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Algebraically Generalized Recursive Function Theory”

Abstract: The Uniformly Reflexive Structure (URS) introduced by E. G. Wagner is, for this paper, a nonassociative algebra consisting

of a domain and a binary operation satisfying the following axioms:

0. @*¥XNVa)la-* = %-a= %];

1. (QXNVa, b, e, iy = ¥ &((a = % &b x &c % &d = %)

((a=d&((¥-a)b)c)-d=b)or
(@ # d&((¥-a)-b)-c)-d = c)))]; and

2. Qa)vh, e, dDla # Yy &(b# k &ec# ¥ &d# ¥)—
{a-b)-c = % & ((a-b)-0)-d = (b-d)-(c- D).

Wagner showed that these structures generalize much of Recursive Function Theory (RFT).

In this paper the functions “computed” by a URS are the functions given by left multiplications by elements of the URS. A family
of functions is said to form a URS if it is the family of left multiplications of some URS. Axioms for Basic Recursive Function Theory
are given characterizing those families of functions which form URS’s. The Partial Metarecursive Functions and the Computable Func-

tionals of McCarthy are shown to form URS’s.

An investigation of notions analogous to the “recursively enumerable” notion in RFT shows that if any splinter (‘“‘successor set’)
of a URS is semicomputable, then all are. A partial analogue to the Rice-Myhill-Shapiro Theorem is proved for URS’s satisfying an
axiom corresponding to Kleene's “indefinite description.” Finally, a study of pairing functions leads to work analogous to Rogers’ on

Gdodel numberings and generalizes similar work of Wagner.

Introduction

This paper is an investigation of algebraic structures satis-
fying a set of axioms for a generalized theory of recursive
functions. The axiom system was introduced by Wagner!
who conceived of these structures as pairs, (U, G), such
that U is an “arbitrary infinite domain” and G is a map
from U to a family of functions from U into U. He called
the pairs, (U, G), satisfying the axioms Uniformly Reflexive
Structures (URS’s) and showed that the partial 4-recursive
functions (for any subset 4 of the natural numbers) could
be made to form a URS.

The axioms presented in this paper have been rewritten
so that they are satisfied by nonassociative algebras con-
sisting of a domain, U, and a binary operation, -. The re-
lationship between the binary operation, -, and the index-
ing, G, is u-v = (G(u)) (v); so the set of functions involved
becomes the set of left multiplications of the algebra. Thus
there is a natural one-to-one correspondence between
Wagner’s URS’s and the algebras satisfying the axioms of
this paper. Hence these algebras will be called URS’s.

The author is located at the IBM Thomas J. Watson Research Center, York-
town Heights, New York 10598.

* This paper is based on portions of the author’s doctoral thesis in mathe-
matics, ““An Algebraic Approach through Uniformly Reflexive Structures to
Generalized Recursive Function Theory,” University of Washington, 1967,
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The difference between the axioms presented at the be-
ginning of the next section and those of Ref. 1 is one of
notation (except for the one point discussed after their
presentation). Once the problem is overcome of conceiving
of the notation, x, as representing both an element of a
URS and the function, ¢., denoting multiplication on the
left by this element, the notation shortens several of the
proofs of theorems from Recursive Function Theory
(RFT).

In Section 1 some of the basic results of the theory of
recursive functions are obtained for URS’s, paralleling
those of Ref. 1. In Section 2 necessary and sufficient condi-
tions are given for a family of functions to be associated
with a URS (as the set of left multiplications). These con-
ditions are stated in terms of properties of partial recursive
functions which are more familiar than the “blend” opera-
tion of Wagner’s axioms. They are given in the form of
axioms for Basic Recursive Function Theory (BRFT).

Often in the literature RFT has been informally axi-
omatized by means of the Enumeration and S-m-n proper-
ties (see Section 2). Usually the axioms have described the
Godel numbering while properties of the family of partial
recursive functions, such as closure under composition,
have been taken for granted. Basic RFT combines the usual
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axioms of Godel numberings with a short list of additional
properties of the family of partial recursive functions in an
attempt to axiomatize RFT without explicitly identifying
the domain of the family of functions or postulating a suc-
cessor function which exhausts that domain.

It is convenient to incorporate the property of closure
under “tests for equality with conditional branching” into
the axioms of BRFT in a form paralleling Axiom 1 of the
theory of URS’s. However, BRFT is not a rewriting of the
axioms for a URS. The blend operation and the Enumera-
tion and S-m-n properties are dissimilar in both form and
origin. In various approaches to generalizing RFT, most of
the work has been done to show that the approach satisfies
BRFT. Thus the theorem of Section 2, that BFRT charac-
terizes the families of functions which form URS’s, easily
links such generalizations as the Partial Metarecursive
Functions and the Computable Functionals? with the
theory of URS’s.

Results similar to those of RFT are pursued in the third
section, which ends with a partial analogue to the Rice-
Myhill-Shapiro Theorem.? Section 4 continues exploring
the nature of families of functions forming URS’s. Some
results with particular emphasis on pairing functions are
obtained, similar to those of Wagner* on Godelizations.

Throughout this paper, when not otherwise determined
by context, the following notational conventions have been
observed:

(1) The symbol * denotes a particular distinguished
element of a URS (see next section);

(2) lower case Greek letters (without subscripts) denote
important elements of URS’s which are used in the
same way in every section, e.g., ¥, a, B3, t, i, ¢, 6;

(3) m and n denote natural numbers;

@) £, g, k, j, and k denote functions;

(5) other lower case italic letters denote arbitrary non-%
elements of URS’s and are used as variables;

(6) I and J denote URS’s;

(7) N denotes the natural numbers;

(8) F, G, H, and K denote families of functions;

(9) other capital italic letters denote sets and families of
sets; and

(10) X indicates the end of a proof.

1. Axioms, definitions, and preliminary results
The algebia, I = {4, -), with domain, 4, and binary opera-
tion, -, is a URS if it satisfies the following axioms:

0. @x)XVa)la % = %-a = *];

L AY)Va, b,c,d)ly # x &(as= *x &b = % &e 5 %
&d# *)—>({(a=d&{((y-a)-b)-c)-d=Db)or(a*d
& ((Y-a)-b)-c)-d = c))]; and

2. @aXVb,c, o # ¢ & (b # % &c # % &d = %) -
(a-b)-c # % & ((a-b)-¢)-d = (b-d)-(c- ).

(In order to axiomatize the first-order theory of URS’s
without constants, the three axioms are conjoined into one
with the three initial existential quantifiers moved to the
front.) Note that Axiom 2 is stronger than Wagner’s axiom
tor a since it stipulates a # ¢, providing immediately
two distinct elements of 4 — {3 }. Wagner! has shown that
the existence of at least two distinct elements of 4 — {3}
eliminates all finite models. Conversely, it can be shown
that if « = ¢ replaces @ 5% y in Axiom 2, there must be
exactly one element in 4 — {%}.

