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Small-signal  Stability  Criterion for Electrical  Networks 
Containing  Lossless  Transmission  Lines* 

Abstract: A stability  criterion is  derived  for  networks  containing  lossless  transmission  lines  as  well  as the usual  lumped  electrical  ele- 
ments.  The criterion is stated in  terms  of the  transmission  line  parameters  and  scattering  matrix  measurements  made at the terminals 
of the  lumped part of the  network.  The  mathematical  proof of the  stability  theorem  involves  some  new  results  concerning a special 
system of difference-differential equations.  Another  stability  criterion is derived  in  terms of more  general  input-output  measurements. 

Introduction 
In this paper we derive a small-signal stability criterion for 
electrical networks containing lossless transmission lines. 
The criterion given in Theorem 2 is similar to that obtained 
by Nyquist' for feedback systems. The results are also valid 
for networks without transmission lines and give some 
well-known results. This criterion can be used, for ex- 
ample, in the design of high-speed computer  networks to 
determine the lengths of interconnecting transmission lines 
so that  the equilibrium states of the networks are stable. In 
fact, the motivation for this study is the problem of design- 
ing computer switching circuits such that when they are 
interconnected according to  the logic design by means of 
transmission lines, the resulting array is stable at its equi- 
librium points. The theory is linear, but applies to nonlinear 
systems linearized about an equilibrium point. 

The paper is divided into four sections. In the first the 
general formulation of the equations is described starting 
with the hyperbolic partial differential equations of the 
transmission lines. By using a well-known result about  the 
wave equation, the partial differential equations are re- 
placed by difference equations and these are combined 
with the linearized ordinary differential equations describ- 
ing the remainder of the network. This yields a system of 
difference-differential equations. The stability criterion  for 
such a system is stated in the second section in  terms of the 
roots of its characteristic equation.  This criterion is re- 
stated  in  terms of small-signal measurements (scattering 
matrix measurements) which can  be  made on  the networks. 
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Figure 1 General  electrical  network  of  lumped-element  circuits 
interconnected by transmission  lines. 

The test for stability uses the argument principle in the 
theory of complex variables. One dissimilarity with the 
standard Nyquist criterion is noted, i.e., that  the complete 
change in  argument  does  not occur only on the imaginary 
axis. In  the third section two examples are considered. 
Some practical considerations in using this criterion as a 
design tool  are discussed in the final section. 

There are three appendices in this paper. The first fur- 
nishes the proof for Theorem l ,  which states that  the roots 
of the characteristic equation of the system determine its 
asymptotic behavior. In establishing this result, it was 
necessary to prove the existence of solutions, to determine 
the asymptotic behavior of characteristic roots, and  to 
establish a representation of solutions using the Laplace 431 
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transform for special systems of difference-differentia1 
equations of the type given in Eqs. (Al)  and (A2). Such 
systems arise naturally  in these applications and it seems 
that they have not been dealt with in the literature. The 
second appendix discusses the measurement of the scatter- 
ing matrix and  the  third appendix derives the characteristic 
equation for  more general input-output variables. 

General formulation 
We consider the most general network of lumped-element 
circuits interconnected by lossless transmission lines. In 
Fig. 1 the boxes represent the lumped-element circuits and 
the parallel lines represent the lossless transmission lines. 
Throughout the paper all the elements are linear and time 
invariant. The length of each line can be normalized to 
unity without loss of generality and the behavior in the kth 
line can be described by the following pair of partial dif- 
ferential equations: 

where &(X, t), u k ( x ,  t )  are  the current in the line and  the 
voltage to ground, respectively, at  the point x and  at time 
t, and L k ,   c k  are, respectively, the inductance and capaci- 
tance of the line per unit length. 

It is well known that solutions of (1) can  be represented 
in terms of two waves traveling in opposite directions at  the 
same speed Y k  = These waves are 

SfJk(X - Y k f )  = u k  ( x ,  t )  + z k i k  ( x ,  t )  (2) 

$'k(X + Y k t )  = uk (x, t )  - z k i k  ( x ,  f) (3)  

where z k  = ( L k / C k ) ' .  By evaluating (2) and (3) at x = 0 
and x = 1, we arrive at  the difference relations 

U k ( 1 ,  t )  f Z k i k ( 1 ,  t )  = U k ( 0 ,  t - T k )  + Z k i k ( 0 ,  t - T k )  3 (4) 

U k ( 0 ,  t )  - Z k h ( 0 ,  t )  = D k ( 1 ,  t - Tk) 
- Z k i k ( 1 ,  t - T k )  , ( 5 )  

where 7 6  = ( L k C k ) ' .  These relations are stated  in  terms of 
the unknowns u k  and i k  at  both ends of the line. 

