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Error Detection  and  Correction  in  a 
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Abstract: An error-correction system  has  been  implemented  for data stored in the IBM Photo-Digital  Storage System. Hardware 
is used for  encoding  and  error  detection,  and a processor-controller  is  used, on a time-sharing  basis, for error  correction. A Reed- 
Solomon code  is  used to obtain a very  low error rate in spite of flaws  affecting the  recorded  bits.  This  approach  is  applicable to systems 
which require complex  codes and have a data  processor available on a time-sharing  basis. 

Introduction 
In  a high-density photo-digital storage system, contamina-  logarithms  for multiplication and division in a Galois field 
tion and  other defects can easily obliterate a group of data of 64 elements, et cetera. 
bits. To operate successfully in spite of this  problem in the The approach used here differs from  that of Bartree and 
IBM Photo-Digital  Storage (referred to here as Schneider5 in that limited additional circuitry i s  used  with a 
PDSS)  a powerful error-correction code is used. standard  data processor rather  than building a special-pur- 

lnformation obtained on the  operation of a predecessor pose processor. The procedure used for error correction 
to the PDSS, the  Photostore S y ~ t e m , ~  indicated that  the de- follows the basic method of Gorenstein, Zierler and Peter- 
sired net error  rate of one  bad line of data per 8.1 X lo8 bits s0n,~8’  with modifications to improve the speed  of decod- 
read might be met if a Reed-Solomon4 code with 50 six-bit ing. Two of the modifications are the omission of the step 
characters of data  and eleven characters of redundancy to determine the number of errors, and the inclusion of 
were used. The difficulty with using a code of such com- direct solution of quadratic  equations  in  a  Galois field of 
plexity is that implementation of the decoding system in  64 elements. 
hardware with adequate speed is very complex, and im- 
plementation with a sequential processor is too slow. Coding  requirements for a photo-digital 

complexity has been solved by a number of innovations. To  permit better understanding of the coding requirements 
Most  important is the use of hardware for encoding, calcu- and the choice of features used in implementing the code, 
lation of the power sums, and  error detection, while using a the PDSS will  be described briefly. 
control processor, on a time-sharing basis, for  error cor- Data entering and leaving the  storage system are handled 
rection. Another important feature is that single-character by a data controller which encodes the lines of data, does 
error correction is tried first; if this is not sufficient, further error detection, and contains  adequate buffering to hold a 
correction activities can be tried. Other important features line of data while error correction is being done on  the line. 
are use of a “trial and recheck” method of error correction, All encoding and error detection, as well as some correction 
selection of a symmetric code polynomial, use of a table of functions, are implemented by circuitry in the  data con- 

Data  are recorded on 1.377N by 2.750” photographic 

The problem of  effectively implementing a code of this memory system 

troller. 
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line and stored  in small boxes, called “cells,” which are 
stored  in file modules. The  data can then  be  read optically 
with a flying-spot scanner. 

Various decision-making functions of the system, in- 
cluding control of the film-handling mechanisms, are per- 
formed by a stored-program control processor. This proces- 
sor also does most of the calculations necessary for  error 
correction. Time sharing of the processor is accomplished 
by the use of multiple interrupt levekg 

With adequate buffering between the storage system and 
the main computing processors, delays associated with 
error correction are tolerable, provided the average data 
rate remains high. This buffering also allows newly recorded 
chips to be checked for readability and  to be rerecorded, if 
necessary, with data kept  in the buffer. 

Now let us consider the coding requirements for  this 
system. In a photo-digital system, errors are caused by con- 
tamination, distortion of the emulsion, or other problems 
affecting the quality of the data.  These flaws may be intro- 
duced during manufacturing and transporting of the  raw 
chips, during recording and development of the chips, or 
during subsequent storage and reading. 

To prevent loss of data, some errors which occur can be 
corrected using an error-correcting code. Some errors can 
be eliminated by the use of a readability check which is done 
immediately after recording;  unreadable data is rerecorded. 
Neither approach  alone suffices because coding cannot 
overcome flaws  which obliterate a large part of a line. Re- 
jecting and rerecording alone would not be sufficient 
because virtually all chips have minor flaws affecting at 
least a few bits, and because it does  nothing to help  the 
problem of contamination  during subsequent storage. 