In an algebra satisfying Axioms 0, 1, and 2, the element
*# is unique. In the rest of this paper the non-% elements
of a URS, rather than the whole domain, will be named
explicitly: the notation I = (4 {x*}, -) will mean that
the domain of the algebra I is 4 \U {%} and % is not an
element of 4. The binary operation - will, of course, be a
function from (4 U {# D X (AU (kDo 4 U {*].

If e is an element of the URS I = (4 \J {x}, -), then
e is an index of the partial function ¢, from A4 into 4
whose value at x is e-x (¢ is equated with “undefined”’).
The set of those partial functions (of one variable) indexed
by elements of 4 is denoted Fi(I). The element e also
indexes partial functions of several variables: ¢,*: A" ~— 4
is given by ¢.M(x1, ..., X») = ((... (- X1)* X2) <o) " Xn—1)* Xn.

The parentheses quickly get out of hand; so, since the
operation is most often performed from the left, i.e., in the
order (a-b)-c, the expression (a-b)-c is abbreviated abc;
while a-(b:c) is abbreviated a(bc). With the convention
that lower case letters represent elements of the URS not
equal to x, the axioms become:

0. ¥a = ax = %% = *;
bifa =d;
1. ‘p#*&l‘babed—{cifa;éd;
2. a # Y &aab # ¥ & aabe = aclbe).

The set of partial functions of » arguments indexed by
elements of 4 (in the URS 7 = {4 \J { %}, -)) is denoted
F, (D), and

FI1) = U F(1)

is called the family of partial functions computed by 1. Let
N be the natural numbers and let the map n — ¢, be a
Godel numbering of the partial recursive functions of one
variable. Define a-b = ¢4(b) if ¢(b) is defined and let ¥
represent “‘undefined” (% -a = a-% = x). Wagner! has
shown that I = (N U {1, -) is a URS; and, of course,
F() is the family of partial recursive functions. In Section
2 a proof similar to Wagner’s will be used to characterize
the families F(I) of partial functions computed by URS’s.
Following Wagner! two useful constants are singled out
besides « and ¥ in order to prove a general existence meta-
theorem for functions in any URS (i.e., computed by any
URS). Let ¢« = a(ya) ). Then for each a, wa = aq,
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so ¢ indexes the identity function. Let 8 = a(yy).. Then for
each a and b, Bab = a; so for each a, $a indexes the con-
stant function with value a. The next result makes possible
the construction of many useful functions without explic-
itly writing indices as products of « and ¢.

Let {x,} be a collection of variables which range over all
non-% elements. Define a term as follows: «, ¢, and any x;
are terms, and if 1, and ¢, are terms, so is (#1- #2).

Theorem 1.1

(General Existence Metatheorem) For each term #(xy, ...,
X,,), With at most xy, ..., x, as variables, there is a term ¢'(x1,
wesy Xn_1), With at most xi, ..., x,—1 as variables, such that
(Vx1, .oy xn)[t'(xl, vy Xn—1) Z ¥ & t’(xl, ey Xn—1)*Xn =
#(xy, ..., x»)] is a consequence of the axioms for a URS.

Proof of Theorem 1.1

The proof is by induction on the number of parentheses in
Hx1, ..., xn). Its outline follows: x, = v x,; if fo is a term
with no occurrence of x,, tp, = (8- 1) x», also

(11 x0). (13- x2)) = ((a* 1)+ 12) " Xn.

Note that if o, 11, and 1, are not equal to %, then B3¢, and
atity are not equal to . Using these facts, one can easily
construct the desired #(xy, ..., x,—1) and show that, by in-
duction, it is not equal to x. X

It is a good exercise to check that if #(x1, x2) = (((a- @
-x1))-x2)-x)—abbreviated a(x)x:x1—then the (xy)
constructed is abbreviated a(a(a(Ba) (a(ByY) (Bx)))) (Bx1).
In this construction ¥ was replaced by ((8-y)-x2; «, by
(B ) x2); etc.

The following example shows the strength of 1.1 in
exhibiting functions computable in a URS: let ¢.2, ¢, and
¢." be partial functions in F(J) for some URS 7. An index
for the function formed from these functions by composi-
tion (f(x1, ..oy Xn) = G (Ps"(x1, .oy Xn), (X1, ...y X2))) CAND
be obtained by # applications of 1.1: there is a term d, de-
pending only on «, ¥, a, b, and ¢ such that d # % and

dxy ... xn = a(bxy ... xu) (€x1 o Xn) .

Theorem 1.1 is stronger than Theorem 2.11 of Ref. 1
since it contains the result #’(xy, ..., xo—1) ¥ *. Otherwise
these theorems are used in the same way. The notation of
this paper allows a slightly simpler proof. Wagner post-
pones the rest of the strength of 1.1 to the level of the Itera-
tion Theorem, his Theorem 2.15.!

Corollary 1.2

(Iteration or S-m-n Theorem) For all natural numbers
m > 0and n > 1, there is a term S,™ involving only « and
Y such that, for all xg, X1, ..., Xmy V15 cvs Vs Sn™X0 oo X 7 ¥
and S,™xg ... Xm)1 ... ¥n = Xp ... Yo. Moreover, S;™ can be
used for any S,,™.
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Proof of Corollary 1.2

By 1.1 there is a term 7 involving only «, ¢, x, ..., and x,
such that ¢t & * and ty; = xp ... xny1. By m applications of
1.1, there is a term S;™ involving only « and ¢ such that
S17X0 oo Xm = 180 S1™X¢ ... Xm & ¥ and S1™xg ... Yo = Xo
e Vno X

From now on Theorem 1.1 will be used implicitly in
proofs without being mentioned.

Theorem 1.3

(Definition by cases) (cf. 2.12 to 2.14 of Ref. 1) There is an
7 such that gabcdx is cx if bx = a, and nabedx = dx if bx
# gand bx # *.

Proof of Theorem 1.3
Let 7 be such that nabcdx = Yacd(bx)x. Then

cx if bx = a;

d p—tg
nabed.x {dx if bx# ax%. X

The next theorem is an inductively proved generalization
of 1.3. It is more general than, but in the same spirit as,
Wagner’s 2.14.1

Theorem 1.4

For each pair (m, n) of natural numbers > 1, there is a term
7™ involving only @ and y such that, for all ay, ..., ax, b1,
very Dy €Ly ooy €y X1y oeey Xy ™A1 oo Xm—q # % and

C1X1 ooe Xm lf b1X1
C2X1 vee Xm if ng1 vee X = a2 and
b1x1 ... Xm # a1, ¥ ;

Xm = ai,

m —
M A1l eoe Xy =

CaX1 eve Xm I bpxy ... Xm = a, and
b1X1 vee Xm # ai, Ky oeee s
bn_lxl vee Xm Qn—1, %

%, otherwise .