We assume that  the equations describing the lumped- 
element circuits can be written in normal form2 as  a system 
of first-order ordinary differential equations 

22 = A x +  B y ,  (6) 

where x is an n-vector* and describes the internal state of 
the lumped circuits (no  further use is made of x as  a  spatial 
coordinate).? For example, some of the components of x 
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matrices, as well as scalar quantities. 
* For notational simplicity, lightface type is used to represent vectors and 

system as P i  = Ax + By. The theory derived in this paper is also valid for 
t It might be more appropriate for some electrical networks to write the 

this case if P is non-singular and is substituted in the obvious places in the 
formulas. 

may be currents  in  inductors while other  components may 
be voltages across capacitors. The equation represents 
either a linear network or a nonlinear network which has 
been linearized about some equilibrium point. Also, the 
equilibrium point has been assumed to be x = 0 without 
loss of generality. The vector y is 2m-dimensional where m 
is the total  number of transmission lines in the network. 
The component y k  for 1 5 k 5 m is some linear combina- 
tion of i k ( 0 ,  t )  and U k ( 0 ,  t), while y + k  is a linear combina- 
tion of i k ( 1 ,  t )  and u k ( 1 ,  t).  The choice for y k  is somewhat 
arbitrary and in  this  paper we  will make the choice given 
in Eq. (9) below. 

To complete the description we need to specify the rela- 
tion between x ,  y, and  the complementary variable of y 
which will be designated by z. The choice for z is given in 
Eq. (10) below and again  this choice is somewhat arbitrary. 
The relation between x ,  y ,  and z is written in the general 
form 

z = E'x + F y  , (7) 

where E and F are matrices of dimension nX2m  and 
2mX2m, respectively, and ' denotes the transposed 
matrix. The vector y can be viewed as  the  input  to  the 
lumped circuits while z can be viewed as  the  output.  Thus 
(7) is the relation giving the  output  as a linear combination 
of the  input  and  the internal state. 

Finally we write the 2m relations (4) and (S), k = 1 ,  ., 
m, in vector form in  terms of the vectors y and z as 

where D, C, E ,  and C are diagonal matrices of dimension 
2m and 

J =  (," ':). 
The notation I ,  represents the mXm identity matrix. 
Also in Eq. (S), T is a 2m-vector, (TI, e ,  T ~ ,  TI, * ., 7,)'; 

similarly t - T is a 2m-vector, the  jth component being 
t - T ~ .  We have used the convention in writing Eq. (8) 

Y l ( t  - TI) 
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Figure 2 Network  with  transmission lines omitted  and  with 
incident  voltages  as inputs. 

In general, a vector u evaluated at a vector { will be 
written (u)({) and will mean: Evaluate the first component 
of the vector in the left parentheses at  the first component 
of the vector in the right parentheses. Thus (Au)({)  will 
mean to multiply u by A and then to evaluate  the  result- 
ing vector at {. The  form of (8) can be readily seen by 
ordering the 2m equations (4), ( 5 )  for k = 1 ,  . a ,  m and 
grouping linear combinations of i and u to form y and z. 

The matrix  formulation of the problem is complete 
except for making a convenient choice for y and z. The 
most convenient choice leads to  the so-called scattering 
matrix formulation (see,  e.g., Carlin3). For each  trans- 
mission line we form  the new variables 

Then the relations (4) and ( 5 )  are written simply as 

u i ( t )  = J(v , ) ( t  - T) or y ( t )  = J ( z ) ( t  - T) . ( 1 1 )  

The subscripts i and r stand for incident and reflected, 
respectively. 

The differential equations for  the internal  states x with 
v i  as  an  input  and u, as  output can be viewed as  the net- 
work shown in Fig. 2. Since there is a positive impedance 
inserted at every port, there is no problem in writing the 
equations for the 2m-port inside the dashed lines. The 
equations in normal  form are: 

The choice y = vi and z = u, also simplifies the  form of the 
difference equations (1  1). 

Stability criterion 
We want to determine under what conditions the equi- 
librium state, v i  = u, = 0 and x = 0, is stable. By elimi- 
nating vi we obtain 

i ( t )  = AX(t )  + B J ( U , ) ( t  - T) , (1 3) 

U v ( t )  = E'x(t)  f F J ( u , ) ( t  - T) , (14) 

which  is a system of difference-differential equations, 
(13), coupled with a system of difference equations, (14). In 
terms of a new vector = (x ,  u,)', we have 