To make an effective selection of a code for use in the 
IBM PDSS, the  Photostore  (an earlier system which has 
somewhat similar characteristics) was studied. The  Photo- 
store System is a photographic system which originally 
wrote circular tracks of data with an optical recording 
arrar~gement.~  The recording and reading characteristics 
were somewhat different from those planned for the PDSS, 
but it was reasonable to expect that the  Photostore would 
be a fair model for the PDSS. 

The procedure used in selecting a code was to read  a large 
quantity of known data from the  Photostore and record all 
errors in the raw data.  The known capability of various 
codes was tested empirically by Chien,  Tang, Barrekette, 
and K a t ~ h e r , ~  using blocks of data  that were read. For 
example, a code which  was known to correct all single 
bursts of length 17 or less within a block of data was judged 
to have successfully decoded a given block of data if these 
were, in fact, errors occurring only within one burst of 
length 17 or less. By comparing burst correcting codes, in- 
dependent bit-correcting codes, and independent character 
correcting codes, it was determined that  an independent 
character correcting code with 11  characters of redundancy, 

a block length of 63 characters, and a  character size  of 6 bits 
best met the objective of meeting the required error  rate 
while minimizing the required redundancy. This type of 
code is known as a Reed-Solomon code4 or Bose-Chaud- 
huri-Hocquenghem character correcting code.6 

For selected good tracks on selected disks, the Photo- 
store System demonstrated  a  raw  error rate of 1 block per 
8 X lo4 bits read,  for 441  bit blocks. The reliability re- 
quired for the  IBM PDSS, after  error  correction, was 
a rate of 1 erroneous line for every 8.1 X lo8 data bits read 
and 1 undetected error  for every 2.7 X loLo data bits read, 
for lines with 300 data bits. The character correcting code 
selected showed promise of being able to meet these re- 
quirements. It is  effective against  both random flaws of a 
few bits each and bursts of moderate length caused by a 
larger flaw. 

Having chosen the type of code, the remaining problem 
was to select the exact generator polynomial6 for the code. 
The generator polynomial selected was 

5 

g ( x )  = n ( x  - aZ) 
i”5 

= x 11  + a14x10 + a59x9 + a6x8 + aZ8x7  

+ a54x6 + a54x5 + a”x4 + a6x3  

+ a59x2 + a14x + ao , (1) 

where a is a primitive element in the  Galois field of 26 ele- 
ments formed by all polynomials modulo x6 + x + 1, 
with  coefficients in  the Galois field of 2 elements. 

There were two reasons why this particular generator 
polynomial was chosen. One was that ao is one of the  roots. 
Thus,  one of the power sums is a longitudinal parity check, 
which means that one of the power sums will be equal  to  the 
magnitude of the  error when a single error occurs. This 
property is necessary in order to correct single errors rapid- 
ly. The second property which this particular polynomial 
possesses is symmetry;  thus, when it is written in its ex- 
panded form, there are five distinct coefficients rather than 
ten. This results in  hardware saving in the encoder, because 
the encoder contains circuits which multiply a given input 
by each of the distinct coefficients of the generator poly- 
nomial. 

Implementation approach 
Encoding and calculation of power sums for the Reed-Solo- 
mon code are done  in  hardware.  Other  portions of the de- 
coding activity are implemented in software in  a  control 
processor which  is time-shared with the  control functions 
and other functions of the  storage system. This processor is 
interrupted when an error is detected during reading. 

By providing programs which do most of the computa- 
tions necessary for error correction within the control proc- 
essor, a relatively complex decoding procedure can be im- 
plemented with minimum additional  hardware beyond that 423 
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required for  data buffering, which is needed for  data-rate 
matching. This makes it possible to have a system which 
operates rapidly in  hardware when there are  no  errors  and 
which allows complex error-correction calculations in soft- 
ware with little requirement for  additional  hardware. 

Without  this division of functions, it would not be feasi- 
ble to implement a code of the complexity used. Because the 
IBM PDSS is a very large storage system which  is buffered 
from  the main processing units of the system, occasional 
long decoding times are tolerated, provided that the 
average decoding time is  short.  This is a freedom which is 
often not available in data processing storage systems. 

