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Small-signal Stability Criterion for Electrical Networks
Containing Lossless Transmission Lines”

Abstract: A stability criterion is derived for networks containing lossless transmission lines as well as the usual lumped electrical ele-
ments. The criterion is stated in terms of the transmission line parameters and scattering matrix measurements made at the terminals
of the lumped part of the network. The mathematical proof of the stability theorem involves some new results concerning a special
system of difference-differential equations. Another stability criterion is derived in terms of more general input-output measurements.

Introduction

In this paper we derive a small-signal stability criterion for
electrical networks containing lossless transmission lines.
The criterion given in Theorem 2 is similar to that obtained
by Nyquist® for feedback systems. The results are also valid
for networks without transmission lines and give some
well-known results. This criterion can be used, for ex-
ample, in the design of high-speed computer networks to
determine the lengths of interconnecting transmission lines
so that the equilibrium states of the networks are stable. In
fact, the motivation for this study is the problem of design-
ing computer switching circuits such that when they are
interconnected according to the logic design by means of
transmission lines, the resulting array is stable at its equi-
librium points. The theory is linear, but applies to nonlinear
systems linearized about an equilibrium point.

The paper is divided into four sections. In the first the
general formulation of the equations is described starting
with the hyperbolic partial differential equations of the
transmission lines. By using a well-known result about the
wave equation, the partial differential equations are re-
placed by difference equations and these are combined
with the linearized ordinary differential equations describ-
ing the remainder of the network. This yields a system of
difference-differential equations. The stability criterion for
such a system is stated in the second section in terms of the
roots of its characteristic equation. This criterion is re-
stated in terms of small-signal measurements (scattering
matrix measurements) which can be made on the networks.

The author is located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598.

* The results reported in this paper were obtained in the course of research
jointly sponsored by the Air Force Office of Scientific Research [Contract
AF 49(638)-1474] and IBM..
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Figure 1 General electrical network of lumped-element circuits
interconnected by transmission lines.

The test for stability uses the argument principle in the
theory of complex variables. One dissimilarity with the
standard Nyquist criterion is noted, i.e., that the complete
change in argument does not occur only on the imaginary
axis. In the third section two examples are considered.
Some practical considerations in using this criterion as a
design tool are discussed in the final section.

There are three appendices in this paper. The first fur-
nishes the proof for Theorem 1, which states that the roots
of the characteristic equation of the system determine its
asymptotic behavior. In establishing this result, it was
necessary to prove the existence of solutions, to determine
the asymptotic behavior of characteristic roots, and to
establish a representation of solutions using the Laplace
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transform for special systems of difference-differential
equations of the type given in Eqgs. (Al) and (A2). Such
systems arise naturally in these applications and it seems
that they have not been dealt with in the literature. The
second appendix discusses the measurement of the scatter-
ing matrix and the third appendix derives the characteristic
equation for more general input-output variables.

General formulation

We consider the most general network of lumped-element
circuits interconnected by lossless transmission lines. In
Fig. 1 the boxes represent the lumped-element circuits and
the parallel lines represent the lossless transmission lines.
Throughout the paper all the elements are linear and time
invariant. The length of each line can be normalized to
unity without loss of generality and the behavior in the kth
line can be described by the following pair of partial dif-
ferential equations:

aik 61/‘k auk 6I_k

A TR M W)

ot ax
where ix(x, 1), vi(x, 1) are the current in the line and the
voltage to ground, respectively, at the point x and at time
t, and L;, Cy, are, respectively, the inductance and capaci-
tance of the line per unit length.

It is well known that solutions of (1) can be represented
in terms of two waves traveling in opposite directions at the
same speed v = (L3Ci)~%. These waves are

¢k(x — yit) = vp(x, 1) + Zpin(x, 1), (2)

Yelx + vat) = vilx, 1) — Ziin(x, t) , (3)
where Z;, = (Li/Cy)}. By evaluating (2) and 3)at x = 0
and x = 1, we arrive at the difference relations

Uk(l, t) + Zkik(l, I) = Uk(O, T — Tk)

—+ Zkik(O,t — ’Tk) s (4)
Uk(O, l) — Zkik(O, t) = Uk(l, t— Tk)
— Ziir(1, — 1), (5)

where 7, = (LxCi)!. These relations are stated in terms of
the unknowns v, and 7, at both ends of the line.