Proof of Theorem 1.4

Let 7™ be such that p1™a1bic1xy ... xm—1 ¥ % and m™a,
e Xm = Yarc10(b1x1 ... Xm)x1 ... Xm. If 7,™ has been con-
structed to satisfy 1.4, let 7.1 be such that 1,141 ... Gni1 ..
Xme1 #Z % and Nnp141 ... Xm = Y101 ™As .. Apit .o Cap1)
(bix1 ... Xm) X1 ... Xn. By induction on n, the proof of 1.3
suffices for 1.4. X

Define [a] = {{x,y)ax = y, x = %,y # %}, the graph
of the function indexed by a. It is easy to construct (see 2.1
of Ref. 1) a 8 2 % such that [6] is the empty set. The next
theorem is a uniform version of Wagner’s 2.16.!

Theorem 1.5
(Uniform Recursion or Fixed Point Theorem) There is a ¢
such that, for each a, ¢pa # * and [¢pa] = [a(¢a)].

467

RECURSIVE FUNCTION THEORY




468

H. R. STRONG

Proof of Theorem 1.5

Let w be such that, for all a, b, and x, wab # % and wabx
= a(bb)x. Let ¢ be such that, for each a, pa = wa(wa).
Then, for each a and x, ¢pa #= * and Pax = wa(wa)x =
alwa(wa))x = a(pa)x. X

Corollary 1.6

(Minimalization) (cf. 4.3 of Ref. 1) There is a u such that,
for all o, s, and p, if there is an element a of the sequence
{o, 50, 5(s0), ...} such that pa = o and, for each b preceding
a in the sequence, pb # % and pb 7 o, then posp = a.

Proof of Corollary 1.6
Let e be such that, for each ¢, w, o, 5, and p,

if pw = o;

w
emwosp = .
1 { if pw s o, k.

t(sw)osp
[A formal construction of e would proceed as follows:
let by, bs, ¢, o, and e be such that bytwosp = pw, batwosp
= o, citwosp = w, catwosp = t(sw)osp, and etwosp =
ns°00b1bscics twosp.] Let u be such that, for each o, s, and p,
posp = ¢eoosp. Then

if po=o;

uosp = e(¢pe)oosp = { if po # o, %;etc. h1g

o
pe(so)osp

A predicate P(xi, ..., x,) with exactly xi, ..., x as free
variables is said to be semicomputable in a URS if there are
elements a and b such that P(xy, ..., x,,) if and only if bx; ...
Xm = a. Let Py, ..., P, be n predicates with xy, ..., x,, as free
variables which are semicomputable in I, and let f3, ..., f» be
partial functions in F,.(I). The notation (P;— fi(x1, ..., Xm),
vees P — fulx1, ..., xm)) will be used for the function f which
results from these predicates and functions by application
of 1.4 (cf. Ref. 2). The value of fon x1, ..., X is not % if and
only if, proceeding from left to right, a predicate Py is
found to hold before  is introduced in checking the predi-
cates and the corresponding function value fi(x1, ..., Xm)
# . In this case f(xi1, ..., xm) = filx1, ..., Xn). Another
notation for f will be

[f1()€1, veey Xm) if P1 N
Slx1y ooy xm) = j .

UGty ooy Xm)  if P

Note that “fi(x1, ..., x») if P, in this notation abbreviates
“filx1, ..., Xm) if P and not Py, ..., and not Pj_1.”

2. Basic recursive function theory

Let I = (4 U {*]}, -) be a URS. Recall that, for each
integer n > 0, each element a of A4 indexes the partial
function of n variables ¢,* = Axy ... xalax: ... xz]. Fa(l) =
{pa"|a € 4} and F(I) = UFu(D).

Let 4 be a set with at least two elements. Suppose, for
each n > 0, F, is a family of partial functions from 4" into
A and F = \U,.F,. The following axioms will be shown to
characterize the families of partial functions on 4 com-
puted by URS’s.

® Axioms of basic recursive function theory (BRFT)

(1) F contains (for each x & A) the constant functions
(C."(¥1s ..., ¥n) = x) and the projection functions
(Un™(x1, ooy Xm) = Xn);

) A¥YE F)(Va, b,c,x € A)[¥(a,b,c,x) = bif x = a;
¢, otherwise}; and

(3) F is closed under composition.

(4) (Enumeration) For each integer m > 0, (A®m & Fuyi)
[Fro = {Ax1 oo X[ ®ilx, X1, ..oy xm)ljx & A}1; and

(5) (S-m-n) for each m, n > 0, (3S»™ & Fmy1) (Vx, X1, -.0»
Xms V15 wos Yu & A) [Se™(x, X1, ..., Xm) is defined and
Do(S2™(X, X1y ooy X1i)y V1 vees Vi) = PongnlXy X1y o0y Xy
V1 ooy V)l

Theorem 2.1

If 4 and F are as above, there is some URS I = (AU { *},-)
such that F = F(I) if and only if F satisties the axioms of
BRFT.

Proof of Theorem 2.1

=

Suppose I = {4 U {*}, -)isa URS withy, o, and v asin
Section 1, and F = F(I). Then ¢y* satisfies (2), ¢,™*! satis-
fies (4), (5) is Corollary 1.2, and (1) and (3) are consequences
of the General Existence Metatheorem 1.1.

=

Suppose F satisfies conditions (1) through (5). Define the
binary operation - on (4 U {%})? as follows: if a = %,
b # %, and ®(a, b) is defined, a-b = P1(a, b); otherwise,
a-b = . Axiom 0 is obviously satisfied. Let ®4(ey, a, b, ¢,
x) = ¥(a, b, ¢, x). [¥ is an element of F, so there is an e; in
A such that, for all a, b, ¢, and x in 4, ®y(er, a, b, ¢, x) =
W¥(a, b, ¢, x).] Let

®;(es, a, b, ¢) = S°(C3.(a, b, ¢) , U'(a, b,c),

U’ (a, b,c) , Us'(a, b, ¢,) ,
®(es, @, b) = $:°(Ct,(a, b) , Ui’(a, b) , Us'(a, b)),
@1(84, a) = Sll(Cl,(a) N U11((1)) .

Then ejabex [the abbreviation for ((((es-a)-h)-c)-x)] =
W(a, b, ¢, x) and e, satisfies Axiom 1. Let

®s(ay, b, ¢, x) = ®1(® (UL (b, ¢, x) , Us’ (b, c, x)) ,

& (U° (b, ¢, x) , Us' (b, ¢, x))) ,
<I’2(a2, b, C) = Slz(C:1 (b, C) 5 U]Z(b, (,‘) N ng(b, C)) .
@1 (as, b) = $1'(Ca,(b) , US'(B))

Then asbc = S1%ay, b, ¢) # * for all b and ¢ in 4; and
asbex = bx(cx) for all b, ¢, and x in A.
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Since A4 has more than one element, it is easy to show
that a; # e,. Thus the algebra I = (A\J{x}, -)isa URS.

