422

Error Detection and Correction in a
Photo-Digital Storage System

Abstract: An error-correction system has been implemented for data stored in the IBM Photo-Digital Storage System. Hardware
is used for encoding and error detection, and a processor-controller is used, on a time-sharing basis, for error correction. A Reed-
Solomon code is used to obtain a very low error rate in spite of flaws affecting the recorded bits. This approach is applicable to systems
which require complex codes and have a data processor available on a time-sharing basis.

Introduction

In a high-density photo-digital storage system, contamina-
tion and other defects can easily obliterate a group of data
bits. To operate successfully in spite of this problem in the
IBM Photo-Digital Storage System!.? (referred to here as
PDSS) a powerful error-correction code is used.

Information obtained on the operation of a predecessor
to the PDSS, the Photostore System,? indicated that the de-
sired net error rate of one bad line of data per 8.1 X 108 bits
read might be met if a Reed-Solomon* code with 50 six-bit
characters of data and eleven characters of redundancy
were used. The difficulty with using a code of such com-
plexity is that implementation of the decoding system in
hardware with adequate speed is very complex, and im-
plementation with a sequential processor is too slow.

The problem of effectively implementing a code of this
complexity has been solved by a number of innovations.
Most important is the use of hardware for encoding, calcu-
lation of the power sums, and error detection, while using a
control processor, on a time-sharing basis, for error cor-
rection. Another important feature is that single-character
error correction is tried first; if this is not sufficient, further
correction activities can be tried. Other important features
are use of a ““trial and recheck” method of error correction,
selection of a symmetric code polynomial, use of a table of

*1.B.Oldham is at the Systems Development Division Laboratory of the
International Business Machines Corporation, San Jose, California.

1 R. T. Chien is at the Coordinated Science Laboratory of the University of
Illinois, Urbana, Xllinois, and is a consultant to the International Business
Machines Corporation.

§ D. T. Tang is at the T. J. Watson Research Center of the International
Business Machines Corporation, Yorktown Heights, New York.

OLDHAM, CHIEN AND TANG

logarithms for multiplication and division in a Galois field
of 64 elements, et cetera.

The approach used here differs from that of Bartree and
Schneider® in that limited additional circuitry is used with a
standard data processor rather than building a special-pur-
pose processor. The procedure used for error correction
follows the basic method of Gorenstein, Zierler and Peter-
son,” with modifications to improve the speed of decod-
ing. Two of the modifications are the omission of the step
to determine the number of errors, and the inclusion of
direct solution of quadratic equations in a Galois field of
64 elements.

Coding requirements for a photo-digital

memory system

To permit better understanding of the coding requirements
and the choice of features used in implementing the code,
the PDSS will be described briefly.

Data entering and leaving the storage system are handled
by a data controller which encodes the lines of data, does
error detection, and contains adequate buffering to hold a
line of data while error correction is being done on the line.
All encoding and error detection, as well as some correction
functions, are implemented by circuitry in the data con-
troller.

Data are recorded on 1.377” by 2.750” photographic
film *“chips,” using an electron beam recorder to expose the
film.? Each bit occupies an area 14y by 16u. The bits are
written sequentially in lines of 300 data bits, together with
redundancy and format bits. The film chips are developed on

IBM J. RES. DEVELOP.

line and stored in small boxes, called *“cells,” which are
stored in file modules. The data can then be read optically
with a flying-spot scanner.

Various decision-making functions of the system, in-
cluding control of the film-handling mechanisms, are per-
formed by a stored-program control processor. This proces-
sor also does most of the calculations necessary for error
correction. Time sharing of the processor is accomplished
by the use of multiple interrupt levels,?

With adequate buffering between the storage system and
the main computing processors, delays associated with
error correction are tolerable, provided the average data
rate remains high. This buffering also allows newly recorded
chips to be checked for readability and to be rerecorded, if
necessary, with data kept in the buffer.

Now let us consider the coding requirements for this
system. In a photo-digital system, errors are caused by con-
tamination, distortion of the emulsion, or other problems
affecting the quality of the data. These flaws may be intro-
duced during manufacturing and transporting of the raw
chips, during recording and development of the chips, or
during subsequent storage and reading.