We assume that the equations describing the lumped-
element circuits can be written in normal form? as a system
of first-order ordinary differential equations

% = Ax + By, (6)

where x is an n-vector* and describes the internal state of
the lumped circuits (no further use is made of x as a spatial
coordinate).t For example, some of the components of x

* For notational simplicity, lightface type is used to represent vectors and
matrices, as well as scalar quantities.

t It might be more appropriate for some electrical networks to write the
system as Px = Ax + By. The theory derived in this paper is also valid for
this case if P is non-singular and is substituted in the obvious places in the
formulas.
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may be currents in inductors while other components may
be voltages across capacitors. The equation represents
either a linear network or a nonlinear network which has
been linearized about some equilibrium point. Also, the
equilibrium point has been assumed to be x = 0 without
loss of generality. The vector y is 2m-dimensional where m
is the total number of transmission lines in the network.
The component y, for 1 < k& < m is some linear combina-
tion of ix(0, 7) and v(0, ©), while y,, i is a linear combina-
tion of ix(1, 9 and vx(1, ©). The choice for y; is somewhat
arbitrary and in this paper we will make the choice given
in Eq. (9) below.

To complete the description we need to specify the rela-
tion between x, y, and the complementary variable of y
which will be designated by z. The choice for z is given in
Eq. (10) below and again this choice is somewhat arbitrary.
The relation between x, y, and z is written in the general
form

z = E'x + Fy, @)

where E and F are matrices of dimension n)X2m and
2mX2m, respectively, and ’ denotes the transposed
matrix. The vector y can be viewed as the input to the
lumped circuits while z can be viewed as the output. Thus
(7) is the relation giving the output as a linear combination
of the input and the internal state.

Finally we write the 2m relations (4) and (5), k =1, - - -,
m, in vector form in terms of the vectors y and z as

Dy(t) + Cz(t) = JIDG)(t — 1) — C(2) (¢t — r)],( )
8

where D, C, D, and C are diagonal matrices of dimension
2m and

J=<0 I’").
I. O

The notation I,, represents the mXm identity matrix.
Alsoin Eq. (8), 7is a 2m-vector, (1, * * *s Tms T1, * * *» Tm) 3
similarly 1 — 7 is a 2m-vector, the jth component being
t — 7, We have used the convention in writing Eq. (8)
that

ni{t — ) ]

_ — Yu(t — Tm)

(y) (t T) J)m+1(t _ Tl)
L yon(t = 1)
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Figure 2 Network with transmission lines omitted and with
incident voltages as inputs,

In general, a vector u evaluated at a vector ¢ will be
written (u)(¢) and will mean: Evaluate the first component
of the vector in the left parentheses at the first component
of the vector in the right parentheses. Thus (4u)({) will
mean to multiply # by A4 and then to evaluate the result-
ing vector at {. The form of (8) can be readily seen by
ordering the 2m equations (4), (5) fork = 1, - -+, m and
grouping linear combinations of / and v to form y and z.

The matrix formulation of the problem is complete
except for making a convenient choice for y and z. The
most convenient choice leads to the so-called scattering
matrix formulation (see, e.g., Carlin®). For each trans-
mission line we form the new variables

l?k—Zkik, kﬁm,

Ve = vg = 9
Uk+Zkilc, k>m,
(Uk+Zkik, k< m;

Zk = U = (10)
Uk—Zkfk, k> m.

Then the relations (4) and (5) are written simply as

vi(t) = J)(t —7)or y(t) = J) @t —7). (11)

The subscripts 7 and r stand for incident and reflected,
respectively.

The differential equations for the internal states x with
v, as an input and v, as output can be viewed as the net-
work shown in Fig. 2. Since there is a positive impedance
inserted at every port, there is no problem in writing the
equations for the 2m-port inside the dashed lines. The
equations in normal form are:

x = Ax + Bv;, (12)

v, = E'x + Fv;.

