward  proof. 

Corollary 2.2 
(Wagner, Ref. 1) Let B be a subset of the  natural numbers 
N .  There is a URS Z = (N (J { # } , -) such that F(Z) is the 
family of partial B-recursive functions. [Note  that here x. y 
is +zB(y) or { x )  B(y)  (cf. Ref. 5).] 

Corollary 2.3 
Let L be the recursive ordinals. There is a URS Z = ( L  
U { t } , . ) such that F(Z) is the family of partial metare- 
cursive functions. [Axioms (l), (2), and (3) are easy to 
verify using Kripke’s equation calculus (Ref. 6) to charac- 
terize partial metarecursive functions. A slight modification 
of the proof of (4), the Enumeration  Theorem as given  by 
Owings in Ref. 6, allows an easy proof of (3, the S-m-n 
Theorem.] 

Let C(G) represent the functions computable  from the 
family G of base functions and predicates in McCarthy’s 
formulation of computability in  Ref. 2. Let D be the union 
of the  domains of all the functions of C(G). Let Cp(G) be 
the predicates computable from G. 

Corollary 2.4 
There is a URS, Z = (D U { t 1 ,  - )  such that F(Z) = C(G) 
if and only if Cp(G) contains eq, the predicate for equality 
on D, and C(G) contains a partial function @ of two varia- 
bles such that, for all partial  functionsf: Dm -+ D in C(C), 
there is an x E D such that,  for all XI, ..., xm E D, @(@( ... 
@(@(x, xl), x ~ )  ..., xm-l) is  defined and @(@( ... @(@(x, XI), 

X d  ..., xm-d, x,) = f(X1, ..., xm). 
Given, for example, the X-scheme for naming the func- 

tions of C(C), if all the names for  functions of C(G) are in 
D, Cy(C) contains eq, and C(G)contains @ such that @(f, x) 
= Axl ... xm-l [ , f (x ,  XI, ..., xm-l)] when f names a partial 

function from D m  into D, then C(C) satisfies the axioms of 
BRFT. 

Corollary 2.5 
If F satisfies the axioms of BRFT with enumerating func- 
tions @I, then F = C({eq, @ I } ) .  

3. Results of basic  recursive  function  theory in URS’s 
In this section notions  analogous to those of “recursive 
set” and “recursively enumerable set” will be explored. Let 
Z = ( A  (J { # } , - ) be a URS.  A subset B of A is computable 
in I if there are elements 6, c, and d such that c # d and, 
for each x, x E B implies bx = c and x E A - B implies 
bx = d, i.e., if a characteristic function of B is in F(Z). This 
notion  (due to Wagner) seems to be the only reasonable 
analogue for “recursive”; however, there are several 
choices open  for  an analogue lo “recursively enumerable,” 
including Wagner’s “semicomputable.” 

A subset B of A is semicomputable (sc) in Z if there are 
elements b and c such that,  for each x, x E B implies bx 
= c and x E A - B implies bx = #, i.e., if a “semicharac- 

teristic” function of B is in F(Z). 
Iff is in Fn(Z), the domain off  is the subset of A“ on 

which it is defined (takes values in A). The range off  is 
defined similarly. Each function f in F(Z) is apartial function 
(with respect to  the domain A).  Iff is defined on each ele- 
ment of A”, then f is said to be a total function. The word 
partial will be used to emphasize the  fact that a function f 
may not be total. It is easy to show that B is sc if and only 
if it is the  domain of a function  in Fl(Z). 

Wagner7 considered several other possible analogues in- 
cluding “range of a  partial  function  in F(Z)” and “empty or 
range of a  total  function  in F(Z).” He  has shown that a sc 
set need not be the range of a total function  in F(Z) al- 
though each sc set is the range of a partial function in F(Z). 
His Theorem 6.7  of Ref. 7 shows that a sc set with  sc com- 
plements need not be computable. In Ref. 8 an example is 
given of a URS Z such that  the range of every total function 
in F(Z) is either finite or co-finite (the complement of a 
finite set). It is easy to show that  the intersection of sc sets 
is  sc and  that restrictions of computable functions to sc sets 
are computable functions. 

Another  notion similar to “recursively enumerable,” but 
not discussed by Wagner in  this context, is the notion of a 
splinter (Wagner’s “successor set”). Let Z = ( A  U { *), e )  

be a URS. The subset B of A is a splinter (of Z) if there are 
elements s and x in A such that B = (x, sx, s(sx), ...}. Note 
that B may be finite but does not contain since it is a 
subset of A.  

The notation d0)x for x, s(’)x for sx, and dnfl)x for 
&(“)X) for each n 2 1 will be useful; { s(”)x} will represent 
the splinter {x, sx, s(sx), ...}. Every splinter is countable; 
so, since there are URS’s of every cardinality (Ref. 7), sc 
sets need not be splinters and ranges of partial or  total 
functions in F(Z) need not be splinters. 