For reasons of speed, encoding is also implemented in 
hardware. The encoding function is performed by a circuit 
capable of dividing the input line of data by the generator 
polynomial. The error detection function could be per- 
formed by this same circuit or, in  order to allow reading and 
writing to occur at  the same time, by a duplicate circuit. 
Instead,  the  error detection function is accomplished by 
alternative circuitry. The error detection circuitry di- 
vides by the  factors of the generator polynomial rather  than 
by the entire polynomial itself. These check circuits have no 
advantage or disadvantage as  error detecting circuits. How- 
ever, when an error is detected, the check circuits produce 
the power sums which are used by the error correcting 
procedure. 

By transmitting the power sums to the control processor 
and interrupting it, the  error correction program can begin 
the correction immediately. The processor is shared with 
the control  functions which  may interrupt  the  error correc- 
tion process during  long  error correction computations. 
This method of operation makes the relatively powerful 
processor available without unduly interfering with its  other 
function of control, and makes implementation of the 
powerful independent character correcting code fea~ible.~ 

The fastest available decoding techniques are used first. 
Slower, more powerful, techniques are  not attempted until 
the faster ones have been exhausted. This decoding strategy 
is designed to minimize the average decoding time at the 
expense of increasing the maximum decoding time. 

Initially, single-error correction is used to try to correct 
an error of a single character.  This is usually sufficient 
because most errors affect only a single character. If it is 
not sufficient, the line is reread. In this system, single-error 
correction occurs fast enough that  it can be done while the 
reader scans back to  the beginning of the line to reread the 
line. 

After trying single-error correction and rereading several 
times, two-error correction is attempted; then three-error 
correction is tried if two-error  correction is not adequate. 
Other slower corrective actions  can  be tried singly or in 
combination until all have been exhausted before aban- 
doning a line, These slower actions include correcting 

424 up  to five errors  and  other  data recovery techniques. To 

exhaust  all these techniques takes  a  long  time; it is seldom 
necessary, however, to use most of them, so the effect on 
the average throughput is small in spite of the very long 
time required for some bad lines. 

The error correction code is limited to correcting addi- 
tive errors. That is, if the beginning of the line is known, if 
most of the bits can  be  read, and if the bits which have been 
successfully read can be correctly positioned on  the line, 
then the code can correct some characters that  are in error. 
This leaves several classes of difficulties  which are  not 
specifically correctable by the code. They include loss of 
synchronism, inability to find the  start of the line, and 
errors in the line numbers that make it difficult to know 
what line to read. 

While the code does not directly help in solving these 
problems, it plays a very important part in  the procedures 
which are used in attempting to overcome them. Namely, it 
can effectively reject a combination of bits which does  not 
make up a  correct, properly synchronized line. This  makes 
it possible to make a number of reasonable guesses as to 
where the  correct line is or where the beginning of a line is, 
with little fear of erroneously accepting the wrong thing as 
the line being sought. In this system the procedures which 
are used to overcome these kinds of problems are referred 
to as data  recovery  procedures.12 They include reread- 
ing, searching for  the correct line, jumping to the line from 
some  other  known line, physically moving the film chip to 
clean and reposition it, varying the reference point of the 
line-following servo in the reader, using a different method 
to find the beginning of the line, etcetera. 

Besides the ability of the code to reject patterns of bits 
which are not  the correct line, two other features of this 
system aid in the rejection of bad lines. One of these fea- 
tures is the inclusion of a 12-bit line number. If the system 
reads the wrong line, it can be rejected because the line 
number is not  the one being sought. Any collection of bits 
which occurs due to improper synchronism of a line will 
have some group of bits  other than  the line number in the 
line number field and will thus usually be rejected as having 
the wrong line number.  A second feature of the system 
is that three widely separated bits  in the redundancy field 
are inverted as they come out of the encoder. They are 
reinverted when the  data  are read. If the line is properly 
read, these actions cancel each other out. If the line is out 
of synchronism when it is read, there will be six errors. 
This helps reject lines which are started six bits too soon or 
too late and which, if the bits in the line number field 
happened to be the correct line number, would otherwise 
be accepted as a valid coded line because all cyclic shifts 
of a coded line are also coded lines. 