The choice y = v;and z = v, also simplifies the form of the
difference equations (11).
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Stability criterion
We want to determine under what conditions the equi-

librium state, v; = v, = 0 and x = 0, is stable. By elimi-
nating v; we obtain

x(t) = Ax(t) + BJ(v,)(t — 1), (13)
v(t) = E'x(t) + FJ(v,)(t — 1), (14)

which is a system of difference-differential equations,
(13), coupled with a system of difference equations, (14). In
terms of a new vector { = (x, v,)’, we have

(’" °)§(0+(‘A °>§(r)
0 0 '_E, 12m

+<° ‘BJ>(r)<t—r>=0. (15)
0 —FJ

The theory of systems of linear difference-differential
equations with constant coefficients [i.e., having the form

; Aiy(t — wi) + By(t — wi) = f(1),

where 4;, B; are constant matrices and 0 = wp < w1 < «+*
< wy] is well developed in Ref. 4 provided that the matrix
of the leading term Ay is nonsingular. Unfortunately, in the
equations considered here the leading matrix (coefficient of
¢) is singular. Of course if one could eliminate the v, vari-
ables, for example if F = 0, then the system would reduce
to one with Ay nonsingular. In general this is not possible
without introducing an infinite number of delays, which
complicates the equations unnecessarily. We would like to
obtain a theorem stating that if all the roots of the charac-
teristic equation associated with (15), i.e., the roots s; of

I, 0 —A 0
0 0 —E'  Ln
0 —BJ"
0 —FJ*"
where T = diag (7), satisfy Re (s) < —e¢; < 0, then any
solution of (15) decays like e~°** where cs < ¢1.* Such a
theorem is obtained (Theorem A4) in Appendix 1 for a
system of the form of (15) and is restated here. We note

that Eq. (16) is an exponential polynomial and as such
generally has an infinite number of roots.

=0, (16)

® Theorem 1
If the roots s; of (16) lie in the half plane Re(s) < §, then
given any 8’ > § there exists a constant, K(§), such that

@) € K™ as 1o . (17)
For a vector the form || x || is equivalent to (x, x)*.

* The notation | 4|, where A4 is a square matrix, will be used for the determi-
nant of 4.
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Equation (16) can be rewritten as

- — B —sT
h(s) = s A Je — 0 (18)
—E Im — FJeF
and A(s) can be simplified as follows:
—1 —sT
h(s) — 1317» . AI L (SI,, A) B Je
—E Im — FIeT
= |sL — 4]
X |\ Ipm — FJ&*" — E'(sI, — A) 'BJ""|
= |sI, — A

X | Iym — [E'(sL, — A)'B+ FlJe™"| . (19)

With the definition that

W(s) = E'(sl, — A)'B+ F, (20)

we have

h(s) = |sh — A| | Tow — W(s) J&™7|

=|sL — A| | Ln — Je*TW(s)] . (21)

The matrix W(s) is called the scattering matrix of the 2m-
port system consisting of the network without the trans-
mission lines. Furthermore, as shown in Appendix 2, W(s)
can be measured for s = iw, —® < w < «©, We want a
stability criterion in terms of the measurable quantities,
W,J,and T.

We need to determine whether 4(s) has any roots in the
half-plane Re(s) > 0. The argument principle from the
theory of complex variables will be used:

—Zl;argh(s)(g: Z— P, (22)
where @ is a closed contour taken in the counterclockwise
direction and Z — P is the number of zeros minus the
number of poles contained in the interior of C.

The specific contour we take is €, shown in Fig. 3 where
p is large. Since W(iw) can be measured, the change in
argument of g(s) = |, — Je*TW(s)| on the w-axis from
ip to —ip is a matter of measurement. On the part of €,
where s = pe, —7/2 < 6 < =w/2, since W(s) = E'(sI,
— A'B+ F = F+ O(s|"Y)as |s| — o, we need only
test | I, — Je*TF|. Note: If F = 0, then we just have
|Ism] = 1. Hence no test, since there is no change in argu-
ment. It is clear that this function changes from |Iy, —
Je*TF| 10 |Iym — Je*7F| to |lsm — Je *TF|, so the total
change in argument on this part of the contour is 2 X arg
|Iym — Je#*TF| & 2k for some integer k. It is possible to
determine & since the matrices J and T are known from the
transmission lines and F = W(ix). The fact that the
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Figure 3 The contour Cp.

function g(s) has a change in its argument on the part of
the contour in the right-half plane is due to the presence of
the e=37 factor (i.e., due to the transmission lines) and is a
result not normally encountered in Nyquist criterion.