To prevent loss of data, some errors which occur can be
corrected using an error-correcting code. Some errors can
be eliminated by the use of a readability check which is done
immediately after recording; unreadable data is rerecorded.
Neither approach alone suffices because coding cannot
overcome flaws which obliterate a large part of a line. Re-
jecting and rerecording alone would not be sufficient
because virtually all chips have minor flaws affecting at
least a few bits, and because it does nothing to help the
problem of contamination during subsequent storage.

To make an effective selection of a code for use in the
IBM PDSS, the Photostore (an earlier system which has
somewhat similar characteristics) was studied. The Photo-
store System is a photographic system which originally
wrote circular tracks of data with an optical recording
arrangement.® The recording and reading characteristics
were somewhat different from those planned for the PDSS,
but it was reasonable to expect that the Photostore would
be a fair model for the PDSS.

The procedure used in selecting a code was to read a large
quantity of known data from the Photostore and record all
errors in the raw data. The known capability of various
codes was tested empirically by Chien, Tang, Barrekette,
and Katcher,® using blocks of data that were read. For
example, a code which was known to correct all single
bursts of length 17 or less within a block of data was judged
to have successfully decoded a given block of data if these
were, in fact, errors occurring only within one burst of
length 17 or less. By comparing burst correcting codes, in-
dependent bit-correcting codes, and independent character
correcting codes, it was determined that an independent
character correcting code with 11 characters of redundancy,

NOVEMBER 1968

a block length of 63 characters, and a character size of 6 bits
best met the objective of meeting the required error rate
while minimizing the required redundancy. This type of
code is known as a Reed-Solomon code* or Bose-Chaud-
huri-Hocquenghem character correcting code 101!

For selected good tracks on selected disks, the Photo-
store System demonstrated a raw error rate of 1 block per
8 X 10* bits read, for 441 bit blocks. The reliability re-
quired for the IBM PDSS, after error correction, was
a rate of 1 erroneous line for every 8.1 X 108 data bits read
and 1 undetected error for every 2.7 X 10 data bits read,
for lines with 300 data bits. The character correcting code
selected showed promise of being able to meet these re-
quirements. It is effective against both random flaws of a
few bits each and bursts of moderate length caused by a
larger flaw.

Having chosen the type of code, the remaining problem
was to select the exact generator polynomial® for the code.
The generator polynomial selected was

5

I —ab

i=—5

xll + (X14X10 + a59x9 + a6x8 + a28x7

+ a54x6 + a54x5 + a28x4 + a6x3

+ a59x2 + aMx 4+ ao , (1)
where « is a primitive element in the Galois field of 2° ele-
ments formed by all polynomials modulo x® 4+ x + 1,
with coefficients in the Galois field of 2 elements.

There were two reasons why this particular generator
polynomial was chosen. One was that «® is one of the roots.
Thus, one of the power sums is a longitudinal parity check,
which means that one of the power sums will be equal to the
magnitude of the error when a single error occurs. This
property is necessary in order to correct single errors rapid-
ly. The second property which this particular polynomial
possesses is symmetry; thus, when it is written in its ex-
panded form, there are five distinct coefficients rather than
ten. This results in hardware saving in the encoder, because
the encoder contains circuits which multiply a given input
by each of the distinct coefficients of the generator poly-
nomial,

It

g(x)

Implementation approach

Encoding and calculation of power sums for the Reed-Solo-
mon code are done in hardware. Other portions of the de-
coding activity are implemented in software in a control
processor which is time-shared with the control functions
and other functions of the storage system. This processor is
interrupted when an error is detected during reading.

By providing programs which do most of the computa-
tions necessary for error correction within the control proc-
essor, a relatively complex decoding procedure can be im-
plemented with minimum additional hardware beyond that

423

ERROR DETECTION-CORRECTION SYSTEM

424

required for data buffering, which is needed for data-rate
matching. This makes it possible to have a system which
operates rapidly in hardware when there are no errors and
which allows complex error-correction calculations in soft-
ware with little requirement for additional hardware.

Without this division of functions, it would not be feasi-
ble to implement a code of the complexity used. Because the
IBM PDSS is a very large storage system which is buffered
from the main processing units of the system, occasional
long decoding times are tolerated, provided that the
average decoding time is short. This is a freedom which is
often not available in data processing storage systems.