Some chips have gross faults which are present at the 
time data  are recorded. These chips are eliminated by a 
readability check before storing them, to allow for rere- 
cording. The readability check consists of reading the  data 
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Figure 1 Data flow in the  data  controller 

from  the reader into  the  data controller and verifying that 
it is readable; the  data is not sent from the  data controller 
to the  host  computer.  During the readability check, the full 
capability of the  data recovery procedure is not used, to 
prevent the acceptance of marginal chips which might 
otherwise cause reading problems subsequently. 

The three techniques of error correction, data recovery, 
and readability check, taken together, made possible the 
very low error rate obtained. 

Error detection and correction system 
During recording, the data are encoded by the  data con- 
troller hardware. After recording, a readability check is 
made. During reading, the  error detection and buffering of 
the  data  are done by the  data controller hardware. Error de- 
tection is accomplished by computing  the power sums of 
the line of data  read. If the sums are  not zero, a detectable 
error  has occurred and  error correction is attempted. Com- 
putation for this correction is done in the control processor. 
The correction is made to  the data stored  in  the  data con- 
troller buffer and  the line is rechecked in  the data controller. 
Logical decisions relative to how many errors  to try to cor- 
rect or what other procedures should be undertaken to  ob- 
tain a correct line are made by the  control processor. Flow 
of data in  the data controller and in  other  parts of the sys- 
tem is shown in Figure 1. 

For recording, the  data  to be recorded and line number 
characters are transmitted to  the encoder on  the  input line 
as characters consisting of six bits  in parallel. Incoming data 
to be recorded are broken  up into 300-bit lines, to which the 
data controller  appends a 12-bit line number. These data 
lines are treated as 52 six-bit characters which are con- 
sidered to be elements of the  Galois field of 64 elements. 
Each character is understood to be the coefficient of x i  
where i equals 0 for the last character in the line, 1 for the 
next to last, etc., and x is a dummy variable. 

The encoder, shown in Figure 2, divides the line, treated 
as a polynomial, by the generator polynomial of the code. 
Each line and each block in this figure handles data six bits 
in parallel. The multiplier “xd” is shown in Figure 3. To 
obtain a multiplier “.mi,”  use i “xd” multipliers in series 
and use logical simplification to minimize the circuitry. In 
fact, all the multipliers in  the encoder are implemented in 
one large circuit with resultant saving of components. 

After  the 52 characters have been transmitted, the en- 
coder contains the 11 remainder coefficients. This remainder 
is read out of the encoder and appended to  the line to make 
a 63-character encoded line. After this encoding process 
the “coded-line polynomial” is divisible by the generator 
polynomial. Format bits  for synchronizing the  data  are 
then  added,  making a total of 420 bits which are recorded 
as a line of data. 
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The encoding process can be represented by the following 
equation: 

A(x)  = x"D(x) - R(x)  , (2) 

where A(x)  is the coded line polynomial, 
D(x) is the  data polynomial after the line number has 

been appended but before encoding, and 
R(x)  is the remainder obtained when D(x)  is divided 

by g(x), the generator polynomial given in Eq. 
(1). 

After each chip has been recorded and developed, a check 
is immediately made to  see if all the lines on it are readable 
with no uncorrectable errors. Any chip (or alternatively any 
record) which contains a line or lines that cannot be read 
and corrected  must be rewritten. This  procedure eliminates 
many potential  errors. During  the process, the full data 
recovery procedures of the reading system are  not ex- 
hausted, to ensure  the readability of the chip at a  later date 
under slightly different conditions. After the chips in a cell 
have been checked and accepted, the cell is stored  in  a file 
module. 