The following questions are open: 
(1) Must every range of a partial  function  in F(Z) be sc? 
(2) Must every range of a total function in F(Z) be sc? 
(3) Must every splinter be sc? 

Wagner’ has shown that  the existence of two distinct, 
non-# elements in the domain of a URS (guaranteed by 469 
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CY f \L in the axioms of this  paper) implies the existence of 
infinite splinters, e.g., (/3(“)/3} and { ( ~ c Y ) ( ~ ) L } .  

Theorem 3. I 
(Wagner’s Theorem 4.5 of Ref. 1) Let S = {dn)o} be an 
infinite splinter in the  URS Z = ( A  (J # }, . ). Let g be any 
recursive function of m variables (on natural numbers). 
There is a function ,f in F,(Z) such that, for all natural 
numbers nl,  ..., nm,f(s(nl)o, ..., s(,,)o) = * . , . * n m ) ) ~ .  If 
S is computable, g may be any partial recursive function. 

Prooj of Theorem 3. I 
(For a complete proof see Section 4 of Ref. 1. What follows 
is only an outline of that work and  an indication of how it 
can be translated into  the notation of this paper.) 

It suffices to show that the restrictions of functions in 
F(Z) to S form a family of functions closed under composi- 
tion, primitive recursion, and minimalization of “regular” 
functions. (The last sentence of Theorem 3.1 will be a 
Corollary of Theorem 3.2.) 

Closure  under composition follows immediately from 
1.1 (see also the example on composition after the  proof of 
1.1). The other two properties are results of Theorem 1.5 
and Corollary 1.6 (Recursion and Minimalization) and 
will be proved here. 

Suppose g is an element of Fn(Z) with index b [Le., bxl ... 
x ,  = g(xl, ..., x,)] andfis  an element of Fn+2(Z) with index 
a. The restriction of h in Fn+l(Z) to S is obtained from  the 
restrictions of , f  and g to S by primitive recursion if, for all 
xlr  ..., xn, and y in S, h(xl, ..., X,, 0) = g(x1, ..., x,)  and 
h(x1, ..., xn,  sy) = A x l ,  ..., xn,   y ,   h(x l ,  ..., X , ,  y ) ) .  Let p be 
an element of A such that,  for all x and y in A ,  pxy = o if 
sy = x and pxy = so if sy # x and sy # #. Let c be an 
element of A such that,  for all d, X I ,  ..., xn,  and x in A ,  
cdxl ... x,x = bxl ... xn,  if x = 0; and cdxl ... xnx = ax1 
... x,(pos(px))  (dxl ... x,(pos(px))) if x # 0, #. (Recall that 
p is the index defined in 1.6.) Then +c is an index for a 
function satisfying the requirements for h where 4 is the 
index defined in 1.5 so that [c(&)] = [&I. 

Iff E F,+dZ) so that (b’xl, ..., xn E S) C3x E S) [ f (x l ,  
..., x n ,   x )  = 01 (Le., iff is regular) and a is an index forf, 
then an index for  the minimalization off is b such that 
bXl ... xn = pos(ax1 ... x,). H 

Wagner noted that  the method of proof of 1.6 did not 
allow the value of posp to be determined if p were defined 
but did not  take  the value o on S = ( s ( ” ) o } .  If 3.1 were to 
hold for partial functions, this value should be t. Then the 
above proof would provide minimalization of “total” 
functions (total on S). Wagner showed that this could be 
done if S were computable. An example of a URS with no 
computable infinite splinter is  given in Ref. 8. 

The next theorem is a strengthening of Wagner’s result 
470 (3.1 here). 

Theorem 3.2 
Let S = { s(”)o 1 be any sc infinite splinter and let g be any 
partial recursive function of m variables. Then there is a 
function ,f in F,(Z) such  that,  for all natural  numbers 01, 

..., n,, if g(n1, ..., n,) is defined, f(dn1)o, ..., scn,)o) = 

s ( ~ ( ~ ~ * ~ . . ~ ~ ~ ) ) o  andif g(n1, ..., n,) is undefined,f(s(“l)o, ..., 
s(nm)o) = t. 

Proof of Theorem 3.2 
Let d be such that,  for all a, p,  and x ,  dapx = x if px = a ;  
#, otherwise. Let c be such that cx # % if and only if x is 
in S. Let p’ be such that p’asp = dap(a/3c(pasp)). Then 
p’osp f # only if p‘osp is in S and p(p‘osp) = 0. The 
method of proof of 3.1 now suffices for 3.2. X 

If every splinter were sc (or if each URS contained a sc 
splinter, see 3.11), then each URS would contain the partial 
recursive functions  in  the sense of 3.2. If non-sc splinters 
exist, then another interesting candidate  for the role of 
analogue to the recursively enumerable sets would be the 
collection of unions of sc (or computable) sets and splinters. 