For reasons of speed, encoding is also implemented in
hardware. The encoding function is performed by a circuit
capable of dividing the input line of data by the generator
polynomial. The error detection function could be per-
formed by this same circuit or, in order to allow reading and
writing to occur at the same time, by a duplicate circuit.
Instead, the error detection function is accomplished by
alternative circuitry. The error detection circuitry di-
vides by the factors of the generator polynomial rather than
by the entire polynomial itself. These check circuits have no
advantage or disadvantage as error detecting circuits. How-
ever, when an error is detected, the check circuits produce
the power sums which are used by the error correcting
procedure.

By transmitting the power sums to the control processor
and interrupting it, the error correction program can begin
the correction immediately. The processor is shared with
the control functions which may interrupt the error correc-
tion process during long error correction computations.
This method of operation makes the relatively powerful
processor available without unduly interfering with its other
function of control, and makes implementation of the
powerful independent character correcting code feasible.?

The fastest available decoding techniques are used first.
Slower, more powerful, techniques are not attempted until
the faster ones have been exhausted. This decoding strategy
is designed to minimize the average decoding time at the
expense of increasing the maximum decoding time.

Initially, single-error correction is used to try to correct
an error of a single character. This is usually sufficient
because most errors affect only a single character. If it is
not sufficient, the line is reread. In this system, single-error
correction occurs fast enough that it can be done while the
reader scans back to the beginning of the line to reread the
line.

After trying single-error correction and rereading several
times, two-error correction is attempted; then three-error
correction is tried if two-error correction is not adequate.
Other slower corrective actions can be tried singly or in
combination until all have been exhausted before aban-
doning a line. These slower actions include correcting
up to five errors and other data recovery techniques. To

OLDHAM, CHIEN AND TANG

exhaust all these techniques takes a long time; it is seldom
necessary, however, to use most of them, so the effect on
the average throughput is small in spite of the very long
time required for some bad lines.

The error correction code is limited to correcting addi-
tive errors. That is, if the beginning of the line is known, if
most of the bits can be read, and if the bits which have been
successfully read can be correctly positioned on the line,
then the code can correct some characters that are in error.
This leaves several classes of difficulties which are not
specifically correctable by the code. They include loss of
synchronism, inability to find the start of the line, and
errors in the line numbers that make it difficult to know
what line to read.

While the code does not directly help in solving these
problems, it plays a very important part in the procedures
which are used in attempting to overcome them. Namely, it
can effectively reject a combination of bits which does not
make up a correct, properly synchronized line. This makes
it possible to make a number of reasonable guesses as to
where the correct line is or where the beginning of a line is,
with little fear of erroneously accepting the wrong thing as
the line being sought. In this system the procedures which
are used to overcome these Kinds of problems are referred
to as data recovery procedures.'> They include reread-
ing, searching for the correct line, jumping to the line from
some other known line, physically moving the film chip to
clean and reposition it, varying the reference point of the
line-following servo in the reader, using a different method
to find the beginning of the line, et cetera.

Besides the ability of the code to reject patterns of bits
which are not the correct line, two other features of this
system aid in the rejection of bad lines. One of these fea-
tures is the inclusion of a 12-bit line number. If the system
reads the wrong line, it can be rejected because the line
number is not the one being sought. Any collection of bits
which occurs due to improper synchronism of a line will
have some group of bits other than the line number in the
line number field and will thus usually be rejected as having
the wrong line number. A second feature of the system
is that three widely separated bits in the redundancy field
are inverted as they come out of the encoder. They are
reinverted when the data are read. If the line is properly
read, these actions cancel each other out. If the line is out
of synchronism when it is read, there will be six errors.
This helps reject lines which are started six bits too soon or
too late and which, if the bits in the line number field
happened to be the correct line number, would otherwise
be accepted as a valid coded line because all cyclic shifts
of a coded line are also coded lines.

Some chips have gross faults which are present at the
time data are recorded. These chips are eliminated by a
readability check before storing them, to allow for rere-
cording. The readability check consists of reading the data

IBM J. RES. DEVELOP,

Control Control

processor | T T T T T 'T' ___________________ 'jl
|
|
r | g 1
| NI
Line ’ Files
number \\ |
check Power |
sum I
‘ calculators
Recheck | j ‘?l
e/ |- — —
- Ir Host Device Line | Readers % [
buffer buffer start l
detector I
Host READ
Computer " T r— e — — —— e - — e I
system T WRITE] |
! [i Recorder / ll
| | A
’ Line ’
number Encoder
generator
‘ Data controller ’
- —

Figure 1 Data flow in the data controller

from the reader into the data controller and verifying that
it is readable; the data is not sent from the data controller
to the host computer. During the readability check, the tull
capability of the data recovery procedure is not used, to
prevent the acceptance of marginal chips which might
otherwise cause reading problems subsequently.