Now Fi = {Mxal®ix, x)lix € 4} = {Nxlx-x|x
& A} = Fi(). Suppose F,, _(I) = F,_, forsomen > 2.1f
fisin F,(I), f = ¢," for some a in 4 and f(xi, ..., Xa) =
B MUK, vy Xn)y ooy Un_1(X1, cey X)), Un™ (X1, oey
X,)); 80, since ¢, 1 isin F,_; and F is closed under compo-
sition, fisin Fp. If g € Fu, g = My oo xa[PulD, x1, ..., x3)]
= ¢g,n-13 & Fu(l), for some b € A. So F(I) = Fa; and,
by inductiononn, FI) = F. X

The following corollaries relating URS’s to other ap-
proaches to generalizing the theory of recursive functions
are stated with, at most, a bare hint toward proof.

Corollary 2.2

(Wagner, Ref. 1) Let B be a subset of the natural numbers
N. There is a URS I = (N \U{%}, -) such that F(I) is the
family of partial B-recursive functions. [Note that here x -y

is ¢, B(y) or {x}B(») (cf. Ref. 5).]

Corollary 2.3

Let L be the recursive ordinals. There is a URS [ = (L
WU {1}, -) such that F(I) is the family of partial metare-
cursive functions. [Axioms (1), (2), and (3) are easy to
verify using Kripke’s equation calculus (Ref. 6) to charac-
terize partial metarecursive functions. A slight modification
of the proof of (4), the Enumeration Theorem as given by
Owings in Ref. 6, allows an easy proof of (5), the S-m-n
Theorem.]

Let C(G) represent the functions computable from the
family G of base functions and predicates in McCarthy’s
formulation of computability in Ref. 2. Let D be the union
of the domains of all the functions of C(G). Let Cp(G) be
the predicates computable from G.

Corollary 2.4

There is a URS, I = (D U {x*}, -) such that F(I) = C(G)
if and only if Cp(G) contains eg, the predicate for equality
on D, and C(G) contains a partial function & of two varia-
bles such that, for all partial functions f: D™ — D in C(G),
there is an x & D such that, for all x1, ..., x,, & D, B(P(...
P(P(x, x1), X3) ..., Xm—1) 18 defined and B(P(... P(P(x, x1),
X2) ey Xme1)y Xm) = f(X1, cery X

Given, for example, the A-scheme for naming the func-

tions of C(G), if all the names for functions of C(G) are in
D, Cp(G) contains eg, and C(G) contains ® such that ®(f, x)
= AX1 ..o Xmo1[f(x, X1, ..., Xm—1)] when fnames a partial
function from D™ into D, then C(G) satisfies the axioms of
BRFT.

Corollary 2.5
If F satisfies the axioms of BRFT with enumerating func-
tions &y, then F = C({eg, ®:1}).
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3. Results of basic recursive function theory in URS’s
In this section notions analogous to those of “recursive

set> and “recursively enumerable set”” will be explored. Let
I={A4\U{*}, )beaURS. A subset B of A is computable
in 7 if there are elements b, ¢, and d such that ¢ # d and,
for each x, x € B implies bx = ¢ and x & 4 — B implies
bx = d, i.e., if a characteristic function of B is in F(I). This
notion (due to Wagner) seems to be the only reasonable
analogue for “recursive”; however, there are several
choices open for an analogue to “recursively enumerable,”
including Wagner’s “‘semicomputable.”

A subset B of A4 is semicomputable (sc) in I if there are
elements » and ¢ such that, for each x, x & B implies bx

= cand x & A4 — Bimplies bx = *, i.e., if a “semicharac-
teristic” function of B is in F(I).

If £ is in F,(I), the domain of f is the subset of 4™ on
which it is defined (takes values in 4). The range of f is
defined similarly. Each function fin F(I) is a partial function
(with respect to the domain 4). If f is defined on each ele-
ment of 4™, then £ is said to be a rotal function. The word
partial will be used to emphasize the fact that a function f
may not be total. It is easy to show that B is sc if and only
if it 1s the domain of a function in Fy(Z).

Wagner” considered several other possible analogues in-
cluding “‘range of a partial function in F(J)”” and “empty or
range of a total function in F(7).” He has shown that a sc
set need not be the range of a total function in F(I) al-
though each sc set is the range of a partial function in F(J).
His Theorem 6.7 of Ref. 7 shows that a sc set with sc com-
plements need not be computable. In Ref. 8 an example is
given of a URS [ such that the range of every total function
in F(I) is either finite or co-finite (the complement of a
finite set). It is easy to show that the intersection of sc sets
is sc and that restrictions of computable functions to sc sets
are computable functions.

Another notion similar to “recursively enumerable,” but
not discussed by Wagner in this context, is the notion of a
splinter (Wagner’s “‘successor set™). Let I = {4 U {}, -)
be a URS. The subset B of A4 is a splinter (of I) if there are
elements s and x in A such that B = {x, sx, s(sx), ...}. Note
that B may be finite but does not contain % since it is a
subset of A.

The notation s®x for x, s®x for sx, and s"*Vx for
s(s™x) for each n > 1 will be useful; {s™x} will represent
the splinter {x, sx, s(sx), ...}. Every splinter is countable;
so, since there are URS’s of every cardinality (Ref. 7), sc
sets need not be splinters and ranges of parctial or total
functions in F(I) need not be splinters.

The following questions are open:

(1) Must every range of a partial function in F(I) be sc?
(2) Must every range of a total function in F() be sc?
(3) Must every splinter be sc?

Wagner! has shown that the existence of two distinct,

non-% elements in the domain of a URS (guaranteed by
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o #  in the axioms of this paper) implies the existence of
infinite splinters, e.g., {38} and {(YyYa) ™).

Theorem 3.1

(Wagner’s Theorem 4.5 of Ref. 1) Let S = {50} be an
infinite splinter in the URS I = (4 U {1}, -). Let g be any
recursive function of m variables (on natural numbers).
Thete is a function f in F,(I) such that, for all natural
numbers 7y, ..., iy f(s™V0, ..., 57m0) = @1 mm)g If
S is computable, g may be any partial recursive function.

Proof of Theorem 3.1

(For a complete proof see Section 4 of Ref. 1. What follows
is only an outline of that work and an indication of how it
can be translated into the notation of this paper.)

It suffices to show that the restrictions of functions in
F(I) to S form a family of functions closed under composi-
tion, primitive recursion, and minimalization of ‘“‘regular”
functions. (The last sentence of Theorem 3.1 will be a
Corollary of Theorem 3.2.)

Closure under composition follows immediately from
1.1 (see also the example on composition after the proof of
1.1). The other two properties are results of Theorem 1.5
and Corollary 1.6 (Recursion and Minimalization) and
will be proved here.

Suppose g is an element of F,(I) with index 5 [i.e., bx; ...
Xn = g(xy, ..., x,)] and fis an element of F, «(I) with index
a. The restriction of 4 in F,1(I) to S is obtained from the
restrictions of £ and g to S by primitive recursion if, for all
X1, vy Xn, and y in S, A(xy, ..., X, 0) = glx, ..., x») and
B(X1, oy Xny 8Y) = f(X1y coey Xny ¥y H(X1, ooy X0, ). Let p be
an element of A4 such that, for all x and y in 4, pxy = oif
sy = x and pxy = so if sy # x and sy # *. Letc be an
element of 4 such that, for all d, xi, ..., xs, and x in A4,
cdxy ... XpX = bXy ... Xn, if x = 0; and cdxi ... Xux = axi
oo Xp(uos(px)) (dxy ... x.(uos(px))) if x # o, *. (Recall that
u is the index defined in 1.6.) Then ¢c is an index for a
function satisfying the requirements for 4 where ¢ is the
index defined in 1.5 so that [c(¢c)] = [écl.