To read data, the cell containing  the desired chip is with- 
426 drawn  from  the file module, and the chip is removed from 

the cell and positioned in  the reader. While each line is 
read, the line number is verified, and a check is made to de- 
termine if the line is still divisible by the generator poly- 
nomial. These two tests are made in  hardware and, if both 
criteria are met on a line which has been read or on which 
error correction has been attempted, the line is accepted 
and the reading proceeds. The test to determine if the line 
is still divisible  by the generator polynomial is to divide the 
line by each of the 11 factors of the  generator polynomial 
to see if the line is divisible by all of them. The 11 circuits 
used to make the tests are like the dividing circuit given in 
Figure 4, where - 5 5 i 5 5. The 63 6-bit characters of the 
encoded line are fed into these circuits in parallel. Values 
obtained with these circuits are called the check sums or 
power sums. If some or all of the 11 values computed are 
not zero, an error has occurred in the line which was read 
and the power sums can be transmitted to the  control 
processor for use in the error correction computations. 

Two power sums are required per error  to be corrected. 
Initially, the system does single error correction; thus, two 
power sums are transmitted to  the control processor. The 
location of a single error is found by the control processor 
using the equation 

L = 62 - (log,& - lOg,So) (3) 

The address L is transmitted to  the  data controller which 
adds,  in  Galois field arithmetic, SO, the longitudinal parity, 
to  the  data character at the specified address. The line is 
then rechecked and if there was, in fact, one  error, the line 
is accepted. If there was more wrong with the line than  just 
a single-character error, rereading and further error cor- 
rection is required. 

The encoded lines of data  are written in alternate direc- 
tions, so the beginning of each line is just below the  end of 
the previous line. To reread a line which has  an  error, the 
reader scans to  the end of an adjacent line to get back to the 
beginning of the line to be reread.  When a line that  has been 
read  contains an  error, single-character error correction can 
take place while the  reader is scanning an adjacent line to 
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get back to the beginning of the line in error. If the line can- 
not be corrected by single character correction, the reader 
is ready to reread the line. If,  after several tries of rereading 
and single-character error correction a line is not corrected, 
the reader can scan (without reading) the line of interest 
and  an adjacent line in an idle loop while longer error cor- 
rection processes are carried out. 

After the control processor decides that single error  cor- 
rection and rereading have been used to the point of di- 
minishing returns, multiple error correction begins. When 
the line is reread in the multiple error correction mode, ten 
power sums are transmitted  from the  data controller to the 
control processor. These sums are used to compute  the 
location and magnitude of the  errors. 

The multiple error correction activity is used to try to 
correct two or fewer characters in error. If this is unsuccess- 
ful, the procedure allows up to three  characters to be cor- 
rected, later up to four characters, and finally up to five 
characters. 

On command  from  the  control processor, the individual 
characters  in  error are transmitted  from the  data controller. 
In the  control processor the magnitude of the error is sub- 
tracted in  Galois field arithmetic, and the corrected char- 
acter is transmitted back into its place in the buffer of the 
data controller. 

After all of the corrections have been made, the line must 
be rechecked by recomputing the power sums. If they are all 
zero and the line number is correct, the line is considered to 
be corrected. If they are  not zero, the line is reread and  error 
correction is continued. 

Several features of the  program used for correcting the 

The power sums computed by hardware  for a line that 
contains an error are used to solve for the elementary sym- 
metric functions. These in turn  are used to solve for the 
error locations which, in turn,  are used together with the 
power sums to find the magnitudes of the errors.  This  pro- 
cedure is basically that developed by Gorenstein, Zierler, 
and but with important modifications. Their 

errors will  now  be  discussed. 

procedure has five steps, namely, the calculation of (1) 
the power sums, (2) the number of errors, (3) the ele- 
mentary symmetric functions, (4) the error  locations, and 
(5 )  the error magnitudes. 

One  feature of our program is the assumption of the num- 
ber of errors rather  than solving for  the number. The usual 
procedure is to consider all the possible equations relating 
the power sums to the elementary symmetric functions and 
determine the number of dependent equations.  Then the 
independent equations are solved to obtain a correction 
which  will make all the power sums zero. 

In  the procedure used here, no  attempt is made io de- 
termine the number of characters  in error. Instead, it is as- 
sumed that only one character is in error  and  thus single 
error correction is required. This  assumption  results in 
much faster decoding for  those cases that  can be corrected 
by single error correction or single error correction to- 
gether with rereading. These are by far  the most  common 
cases. Similarly, if single error correction has failed, the 
process can  then be continued by progressively assuming 
two, three, four,  and five errors. 