There is one difficulty with using the argument principle
for meromorphic functions that was pointed out by Desoer.5
Consider the function e? sin (ef) which has a Laplace trans-
form analytic for all finite 5. By taking a contour such as
@, for p sufficiently large, we would never encircle any poles
and, therefore, might conclude that e’sin(ef) — 0 as
t— o, Of course the trouble is that £ [ef sin (¢!)] (& = La-
place transform) has poles at s = . We must therefore
be careful about isolated zeros at infinity in our situation.
The question is: Can |l — Je*TW(s)| have an isolated
zero at s = o ? The answer is no, because of the special
form of the function |I;,, — Je *TW(s)|. Since W(s) = F
+ O(|s|~") as |s| — o, by Theorem 12.7, Ref. 4, we have
that the zeros of L, — Je *TW(s)| are asymptotic to the
zeros of |lo, — Je*TF| for |s| — «. By Theorem 12.4,
Ref. 4, all the zeros lie in a strip |Re (s)] < C; where C; is
some finite positive constant. If | I, — Je~TF| has a zero
at infinity, then there must exist some constant ¥, |y| < Ci,
such that g(w) = [l — Je~ "+ TF| — 0 asw— . How-
ever, g(w) is an almost (quasi-) periodic function of w and as
such can’t approach zero as w — < [unless, of course,
g(w) = 0, which is not the case here].

Finally, the total change in argument of g(s) gives N =
Z — P for g(s). However, g(s) has a pole at some point s;
only if [s;I, — 4] = 0. Thus P < Zi, where Z; is the
number of zeros of |sI, — A| in the right-half plane. Hence
the number of zeros Z of g(s) in the right-half plane is
bounded by Z = N + P < N + Z.. However, the fact
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that W(iw) can be measured means essentially* that the
lumped circuits are stable when there is no input, i.e,
when y = 0. Therefore it is not unreasonable to assume
that Z; = 0, which we now do. Thus the number Z, of
zeros of A(s) in the right-half plane is Z, < 21+ Z2 = Z2 <
N.If N = 0, then Z, = 0. We therefore have:

® Theorem 2

If |sI, — A| has no zeros in the right-half plane, Re (s) > 0,
and if |g(iw)] > 6 > 0 for w — <, then the system (9) is
exponentially stable if arg |L, — Je *TW(s)|e, = 0 for
all p sufficiently large.

Note that in order to apply Theorem 1 in obtaining
Theorem 2 we must require that the zeros of A(s) do not
accumulate on the imaginary axis. There probably is no
general method for determining this a priori. However, if
this did happen, it would be practically impossible to
measure arg g(s)| e, since it would mean that g(iwr)— 0 for
some sequence {wy}, wx — . Thus the measurements
would have to be impossibly precise for large «. The con-
dition in Theorem 2 that |g(iw)| > 6 > Oforw— = isa
practical requirement for ruling out this situation.

The requirement that the roots of 4(s) be in the left-half
plane, Re (s) < —§& < 0, is necessary in general as pointed
out by Snow.” He constructed an example of a linear,
homogeneous, difference-differential equation where the
equilibrium point is unstable (solutions grow like some
power of ) even though the condition Re (s;) < 0 is met.
For practical applications this is a fine point since one
would very rarely encounter a system where stability is such
a delicate matter.

For completeness we give the stability formulation in
terms of a general input ¥ and output z because in many
cases it is more convenient, in terms of writing the equa-
tions for a particular system, to have some freedom in
choosing these variables. If vy = aryr + bz and i, =
cwyr + dizi, and the determinant of coefficients is non-
singular for k = 1, - - -, 2m, then Egs. (4) and (5) can be
written as

(@ — Ky)y(t) + (B8 — K8)z(2)
= J(a+ Kv)(»)(t—7)
+ B+ K&)(2)(t —7)], (23)

where o« = diag (a1, - -, asm), 8 = diag (b1, - - *, bam),
v = diag (¢, - - *, €2m), 6 = diag (dy, - -, dom), and K =
diag (Z1, -, Zm, —Z1, '+, —Zn). Note that in the

*It is possible that |sf, — A| could have a zero with Re(s) > 0 and yet,
from measurements at the 2m ports, this could not be observed. This question
is related to the concept of complete controilability and observability, as
defined by Kalman,® of the 2m-port. A result of Kalman is that a system is
irreducible if and only if it is completely controllable and observable. If this
condition does not hold, then it would mean that there is a smaller system
which would have the same behavior. Since such a zero is not observed in the
output, we would not observe this oscillation in the output and hence it would
not affect the stability of the quantities of interest.
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Figure 4 One-ports connected by transmission line.

scattering matrix descriptiona = 8 = il and —y = §

= 1K1 The remaining equations have the general form}

x = Ax + f?y,
z=Fx+ Fy.