The three techniques of error correction, data recovery,
and readability check, taken together, made possible the
very low error rate obtained.

Error detection and correction system
During recording, the data are encoded by the data con-

troller hardware. After recording, a readability check is
made. During reading, the error detection and buffering of
the data are done by the data controller hardware. Error de-
tection is accomplished by computing the power sums of
the line of data read. If the sums are not zero, a detectable
error has occurred and error correction is attempted. Com-
putation for this correction is done in the control processor.
The correction is made to the data stored in the data con-
troller buffer and the line is rechecked in the data controller.
Logical decisions relative to how many errors to try to cor-
rect or what other procedures should be undertaken to ob-
tain a correct line are made by the control processor. Flow
of data in the data controller and in other parts of the sys-
tem is shown in Figure 1.

NOVEMBER 1968

For recording, the data to be recorded and line number
characters are transmitted to the encoder on the input line
as characters consisting of six bits in parallel. Incoming data
to be recorded are broken up into 300-bit lines, to which the
data controller appends a 12-bit line number. These data
lines are treated as 52 six-bit characters which are con-
sidered to be elements of the Galois field of 64 elements.
Each character is understood to be the coefficient of x*
where i equals O for the last character in the line, 1 for the
next to last, etc., and x is a dummy variable.

The encoder, shown in Figure 2, divides the line, treated
as a polynomial, by the generator polynomial of the code.
Each line and each block in this figure handles data six bits
in parallel. The multiplier “xa!” is shown in Figure 3. To
obtain a multiplier “xa®,” use i “xa!”’ multipliers in series
and use logical simplification to minimize the circuitry. In
fact, all the multipliers in the encoder are implemented in
one large circuit with resultant saving of components.

After the 52 characters have been transmitted, the en-
coder contains the 11 remainder coefficients. This remainder
is read out of the encoder and appended to the line to make
a 63-character encoded line. After this encoding process
the “coded-line polynomial” is divisible by the generator
polynomial. Format bits for synchronizing the data are
then added, making a total of 420 bits which are recorded
as a line of data.

425

ERROR DETECTION-CORRECTION SYSTEM

426

Data line

A g @ L .- B-

Figure 2 Encoder

Figure 3 Multiplier xa! in which b = ol a

ag by

“ & "
)

ay b,

ay by

a4 b4

ag b5

The encoding process can be represented by the following
equation:

A(x) = x"'D(x) = R(x), @

where A(x) is the coded line polynomial,
D(x) s the data polynomial after the line number has
been appended but before encoding, and
R(x) is the remainder obtained when D(x) is divided
by g(x), the generator polynomial given in Eq.

.

After each chip has been recorded and developed, a check
is immediately made to see if all the lines on it are readable
with no uncorrectable errors. Any chip (or alternatively any
record) which contains a line or lines that cannot be read
and corrected must be rewritten. This procedure eliminates
many potential errors. During the process, the full data
recovery procedures of the reading system are not ex-
hausted, to ensure the readability of the chip at a later date
under slightly different conditions. After the chips in a cell
have been checked and accepted, the cell is stored in a file
module.

To read data, the cell containing the desired chip is with-
drawn from the file module, and the chip is removed from

OLDHAM, CHIEN AND TANG

the cell and positioned in the reader. While each line is
read, the line number is verified, and a check is made to de-
termine if the line is still divisible by the generator poly-
nomial. These two tests are made in hardware and, if both
criteria are met on a line which has been read or on which
error correction has been attempted, the line is accepted
and the reading proceeds. The test to determine if the line
is still divisible by the generator polynomial is to divide the
line by each of the 11 factors of the generator polynomial
to see if the line is divisible by all of them. The 11 circuits
used to make the tests are like the dividing circuit given in
Figure 4, where —5 < i < 5. The 63 6-bit characters of the
encoded line are fed into these circuits in parallel. Values
obtained with these circuits are called the check sums or
power sums. If some or all of the 11 values computed are
not zero, an error has occurred in the line which was read
and the power sums can be transmitted to the control
processor for use in the error correction computations.