Because there are URS’s with sc, co-sc sets which are not 
computable, it is necessary to consider a special class of 
URS’s in  order to  obtain some of the more interesting 
results of RFT. If the only axioms added  to 0, 1, and 2 are 
axioms satisfied by the partial recursive functions, then  the 
theory is still in some sense a generalized theory of re- 
cursive functions. 

A URS is said to be well-ordered if it satisfies Axiom 3: 

3. ( lS)(Vx,  Y ) [ X ( 6 X )  = % 3 XY = # I .  
Wagnerg gives a “choice function” axiom: 

(jc)(b’a, b, x)[(cab = # 3 hx # a )  
& (cab # # 3 b(cah) = a)] . 

It is easy to see that a URS is well-ordered if and only if it 
“has a choice function.” In  the above axioms 6 can be 
chosen so that 6x = C X ( C Y ( / ~ @ ( X ) > X ) ;  and, conversely, c can 
be chosen so that cab = 6(qab), where qabx = a if bx = a ;  
#, otherwise. 

Lemma 3.3 
In any well-ordered URS there is a K such that Kpqx is in 
( p x ,   q x }  and, if KpqX = #, then px = qx = #. 

Wagner calls any URS with such a K “cohesive.” He 
has shown that, in the presence of such a K ,  sc, co-sc sets 
are computable. 

Proof of Lemma 3.3 
Let t be such that tpqxy = y x  if x is in ( p ,  q }  ; t, other- 
wise. Then if 6(tpqx) = #, px = qx = #; and, in any 
case, S(tpqx> is in { p ,  q, #} .  Let K be such that Kpqx = 

6(tpqx)x. Then K satisfies the requirements of 3.3. K 
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Theorem 3.4 
Let I = ( A  0 { t }, .) be a well-ordered URS  and let B 
be a sc, co-sc subset of A .  Then B is computable. 

Theorem 3.4 (together with Theorem 6.7 et seq. of Ref. 
7) answers negatively Wagner's question about whether 
every URS "has a choice function." However, the partial 
recursive functions [any URS I = (M U { t 1, .) such 
that F(Z) is the  partial recursive functions] are well-ordered 
(see  Kleene's Theorem of the Indefinite Description5). 

The following results about splinters hold in  any URS, 
but will be applied in particular to well-ordered URS's. 

Lemma 3.5 
Let Z be any  URS. Let P(x1, ..., x,) be any computable 
predicate. There is a functionf E Fn+l(I) such that f(s, a, 
. x l r  ..., xnP1) = the "least" y in { s ( " ) u }  such that P(x1, ..., 
xn-l, y )  if there is such a y .  

The predicate P(xl ,  ..., x,) is computable (cf. the dis- 
cussion following 1.6) if and only if there is a total function 
g E F,(Z) such that g(x1, ..., x,) = 9 if and only if P(x1, 
..., xn). The notation  for f will be f(s, a, X I ,  ..., xn-l) = 
p y  E { ~ ( ~ ) a ) [ P ( x ~ ,  ..., ~ ~ - 1 ,  y)]. There should be no con- 
fusion between this use of p and  the constant p of 1.6. 

Proof of Lemma 3.5 
Let uaxl ... x,, = a if P(xl ,  ..., xn) ;  +a$aa, otherwise. Let 
bsaxl ... xnPl = pas(uax1 ... ~ ~ - 1 ) .  Then b is an index of 
the desired function. X 

Note that py E ( s (n)a) [P(x l ,  ..., xn-l, y)]  need not be 
X even though  there is no such "least" y.  This notation 
will be used even  when P(x1, ..., x,) is not  computable if 
instead there is a function g E F,(Z) such that CJxl, ..., 
xnPl )  (3y E {s(" )a) )  [g(xl,  ..., x,-1, y )  is defined] and g is 
a "semicharacteristic" function for P. 

Lemma 3.6 
Let I be any  URS. Iff E Fl(Z) and S is a splinter in  the 
domain off, then j ( S )  is also a splinter. 

Proof' of Lemma 3.6 
Let S = ( s W z }  and let u be an index off. Let vrrbxz = a 
if 0 = z ;  9, if b = x # z ;  rt(tb)xz, otherwise. Let wtx 
= u(py E S[qbt(ua)x(uy) = 91). If f(S) is infinite, then 

f(S) = {(+w)(")(uu)} and all finite sets are splinters. X 

Lemma 3.7 
Let Z be any URS  and let S and T be infinite splinters. 
There is an f E Fl(I) such that S is in the domain off  and f 
restricted to S is one-to-one and  onto T .  