The stability criterion is then stated in terms of the roots of
the function

(24)

A(s) = sk, — A] la — Ky — J{a + Ky)e™™"

+ (8 — K8) — J(B + Ko)e "W (s)|, (25)
where W(s) = E'(sl, — A'B + F is the transfer matrix
of the 2m-port. This equation is derived in Appendix 3.

Ifa, = 1, by = ¢ = 0, and d;, = 1, then the input is
voltage and the output is current. Hence W(s) = Y(s), the
admittance matrix. Of course some combination of volt-
ages and currents could be chosen and then one obtains
W(s) as some hybrid matrix. For practical considerations
we may not want to use the scattering matrix since it en-
tails choosing the Z; before measuring this matrix.

Examples
In the first example we consider two one-ports connected

as shown in Fig. 4. We suppose that the equations of the
terminating networks can be written as

Xo = Aoxo + boio ,

X1 = Awxy + by, (26)

i.e., with iy and /; as input. The output vy and v, are ob-
tained as

7 .
vy = ey'xo + folo ,

., 27
vy = e1’x1 +f1l1 . ( )

(Here we are not using the scattering matrix because it re-
quires an a priori choice of Z before measuring the scatter-
ing matrix.) These are the equations corresponding to (6)
and (7); here

X1 0 A] 0 b1
E=<e° 0>, and F=<ﬁ] 0).
0 €1 0 fl

It is not always possible to write the equations in this form for an arbitrary
choice of a, 8, v, and 5. However, the scattering matrix description always
exists (see Ref. 3) as well as some hybrid description.
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Since y = (i, /1) and z = (ve, v1)’, we write Egs. (4) and
(5) in the form (8) as

Dy(t) + Cz(1)
= —JDyW({t—7)—CE{E—7)], (28)

where

(2 () - ()

The transfer matrix is

N — Zy(iw) 0
W(iw) = ( 0 Z (iw)) , (29)

where Z, and Z; are the measured impedances at the ports.
Applying Theorem 1, the characteristic function is

A(s) = |sI, — A| |D + CF|™
XD+ CcW + 1" (D — cW)|

= sl — Ao||sT — 4

A7 9+ Gl

0 V4 0 N1

9 ) —(Zo+ 2) —e(Z — Z)i
€™ (2o — Z) Zi+ z

= |sI— Ao |sI— 4| (Z+ £y (Z+ )"
X (Zo+ Z2)(Z1 + Z2)(1 — ToIve™7), (30)

where T'y = (Zo — Z2)/(Zo + Z)and Ty = (Zy - 2)/(Zy
—+ Z) are the reflection coefficients at the ports. Thus in
applying Theorem 2, if we assume that each terminating
circuit is open-circuit stable, we need to test the function

g(s) = (Zo+ 2)(Z1 + Z2)(1 — Telne ™) (31)

for its change in argument on the contour @. If we require
that the first two factors of g(s) have no zeros or poles for
Re (s) > 0 and that the third factor have positive real part,
then we can interpret these conditions: That each termi-
nating circuit when loaded with Z should be stable and
that the product of the reflection ccefficients, T'¢T'y, should
be less than one in absolute value.

The case where Z;(d=iw) — 0 as w — ® and Re
[Z(xiw)] > 0, = 0, 1, is a borderline example since this
would mean that the zeros {s;} of g(s), while satisfying Re
(sz) < 0, would accumulate at 4=/ . This is just the situa-
tion in which it is impossible to say anything about
stability.
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If we let 7 — 0 in the above example, then

hs) = |sI — Al |sT — A[(Z+ )z + M)
X Q22)(Zv+ z1). (32)

The stability criterion would be that the sum of the input
impedances, Zy + Z1, should have no roots for Re (s) > 0.
This says that any lumped network that can be separated
into two one-ports is stable if each port is open-circuit
stable and if the sum of their input impedances satisfies the
Nyquist criterion.

In the next example we consider a network which has the
following property of evenness: Form the graph obtained
by replacing lumped networks by nodes and transmission
lines by branches; if this graph has any loops, the number
of branches in any loop should be even. Then the matrix
W(iw) can be put in the form

_[{—=Gy O
W= < 0 G1> ’ (33)

where G, and G; are m X m matrices (m is the number of
transmission lines). Also assume that all the inputs y are
voltages and all the outputs z are currents. Then Egs. (8)
can be written with the matrices

D=L, C= —Z 0 , and J = 0 Im.
0 Z L. O

Combining these matrices, we obtain

h(s) = |sL, — A|g(s), (34)
6s) =D+ cw— J"(D— CW)]
— " (I, — ZGY)

z} I + ZGo

—e " (I, — ZGy) I, + ZG,
= | I, + ZGo| | I. + ZGy| | I, — "

X (In — ZG1) (In + ZGy) e
X (In — ZGo) (In — ZG1)™'|, (35)

where Ty, = diag (71, ** *, Tm).