If f € Fnpi(D) so that (Vx1, ..., o € S)  @x & S) [f(x1,
e Xn, X) = 0] (i.€., if fis regular) and « is an index for f,
then an index for the minimalization of f is b such that
bxy ... xn = pos(axy ... xn). X

Wagner noted that the method of proof of 1.6 did not
allow the value of uosp to be determined if p were defined
but did not take the value 0 on § = {s™o}. If 3.1 were to
hold for partial functions, this value should be *. Then the
above proof would provide minimalization of “total”
functions (total on S). Wagner showed that this could be
done if S were computable. An example of a URS with no
computable infinite splinter is given in Ref. 8.

The next theorem is a strengthening of Wagner’s result
(3.1 here).

Theorem 3.2

Let S = {s™o} be any sc infinite splinter and let g be any
partial recursive function of m variables. Then there is a
function f in F,,(I) such that, for all natural numbers »,,
veey Ry if g(my, ..., Ny) is defined, f(s™Vo, ..., s?*mW0) =
s@ - nm)o and if g(ny, ..., nm) is undefined, f(s"Vo, ...,
s(nm)o) = .

Proof of Theorem 3.2

Let d be such that, for all a, p, and x, dapx = x if px = a;
3, otherwise. Let ¢ be such that ex # % if and only if x is
in S. Let »’ be such that p’asp = dap(aBc(uasp)). Then
p'osp # x only if p'osp is in S and p(u’osp) = o. The
method of proof of 3.1 now suffices for 3.2. X

If every splinter were sc (or if each URS contained a sc
splinter, see 3.11), then each URS would contain the partial
recursive functions in the sense of 3.2. If non-sc splinters
exist, then another interesting candidate for the role of
analogue to the recursively enumerable sets would be the
collection of unions of sc (or computable) sets and splinters.

Because there are URS’s with sc, co-sc sets which are not
computable, it is necessary to consider a special class of
URS’s in order to obtain some of the more interesting
results of RFT. If the only axioms added to 0, 1, and 2 are
axioms satisfied by the partial recursive functions, then the
theory is still in some sense a generalized theory of re-
cursive functions.

A URS is said to be well-ordered if it satisfies Axiom 3:

3. @dXVx, Mx(x) = % —xy = *].

Wagner? gives a ““choice function” axiom:

JHo)(Va, b, X)(cab = % — bx # a)
& (cab # % — blcab) = a)] .

It is easy to see that a URS is well-ordered if and only if it
“has a choice function.” In the above axioms § can be
chosen so that éx = ex(a(B(8(x))x); and, conversely, ¢ can
be chosen so that cab = d(gab), where gabx = aif bx = a;
*, otherwise.

Lemma 3.3
In any well-ordered URS there is a « such that xpgx is in
{px, gx} and, if kpgx = %, then px = gx = *.

Wagner calls any URS with such a x *““cohesive.” He
has shown that, in the presence of such a «, sc, co-sc sets
are computable.

Proof of Lemma 3.3

Let ¢ be such that pgxy = yx if x is in {p, g}; *, other-
wise. Then if 8(zpgx) = *, px = gx = %*; and, in any
case, d(zpgx) is in {p, g, *}. Let « be such that kpgx =
8(tpgx)x. Then « satisfies the requirements of 3.3. J(
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Theorem 3.4
Let/ = (4 {%}, -) be a well-ordered URS and let B
be a sc, co-sc subset of 4. Then B is computable.

Theorem 3.4 (together with Theorem 6.7 et seq. of Ref.
7) answers negatively Wagner’s question about whether
every URS “has a choice function.” However, the partial
recursive functions [any URS I = (N U {*}, -) such
that F(I) is the partial recursive functions] are well-ordered
(see Kleene’s Theorem of the Indefinite Description®).

The following results about splinters hold in any URS,
but will be applied in particular to well-ordered URS’s.

Lemma 3.5

Let I be any URS. Let P(x, ..., x,) be any computable
predicate. There is a function f & F,1(I) such that f(s, a,
X1, -y Xn_1) = the “least” y in {s™a} such that P(xy, ...,
xn_1, y) if there is such a y.

The predicate P(xi, ..., x») is computable (cf. the dis-
cussion following 1.6) if and only if there is a total function
g & Fu(D) such that g(x, ..., x,) = ¢ if and only if P(x;,
..., Xa). The notation for £ will be f(s, a, x1, ..., Xn_1) =
wy € {s™a}lP(x, ..., Xn_1, ¥)]. There should be no con-
fusion between this use of x and the constant u of 1.6.

Proof of Lemma 3.5
Let uax; ... x, = a if P(xy, ..., X»); Yyoobaa, otherwise. Let
bsaxi ... xo—1 = pas(uax; ... x,—1). Then b is an index of

the desired function. J(

Note that uy & {s™a}[P(x1, ..., Xn—1, ¥)] need not be
% even though there is no such “least” y. This notation
will be used even when P(xi, ..., x») is not computable if
instead there is a function g & F,(I) such that (Vxy, ...,
xn_1) Ay € {5™a}) {g(x1, ..., Xn—1, ¥) is defined] and g is
a “semicharacteristic” function for P.

Lemma 3.6
Let 7 be any URS. If f & Fy(I) and .S is a splinter in the
domain of £, then £(S) is also a splinter.

Proof of Lemma 3.6

Let S = {s"a} and let u be an index of /. Let vribxz = «
if b = z;y,if b = x # z; ri(tb)xz, otherwise. Let wix
= u(uy € Slovi(ua)x(uy) = ¢]). If £(S) is infinite, then
£(S) = {(¢w)™(ua)} and all finite sets are splinters. X

Lemma 3.7

Let I be any URS and let S and 7 be infinite splinters.
There is an f & Fi(I) such that .S is in the domain of fand
restricted to S is one-to-one and onto 7.

Proof of Lemma 3.7
Let w be such that weasbtx = b if x = a; c(sa)s(tb)tx,
otherwise. Let u = ¢wasbt (¢ as in 1.5). Then u(sWa) =
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t™p for all natural numbers n such that s™ga # % and
t™h £ k. X

Note that ¢w above is an index of a function g & Fy(I)
such that, if {s™a} and {#™b} are infinite, g(a,s,b,1) is
the index of an ‘“‘isomorphism” between them.

Theorem 3.8
If S and T are splinters, then their union is a splinter.