Two power sums are required per error to be corrected.
Initially, the system does single error correction; thus, two
power sums are transmitted to the control processor. The
location of a single error is found by the control processor
using the equation

L = 62 — (log,S1 — loga.So) 3

The address L is transmitted to the data controller which
adds, in Galois field arithmetic, S, the longitudinal parity,
to the data character at the specified address. The line is
then rechecked and if there was, in fact, one error, the line
is accepted. If there was more wrong with the line than just
a single-character error, rereading and further error cor-
rection is required.

The encoded lines of data are written in alternate direc-
tions, so the beginning of each line is just below the end of
the previous line. To reread a line which has an error, the
reader scans to the end of an adjacent line to get back to the
beginning of the line to be reread. When a line that has been
read contains an error, single-character error correction can
take place while the reader is scanning an adjacent line to

IBM J. RES. DEVELOP.

Data line

Figure 4 S; calculating circuit

get back to the beginning of the line in error. If the line can-
not be corrected by single character correction, the reader
is ready to reread the line. If, after several tries of rereading
and single-character error correction a line is not corrected,
the reader can scan (without reading) the line of interest
and an adjacent line in an idle loop while longer error cor-
rection processes are carried out.

After the control processor decides that single error cor-
rection and rereading have been used to the point of di-
minishing returns, muitiple error correction begins. When
the line is reread in the multiple error correction mode, ten
power sums are transmitted from the data controller to the
control processor. These sums are used to compute the
location and magnitude of the errors.

The multiple error correction activity is used to try to
correct two or fewer characters in error. If this is unsuccess-
ful, the procedure allows up to three characters to be cor-
rected, later up to four characters, and finally up to five
characters.

On command from the control processor, the individual
characters in error are transmitted from the data controller.
In the control processor the magnitude of the error is sub-
tracted in Galois field arithmetic, and the corrected char-
acter is transmitted back into its place in the buffer of the
data controller.

After all of the corrections have been made, the line must
be rechecked by recomputing the power sums, If they are all
zero and the line number is correct, the line is considered to
be corrected. If they are not zero, the line is reread and error
correction is continued.

Several features of the program used for correcting the
errors will now be discussed.

The power sums computed by hardware for a line that
contains an error are used to solve for the elementary sym-
metric functions. These in turn are used to solve for the
error locations which, in turn, are used together with the
power sums to find the magnitudes of the errors. This pro-
cedure is basically that developed by Gorenstein, Zierler,
and Peterson,®7? but with important modifications. Their

NOVEMBER 1968

procedure has five steps, namely, the calculation of (1)
the power sums, (2) the number of errors, (3) the ele-
mentary symmetric functions, (4) the error locations, and
(5) the error magnitudes.

One feature of our program is the assumption of the num-
ber of errors rather than solving for the number. The usual
procedure is to consider all the possible equations relating
the power sums to the elementary symmetric functions and
determine the number of dependent equations. Then the
independent equations are solved to obtain a correction
which will make all the power sums zero.

In the procedure used here, no attempt is made to de-
termine the number of characters in error. Instead, it is as-
sumed that only one character is in error and thus single
error correction is required. This assumption results in
much faster decoding for those cases that can be corrected
by single error correction or single error correction to-
gether with rereading. These are by far the most common
cases. Similarly, if single error correction has failed, the
process can then be continued by progressively assuming
two, three, four, and five errors.

During any correction attempt, the actual number of er-
rors may be different from the number of errors assumed.
1t is not determined in advance whether there is a solution
for the errors or, if a solution does exist for the 2¢ error sums
being considered, whether the solution will cause all eleven
of the power sums to be zero. In fact, the process which at-
tempts to find the errors may be terminated due to inability
to find a solution for the error locations from the elemen-
tary symmetric functions. Thus it may be determined dur-
ing the course of the attempted solution that there is no
solution for (1) the number of errors being sought or (2) fewer
than the number of errors being sought,

The solution produced, if any, has been calculated in such
a way as to force 2r of the power sums to become zero, but
not necessarily all eleven power sums. Thus, the proposed
solution may satisfy the limited number of equations being
solved, but not constitute a valid correction. After the cor-
rection has been made, the line must be rechecked to see if
all the power sums are zero and the line has been corrected,
or to see if some of the power sums are not zero, in which
case the line has not been corrected. This is done by re-
checking the line with hardware.