Note that this function only requires evaluating determi-
nants of order m and not of order 2m. If Gy and G, are
diagonal, then the last determinantal factor in Eq. (35) re-

duces to

m

1 =Ta

k=1

—2s7
— e T,

where T'y; and T'y; are the reflection coefficients at the be-
ginning and end of the kth transmission line, respectively.

Discussion

There are two considerations that are pertinent to the
practicality of the criteria given in Theorems 1 and 2. First,
it could be that the exact equations describing the lumped
part of the network are not easily determined, i.e., the
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matrices 4, B, E, and F are not easily found. For example,
the lumped networks could contain transistors or could
be integrated circuits where many difficult measurements
and approximations would have to be made to obtain a
good lumped-parameter model. Since the stability criterion
in Theorem 2 is based only on external measurements, i.e.,
input-output measurements, it is possible that it would be
considerably easier to make these measurements if the
network exists physically, rather than to construct a model
and compute determinants using 4, B, E, and F. On the
other hand, the scattering matrix (or transfer matrix) must
be measured at a number of frequencies and with sufficient
accuracy. If the network consists of many copies of the
same circuit interconnected by transmission lines, then
these measurements would not be difficult.

Second, having the scattering matrix obtained either from
measurements or from A4, B, E, and F, the time required
to compute the determinant |/, — Je~*7W(iw)| should be
considered. This is the determinant of a 2m X 2m matrix
where m is the number of transmission lines in the network.
The number of operations required to compute the de-
terminant of an # )X n complex matrix, using the method of
Gaussian elimination, is 4n(m — 1) complex divisions,

in(n* + 2) complex multiplications, and in(n? — 1)
complex additions. Again this must be done at a number of
frequencies.

There have recently been developed some methods for
solving systems of linear equations, Ax = b, where the
matrix of coefficients, A4, is a sparse matrix, i.e., one with
many zeros. These methods can also be used for computing
determinants since they use Gaussian elimination. Thus it
may be advantageous to compute the determinant of the
large (n + 2m)-dimensional system / (iw) rather than the
smaller 2m-dimensional system g(iw) since the latter in-
volves (sI — A)~! which is not necessarily sparse.

Appendix 1 — Theorems
We consider a system of the form

() = Ax(t) + BO)(t — 1), (A1)
y(t) = C'x(t) + D(y)(t — 1), (A2)

where 7 = (71, “ "y Tms TL """y Tm) s T1 > T2 *** > T
> 0. The coefficients are constant matrices; 4isrn X n, B
and C are n X 2m, and D is 2m X 2m. The notation
()Xt — 7) is explained following Eq. (8). Note that if it
were possible to solve for y(t — 7) from (Al), then the
system could be reduced by eliminating y. For example, if
the left inverse of B exists, then

y(t — 1) = BTx(t) — Ax(8)]
and the system (Al), (A2) becomes

x(8) — Ax()
— B(C'x+ DB '(x — 4x)) (t — 1) = 0. (A3)
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In general (A3) is a system of difference-differential equa-
tions of neutral type because of the presence of the DB;!
() (t — m)term. If D = 0, then we get the retarded type.

From this point on in the appendix we make extensive
use of the book by Bellman and Cooke,* and the proofs
will be completed only to the point where the remaining
part of the proof follows essentially that of the correspond-
ing theorem in Bellman and Cooke.

® Asymprotic behavior of characteristic roots

We first prove that the roots of the characteristic equation
for (A1), (A2) have no advanced chains, i.e., there is no
sequence of roots {s;} such that Re(s;) > @ asj— =,
The characteristic equation corresponding to (Al), (A2) is

I, — — B

A =[BT A e oo, (A4)
—C' Ly — D"

Theorem Al

The roots of (A4) satisfy the condition Re(s) < ¢ for some

c< o,

Proof of Theorem Al
The form of A(s) is

il E3
A(s) = Zo pj(s)e—ﬂjs = e—/-’os Z pj(s)e(ﬁo—ﬂj)s
=

J=0

n
=" 3 pils)e T,
=

where 0 = 8, < Bun1 < -+ < B and p,(s) is a poly-
nomial in s of degree m;. We use the results in Ref. 4, pages
410 to 416, to determine the asymptotic behavior of the
roots of A(s) = 0 for large |s|. The theory states that the
roots are asymptotically located in the regions defined by

|Re (s + prlogs)| < e, (A5)

where u, is the slope of a line segment obtained as follows:
Plot the points P; = («,, m;) in a Cartesian plane; the line
segments L, of the upper boundary of the convex hull of
these points have slope u,.