Proof of Theorem 3.8

The union of any finite set and a splinter is obviously a
splinter (see 1.7). Assume S = {s™a} and T = {+"b}
are infinite. The proof will use a combination of 3.6,
(methods similar to those of) 3.7, and the pairing function
with index 4 introduced by Wagner.!

Let w be such that wxixexsxoesx = Yfxaxs if x = Yabxexs;
x1xaxs(xaxo)xsx, otherwise. Let W = {(¢washt)™(Ynbas)}.
Then W = {Yyxs|x € S} U {Yxt]x € T}. Let e be
such that ex = xy. Then e is an index of a function in Fy(I)
such that f(W) = S U T and W is contained in the domain
of f. Since W is a splinter, S | T must be a splinter by
36. X

Lemma 3.9
If S is a splinter, then {yyfxy|x, y € S} is a splinter.

Proof of Lemma 3.9

Let S = {sa} be a splinter. If S is finite the Lemma is
obvious. Assume S is infinite. There are recursive functions
fand g on the natural numbers N such that (\/n1, ns & N)
(Am & N)[f(m) = n, and g(m) = nJ] (for instance, take f
and g to be the inverses of one of the standard pairing
functions). Hence by 3.1 there are elements g and r such
that (Vny, ns € N)Jm & N)[g(s"™a) = s Vaand r(s"™a)
= s(2q]. Let u be such that ux = Y(gx)(rx). Then u is
the index of a function /4 such that S is in the domain of #
and 4(S) = {YYxylx,y €ES}. X

Theorem 3.10
If § and T are splinters, then their intersection is a splinter.

Proof of Theorem 3.10

If $ M T is finite, then it is a splinter. Assume S () T is
infinite. Let W be the splinter {yyxs|x € S} U {¢xi|x
€ T} as in 3.8 (where S = {s™a} and T = {r™b}).
Note that s # ¢ is not assumed. Let e be such that ex = xy
and a be such that ax = xc.

By 3.9 the set ¥ = {yyxy|lx, y € W} is an infinite
splinter. Let ¥ = {v("d}. Let u be such that ux = e(e(uy
€ {v®Wx} [eley) = elay) & aley) = s & alay) = 1).
Then « is the index of a function f & Fi(I) such that V' is
in the domain of fand f(J) = SN T. X
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Theorem 3.11
If S and T are infinite splinters and S is sc, then T is sc.

Proof of Theorem 3.11

If S is sc, Lemma 3.7 provides f and g in Fy(/) with § =
domain f, T € domain g, and x & T if and only if f(g(x))
=x. X

The next theorem states that a URS is well-ordered if
and only if it “contains” a uniform procedure for finding
an infinite splinter in each infinite set. Hence to show that
a URS is not well-ordered, it is sufficient to exhibit an
infinite sc set which contains no infinite splinter.

Theorem 3.12

Let I be a URS. Then [ is well-ordered if and only if there
are functions f and g in Fi(I) such that {(f@)™ (g(w))} is
contained in {x|ux # %} and infinite if {x|ux # %} is
infinite.

Proof of Theorem 3.12

=

Suppose I is well-ordered and u(éu) = * implies ux = %
for all x. Let 7 be such that ru # % for all ¥ and fmux = ux
if x # 8u; %, otherwise. Then if {x]ux £ x} is infinite,
{t™y} is an infinite splinter and {3y|y € {¢™u}} is an
infinite splinter and a subset of {x{ux % % }. To make this
construction uniform, let v be (a term involving only 6, «,
and ¢) such that vux = uy € {t™u}[dy = x]; and let s
be such that sux = 6(t(vx)). Note that su(bu) = 6(zu),
su(d()) = 8(H(tw)), ..., su(d(t™u)) = 8(+"*+Vu), etc. Thus
s and & are indices for the desired functions f and g re-
spectively.

=

Suppose Fi(I) contains functions f and g as described
above. Let § be an index of g. Then § satisfies Axiom 3. X

The existence of a non-well-ordered URS in which every
infinite sc set contains an infinite splinter is still open.

Let7 = {4 \J{*}, -) bea URS. A subset C of 4 is said
to be closed if (Vx, ix €E C & [x] = l=y & Cl
(Recall that [#] = {{x, »)|ux = y} is the graph of the
function indexed by u.) Let <, <, etc., be the relations
induced on A by the relations C, C, etc., on {[x]|x & 4}.
The closure of a set C will be {x|(Iy) [y € C & [x] = [VII}.
Wagner! has shown that the closure of {x} is infinite for
each x &€ A. For well-ordered URS’s this will be a corollary
of the following partial analogue of the Rice-Myhill-
Shapiro Theorem.?

Theorem 3.13
Let I = (AU {x}, -) be a well-ordered URS and let C
be a closed sc subset of 4. Thenx & Candy> x=y & C.

Proof of Theorem 3.13
The proof will depend on the fact (due to Wagner) that

{x|]xx = %} isnotsc (if vx = * <> xx # *,thenw = %
< vv # ¥, a contradiction). Suppose C is closed and sc,
xXE C,y> x,and y & C. Let p be such that pzw =
By(zz)w. Let g be such that gzw = xw. Let r be such that
rzw = «(pz) (gz) w (kasin 3.3)and rz £ x. Then rzw = yw
if zz £ % or xw ¥ %; %, otherwise. So [rz] = [x] & zz
= % ©rz € C;and {z|zz = %} must be sc since C is sc,
which is a contradiction. Hence x € Candy > x =y &
C. X

Corollary 3.14
IfI = {4 {%]}, +)is a well-ordered URS and C is a
closed computable subset of 4, then C = ¢ or C = A.

Proof of Corollary 3.14

If C is closed and sc, then § & C < C == A4 since each y &
Ais > 6. But@ & Cor§ & A — C and C is closed and
computable if and only if 4 — C is closed and computable.
X

Corollary 3.15
In a well-ordered URS, the closure of a finite set is not sc¢
and hence it must be infinite and co-infinite.

4. Pairing functions

Pairing functions for URS’s have already been heavily
used in Section 3. By means of a pairing function, the
necessary and sufficient conditions given in Section 2 for a
family of partial functions F to be F(I) for some URS [ can
be translated into a set of requirements for F; alone.

These requirements can refer to the pairing function by
means of its inverses: partial functions K and L from 4 into
A are inverses of a pairing function P from 4 X A4 into 4
if K and L are defined on the range of P and, for each x
and y in 4, K(P(x, y)) = x and L(P(x, y)) = y. If I =
{A\U {1}, -)is a URS, then the function P with index ya/
is a pairing function in Fy(I) and inverses for it are the
functions K, such that K(x) = x-y¥, and L, such that L(x)
= x-a.

Wagner has shown that if two URS’s have the same
one-ary functions then they have the same functions for
any number of variables. His proof depends on the use of
the pairing function with index Y4 present in each URS.
Another proof (depending indirectly on the same pairing
function) will be given after the analogue to Theorem 2.1
which follows. For the rest of this section A is assumed to
be a set with at least two distinct elements.