The theory of systems of linear difference-differential 
equations with constant coefficients  [i.e., having the form 

where Ai, Bi are constant matrices and 0 = wo < w1 < 9 

< W N ]  is well developed in Ref. 4 provided that  the matrix 
of the leading term A0 is nonsingular. Unfortunately,  in the 
equations considered here the leading matrix (coefficient  of 
f)  is singular. Of course if one could eliminate the u,. vari- 
ables, for example if F = 0, then the system would reduce 
to one with AD nonsingular. In general this is not possible 
without introducing an infinite number of delays, which 
complicates the equations unnecessarily. We would like to 
obtain  a  theorem  stating that if all the roots of the charac- 
teristic equation associated with (15), i.e., the  roots si of 

where T = diag (T), satisfy Re (s) 6 -c1 < 0, then any 
solution of (15) decays like e-czt where c2 < c1.* Such a 
theorem is obtained (Theorem A4) in Appendix 1 for a 
system of the  form of (15) and is restated here. We note 
that Eq. (16) is  an exponential polynomial and  as such 
generally has an infinite number of roots. 

Theorem I 
If the roots s j  of (16)  lie in  the half plane Re (s) < 6, then 
given any 6' > 6 there exists a constant, K(6), such that 

Il{(t)lj < Kes't as t --$ . (17) 

For a vector the form I ]  x / /  is equivalent to (x ,  x)'. 

nant of A .  
* The notation \A I ,  where A is a square matrix, will  be used for the determi- 
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Equation (16) can be rewritten as 

sZ, - A - B J K s T  I - E t  Zzm - F Je-"T 
h ( s )  (18) 

and k(s) can be simplified as follows: 

h ( s )  = Isz, - AI 

= Isz, - AI 

= Isz, - AI 

In - (sZ, - A)-lBJe-sT 1 -  E' Zzm - F 

x 1 Zzm - F Je-sT- E'(s Z, - A)-'B JeFST1 

X l Z z m  - [E'(sZ, - A ) " B +  F]Je-STI . (19) 

With the definition that 

W ( S )  E'(sZ, - A)"B + F ,  (20) 

we have 

h(s)  = Is Zn - AI I Zzm - W ( s )  Je-"TI 
= IsZ, - AI I Zzm - Je-"T W ( s )  I . (21) 

The matrix W(s) is called the scattering matrix of the 2m- 
port system consisting of the network without  the  trans- 
mission lines. Furthermore,  as shown in Appendix 2, W(s) 
can be measured for s = iw,  - m < w < a. We  want a 
stability criterion in terms of the measurable quantities, 
W, J ,  and T. 

We need to determine whether h(s) has any roots  in  the 
half-plane Re(s) 2 0. The argument principle from the 
theory of complex variables will be used: 

1 - arg h(s)18 = z - p , 2a 

where C? is a closed contour taken  in the counterclockwise 
direction and Z - P is the number of zeros minus the 
number of poles contained in the interior of e. 

The specific contour we take is shown in Fig. 3 where 
p is large. Since W(iw) can be measured, the change in 
argument of g(s) IZz, - Je-"W(s)( on  the w-axis from 
ip  to - i p  is a matter of measurement. On  the part of eP 
where s = peis, -a/2 < 0 < a/2, since W(s) = E'(sZ, 
- A)"B + F = F + S(lsl-l) as Is] + a, we need only 
test IZZ, - JePaTFI. Note:  If F = 0, then we just have 

= 1. Hence no test, since there is no change in  argu- 
ment. It is clear that this function changes from / Z z m  - 
JeiPTF/ to ~ZZ, - Je-PTFI to l l z m  - JepiPTFI, so the  total 
change in argument on this part of the contour is 2 X arg 
IZzm - JePiPTF( =I= 2ka for some integer k.  It is possible to 
determine k since the matrices J and Tare known from the 

(22) 
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Figure 3 The contour ep. 

function g(s) has a change in its argument on  the  part of 
the  contour in the right-half plane is due to the presence of 
the  ecST factor (i.e., due to  the transmission lines) and is a 
result not normally encountered in Nyquist criterion. 

There is one difficulty with using thc argument principle 
for  meromorphic  functions that was pointed out by D e ~ o e r . ~  
Consider the function et sin (e t )  which has a Laplace trans- 
form analytic for all finite s. By taking  a contour such as 
ep for p sufficiently large, we would never encircle any poles 
and, therefore, might conclude that  etsin  (et) 4 0 as 
t + a. Of course the  trouble is that d: [et  sin (et)]  (2 = La- 
place transform) has poles at s = m. We must therefore 
be careful about isolated zeros at infinity in our situation. 
The question is: Can 1 4 ,  - Je-"W(s)l have an isolated 
zero at s = ? The answer is no, because of the special 
form of the function (Zzm - Je-sTW(s)/. Since W(s) = F 
+ O(lsl-l) as Is1 +a, by Theorem 12.7, Ref. 4, we have 
that the zeros of (Zzm - Je-STW(s)l are asymptotic to  the 
zeros of /lam - JePTFI for Is/ "-f a. By Theorem 12.4, 
Ref. 4, all the zeros lie in a strip IRe (s)j < C1 where Cl is 
some finite positive constant. If IZzm - JePSTFI has a zero 
at infinity, then  there must exist some  constant y, IyI < C1, 
such that g(w) E (Zzm - Je-(yf iu)TF/  + 0 as u + a. How- 
ever, g(w) is an almost (quasi-) periodic function of w and as 
such can't approach zero as w 4 [unless, of course, 
g(w) = 0, which  is not the case here]. 