During  any correction attempt,  the actual  number of er- 
rors may be different from the number of errors assumed. 
It is not determined in advance whether there is a solution 
for the errors or, if a solution  does exist for  the 2t error sums 
being considered, whether the solution will cause all eleven 
of the power sums to be zero. In fact, the process which at- 
tempts to find the  errors may be terminated due  to inability 
to find a solution for  the  error locations from the elemen- 
tary symmetric functions. Thus  it may be determined dur- 
ing the course of the attempted  solution that there is no 
solution for (1) the number of errors being sought or (2) fewer 
than the number of errors being sought. 

The solution produced, if any, has been calculated in such 
a way as to force 2t of the power sums to become zero, but 
not necessarily all eleven power sums. Thus, the proposed 
solution may satisfy the limited number of equations being 
solved, but not  constitute a valid correction. After the cor- 
rection has been made, the line must be rechecked to see if 
all the power sums are zero and  the line has been corrected, 
or  to see if some of the power sums are  not zero,  in which 
case the line has  not been corrected. This is done by re- 
checking the line with hardware. 

If there are fewer errors than assumed, there will be fewer 
independent equations relating the elementary symmetric 
functions to  the power sums.  When a dependent  equation 
is found, it can be omitted and  the number of power sum 
symmetric functions can be reduced to correspond to the 
actual number of errors. Then  the solution can  continue to 
find the smaller number of errors. 

The advantage of this  procedure is the quick solution of 
the simple set of equations  obtained when a number of er- 
rors assumed is small. Thus, when a line has a small num- 
ber of errors, or when a line can  be  corrected by rereading 427 
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and correcting a small number of errors, the  error correc- 
tion procedure is much faster  than if an  attempt were im- 
mediately made to correct  up to five characters. The  pro- 
cedure is much faster on  the average, inasmuch as most 
errors affect one or sometimes two  characters when first 
read or subsequently reread. On  the other hand, if the line 
is consistently read with  five characters  in error,  the decod- 
ing procedure is slower because the unsuccessful attempts to 
correct less than five characters in  error preceded the five- 
error correction. This  means the average decoding time is 
substantially decreased and  the maximum decoding time is 
substantially increased. 

Besides the decrease in average decoding time, there is 
another  advantage  in that  the line can be quickly reread 
many times. This allows lines with data of marginal  quality 
to be read correctly, which might not otherwise be possible. 

A problem associated with rereading a line which pro- 
duces variable erroneous data is that each time it is read 
there is a possibility that  the line will be accepted either 
before or after  correction with an undetected  error. The 
undetected error  rate is, however, much lower when the 
number of errors sought is chosen to have a value less than 
five. Thus, rereading while attempting to correct one, two or 
three  characters  in  error has negligible  effect on  the unde- 
tected error  rate. The undetected error rate is little affected 
by those cases in which four  errors are sought and is de- 
termined almost entirely by the number of times the line is 
read with attempts to do five-error correction.  Thus, the 
undetected error  rate is kept low in spite of the very large 
number of rereads allowed on any one line, because in most 
of the  reads the number of errors sought is less than five. 

Other unique features of interest include the following. 
In solving the polynomial which has  as coefficients the ele- 
mentary symmetric functions and  has  as  roots  the  error lo- 
cations, the use of a general solution  for  quadratics  in a 
Galois field  of even order speeds up the procedure. If the 
polynomial is of order one or two, the  solution is obtained 
directly. If it is of hjgher order, the  roots  are sought by trial 
and error using synthetic division. After a root is found,  the 
reduced polynomial, obtained by dividing the polynomial 
by the linear factor containing the  root, is used for solving 
the remaining roots. When the order of the polynomial is 
reduced to two,  the  solution is obtained directly. 

For all operations  in the control processor, multiplica- 
tion or division is done by adding or subtracting logarithms 
to  the base alpha  modulo 63, where alpha is a primitive root 
of the  generator polynomial of the Galois field. This allows 
efficient computation  in a Galois field  of 26 elements with a 
general-purpose computer. 