Proof of Lemma 3.7 
Let w be such that wcasbtx = b if x = a ;  c(sa)s(tb)tx, 
otherwise. Let u = &vasbt (4 as in 1.5). Then u(s(")a) = 

t(")b for all natural numbers n such that dn)u # t and 
t(n)b # *. X 

Note that +w above is an index of a function g E F4(Z) 
such that, if {$(")a}  and { t (n)b)  are infinite, g(a,s,  6,  1 )  is 
the index of an "isomorphism" between them. 

Theorem 3.8 
If S and Tare splinters, then  their union is a splinter. 

Proof of Theorem 3.8 
The union of any finite set and a splinter is obviously a 
splinter (see  1.7). Assume S = {dn)u} and T = { t(")b} 
are infinite. The proof will  use a  combination of 3.6, 
(methods similar to those of) 3.7, and  the pairing function 
with index Iu, introduced by Wagner.' 

Let w be such that wx1xzx3x9c5x = #+xa~j if x = Mxzx3; 
x ~ x ~ x ~ ( x ~ x z ) x 3 x ,  otherwise. Let W = { (@vasbr)(")($+zs)}. 
Then W = ($l//xslx E S} U {Wxt lx  E T } .  Let e be 
such that ex = x+. Then e is an index of a function  in Fl(Z) 
such that f (  W )  = S U T and W is contained in the domain 
off. Since W is a splinter, S U T must be a splinter by 
3.6. X 

Lemma 3.9 
If S is a splinter, then { w x y l x ,  y E S )  is a splinter. 

Proof of Lemma 3.9 
Let S = { s ( " ) n }  be a splinter. If S is finite the Lemma is 
obvious. Assume S is infinite. There are recursive functions 
f and g on  the natural  numbers N such that ('IJnl, nz E M) 
(3m E N)l f (m)  = nl and g(m) = nz] (for instance, take f 
and g to be the inverses of one of the  standard pairing 
functions). Hence by  3.1 there are elements q and r such 
that CJnl, n2 E N )  (3m E N )  [q(s(")a) = s("1)a and r(dm)a)  
= s("2)aI. Let u be such that ux = M(qx)(rx). Then u is 
the index of a  function h such that S is in the domain of h 
and h(S) = {Mxy lx ,  y E S ) .  X( 

Theorem 3.10 
If S and  Tare splinters, then  their intersection is a splinter. 

Proof of Theorem 3.10 
If S n T is finite, then it is a splinter. Assume S n T is 
infinite. Let W be the splinter {+$xslx E S }  U { M x t l x  
E T )  as  in 3.8 (where S = {s(,)a] and T = { t ( n ) b } ) .  
Note  that s # t is not assumed. Let e be such that ex = x$ 
and a be such that ax = xa. 

By  3.9 the set V = {$+xylx, y E W )  is an infinite 
splinter. Let V = { v(")d} .  Let u be such that ux = e(e(py 
E { d n ) x )  [e(ey) = e(ay) & a(ey) = s & a(ay) = t])). 
Then u is the index of a functionf E Fl(I) such that V is 
in the domain off  andf(V) = S T. X 471 
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Theorem 3. I I 
If S and T are infinite splinters and S is sc, then T is x. 

Proof of Theorem  3. I I 
If S is  sc, Lemma 3.7 provides f and g in Fl(I) with S = 
domain.f, T C domain g, and x E T if and only iff(g(x)) 
= x. H 

The next theorem states that a URS is well-ordered if 
and only if it "contains" a uniform procedure for finding 
an infinite splinter in  each infinite set. Hence to show that 
a URS is not well-ordered, it is sufficient to exhibit an 
infinite sc set which contains no infinite splinter. 

Theorem 3.12 
Let I be a URS.  Then I is well-ordered if and only if there 
are functions ,f and g in Fl(I) such that { cf(u))(")(g(u))} is 
contained in { xlux # # ) and infinite if { xlux # # } is 
infinite. 

Prooj c f  Theorem 3.12 
3 

Suppose I is well-ordered and u(6u) = +# implies ux = # 
for all x. Let t be such that tu # # for all u and tux = ux 
if x # 6u; %, otherwise. Then if {x[ ux # % 1 is infinite, 
{ I(~)U ) is an infinite splinter and { 6y(y E { t%) ] is an 
infinite splinter and a subset of { xiux # %). To make  this 
construction uniform, let v be (a term involving only 6, CY, 
and I,$) such that vux = py E { t(")u)[6y = x]; and let s 

be such that sux = S(t(vx)). Note that su(611) = 6(tu), 
S U ( ~ ( ~ U ) )  = 6(t(tu)), ..., su(6(t(")u)) = 6(t@+l)u), etc. Thus 
s and 6 are indices for the desired functions f and g re- 
spectively. 