Finally, the  total change in argument of g(s) gives N = 
2 - P for g(s). However, g(s) has a pole at some point si 
only if ( s J ,  - A (  = 0. Thus P < Z1, where Z1 is the 
number of zeros of IsZ, - AI in the right-half plane. Hence 
the number of zeros Z of g(s) in the right-half plane is 
bounded by Z = N + P < N f 2 1 .  However, the fact 
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that W(iw) can be measured means essentially* that the 
lumped circuits are stable when there is no input, i.e., 
when y = 0. Therefore it is not unreasonable to assume 
that Z1 = 0, which we now do. Thus the  number Zz  of 
zeros of  h(s) in the right-half plane is 2 2  < 21 + Z = Z < 
N.  If N = 0, then Z2 = 0. We therefore have: 

Theorem 2 
If IsZ, - AI has no zeros in  the right-half plane, Re (s) >/ 0, 
and if Ig(iw)l > 6 > 0 for w + m ,  then  the system (9) is 
exponentially stable if arg 1Z2m - Je-8TW(s)le, = 0 for 
all p sufficiently large. 

Note  that in order to apply Theorem 1 in obtaining 
Theorem  2 we must  require that  the zeros of h(s) do  not 
accumulate on  the imaginary axis. There  probably is no 
general method for determining this  a  priori. However, if 
this did happen, it would be practically impossible to 
measure arg g(s)/ ep  since it would mean that g(iwk) "+ 0 for 
some sequence { w k } ,  Wk + 00. Thus the measurements 
would have to be impossibly precise for large w. The con- 
dition in Theorem 2 that Ig(iw)l > 6 > 0 for w + m is a 
practical requirement for ruling out this situation. 

The requirement that  the roots of h(s) be in the left-half 
plane, Re (s) < - 6 < 0, is necessary in general as pointed 
out by Snow.' He constructed an example of a linear, 
homogeneous, difference-differential equation where the 
equilibrium point is unstable (solutions grow like some 
power of r )  even though the condition Re (si) < 0 is met. 
For practical applications this is a fine point since one 
would very rarely encounter a system where stability is such 
a delicate matter. 

For completeness we  give the stability formulation  in 
terms of a general input y and  output z because in many 
cases it is more convenient, in  terms of writing the equa- 
tions  for a particular system, to have some freedom in 
choosing these variables. If vk = akyk + b k z k  and ik = 
ckyk + dkzk, and  the determinant of coefficients  is non- 
singular for k = 1, . e . , 2m, then Eqs. (4) and (5) can be 
written as 

(a - K y ) y ( t )  + (P - K M t )  
= J [ ( a  + K Y ) ( Y )  ( t  - 7 )  + (P + K 6 ) ( z ) ( t  - 711 9 (23) 

where a = diag (al, . . , u ~ ~ ) ,  = diag (61, . . . , bzn), 
y = diag (cl, . . . , cZm), 6 = diag (dl, . . . , dzm), and K = 
diag (Z1, . . ., Z,, -Z1, . . ., -Zm). Note that in the 

from measurements at the 2m ports, this could not be observed. This question 
*It  is possible that I d ,  - AI could have a zero with Re(s) 2 0 and yet, 

is related to the concept of complete controllability and observability, as 

irreducible if and only if it is completely controllable and observable. If this 
defined by  Kalman,' of the 2m-port. A result of Kalman is that a system is 

condition does not hold, then  it would mean that there is a smaller system 
which would have the same behavior. Since such a zero is not observed in the 

not affect the stability of the quantities of interest. 
output, we would not observe this oscillation in the output and hence it would 
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Figure 4 One-ports  connected by transmission  line. 

scattering matrix description a = f i  = 3 Z z m  and - y = 6 
= 3K-I. The remaining equations have the general formt 

i = Ax+ g y ,  
z = Px+ P y .  

The stability criterion is then  stated in terms of the  roots of 
the function 

A(s) = IsZ, - 21 la - KT - J(a + Ky)e-ST + [ ( P  - ~ 6 )  - J ( P  + ~ 6 ) e - * ~ I  @(SI\ , (25) 
where @(s) = i?(sZ, - + p i s  the transfer  matrix 
of the 2m-port. This  equation is derived in  Appendix 3. 