If there are fewer errors than assumed, there will be fewer
independent equations relating the elementary symmetric
functions to the power sums. When a dependent equation
is found, it can be omitted and the number of power sum
symmetric functions can be reduced to correspond to the
actual number of errors. Then the solution can continue to
find the smaller number of errors.

The advantage of this procedure is the quick solution of
the simple set of equations obtained when a number of er-
rors assumed is small. Thus, when a line has a small num-
ber of errors, or when a line can be corrected by rereading

427

ERROR DETECTION-CORRECTION SYSTEM

428

and correcting a small number of errors, the error correc-
tion procedure is much faster than if an attempt were im-
mediately made to correct up to five characters. The pro-
cedure is much faster on the average, inasmuch as most
errors affect one or sometimes two characters when first
read or subsequently reread. On the other hand, if the line
is consistently read with five characters in error, the decod-
ing procedure is slower because the unsuccessful attempts to
correct less than five characters in error preceded the five-
error correction. This means the average decoding time is
substantially decreased and the maximum decoding time is
substantially increased.

Besides the decrease in average decoding time, there is
another advantage in that the line can be quickly reread
many times. This allows lines with data of marginal quality
to be read correctly, which might not otherwise be possible.

A problem associated with rereading a line which pro-
duces variable erroneous data is that each time it is read
there is a possibility that the line will be accepted either
before or after correction with an undetected error. The
undetected error rate is, however, much lower when the
number of errors sought is chosen to have a value less than
five. Thus, rereading while attempting to correct one, two or
three characters in error has negligible effect on the unde-
tected error rate. The undetected error rate is little affected
by those cases in which four errors are sought and is de-
termined almost entirely by the number of times the line is
read with attempts to do five-error correction. Thus, the
undetected error rate is kept low in spite of the very large
number of rereads allowed on any one line, because in most
of the reads the number of errors sought is less than five.

Other unique features of interest include the following.
In solving the polynomial which has as coefficients the ele-
mentary symmetric functions and has as roots the error lo-
cations, the use of a general solution for quadratics in a
Galois field of even order speeds up the procedure. If the
polynomial is of order one or two, the solution is obtained
directly. If it is of higher order, the roots are sought by trial
and error using synthetic division. After a root is found, the
reduced polynomial, obtained by dividing the polynomial
by the linear factor containing the root, is used for solving
the remaining roots. When the order of the polynomial is
reduced to two, the solution is obtained directly.

For all operations in the control processor, multiplica-
tion or division is done by adding or subtracting logarithms
to the base alpha modulo 63, where alpha is a primitive root
of the generator polynomial of the Galois field. This allows
efficient computation in a Galois field of 2° elements with a
general-purpose computer.

Thus, in single error correction, the first power sum S is
divided by the 0™ power sum S, by looking up their
logarithms in a table and subtracting them. Then, 62 minus
the logarithm of the resulting error location is transmitted
to the data controller. This format is chosen for the trans-

OLDHAM, CHIEN AND TANG

mission of the error location inasmuch as it constitutes the
address of the character in the buffer in the data controller.

In multiple-error correction, the elementary symmetric
functions are obtained from the power sums using a matrix-
solving program. The error locations are next obtained
from the elementary symmetric functions by trial and error
using synthetic division and by direct solution of the
quadratic. The error magnitudes are then found from the
error locations using the matrix solving program. Inas-
much as the decoding algorithms are implemented pri-
marily in software, the program can be updated with cur-
rent decoding procedures.

Not all errors can be corrected by algebraic error correc-
tion alone. In some cases the wrong line is read, the start of
the line has not been found, or the reader may require an
unusual adjustment in order to be able to read a particular
line which is in error. The functions used to overcome these
problems are collectively referred to as data recovery.!?

Error correction and data recovery functions include:

1. Adaptively searching for the correct line by comparing
the line number sought with the line number read, and then
reading the next following or next preceding line to move
toward the line sought;

2. correcting ¢ or fewer errors with algebraic error cor-
rection, where ¢ can be given any value from one to five;
3. rereading the line;

4. estimating the starting point of a line from timing if the
start pattern cannot be found;

5. jumping several lines from the line currently being read
to the correct line;

6. modifying the characteristics of the reader to cause it to
read higher or lower on the bits or to cause its clock to
change frequency faster, etc.;

7. repositioning the chip picker to clean the chip with an
air brush and to back up to an area which has already been
passed.