From (A5) it follows that if all the u, are nonnegative,
then all the roots lie in a left half-plane. Thus it is sufficient
to show that m, > m; or that the polynomial p,(s) has the
largest degree. For this we expand A(s) using the Laplace
expansion formula:

A(s) = |sI, — A| | Ly, — D™ + -+ -,

where the unwritten terms have polynomial coefficients of
degree < n — 1. Clearly p.(s) = s* + O0(s"') and hence
m, = n > mj. Since it is possible that m; = n,j # n, there
are, in general, neutral, as well as retarded, root chains of
A().
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® Existence and unigueness

Theorem A2

Consider the system (Al), (A2) where the initial conditions
W) = g(H) € C[—r, 01* and x(0) = x, are given such that
g(0) = C’xy + D(g)(—r). Then there exist unique solu-
tions x(z) & C4[0, =) and y(r) & C[0, ).

Proof of Theorem A2
We can demonstrate existence by standard continuation
arguments. Thus for 0 < ¢ < 74, (74, is the shortest delay

> 0),

x(t) = e*'xo + fo A ) (5 — ) ds (A6)
and

y(0) = C'x(1) + D(g)(t — 7). (A7)

Clearly x and y are in C[0, 7,,) since x(01) = x, and ¥(01)
= C’xq¢ + D(g)(—7) = g(0). The right-hand side of (A6) is
obviously continuously differentiable; hence x & C4[0, 7,.).
Since x and y are defined for [0, 7,,] and [—7, 7,], respec-
tively, we can continue the solution via the formulas

x(t) = " 'x0 + fo B (s — 1)ds (A8)

y() = C'x(t) + DY)t — 1), (A9)

for 7., < t € 2r.. By a straightforward calculation we
find x(7,7) = x(r,,") and »(7.,7) = y(r.7). Again the
right-hand side of (A8) is differentiable and, in taking its
derivative, we see that X(7,7) = x(r,1). Clearly this proc-
ess can be continued indefinitely and hence x & Cy[0, »)
and y & ([0, «). Uniqueness is obvious.

A more general theorem is established if the requirement
g(0) = C’xy + D(g)(—7) is not made. Then only piece-
wise continuity is obtained for y and X.

® A priori estimates

We shall obtain some growth estimates for |[y(s)|] and
||x(#)]| in order to be able to take Laplace transforms. For
a vector the notation ||x| means (x, x)*.

Theorem A3
The solutions x(¢), y() of Egs. (A8) and (A9) satisfy the
relations

x| < k™" and [y < kae*’, (A10)

where ki, k2, and « are constants depending on the system
and on the initial data.

* This means that g; & C[~— s 0]. The notation Cle, 8] means the set of
continuous functions defined on the closed interval [a, 8]. Similarly C [a, 8)
means the set of functions with continuous first derivatives defined on the
438 half-closed interval [o, 8).
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Proof of Theorem A3

The proof, which follows along the lines suggested in Bell-
man and Cooke,* Section 6.5, Exercise 5, is left to the
reader.

® Representation of the solution by Laplace transform
Since it has been shown that x(7) and y(¢) are exponentially
bounded, we can take the Laplace transforms of Eqgs. (Al)
and (A2):

/(; x(t)e *dt 2/0 Ax(t)e " 'dt

+ [ By - near,
/°° y(O)e *tdt = /"” C'x(t)e 'dt
0 0

+ /: DYt — ‘r)e_”dt ,

where Re(s) > a. By straightforward calculations we
obtain

—xo + sk(s) = A%(s) + Be " [5(s) + Y(5)],
5(s) = C'%(s) + D" [(s) + Y(s)],

where the tilde indicates Laplace transform and

Y(S) = [Yl(s)’ Tt YZm(s)], s

Yi(s) = /_T_gf(t)e"Stdt.