Suppose Fl(Z) contains functions f and g as described 
above. Let 6 be an index of g. Then 6 satisfies Axiom 3. E 

The existence of a non-well-ordered URS  in which every 
infinite sc set contains an infinite splinter is still open. 

LetZ= ( A U { % } ,  -)beaURS.AsubsetCofAissaid 
to be closed if (vx, y ) [ x  E C & [x] = [yl =+ y E Cl. 
(Recall that [u] = {(x, y)jux = y )  is the graph of  the 
function indexed by u.) Let 5,  <, etc., be the relations 
induced on A by the relations c, c, etc., on { [xllx E A ) . 
The closure of a set C will be { x I ( ] y )  [ y  E C & [x] = [y]] 1. 
Wagner' has shown that the closure of { x )  is infinite for 
each x E A. For well-ordered URS's this will be a corollary 
of the following partial  analogue of the Rice-Myhill- 
Shapiro T h e ~ r e m . ~  

Theorem 3.13 
Let Z = ( A  U { % } , . ) be a well-ordered URS  and let C 
be a closed  sc subset of A .  Then x E C and y > x =+ y E C. 

Proof  of Theorem 3.13 
472 The proof will depend on  the fact (due to Wagner) that 

{x lxx  = # )  is not sc (if vx = # * xx # #, then vv = # 
H vv # %, a contradiction). Suppose C is closed and sc, 
x E C, y > x, and y e C. Let p be such that pzw = 

&(zz)w. Let q be such that qzw = xw. Let r be such that 
rzw = K(PZ) (qz) w ( K  as in 3.3) and rz # *. Then rzw = yw 
if z z  # t or xw # %; %, otherwise. So [rz] = [x] w zz 
= # H rz E C ;  and { z / zz  = % ]  must be  sc since C is sc, 

which is a contradiction. Hence x E C and y > x 3 y E 
c. H 

Corollary 3.14 
If I = ( A  U { # ) , ) is a well-ordered URS  and C is a 
closed computable subset of A ,  then C = or C = A .  

Proof  of Corollary 3.14 
If C is closed and sc, then 0 E C * C = A since each y E 
A is 2 0. But 0 E C or 0 E A - C and C is closed and 
computable if and only if A - C is closed and  computable. 
x 

Corollary 3.15 
In a well-ordered URS, the closure of a finite set is not sc 
and hence it must be infinite and co-infinite. 

4. Pairing  functions 
Pairing functions for URS's have already been heavily 
used in Section 3. By means of a pairing function, the 
necessary and sufficient conditions given  in Section 2 for a 
family of partial functions F to be F(I)  for some URS I can 
be translated into a set of requirements for F1 alone. 

These requirements can refer to the pairing function by 
means of its inverses: partial functions K and L from A into 
A are inverses of a pairing function P from A X A into A 
if K and L are defined on  the range of P and,  for each x 
and y in A,   K(P(x ,  y) )  = x and L(P(x, y ) )  = y. If I = 
( A u  { # ), .) is a URS, then the function P with index +I) 
is a pairing function in F?(Z) and inverses for  it  are the 
functions K,  such that K(x)  = x.#, and L, such that L(x) 

Wagner has shown that if two URS's have the same 
one-ary functions then they have the same functions for 
any number of variables. His  proof depends on the use  of 
the pairing function with index I,$# present in  each  URS. 
Another proof (depending indirectly on  the same pairing 
function) will be given after the analogue to Theorem 2.1 
which follows. For the rest of this section A is assumed to 
be a set with at least two distinct elements. 

= X'ff. 

Theorem 4.1 
Let Fl be a family of partial functions from A into A .  There 
is some URS I = (AU { # ) , . ) such that FI = Fl(I) if and 
only if Fl satisfies the following conditions: 

(1) FI contains the constant functions [C,(y) = x], the 
identity function [ U(x) = x], and the inverses K and 15 
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of a pairing function P (a one-to-one function  from 
A X A into A )  such that for  each f and g E F1, 
MP(f (x ) ,  Ax))] E FI ; 

(2) (3*1 E Fd a, b, C, d E A )  [*dP(P(P(a, b), c), 4) = 
b, if x = a ;  c, otherwise]; 

(3) F1 is  closed under composition; 

(4) (Enumeration-1) (3 @ E F I )  [Fl = (Xyy[@(P(x, y))]lx 
E All;  and 

(5) (S-1-1) (3 S E F1) ( v u ,  6, c E A )  [S(a) is  defined and 
@(P(S(P(a, b)), c)) = @.(P(a, P(b, c)>>l. 

Proof of Theorem 4.1 
The proof  can be given directly or by application of 
Theorem 2.1. Since the application of 2.1 exposes the 
important relationship between the pairing function P 
and  the functions of many variables it is given here. 

If Fl = Fl(Z) for some URS I ,  then (1) through (5) are 
consequences of Theorem 1.1 where P is the function with 
index +$. 