If ak = 1, bk = ck = 0, and dk = 1, then  the  input  is 
voltage and  the output is current. Hence @(s) = Y(s'l, the 
admittance matrix. Of course some  combination of volt- 
ages and  currents could be chosen and then one  obtains 
@(s) as somz hybrid matrix. For practical considerations 
we may not want to use the scattering matrix since it en- 
tails choosing the Z k  before measuring this matrix. 

Examples 
In  the first example we consider two one-ports  connected 
as shown in Fig. 4. We suppose that  the equations of the 
terminating networks can be written as 

i.e.,  with i o  and il as input. The  output uo and u1 are ob- 
tained as 

(Here we are not using the scattering matrix because it re- 
quires an a  priori choice of Z before measuring the scatter- 
ing matrix.) These are  the equations corresponding to (6) 
and (7); here 

E =  (eo O )  , and F = (o  Jo f l )  0 . 
0 el 

choice of (I, 0. y ,  and 6. However, the scattering matrix description always 
t It is  not always possible to write the equations in this form for an arbitrary 

exists (see Ref. 3) as well as some hybrid description. 435 
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Since y = (io, il)' and z = (GO, V I ) ' ,  we write Eqs. (4) and 
(5) in the  form (8) as 

where 

D =  (-: ;), c =  (o  1 0  l ) .  J =  0 1  o) 

The transfer matrix is 

where ZO and Z1 are the measured impedances at the  ports. 
Applying Theorem 1 ,  the characteristic function is 

- ( 2 0  + Z )  -ePr (Z1  - Z) 

/e-ST(ZO - Z)  2 1  + z 

= I s 1  - A01 I s 1  - A11(Z+fO)"(Z +fl)" 

X (z0 + z)(z1 + z)(1 - rOrle-2Sr), (30)  

where ro = (ZO - Z)/(Zo + Z )  and rl = (Z1 - Z)/(Zl + Z )  are  the reflection coefficients at  the ports. Thus  in 
applying Theorem 2, if  we assume that each  terminating 
circuit is open-circuit stable, we need to test the function 

g(s) = (ZO + Z )  (Z l  + Z ) ( 1  - rorle-2s') (31)  

for its change in argument on  the contour e. If we require 
that  the first two  factors of g(s) have no zeros or poles for 
Re (s) > 0 and  that  the third  factor have positive real part, 
then we can  interpret these conditions: That each termi- 
nating circuit when loaded with Z should be stable and 
that  the product of the reflection ccefficients, I'oI'l, should 
be less than one  in  absolute value. 

The case where Z j ( = t i w )  + 0 as w + 03 and  Re 
[Zj (&iw)]  > 0 , j  = 0, 1, is a borderline example since this 
would mean that  the zeros { sk) of g(s), while satisfying Re 
(sk) < 0, would accumulate at &ia. This is just the situa- 
tion in which it is impossible to say anything about 
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If we let T + 0 in the above example, then 

h ( s )  = I s z -  A01 I s [ -  A11(Z+fO)"(Z+fl)" 
X (2Z)(zo + 2 1 )  . ( 3 2 )  

The stability criterion would be that  the sum of the  input 
impedances, ZO + Z1, should have no  roots for Re (s) > 0. 
This says that any lumped network that can be separated 
into two  one-ports is stable if each port is open-circuit 
stable and if the  sum of their  input impedances satisfies the 
Nyquist criterion. 

In  the next example we consider a network which has  the 
following property of evenness: Form  the graph  obtained 
by replacing lumped networks by nodes and transmission 
lines by branches; if this graph  has any loops, the number 
of branches in any loop should be even. Then the matrix 
@'(io) can be put in the form 

w =  (-7 Gq) 3 ( 3 3 )  

where Go and GI are m X m matrices (m is the number of 
transmission lines). Also assume that all the inputs y are 
voltages and all the  outputs z are currents. Then Eqs. (8) 
can be written with the matrices 

Combining these matrices, we obtain 

I ; ($ )  = / S I ,  - A l a s )  , (34)  

$(s) = jD + C W  - JeKST(D - CW)I 

I ,  + ZGO -e--sT1 ( I ,  - ZC,) 

= l-e-sTl(zm - zc,) Im + ZG1 

= I I ,  + Z G O /  I I ,  + zG1/ I I ,  - e-sT' 

X ( I ,  - ZG,) ( I ,  + ZG1)-le-ST1 

X ( 1 ,  -  GO) ( I m  - ZGl)- l l  , ( 3 5 )  

where TI = diag (TI, . . e ,  T ~ ) .  