Theorem 4.1

Let F; be a family of partial functions from A4 into A. There
is some URS I = (AU {%}, -) such that F; = Fy(I)if and
only if F; satisfies the following conditions:

(1) Fy contains the constant functions [C(y) = x], the
identity function [U(x) = x], and the inverses X and L
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of a pairing function P (a one-to-one function from
A X A into A) such that for each f and g & Fi,
MIP(f(x), ()] & Fr;

(2) (H‘I’I e Fl) (v a, ba c, d E A) [\III(P(P(P(a5 b)s C), d)) =

b, if x = a; c, otherwise};
(3) Fiis closed under composition;

(@) (Enumeration-1) 3 ® € Fy) [F1 = {M[®P(x, y)|x
€ 4}]; and

(%) (8-1-1) IS € F1) (Va, b, ¢ € A) [S(a) is defined and
BP(S(P(a, b)), ) = B(Pa, P(b, ).

Proof of Theorem 4.1

The proof can be given directly or by application of
Theorem 2.1. Since the application of 2.1 exposes the
important relationship between the pairing function P
and the functions of many variables it is given here.

=

If F; = Fy(J) for some URS I, then (1) through (5) are
consequences of Theorem 1.1 where P is the function with
index ).

=

Suppose F; satisfies (1) through (5) above. Define P, 1(x1,
vy Xng1) = P(Pr(X1, ..vy Xn), Xny1) fOr eachn > 2(Py = P).
LetF; = Fo P= {f o P|fE Fi},F, = Fy o P, for
n> 2,and F = U,F, (where © indicates composition).

It is easy to show that (1) and (2) of 4.1 imply (1) and
(2) of 2.1 (BRFT) for F; so (3), (4), and (5) of 2.1 will be
shown here.

Suppose f, g1, ..., §n are in Fy so that f © P, is in Fy,
g1 0 P,isinF,, ..., and g,, © P, isin F,. Then Ax[P(g1(x),
2] € Fi, MP(P(gi(x), gx)), gs(x))] & Fi, ete.; so
AMx[Pn(gi(x), ..., gn(x)] & F1; and finally, M f(Pr(g1(x),
ey Za())] & F, so the composition of f © P, with
g1 0 P, ..., @u © P, isin F,. Thus F is closed under
composition.

If f & F; then f(3) = ®(P(a, y)) for some a & A4; and
f(Poulx1, ooy Xm)) = P(P(a, Pu(x1, ..., Xn))). For each m
> 2, let gn(x) be constructed from K, L, and P so that
gm & Frand gu(Pmir(x, X1, -+r Xm)) = P(x, PrlX1, ooy Xm)).
If f = M D(P(a, YD), then f(Pm(X1, ..o Xm)) = P(gm(Pmiala,
X1, ooy Xm))) and ® 0 g, & F1. Let g1 be the identity. Then
Fomo = {M1.. Xnl(P O g © Py (x, x1, e X)llx € 4}
and ®,, = ® 0 g O Ppyy & Fryiforeachm > 0.

For each n > 0 let £, be constructed from X, L, and P
so that f, € F; and f,(P(z, Pu(y1, -..s ¥a))) = Paia(z, 1,
vy ¥n). Then fr(P(Pryi(x, X1, ooy Xm)s Pa(¥1, ooy ¥2))) =
Pona(x, x1, ..., ¥a); and foreachmand n > 0, ® 0 gmyn
O f. € Fp. Let a,™ be an element of 4 such that
D(gmin(ful(x)) = P(P(a,™, x)). The function Ax[S(P(a,.™,
x))] is in Fy; so the function S,™ = Axxi ... x,.[S(P(a,.™,
P10, ooy X)) 18 i0 Fopy1. Now ®,0S,™(x, X1, ..y Xm),
V1 ey Yu) = BPESEan™, Pryr(x, oy X)), Puly1, .o
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Yo)) = P®(P(an™, P(Pmy1(X, X1, ey Xo)y Pu(¥1, ey Yu)))) =
DX, X1y vy Xmy V1, .oy Ya); and S,™ satisties the S-m-n
requirement of 2.1. X

Corollary 4.2

If 7is a URS then there is a pairing function P in Fy(I) such
that, for each m > 2, F,(I) = Fy(I) © P, and P has in-
verses in Fi(I).

The proof of 4.1 depends on the existence of a “standard”
pairing function in each URS. The pairing function re-
quired in the conditions for F; to be Fi(I) of some URS [
was any arbitrary one-to-one function from 4 X 4 into 4
with inverses in F; satisfying the rest of the somewhat arbi-
trary properties (1) through (5). The following lemmas are
intended to provide a definition for P in terms of Fy(I) alone
so that the class of pairing functions satisfying the definition
is uniquely determined by Fi(Z) and, if P and P’ are two
members of this class, Fi(I) o P, = Fi(I) o P,’ for all
m> 2.

Let I = (4 U {*}, -) be a URS. Consider the collec-
tion of pairs of functions (K, L) (with the same domain)
that are inverses of pairing functions on A. Since I has the
standard pairing function, the intersection ® of this collec-
tion with Fi(I) X Fy(I) is not empty.

Note that if P is the standard pairing function, the usual
inverses f(x) = x-y and g(x) = x-« do not have the same
domains, so {f, g) is not in ®. However, the intersection of
sc sets is s¢ and the restriction of any function in Fy(l) to a
sc set is a function in Fy(I). So if K is the restriction of fand
L is the restriction of g to the intersection of the domain of
f with the domain of g, then (K, L) is a pair of inverses for
Pand is in @.

Define (Ki, L1y < (Kb, L) if there is an f in Fi(I) such
that Ky = K, 0 fand L1 = Ly © f. Define {(Kj, L1) =
<K2, L2> if <K1, L1> S <K2, L2> and <K2, L2> S <K1, L1>. It
is easy to check that = is an equivalence relation on ®. Let
M be the set of pairs in @ that are inverses of some pairing
function in F5(I). Then M is not empty.

Lemma 4.3
The set M is the maximum class with respect to the order-
ing induced by < on the = classes of ®.

Proof of Lemma 4.3

Suppose (K, L) & M is a pair of inverses for P & Fy(I).
Let (K1, L1) be any pair in @. Then for each x & 4, Ky(x)
= K(P(Ki(x), Li(x))) and Li(x) = L(P(Ki(x), Li(x))); and
MIP(KL(x), LiGo)] s in Fy(l) so (K1, L) < (K, L). Let
{K,, Ly) be a pair in ® such that (K, LY < (Kz, L») via fin
Fi(l): K=K, 0 f,L = L 0 f. Thenf 0 Pisin Fy(I) and,
for each x and y in 4, KAf(P(x, ¥))) = x and Lyf(P(x, y)))
= y; so {Ks, Ly) is in M. [Note that if I and J are
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URS’s, Fy(I) = Fy(J), and P is a pairing function in Fy(I)
with inverses in Fi(I), then, by 4.3, P is in Fo(J) since the set
M is uniquely determined by Fy(l) = Fi(J).] X

Let © be the set of pairing functions on 4 with inverses
in ®@. Define P, < P if there is an f in Fi(I) such that P, =
f o Py;and P, = Pyif P, < Ppand P, < P, Let R =
QM F«AD.