The fastest and most probably successful of the tech-
niques is used first. It is followed by progressively slower
and less likely techniques or combinations of techniques.
This continues until the process is successful or all tech-
niques are exhausted and a decision is made that the line
cannot be corrected. Because of the power of this exhaustive
data recovery procedure, almost all lines can be corrected.

Results
The design error rate for the system was a maximum of one
line detected in error per 8.1 X 108 bits read. The design
criterion for undetected errors was a maximum of one line
per 2.7 X 10' bits read. Both specifications were met.
The system operates satisfactorily within its designed
average speed of 3.5 X 10° bits read per second while read-
ing a representative sample of data records using one reader,
Execution time of the single-error correction procedure is

IBM J. RES, DEVELOP.

Table 1 Time required for various error-correction activities.

Totdl EDC &
Single-error Two-error Three-error Four-error Five-error Read recovery Picker read recovery
Lines read entries attempts attempts attempts attempts attempts repositioning artempts
Total occurrences = 108,366,272 849,085 5,341 3,370 215 190 15,315 48 873,516
Time per occurrence 0.168 0.336 3.55 16.15 245 36.5 1.0 225 0.454
in ms
Total time in ms 18,200,000 285,000 18,900 54,600 5,280 6,940 15,000 10,800 397,000
Fraction of total 0.719 0.048 0.138 0.013 0.018 0.038 0.027 1.000
correction time
Fraction of total 1.000,000 0.015,600 0.001,040 (.002,980 0.000,282 0.000,381 0.000,822 0.000,591 0.021.800
scan time
Table 2 Success on steps used in error-correction activities.
Total Successes
lines Success on try: All on picker Detected Undetected
corrected 0 1 2 3 4 5 7 8 9 10 other reposition errors errors
Total 783,856 768,939 9,002 1,071 333 165 106 76 284 267 1,174 1,481 958 29 8 0
Fraction of 1,000,000 981,000 11,500 1,360 425 211 136 97 362 341 1,500 1,760 1,220 37 10 [}
corrections *
Fraction of 7,260 7,100 83.3 9.9 3.08 1.52 0.98 2.63 247 10.8 13.7 8.87 0.27 0.07 0
lines read *

® All values here have been multiplied by 106,

about 0.34 milliseconds including time for rereading the
line, if necessary. The two-error correction program
requires about 3.5 ms, the three-error program 16 ms, the
four-error program 25 ms, and the five-error program 37
ms. The processor used has 16-bit words, a 2-us cycle time,
and a single address per instruction. The error computation
program occupies a little less than 600 sixteen-bit words.
Communication and other “overhead” related 1o the error
correction functions occupy another 475 words.

The PDSS has demonstrated the ability to produce a net
error rate about five orders of magnitude lower than the
raw error rate without error correction. Simple, fast, de-
coding procedures were used 99.5% of the time. Slower
decoding procedures were used occasionally. The net de-
gradation of throughput due to error correction and read
recovery was around 0.7 7.

Tables 1 and 2 summarize the error correction activities
in four 57-cell runs made at the time the second PDSS sys-
tem was delivered to the Lawrence Radiation Laboratory
at Berkeley.

Table 1 shows how much time is required for the various
error correction activities, Note from the number at the
bottom right of the table that error correction and data
recovery require 2.18% of the scan time, where the scan
time is defined as the time to scan the lines in the reader
excluding the time required for changing columns, chang-
ing chips, changing cells, skipping between records, error-
correction activities, etc. The fraction of the total system
time used for error correction is a function of the fraction of
total time spent scanning, which is a function of the applica-
tion. For a 50-minute typical read test, 30.6 9 of the total
time was spent scanning; thus, error correction and data

NOVEMBER 1968

recovery require 0.67 % of the total time in this application.
On the next-to-last line of Table 1, note that 71.9% of the
time used for correction is used for single-error correction;
in fact, about 70%; of all correction time is spent on lines
which are corrected immediately by the first attempt to cor-
rect a single error or by the first reread. Of the error cor-
rection and reread time, 13.8 % is used for three-error cor-
rection, and 4.8 is used for two-error correction. The
other 9.5 % is used by other data recovery activities, picker
repositioning, five-error correction, and four-error cor-
rection.