Note that this function only requires evaluating determi- 
nants of order m and  not of order 2m. If Go and G1 are 
diagonal, then the last  determinantal  factor in Eq. (35) re- 
duces to 

1 .  . . I  = IT (1 - e-2srkr0krlk) , 

where I'Ok and r l k  are  the reflection coefficients at  the be- 
ginning and end of the  kth transmission line, respectively. 

m 

k=l 

Discussion 
There are two considerations that  are pertinent to the 
practicality of the criteria given in Theorems 1 and 2. First, 
it could be that  the exact equations describing the lumped 
part of the network are  not easily determined, i.e., the 
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matrices A ,  B, E, and Fare  not easily found. For example, 
the lumped networks could contain  transistors or could 
be integrated circuits where many difficult measurements 
and approximations would have to be made to obtain a 
good lumped-parameter model. Since the stability criterion 
in Theorem 2 is based only on external measurements, i.e., 
input-output measurements, it is possible that it would be 
considerably easier to make these measurements if the 
network exists physically, rather than  to construct  a model 
and compute  determinants using A,  B,  E, and F. On the 
other hand, the scattering matrix (or transfer matrix) must 
be measured at a  number of frequencies and with  sufficient 
accuracy. If the network consists of many copies of the 
same circuit interconnected by transmission lines, then 
these measurements would not be difficult. 

Second, having the scattering matrix obtained either from 
measurements or from A ,  B, E, and  F, the time required 
to compute the determinant - Je-"TW(iw)( should be 
considered. This is the determinant of a 2m X 2m matrix 
where m is the  number of transmission lines in the network. 
The number of operations required to compute  the de- 
terminant of an n X n complex matrix, using the method of 
Gaussian elimination, is +n(n - 1) complex divisions, 
i n ( n 2  + 2) complex multiplications, and - 1) 
complex additions. Again this must be done at a number of 
frequencies. 

There have recently been developed some methods for 
solving systems of linear equations, Ax = b, where the 
matrix of coefficients, A, is a sparse matrix, i.e., one with 
many zeros. These methods can also be used for computing 
determinants since they use Gaussian elimination. Thus it 
may be advantageous to compute  the determinant of the 
large (n + h)-dimensional system h(iw) rather than the 
smaller 2m-dimensional system g( iw)  since the latter in- 
volves ( S I  - A)-1 which  is not necessarily sparse. 

Appendix 1 - Theorems 
We consider a system of the form 

i ( t )  = A x ( t )  + B ( . Y ) ( ~  - T )  , ('41) 

Y ( t )  = C'xO) + D ( Y ) ( t  - 7) , (A2) 

where T = (71, . . ., T ~ ,  71, . . ., T~)', 71 > 7 2  . . . > 7rn 

> 0. The coefficients are constant matrices; A is n X n, B 
and C are n X 2m, and D is 2m X 2m. The notation 
(y)(t - T )  is explained following Eq. (8). Note  that if it 
were possible to solve for y ( t  - T )  from (Al), then the 
system could be reduced by eliminating y .  For example, if 
the left inverse of B exists, then 

~ ( t  - T )  = B ~ " [ i ( t )  - A x ( t ) ]  

and  the system (Al), (A2) becomes 

i ( t )  - A x ( t )  
- B(C'x + D B i - * ( i  - A x ) )  ( t  - 7) = 0 .  (A3) 

In general (A3) is a system of difference-differential equa- 
tions of neutral  type because of the presence of the DB1-l 
(i) ( t  - 7) term. If D = 0, then we get  the  retarded type. 

From this point on in the appendix we make extensive 
use of the book by Bellman and C ~ o k e , ~  and the proofs 
will be completed only to  the point where the remaining 
part of the proof follows essentially that of the  correspond- 
ing theorem in Bellman and Cooke. 

Asymptotic behavior of characteristic roots 
We first prove that  the  roots of the characteristic equation 
for (AI), (A2) have no advanced chains, i.e., there is no 
sequence of  roots (si] such that  Re(sj) + m as j + 00. 
The characteristic equation corresponding to (Al), (A2) is 

A(s) = s I ,  - A - Be-"l' 
~ = o .  ('44) 

- C' Izm - De-ST 

Theorem AI 
The roots of  (A4) satisfy the condition Re (s) < c for some 
c <  a. 

Proof of Theorem AI 
The  form of A(s) is 

j=O 

where 0 = Pn < Pn-l < . . . < Po and  pj(s) is a poly- 
nomial  in s of degree mj. We use the results in Ref. 4, pages 
410 to 416, to determine the asymptotic behavior of the 
roots of A(s) = 0 for large / s i .  The theory states that the 
roots are asymptotically located in  the regions defined by 

]Re  (s + pLT log $11 < C I  , ('45) 

where pLr is the slope of a line segment obtained  as follows: 
Plot the points Pi = (aj, mi )  in a Cartesian  plane; the line 
segments L, of the upper boundary of the convex hull of 
these points have slope pr. 