Suppose Fl satisfies (1) through (5) above. Define Pn+l(xl, 
..., = P(P,(xl, ..., X,), xn+d for each n 2 2 (Pz = P). 
L e t F z = F l o P = ( f o P l f E F 1 } , F , = F I O P , f o r  
n > 2, and F = U n F ,  (where 0 indicates composition). 

It is easy to show that (1) and (2) of  4.1 imply (1) and 
(2) of 2.1 (BRFT) for F;  so (3), (4), and (5) of 2.1 will be 
shown here. 

Suppose f, gl, ..., g, are in F1 so that f 0 P, is in F,, 
gl o P, is in F,, ..., and g, 0 P, is in F,. Then Xx[P(gl(x), 
~dx)) l  E F1, MP(f'(gl(x), gz(x)>, gdx))I E F1, etc.; SO 

Ax[P,(gl(x), ..., grn(x))l E F1; and finally, Mf(Prn(gl(x), 
..., g,(x>))] E Fl so the composition of f 0 P,, with 
gl 0 P,, ..., g, 0 P, is in F,. Thus F is closed under 
composition. 

Iff E Fl then ,f(y) = @(P(a, y ) )  for some a E A ; and 
f'(P,(xl, ..., x,)) = @(P(a, P,(x1, ..., x,))). For each In 
2 2, let gm(x) be constructed from K,  L,  and P so that 
g ,  E F1 and gm(Pm+l(x, XI, ..., x,)) = P(x, P,(xl, ..., x,)). 

.x1, ..., X,))) and @ o g ,  E Fl. Let gl be the identity. Then 

and a, = @ 0 g ,  0 P,+l E F,+l for each m > 0. 

so that f, E F1 and f,(P(z, P&l, ..., y,)N = P,+dz, ~ 1 ,  

..., y,). Then fn(P(Pm+l(x, XI, ..., X,), P,(YI, ..., Y~>)> 
P,+,+l(x, x1, ..., y,); and for each m and n > 0, @ 0 gm+TL 
0 f, E F1. Let anm be an element of A such that 
@(gm+,Cfn(x))) = @(P(anm, x)). The function Xx[S(P(u,", 
.x))] is in F l ;  so the function S," = Xxxl ... xm[S(P(anm, 
P,+l(x, ..., x,)))] is in F,+L Now @&Snrn(x, XI, ..., xm), 

==$ 

e= 

Iff = Xy[@(P(a,  y))l, thenf(P,(xl, ..., X,,>) = @.(gm(Pm+l(at 

Fm = {Ax1 ... X,[(@ 0 g m  0 Pm+d ( X ,  XI, ...) xrn)llx E A I 
For each n > 0 let fn be constructed from K, L,  and P 

Yl, ..., y,) = @(P(S(P(a,", Pm+l(X, ..., x,))),  PTdYl, .'., 
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~n))) = @P(P(anm, ~ ( P ~ + I ( x ,  XI, x,), Pn(y1, ...) ~n)))) = 
@,+,(x, xl, ..., X,, yl, ..., y,); and S," satisfies the S-m-n 
requirement of  2.1. X 

Corollary 4.2 
If I is a URS then  there is a pairing function P in F2(I) such 
that, for  each  m 2 2, F,(Z) = F@) 0 P, and P has in- 
verses in Fl(Z). 

The proof of 4.1 depends on the existence of a "standard" 
pairing function in each URS. The pairing function re- 
quired in the conditions for Fl to be Fl(I) of some URS I 
was any arbitrary  one-to-one function from A X A into A 
with inverses in Fl satisfying the rest of the somewhat arbi- 
trary properties (1) through (5). The following lemmas are 
intended to provide a definition for P in  terms of Fl(I) alone 
so that  the class of pairing functions satisfying the definition 
is uniquely determined by Fl(Z) and, if P and P' are two 
members of this class, Fl(Z) 0 P, = Fl(Z) 0 P,' for all 
m 2 2. 

Let Z = ( A  U {+e}, .) be a URS. Consider the collec- 
tion of pairs of functions (K, L )  (with the same domain) 
that  are inverses of pairing functions on A. Since I has the 
standard pairing function, the intersection 6 of this collec- 
tion with Fl(Z) X Fl(Z) is not empty. 

Note that if P is the  standard pairing function,  the usual 
inverses.f(x) = x .  + and g(x) = x .  or do  not have the same 
domains, so (f, g )  is not in 6. However, the intersection of 
sc sets is  sc and  the restriction of any  function in F1(Z) to a 
sc set is a function in Fl(Z). So if K is the restriction off and 
L is the restriction of g to the intersection of the  domain of 
f with the domain of g, then (K, L )  is a  pair of inverses for 
P and is in 6. 