Lemma 4.4
The set R is the minimum class with respect to the ordering
induced by < on the = classes of Q.

Proof of Lemma 4.4

Suppose P & R has inverses (K, L) & M. Let P, be any
pairing function in @ with inverses (K, Lq) in ®. Then (K,
L.y < (K, L) viaf = M[P(Ko(x), L{(x))];and P = f © P,
soP < P,.IfP, & Qand P, = g © P with g & Fy(I), then
P, E F(I);soPy &E R X

Lemma 4.5
If P & R, then foreach m > 2, F(I) = Fi(I) © P,

Proof of Lemma 4.5

The standard pairing function is in R and has the desired
property (see 4.2). f Pand QareinQand P = f 0 Q,
then, for each m > 2, there is a function f,, constructed
from f and the inverses for Q such that P,, = f,, © Qp. If
Fu(l) = Fi(I) © Py, then Fn(1) © F1(I) © Q. If Fiu(l) =
Fi() © Qn, then Fy(I) o P,, C F,(I). Since each pairing
function in R is equivalent (=) to the standard pairing
function, F,(I) = Fi(I) o P, foreach Pin R. X

Implicit in 4.5 is the fact that each F,.(J) is uniquely de-
termined by Fi(I).

Corollary 4.6
(Wagner!) If I and J are URS’s and Fy(I) = Fy(J) then F(I)
= F(J).

The next results are analogous to the work of Rogers'
and the terminology follows that of this reference.

The map 7 from 4 onto Fy(I) given by n(x) = ¢, =
Mlx-y] is called the standard numbering for the URS I =
(4 {*}, *). A numbering (for I) will be any map from 4
into Fy(J). The function ¢,2 in Fy(I) has the property that
7(x) = Mo x, y)]. A numbering p is said to be semi-
effective if there is a function % in Fy(I) such that p(x) =
MLA(x, 1. Thus a numbering p is semi-effective if and only
if there is a function f in Fy(I) and a pairing function P in
R (see 4.4) such that p(x) = My[f(P(x, ). If one particular
pairing function P in R is fixed, there is a map I' from Fy(I)
onto the class of semi-effective numberings for I given by

@) = MM, YD1

Define (on the class of semi-effective numberings) p < ¢
if there is an fin Fi(I) such that p = ¢ © f. Define p = o if
p < oand ¢ < p. Let IT be the equivalence class of num-
berings containing the standard numbering =; II is called
the class of fully effective numberings for I.

Lemma 4.7

The set II is the maximum class with respect to the ordering
induced by < on the = classes of semi-effective number-
ings.

Proof of Lemma 4.7
Suppose p = T'(f)is a semi-effective numbering for 7. Let

f=¢q.and P = ¢,2 Then, if b & A suchthat b-x = a(Ba)

(px),p =7 0 ¢pandp < 7. X

Let p & Il and define x!y = (o(x)) (1N); (k! x = xl¥ =
*1% = %)

Lemma 4.8
J={4J {*}, )isa URS and F(I) = F({J).

Proof of Lemma 4.8

For a proof of Lemma 4.8 see the proof of Wagner’s
Theorem 3.7 in Ref. 4. (Lemma 4.8 is a generalization of
this theorem in which the notion of fully effective number-
ing is isolated. Similarly Lemma 4.9 is a restatement of
Wagner’s Theorem 3.6.)

Lemma 4.9

(Wagner?) If J is a URS and F(J), = F(I), then the class of
fully effective numberings for J is the class II of fully ef-
fective numberings for I; and, hence, the standard number-
ing for J is in TI.

Proof of Lemma 4.9
By 4.7 the class of fully effective numberings for J is
uniquely determined by Fi(J) = Fy(l); soitmust be II. X

The next theorem summarizes the resuits in Lemmas 4.7
4.8, and 4.9.

Theorem 4.10

Let I be a URS. The set of standard numberings for URS’s
J such that F(J) = F(I) is the set of fully effective number-
ings for I.

Corollary 4.11

(Wagner*) The standard numbering for any URS I with
F(I) = the partial recursive functions is a fully effective
numbering (or Gédel numbering) in the sense of Rogers.1°
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Summary
Uniformly Reflexive Structures (URS’s) provide a general-

ized theory of computability which is independent of any
particular domain. The generalization is a concise, finitely-
axiomatized, first-order theory (with equality) with models
that can be studied equally well as algebras and as collec-
tions of functions.

The algebra is similar to combinatory logic derived from
the work of Schonfinkel.!’:!? The algebraically-oriented
notation makes possible very brief statements of proofs. It
also emphasizes the algebraic structure of the proofs of
such theorems as the Recursion Theorem and the part of
the Rice-Myhill-Shapiro Theorem numbered 3.13 here.

In Section 2 a kind of equivalence was demonstrated be-
tween a characterization of families of functions [Basic Re-
cursive Function Theory (BRFT)] and the theory of URS’s,
In one direction the equivalence provided the tie between
URS’s and the other approaches to a generalized theory of
computability mentioned in Section 2 (which are concerned
with classes of functions). In the other direction, the equiv-
alence made possible the study of what parts of RFT follow
from the axioms of BRFT by means of the study of the
algebras which are models of the theory of URS’s.

The theory can be shown to be undecidable by means of
a weak representation of the partial recursive functions. In
spite of the fact that the question, “Does every URS have
an infinite semicomputable splinter ?,” is still open (so that
3.2 cannot be applied), it can be shown that, for each
partial recursive function #, there is a term /4 and, for each
natural number #, there is a term 7 (o for suitable s and
0), such that 41-7i = s is a theorem whenever A(n) = m. If
the theory were decidable, then the function,

i 1, if A-A=0 isa theorem,
f(n)={ g

0, otherwise,

would be recursive, where # represents the function A(n) =
¢n(n). The function f would then be ¢, for some m, so that
¢n(m) = 1 if and only if ¢p.(m) = 0.

In Section 4 the work of Rogers on numberings of
partial recursive functions was generalized to URS’s. A
one-to-one correspondence was demonstrated between the
class of URS’s on some fixed domain which compute the
same functions and the class of fully effective numberings
from that domain to the class of functions (of one variable)
computed. This class of fully effective numberings was
shown to be a maximal class of numberings under a natural
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ordering uniquely determined by the class of functions of
one variable. Thus, for example, there is one URS for each
Godel numbering of the partial recursive functions.

The study of splinters in URS’s brings into focus those
places where RFT depends on the existence and computa-
bility of the successor function. The author has explored
the structures of particular URS’s (especially the families
of computable sets, semicomputable sets, and splinters): in
Ref. 8 the Boolean algebras of computable sets of URS’s
on the natural numbers are characterized and a URS with
no computable splinter is presented. Although the theory
can be viewed as studying computation from the black-box
point of view, a study of particular models should provide
information about the structure of computations.
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