From (A5) it follows that if all the pLr are nonnegative, 
then all the roots lie in a left half-plane, Thus it is sufficient 
to show that m, > mj or that  the polynomialp,(s) has the 
largest degree. For this we expand A(s) using the Laplace 
expansion formula : 

A(s) = 1s Z, - AI 1 Zzm - DePsTI + . . . , 
where the unwritten terms have polynomial coefficients of 
degree 4 n - 1 .  Clearly pn(s) = sn. + (3(sn") and hence 
m, = n > mj.  Since it is possible that mj = n, j # n, there 
are, in general, neutral, as well as  retarded, root chains of 
4s). 437 
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Existence and  uniqueness 
Theorem A2 
Consider the system (Al), (A2) where the initial  conditions 
y(t)  = g(t)  E C[ - 7, 0]* and x(0) = x0 are given such that 
g(0) = C'xo + D(g)( -7). Then  there exist unique solu- 
tions x(t)  E C*[O, m) and y(t)  E C[O, m). 

Proof of Theorem A2 
We can demonstrate existence by standard continuation 
arguments. Thus for 0 < t < 7% ( T ~  is the shortest delay 
> O), 

x ( t )  = eA txo + eA(t"s) ~ ( g )  (s - 7)ds 

and 

lt ('46) 

y ( t )  = c 'x( t )  + D ( g )  ( t  - 7) . (A71 

Clearly x and y are in C[O, T ~ )  since x(O+) = x0 and y(O+) 
= C'xo + D(g)( - 7) = g(0). The right-hand side of (A6) is 
obviously continuously differentiable; hence x E CJO, T ~ ) .  
Since x and y are defined for [0, T ~ ]  and [ - 7, T ~ ] ,  respec- 
tively, we can continue the solution via the formulas 

x ( t )  = eAtxo + eA( t - " )B(y ) ( s  - ~ ) d s ,  lt (A81 

Y ( t )  = C'x(t)  + N Y )  ( t  - 7) 9 (A91 

for T~ t < 27,. By a straightforward  calculation we 
find X(TJ = x(T,+) and Y ( T ~ - )  = Y(T,+). Again the 
right-hand side of (AS) is differentiable and, in  taking  its 
derivative, we see that i ( ~ ~ - )  = i(~,+). Clearly this proc- 
ess can  be  continued indefinitely and hence x E C1[0, m ) 
and y E C[O, a). Uniqueness is obvious. 

A more general theorem is established if the requirement 
g(0) = C'xo + D(g)( -7) is not made. Then only piece- 
wise continuity is obtained  for y and i. 

A priori estimates 
We shall obtain  some  growth estimates for /ly(t)ll and 
Ilx(t)ll in order to be able to  take Laplace transforms. For 
a vector the  notation /lxlj means (x,  x);. 

Theorem A3  
The solutions x(t),  y(t) of Eqs. (AS) and (A9) satisfy the 
relations 

/ lx( t ) l l  4 k1eat and IIy(t)II < kzeat , (A101 

where kl ,  kz ,  and a are constants depending on  the system 
and  on  the initial data. 

continuous functions defined on the closed interval [OL, 61. Similarly C [a, B )  
*This means that gj  E C[-s j ,  01. The notation C[a, /3J means the set of 

means the set of functions with continuous first derivatives defined on the 
half-closed interval [a, 8). 438 
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Proof of Theorem A3  
The proof, which follows along the lines suggested in Bell- 
man  and C ~ o k e , ~  Section 6.5, Exercise 5 ,  is left to  the 
reader. 

Representation of the solution by Laplace transform 
Since it has been shown that x(t) and y( t )  are exponentially 
bounded, we can  take the Laplace transforms of Eqs. (Al) 
and (A2): 

[ i ( t ) e P s t d t  = 1 Ax(t)e-stdt  

+ lm B ( y )  ( t  - T)e-stdt, 

+ 1 D ( y >  ( t  - 7)e-sttdt , 

where Re(s) > a. By straightforward calculations we 
obtain 

Thus 

where 

H ( s )  = 
s I, - A - Be-ST 

- C' Izm - De-ST 

By using the result of Theorem Al ,  one can show that 
H-l(s) exists for  Re($ large enough and hence we can 
solve for [?(s), F(s)]' and  take the inverse Laplace transform 
to obtain 

Here C! denotes the  contour shown in Fig. Al .  

Stability 
Using (Al l )  we can now obtain  the required stability 
theorem. 
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Figure A1 The contour of integration for Eq. (A1 1). 

Theorem A4 
If the roots of A(s) = 0 satisfy Re(sj) < 6, then  the solu- 
tions x(t) ,  y( t )  of (Al), (A2) satisfy 

[11x(1)11~ + ~ ~ y ( t > i ~ ~ l I " ~  = O(e8'l)  as t + 03 , 

where 6' > 6. 