Thus,  in single error  correction, the first power sum SI is 
divided by the Oth power sum SO by looking up  their 
logarithms in a table and subtracting them. Then, 62 minus 
the logarithm of the resulting error location is transmitted 
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mission of the error location inasmuch as it constitutes  the 
address of the character in the buffer in the  data controller. 

In multiple-error correction, the elementary symmetric 
functions are obtained  from  the power sums using a matrix- 
solving program. The error locations are next obtained 
from the elementary symmetric functions by trial and error 
using synthetic division and by direct solution of the 
quadratic. The  error magnitudes are then  found from the 
error  locations using the matrix solving program.  Inas- 
much as the decoding algorithms are implemented pri- 
marily in software, the program  can be updated with cur- 
rent decoding procedures. 

Not all errors can be corrected by algebraic error correc- 
tion alone. In some cases the wrong line is read, the  start of 
the line has not been found, or  the reader may require an 
unusual adjustment  in order  to be able  to read a particular 
line which is in error. The functions used to overcome these 
problems are collectively referred to  as data recovery." 

Error correction and  data recovery functions include: 

1. Adaptively searching for the correct line by comparing 
the line number sought with the line number  read, and then 
reading the next following or next preceding line to move 
toward the line sought; 
2. correcting t or fewer errors with algebraic error cor- 
rection, where t can be given any value from  one to five; 
3. rereading the  line; 
4. estimating the  starting  point of a line from timing if the 
start pattern  cannot be found; 
5. jumping several lines from the line currently being read 
to the correct line; 
6. modifying the characteristics of the reader to cause it  to 
read higher or lower on the  bits or to cause  its clock to 
change frequency faster, etc. ; 
7. repositioning the chip picker to clean the  chip with an 
air brush and  to back up to  an area which has already been 
passed. 

The fastest and most  probably successful of the tech- 
niques is used first. It is followed by progressively slower 
and less likely techniques or combinations of techniques. 
This continues until the process is successful or  all tech- 
niques are exhausted and a decision is made that  the line 
cannot be corrected. Because of the power of this exhaustive 
data recovery procedure, almost  all lines can  be corrected. 

Results 
The design error  rate  for  the system was a maximum of one 
line detected in error per 8.1 X lo8 bits read. The design 
criterion for undetected errors was a maximum of one line 
per 2.7 X 1O1O bits  read. Both specifications were met. 

The system operates satisfactorily within its designed 
average speed of 3.5 X lo5 bits read per second while read- 
ing a representative sample of data records using one reader. 
Execution time of the single-error correction procedure is 
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Table 1 Time  required  for  various  error-correction  activities. 

ZLzes rend 
___ ~~~~ 

Total occurrences 108,366,272 

Time per occurrence 
in ms 

0.168 

Total time in ms 18,200,000 

correction time 
Fraction of total 

Fraction of total 
scan time 

1.m,000 

285,000  18,900 54,600  5,280 

0.719  0.048  0.138  0.013 

0.015,600 O.W1,040 0.002,980 0.000,282 

R w e r r o r  Read recovery Picher 
Totd EDC & 

nttempts attempts repositioniug n!!en?p!s 
rend recovery 

~. ._____ 

190 15,315  48  873,516 
"" 

36.5 1 .o 225 0.454 

6,940  15,oon  10,800  397,000 
0.018 0.038 0.027 1.000 

0.000,381 O.O00,822 0.000,591 0.021.8M) 

Table 2 Success on steps  used  in error-correction  activities. 

7b1al 
/iIl',S Smcess on !ry: 

Successes 

c,rrr'Tted 0 1 2 3 4 5 6 1 8  9 10 other reposition errors errors 
All on picker  Detected U,mde!ected 

~~ 

Total 783,856  768,939 9,W? 1,071  333  165 106  76 284 267 1,174  1,481 958 29  8 0 
Fractionof 1,000,ooO  981,ooO  11,500  1,360 425 211 136 97 362 341 1,500 1,760  1,220  37 
corrections * 

10 n 

Fractionof 7.260  7.100  83.3 9.9 3.08  1.52 0.98 0.70  2.63  2.47  10.8  13.7  8.87  0.27  0.07 0 
lines read* 

All values here have been multiplied by 106. 

about 0.34 milliseconds including time for rereading the 
line, if necessary. The two-error correction program 
requires about 3.5 ms, the  three-error  program  16 ms, the 
four-error  program 25 ms, and  the five-error program 37 
ms. The processor used has 16-bit words, a 2-p.9 cycle time, 
and a single address per instruction. The  error computation 
program occupies a little less than 600 sixteen-bit words. 
Communication and other "overhead" related to the  error 
correction functions occupy another 475 words. 