Table 2 shows the steps in the error correction and data
recovery schedule that produced most of the corrections.

On trys 0 to 7, single-error correction followed by reread
is used to attempt to correct the line. On try 8, two-error
correction followed by reread is used. On try 9, three-error
correction is attempted. Before rereading the data used in
try 10, the system searches again for the correct line. Single-
error correction is used in try 10.

Of all lines in error, 98.1 9 are corrected by try 0, and
99.8 9 are corrected within the first eleven tries. The last
0.2% of the lines in error are the hard ones to correct. The
exhaustive data-recovery procedure is used to correct these
lines.

The net detected error rate is 7.4 X 1078 lines in error
per line read for chips which have been previously accepted
as readable, which is appreciably better than the rate of 3.7
X 1077 required for delivery. The net detected error rate is
about five orders of magnitude better than the raw error
rate before correction of 7.26 X 1072 lines in error per line
read.

The net undetected error rate is extremely small and

429

ERROR DETECTION-CORRECTION SYSTEM

430

therefore difficult to measure with a reasonably sized sam-
ple. It is believed, from other observations which are availa-
ble, that it is about two orders of magnitude better than the
allowable rate of 1.11 X 1078 undetected lines in error per
line read.

Conclusions

The IBM Photo-Digital Storage System has demon-
strated the effectiveness of hybrid hardware and software
coding systems for use with relatively complex cyclic codes.
This procedure is adaptable to any system which has a
stored program processor available on a time-shared basis.
Systems with this characteristic are becoming increasingly
common. The processor may be a control or ancillary pro-
cessor or may be the main processor for which data are be-
ing retrieved or may even be a processor whose main func-
tion might not be directly related to the storage or com-
munications activity requiring coding.

This type of system offers powerful error-correction tech-
niques and low average decoding time, but occasional long
decoding times. The approach of hybrid hardware-software
implementation shows promise of being an important im-
plementation method for complex codes.

Acknowledgments

A number of persons were involved in the design, build-
ing, and testing of the IBM PDSS. Some of those whose
work was particularly relevant to this paper are B. D. Cun-
ningham, programming; J. H. Davis and G. T. Moffitt,
data controller; and R. L. Griffith, data recovery.

OLDHAM, CHIEN AND TANG

References

1. J. D. Kuehler and H. R. Kerby, “A Photo-Digital Mass
Storage System,” Proceedings of the Fall Joint Computer
Conference, p. 7135, 1966.

2. Richard M. Furman, “IBM Photo-Digital Storage Sys-
tem,” IBM San Jose SDD Technical Report 02.427, (1968).

3. R. T. Chien, D. T. Tang, E. S. Barrekette, and A. M.
Katcher, ““Analysis and Improvement of Photostore Error
Rates,” Proc. IEEE 56, 805 (1968).

4. I. S. Reed and G. Solomon, “Polynomial Codes Over Cer-
tain Finite Fields,” Journal of the Society for Industrial and
Applied Mathematics 8, 300 (1960).

5. T. C. Bartree and D. 1. Schneider, “An Electronic Dzcoder
for Bose-Chaudhuri-Hocquenghem Error Correcting
Codes,” IRE Trans. on Information Theory, IT-8, S17 (1962).

6. W. W. Peterson, Error-Correcting Codes, The MIT Press,
Cambridge, Massachusetts 1961.

7. D. Gorenstein and N. Zierler, “A Class of Error-Correcting
Codes in p™ Symbols,” Journal of the Society for Industrial
and Applied Mathematics 9, 207 (1961).

8. K. E. Haughton, “An Electron Beam Digital Recorder,”
Third International Electron and Ion Beams in Science and
Technology Conference, 1968.

9. D. P. Gustlin and D. D. Prentice, “Dynamic Recovery Tech-
niques Guarantee System Reliability,” to bz presnteed at the
1968 FICC.

10. R. C. Bose and C. R.-Chaudhuri, “On a Class of Error-
Correcting Binary Group Codes,” Information and Control
3, 68 (1960.

11. A. Hocquenghem, “Codes Correcteurs d’Erreurs,” Chiffres
2, 147 (1959).

12. R. L. Griffith, “Data Recovery in the IBM Photo-Digital
Mass Storage System,” to bz published.

Received June 27, 1968.

IBM J. RES. DEVELOP.