Proof  of  Theorem A4 
Since H"(s) has no poles where Re(s) > 6, we can  alter 
the  contour of integration (where c is replaced by 6' > 6) 
without changing the value of the integral. To obtain the 
result of the Theorem we rely on Theorems 12.19 and 12.20 
in Ref. 4. The proof of Theorem A4 is the same except for 
the assumption that det A0 # 0, which is not needed in 
view  of our results in Theorems A1 to A3. It should be 
noted especially that Theorem A1 gives the following result 
which is needed in proving Theorem 12.19: 

Appendix 2 - Measurement of the  scattering  matrix 
To measure W(iw) for - < w < m we form  the net- 
work shown in Fig. 2.  Then let vii = ~ 6 j k  cos at, 1 < k 
< 2m, 1 Q j < 2m, and measure u1, l  < 1 Q 2m, after the 
network  has settled down to steady state.  We obtain 

U T 2  = PIkeiWt + Plhe , "io t 
('41 2) 

where the bar indicates complex conjugate and 

P I k  =z alkeisZk - % € 8 2 k  . 
On  the other  hand, from  the differential equations 

assuming steady-state conditions, i.e., 

x = xOei w t  + - "i w t  ~ zoei w t  + - " i w t  xoe , zoe , 

we have 

jwXOeiw  - iwRoe-iW t - - A (xoeiw 1 + - - i W t )  xoe + B(yoeiWt + poe-iWt) , 
io1 + ioe-iul - E r ( x o e i w t  + - " i w t )  

zoe - xoe + F(yOeicdt + poe-iw') , 

where yo2 = $ ~ 6 l k ,  1 < 1 < 2m. 

x. we obtain 

zOeiWf = rEr(iwIn - A)"B + ~ ] y ~ e ~ ~ ~  

Equating coefficients of ei Ot  and e-i and eliminating 

= W(iw)yoe . i w  t 

Then 

z ( l )  = zOeiWt + ioe-io' 
= u r ( t )  = W(iw)yoe iw t  + W(-iiw)yoe-iWt 

or 

vr( t )  = + e [ W ( i w ) e i w t  + W ( - i w ) e - i w t ] e k ,  (A13) 

where ek is the vector with ekl = 6 k l .  The result of equating 
(A12) and (A13) is 

2 
[W( iw) ] Ik  = - P L ~  = u2ke ie2k - 

6 2 k  . 

Appendix 3 - Characteristic  equation  for general 
input-output 
We have the equations 

i = A X  + E ( y )  ( t  - T) , 

z = QX + E y ,  

(a - K T ) Y ( t )  + ( P  - m z ( t )  
= J [ ( a  + KT) ( Y )  ( t  - 7) + (6 + K6) ( z )  ( t  - 7) 1 . 

If we take  the Laplace  transforms and eliminate z ,  we 
obtain 

s ~ "  = 22 + ke-"T, 

(a - KT)? + (0 - K6) ( E 2  + E y )  
= ~ ( a  + K-y)e-yT3 
+ J ( p  + K6)eKST (E'Z + &) . 439 
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Thus we arrive at  the characteristic equation 

A(.) 3 sz, - A I = 0. 

Expansion of the determinant yields 

Acknowledgments 
The  author would like to thank M. Axelrod for some very 
helpful discussions and suggestions. Also some  unpub- 
lished memoranda by H. B. Williams, G. Prada, Y. K. 
Puri,  and R. F. Sechler of IBM were helpful. 

References 
1. H. Nyquist,  “Regeneration  Theory,” Bell System  Tech. J. 

11, 126 (1932). 
2. E. S .  Kuh and R. A. Rohrer, “The  State  Variable  Approach. 

to Network  Analysis,” Proc. IEEE 53, 672  (1965). 
3. H. J. Carlin,  “The  Scattering  Matrix  in  Network  Theory,” 

IRE Trans. Circuit Theory CT3, 88 (1956). 
4. R. Bellman and K. L. Cooke, Differential-Difference Equa- 

tions, Academic Press, New York (1963). 
5. C.  A. Desoer, “A General  Formulation of the  Nyquist 

Criterion,” IEEE Trans. Circuit Theory CT12, 230  (1965). 
6. R. E. Kalman,  “Mathematical  Description of Linear Dy- 

namical  Systems,” J. SIAM Control 1, 152  (1963). 
7. W. Snow,  “Existence,  Uniqueness, and Stability for Non- 

linear  Differential-Difference  Equations  in  the  Neutral  Case,” 
Courant Institute of Mathematical Sciences Report IMM-  
NYU 328, New York  University (1965). 

Received July 11, 1968. 

IBM J. RES. DEVELOP. 

440 

R. K. BRAYTON 