The PDSS has demonstrated  the ability to produce a net 
error rate  about five orders of magnitude lower than the 
raw error  rate without error correction. Simple, fast, de- 
coding procedures were  used 99.5% of the time. Slower 
decoding procedures were used occasionally. The net de- 
gradation of throughput  due to  error correction and read 
recovery  was around 0.7%. 

Tables 1 and 2 summarize the  error correction activities 
in four 57-cell runs  made at the time the second PDSS sys- 
tem was delivered to the Lawrence Radiation Laboratory 
at Berkeley. 

Table 1 shows how much time is required for the various 
error correction activities. Note from the number at  the 
bottom  right of the table that  error correction and  data 
recovery require 2.18% of the scan time, where the scan 
time is  defined as the time to scan the lines in the reader 
excluding the time required for changing columns, chang- 
ing chips, changing cells, skipping between records,  error- 
correction activities, etc. The fraction of the total system 
time used for error correction is a function of the fraction of 
total time spent scanning, which  is a function of the applica- 
tion. For a 50-minute typical read test, 30.6% of the tolal 
time was spent scanning;  thus, error correction and  data 429 
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recovery require 0.67x of the total time in this application. 
On the next-to-last line of Table 1, note that 71.9 of the 
time used for correction is used for single-error correction; 
in fact, about 70% of all correction time is spent on lines 
which are corrected immediately by the first attempt to cor- 
rect a single error  or by the first reread. Of the  error cor- 
rection and reread time, 13.8 % is used for three-error cor- 
rection, and 4.8% is  used for two-error correction. The 
other 9.5 x is used by other data recovery activities, picker 
repositioning, five-error correction, and four-error  cor- 
rection. 

Table 2 shows the steps in the  error correction and  data 
recovery schedule that produced most of the corrections. 

On trys 0 to 7, single-error correction followed by reread 
is used to  attempt  to correct  the line. On try 8, two-error 
correction followed by reread is used. On try 9, three-error 
correction is attempted. Before rereading the data used in 
try 10, the system searches again for the  correct line. Single- 
error correction is used in  try 10. 

Of all lines in error, 98.1 % are corrected by try 0, and 
99.8% are corrected within the first eleven tries. The last 
0.2% of the lines in error  are  the  hard ones to correct. The 
exhaustive data-recovery procedure is used to correct these 
lines. 

The net detected error rate is 7.4 X lo-* lines in error 
per line read  for chips which have been previously accepted 
as readable, which  is appreciably better than  the  rate of 3.7 
X required for delivery. The net detected error rate is 
about five orders of magnitude better than  the raw error 
rate before correction of 7.26 X lines in error per line 
read. 

The net undetected error  rate is exttemely small and 



therefore difficult to measure with a reasonably sized sam- 
ple. It is believed, from other observations which are availa- 
ble, that it is about two orders of magnitude better than  the 
allowable rate of 1.1 1 X lo-* undetected lines in error per 
line read. 

Conclusions 
The IBM  Photo-Digital  Storage System has demon- 
strated the effectiveness of hybrid  hardware and software 
coding systems for use with relatively complex cyclic codes. 
This procedure is adaptable to any system which has a 
stored  program processor available on a time-shared basis. 
Systems with this characteristic are becoming increasingly 
common. The processor may be a control  or ancillary pro- 
cessor or may be the main processor for which data  are be- 
ing retrieved or may even be a processor whose main  func- 
tion might not be directly related to  the storage or com- 
munications activity requiring coding. 

This type of system offers powerful error-correction tech- 
niques and low average decoding time, but occasional long 
decoding times. The approach of hybrid  hardware-software 
implementation shows promise of being an important im- 
plementation method for complex codes. 
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