Define (K1, L1) 5 (Kz, L 2 )  if there is an ,f in Fl(I) such 
that K1 = Kz o f and L1 = L2 0 , j :  Define (K1, L l )  = 
(Kz, Lz)  if (Kl ,  L1) < (Kz, Lz)  and (Kz,  Lz) 5 (K1, L I ) .  It 
is easy to check that = is an equivalence relation on 6. Let 
M be the set of pairs in 6 that  are inverses of some pairing 
function in F2(Z). Then M is not empty. 

Lemma 4.3 
The set M is the maximum class with respect to the  order- 
ing induced by < on the = classes of 6. 

Proof of Lemma 4.3 
Suppose (K, L )  E M is a pair of inverses for P E Fz(I). 
Let (Kl, L1) be any  pair  in 6. Then  for each x E A ,  Kl(x)  
= K(P(Kdx), Ldx))) and  Ldx) = L(P(Kdx), Ldx)));  and 
Xx[P(Kl(x), Ll(x))l is in Fl(Z) so (KI, L1) I (K, L). L e t  
(Kz, Lz)  be a  pair in 6 such that (K, L )  5 (Kz, Lz)  via f in 
Fl(Z): K = Kz o f, L = L2 o f .  Then f 0 P i s  in FZQ and, 
for each x and y in A ,  Kz(f(P(x, y)))  = x and Lz(f(P(x, y)))  
= y ;  so (Kz,  Lz) is in M.  [Note  that if I and J are 473 
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URS’s, Fl(Z) = Fl(J), and P is a pairing function in Fz(Z) 
with inverses in Fl(Z), then, by 4.3, P is in Fz(J) since the set 
M is uniquely determined by Fl(I) = Fl(J).] IX 

Let Q be the set of pairing functions on A with inverses 
in 6. Define Pa 5 Pb if there is an f in Fl(Z) such that Pa = 

f 3 Pb; and Pa = Pb if Pa 5 Pb and Pb 5 Pa. Let R = 

Q n m .  

Lemma 4.4 
The set R is the minimum class with respect to  the ordering 
induced by 5 on  the classes of Q. 

Proof of Lemma 4.4 
Suppose P E R has inverses (K,  L )  E M. Let Pa be any 
pairing function  in Q with inverses (Ka, La)  in 6. Then (Ka, 
L a )  5 (K, L )  via f = Xx[P(K,(x),  La(x))]; and P = f 0 Pa 
SOP 5 Pa. If Pb E Q and Pb = g 0 P with g E Fl(Z), then 
Pb E F*(Z); SO Pb E R. X 

Lemma 4.5 
If P E R, then for each m 2 2, Fm(Z) = Fl(Z) 0 P,. 

Proof of Lemma 4.5 
The standard pairing function is in R and  has  the desired 
property (see 4.2). If P and Q are  in Q and P = f 0 Q, 
then,  for  each m 2 2, there is a function f ,  constructed 
fromf  and  the inverses for Q such that P,  = f, 0 em. If 
F,(Z) = R(Z) o Pm, then F,(Z) E Fl(Z) 0 Q,. If Fm(Z) = 
Fl(Z) o Qm,  then Fl(Z) o P ,  Fm(Z). Since each pairing 
function in R is equivalent ( 3 )  to  the standard pairing 
function, F,(Z) = Fl(Z) o P, for each P in R. X 

Implicit in 4.5  is the  fact  that each F,(Z) is uniquely de- 
termined by Fl(Z). 

Corollary 4.6 
(Wagner1) If Z and J are URS’s and Fl(Z) = B ( J )  then F(Z) 
= F(J). 

The next results are analogous to the work of Rogers1’ 
and  the terminology follows that of this reference. 

The map a from A onto F&) given by a(x) = 4% = 
Xy[x.  y] is called the standard numbering for  the  URS Z = 
( A  U { * 1, - ). A numbering (for Z) will be any map  from A 
into Fl(Z). The function @ L 2  in Fz(Z) has  the property that 
~ ( x )  = Xy[~$,~(x,  y)]. A numbering p is said to be semi- 
effective if there is a function h in F2(Z) such that p(x) = 
Xy[h(x,  y)]. Thus a numbering p is  semi-effective if and only 
if there is a function f in Fl(Z) and a pairing function P in 
R (see 4.4) such that p(x) = Xy[ f(P(x,   y))].  If one particular 
pairing function P in R is  fixed, there is a map  from FdZ) 
onto  the class of semi-effective numberings for Z given  by 
(ra = X X [ X Y I N J ( X ,  Y))II .  

Define (on the class of  semi-effective numberings) p 5 u 
if there is an f in Fl(Z) such that p = u 0 f .  Define p 3 u if 
p 5 u and u 5 p. Let II be the equivalence class of num- 
berings containing the  standard numbering a; II is called 
the class of fully  effective numberings for 1. 