Thus

H(s)l:fc(s) :| _ [xo + Be™* Y(s):l ’
y(s) De~* " Y (5)

where

H(s) = <sln — A — B ) .

—C' Iy — DT

By using the result of Theorem Al, one can show that
H7(s) exists for Re(s) large enough and hence we can
solve for [X(s), 7(s)]’ and take the inverse Laplace transform
to obtain

0= Lo b e w

Here © denotes the contour shown in Fig. Al.
® Stability

Using (A11) we can now obtain the required stability
theorem.
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Figure A1 The contour of integration for Eq. (A11).

Theorem A4
If the roots of A(s) = 0 satisfy Re(s;) < 8, then the solu-
tions x(1), y(r) of (Al), (A2) satisfy

=®(e's,’) as 71— o,

[x))* + [y
where 8" > 6.

Proof of Theorem A4

Since H~Y(s) has no poles where Re(s) > 6, we can alter
the contour of integration (where c is replaced by &' > §)
without changing the value of the integral. To obtain the
result of the Theorem we rely on Theorems 12.19 and 12.20
in Ref. 4. The proof of Theorem A4 is the same except for
the assumption that det Ay # 0, which is not needed in
view of our results in Theorems Al to A3. It should be
noted especially that Theorem A1l gives the following result
which is needed in proving Theorem 12.19:

A(s) = 5" Lw — De™"| 4 0(|s|"™), [Im (5)] — = .
Appendix 2 — Measurement of the scattering matrix
To measure W(iw) for — o < w < o« we form the net-
work shown in Fig. 2. Then let v;; = edj coswt, 1 < k
< 2m,1 < j < 2m, and measure v, 1 < /[ < 2m, after the
network has settled down to steady state. We obtain

Uy = ay COS (wt + Blk)
and, using the definition of v,;, we have
vy = 20; — vy = 2ap COS (wt -+ 0lk) — €du; COS Wl

This we express as

NOVEMBER 1968

vrr = puett + pye ", (A12)
where the bar indicates complex conjugate and

6 1
pu = ane” * — Fedu .

On the other hand, from the differential equations
assuming steady-state conditions, i.e.,

X = xoeiwt +X-.Oe—iwt’ z = zoeiwt + Zoe—iwt’

we have
iwxoe™! — iwgoe = A(xe™" 4+ Xoe ™"

_|_ B(yoelwt + ‘)_)Oe—wt) ,
Zoemt + éoe—uut — E/(eriwt + /\_,Oe—iwt)

+ F(.Voeim + J_’oe_iw,) s

where yo; = 1edu, 1 < I < 2m.
Equating coefficients of ¢t and ¢=%* and eliminating
Xxo We obtain

ze™" [E (i I, - A)_IB -+ F]yoeiw
= W(iw)ye™".
Then
Z(t) — zOeiwt + Eoe—iwt. .
= v, (1) = Wliw)ye™" + W(—iw)ye ™'
or
v, (1) = Le[W(iw)e™ + W(—iw)e “'Jer, (A13)

where ey, is the vector with e;; = 8x;. The result of equating
(A12) and (A13) is

[W(iw)]nc = alkeielk — .

2
P =
€

o |

Appendix 3 — Characteristic equation for general
input-output
We have the equations

X¥=Ax+ BO)(@t — 1),
z = E'x + Fy,

(@ — Ky)y(t) + (8 — K8)z(2)
= Jla+ Kv)() @t —7)+ B+ K8)(2)(t — 7)].

If we take the Laplace transforms and eliminate z, we
obtain

sf = A% + f?e_sT)”; s

(¢ — Kv)7 + (8 — K8)(E'% + F3)

= J(a+ Kv)e 'y
+ J(B + K8)eT (E'x + Fy) . 439
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Thus we arrive at the characteristic equation

As) = sl, — A

Expansion of the determinant yields
A(s) = |sh, — Al la — Ky + (8 — K8&) F
— Ja+ Ky)e™" — J(B + Ko)e ' F
4+ [8 — K8 — J(B + Kd)e'|E
X (s, — A)7'Be™|

Ish, — A| |a — Ky — J(a + Ky)e™

+ 18— Ko — J(B+ K8)le "W,

where W = E'(sI, — A)'B + F.
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B—K&E — JB+Kd)e™E'  a— Ky+ (8— KO)F— Ja+ Ky)e™" — J(B + Kd)e™'F

_ E —sT
¢ 0.
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