Lemma 4.7 
The set II is the maximum class with respect to  the ordering 
induced by 5 on  the = classes of semi-effective number- 
ings. 

Proof of Lemma 4.7 
Suppose p = I?( f )  is a semi-effective numbering for I .  Let 
.f = @a and P = @ p 2 .  Then, if b E A such that b . x  = a@a) 
(px), p = a o @band p 5 a. X 

Let p E II and define x ! y  = (p(x)) ( y ) ;  (#! x = x!* = 

*!* = *). 

Lemma 4.8 
J =  (AU {# ) ,  !)isaURSandF(Z) = F(J). 

Proof of Lemma 4.8 
For a proof of Lemma 4.8  see the proof of Wagner’s 
Theorem 3.7 in  Ref. 4. (Lemma 4.8 is a generalization of 
this theorem in which the notion of fully effective number- 
ing is isolated. Similarly Lemma 4.9 is a restatement of 
Wagner’s Theorem 3.6.) 

Lemma 4.9 
(Wagner4) If J is a URS  and F(J), = F(Z), then the class of 
fully effective numberings for J is the class II of fully ef- 
fective numberings for Z; and, hence, the standard number- 
ing for J is in II. 

Proof of Lemma 4.9 
By  4.7 the class of fully effective numberings for J is 
uniquely determined by Fl(J) = Fl(Z); so it must be IT. IX 

The next theorem summarizes the results in Lemmas 4.7 
4.8, and 4.9. 

Theorem 4.10 
Let Z be a URS.  The set of standard numberings for URS’s 
J such that F(J) = F(Z) is the set of fully effective number- 
ings for I .  

Corollary 4.11 
(Wagner4) The standard numbering for any URS Z with 
F(Z) = the partial recursive functions is a fully effective 
numbering (or Godel numbering) in  the sense of Rogers.” 
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Summary 
Uniformly Reflexive Structures (URS’s) provide a general- 
ized theory of computability which is independent of any 
particular domain.  The generalization is a concise, finitely- 
axiomatized, first-order theory (with equality) with models 
that can be studied equally well as algebras and  as collec- 
tions of functions. 

The algebra is similar to combinatory logic derived from 
the work of Schonfinkel.”J2 The algebraically-oriented 
notation makes possible very  brief statements of proofs. It 
also emphasizes the algebraic structure of the proofs of 
such theorems as  the Recursion Theorem and  the  part of 
the Rice-Myhill-Shapiro Theorem numbered 3.13 here. 

In Section 2 a kind of equivalence was demonstrated be- 
tween a characterization of families of functions [Basic Re- 
cursive Function  Theory (BRFT)] and  the theory of URS’s. 
In one direction the equivalence provided the tie between 
URS’s and the other approaches to a generalized theory of 
computability mentioned in Section 2 (which are concerned 
with classes of functions). In the  other direction, the equiv- 
alence made possible the study of what parts of RFT follow 
from  the axioms of BRFT by means of the study of the 
algebras which are models of the theory of URS’s. 

The theory can be shown to be undecidable by means of 
a weak representation of the  partial recursive functions. In 
spite of the fact that  the question, “Does every URS have 
an infinite semicomputable splinter?,” is still open (so that 
3.2 cannot be applied), it can be shown that, for each 
partial recursive function h, there is a  term h and,  for each 
natural  number n, there is a  term f i  (dn)o for suitable s and 
o), such that h.fi = f i  is a theorem whenever h(n) = m. If 
the theory were decidable, then the  function, 

f(n) = { 1 , if h .  ii = 0 is a theorem, 

0 ,  otherwise, 

would be recursive, where h represents the  function h(n) = 

&(n). The  functionfwould then be &,, for  some m, so that 
~ $ ~ ( m )  = 1 if and only if &(m) = 0. 

In Section 4 the work of Rogers on numberings of 
partial recursive functions was generalized to URS’s. A 
one-to-one correspondence was demonstrated between the 
class of URS’s on some fixed domain which compute the 
same functions and  the class of fully effective numberings 
from that domain to  the class of functions (of one variable) 
computed.  This class of fully effective numberings was 
shown to be a maximal class of numberings under  a  natural 

ordering uniquely determined by the class of functions of 
one variable. Thus, for example, there is one  URS for  each 
Godel numbering of the partial recursive functions. 

The study of splinters in URS’s brings into focus those 
places where RFT depends on the existence and computa- 
bility of the successor function. The  author has explored 
the  structures of particular URS’s (especially the families 
of computable sets, semicomputable sets, and splinters): in 
Ref. 8 the Boolean algebras of computable sets of URS’s 
on the  natural  numbers are characterized and a URS with 
no computable splinter is presented. Although the theory 
can be  viewed as studying computation from  the black-box 
point of view, a study of particular models should provide 
information about the  structure of computations. 
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