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Time-Optimal  Control of a  Moving-Coil  Linear  Actuator 

Abstract: The time-optimal  control  problem  for a moving-coil  linear actuator has  been  worked out by means  of  functional  analysis  and 
a related  graphical  procedure  requiring  only data from  an impulse  response. On the basis  of  experience  with a test  model,  there is  good 
correlation between  the  theoretical  and the  experimental  methods.  While  the  latter  is  accurate  over  only  very  short  distances,  the use- 
fulness of the  technique  can be  extended  as  needed  by operating  the system  in  piecewise  linear  fashion.  The  nonlinearity of the  coil 
inductance  can  be  handled  under  computer control by including  in  the  program  the  inductances  for  successive  segments of travel. 

Introduction 
In engineering applications where mechanisms must  operate 
repetitively at high speed and with great precision, time- 
optimal control is often essential. This is the case with the 
moving-coil linear actuator built and tested in the course 
of the work reported  here. In general, time-optimal control 
requires finding that  input function, with suitable  con- 
straints, which causes a  dynamic system to pass from some 
initial state  to a desired final state in minimum time. In this 
case, the change of state involves a travel range of one 
inch, and the load is moved in 10-mil steps. As is typical, the 
magnitude of the input (specifically, the voltage to be ap- 
plied to  the coil) is bounded, and  the  control is bang-bang. 

As Friedland' points out, two related factors stimulate, 
in a profitable way, attention  to problems of optimum  con- 
trol: ". . . the increasing demand  for systems of high per- 
formance, and . . . the availability of computing machinery 
which makes feasible the calculations attendant on the 
design of an optimum control system."  Since the time-op- 
timal  problem  can be approached in a number of ways, and 
since each approach involves special mathematical prob- 
lems, we are particularly interested in  methods whose ac- 
companying  problems are amenable to computer  solution. 
Such amenability is not typical of some widely known ap- 
proaches described in the literature.2-6 Pontriagin's maxi- 
mum principle, for example, usually entails a two-point 
boundary value problem not readily handled by computer 
methods, and  the same  thing is true of variational  methods. 
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In addition, these approaches  (and other familiar ones such 
as dynamic programming and gradient  methods) do  not in 
general offer a straightforward  procedure for determining 
the  optimal  control explicitly. In  the Pontriagin  formula- 
tion, for instance, the  initial values of the  adjoint variables 
which determine the switching function are  not known a 
priori, and often must  be found by trial and  error. 

The  approach taken  in  this  paper is an impulse response 
method.  This  method has the  advantage that  the mathe- 
matical  problem is well adapted to experimental and com- 
puter  solution. Such an  approach is especially suited to the 
practical  application of interest to us here-finding out 
how to achieve time-optimal control in  a moving-coil 
linear actuator-for two  reasons: 

First, it affords a straightforward graphical procedure  for 
determining the times at which the  control is reversed, 
i.e.,  the switching times (when the characteristic roots of 
the system are nonpositive real numbers and the  control 
is bang-bang, which is the case with the moving-coil 
linear actuator). 

Second, system parameters need not be determined 
accurately, since an impulse response, determined ex- 
perimentally, satisfies this approach.  That is, the  optimal 
control can  be calculated without explicit knowledge of 
the system dynamics, since the experimentally deter- 
mined impulse response can be fed directly into a com- 
puter.  This offers a simple means of updating the  control 
for changes in system parameters  due to some  char- 
acteristic changes in the components. 
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Figure 1 Test model of the  moving-coil  linear actuator system. Figure 2 Actuator assembly. 

For the moving-coil linear actuator system, stiction and 
coulomb friction effects are present, but properly chosen 
initial conditions  can remove these nonlinearities in the 
mathematical  formulation of the time-optimal control 
problem. In a real-time simulation of the system these 
effects must, of course, be included. 

This  paper includes, first, a physical description of the 
moving-coil linear actuator, with a brief qualitative dis- 
cussion of its  dynamic characteristics. Next, the mathe- 
matical  representation of the system is derived as a set of 
third-order  ordinary differential equations. The following 
section formulates the time-optimal control  problem and 
gives the form of the control  and a graphical  procedure for 
finding the switching times. Finally, the theoretical basis is 
discussed for experimentally determining the impulse re- 
sponse, and  the results obtained with the test model of the 
moving-coil linear actuator system are presented. From 
these data  the switching times are calculated and com- 
pared with those found by adjusting  the control of the test 
model until the  optimal  control was achieved. 

System description 
The system to be analyzed (Fig. 1) consists of a moving-coil 
linear actuator, a simulated  load  attached to  an optical- 
grating  transducer,  a linear tachometer, a light source, and 
a lens assembly. The linear actuator,  the simulated load, 
and the linear tachometer are connected by a common 
hardened  shaft  (nonmagnetic stainless steel) mounted  in 
linear bearings. The  load glides horizontally on hardened 
guide rails, with three roller bearings to minimize friction. 
The  range of travel is one inch and  the band is moved in 
10-mil steps. Since the center of mass of the assembly is 
near  the centerline of the  shaft, the driving force acts on 
the center of mass of the  total system. This prevents an 
induced moment, which would tend to cause oscillations 
in the system. 

The  actuator assembly (Fig. 2) includes Alnico V ring 
magnets, grain-oriented axially. The moving coil itself  is 
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made of two layers of No. 24 Formvar” magnet wire,  bi- 
filar wound for low inductance. The coil is supported at 
one  end by an aluminum  structure which transmits the 
generated force to  the moving part of the actuator.  The 
measured flux density in  the working air gap was 8,200 
gauss;  the coils had a measured resistance of 1.55 ohms and 
inductance of 3.4 mH  at 100 Hz. 

The force generated by a current-carrying  conductor in a 
magnetic field  is  given by: F = 5.63 (lo”) BDi, where F is 
the lorce in pounds, B is the flux density in gauss, D is the 
length of the  conductor  in inches, and i is the  current  in 
amperes. The selected length of the  conductor produces a 
force of approximately 2 pounds per ampere. 

The optical  position  transducer, a glass grating with 
narrow parallel lines, alternately opaque  and transparent, 
is attached to the  load.  The transducer is positioned be- 
tween a light source and a lens system which magnifies 
(lox) the light that reaches two  phototransistors. The 
servomechanism moves the load  and  the transducer until 
each phototransistor is aligned half on  an  opaque line and 
half on a transparent line. Since the  two phototransistors 
then see the same level of “grey,” the push-pull system is 
nulled and the system reaches the desired state. 

A  tachometer attached  to  the opposite side of the load 
mass provides a velocity feedback signal for the actuator 
control system. The  control electronics generate the control 
signals to  the  actuator  and provide negative feedback pro- 
portional to position and velocity errors,  for control after 
the bang-bang control mode. 

Since the complete assembly is rigid and  the force ap- 
plied passes through  its center of mass, the assembly can, 
for practical purposes, be treated  as a particle with one 
degree of freedom. The applied force is assumed to be pro- 
portional to the  current in the conductor. It is assumed that 
dry, or coulomb, friction is the type generated. 
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The dynamics of the moving coil are difficult to describe 
since, over a long  stroke, the effective inductance varies 
with the coil position relative to the permanent magnet. 
Over a short distance, the dynamic characteristics can be 
considered linear. If the  total travel of the coil is desired, 
the windings of the coil can  be  arranged to compensate for 
the variations in inductance. In  the case described here, 
eddy currents  have little effect on the moving coil dynamics, 
and therefore are neglected in  this  study. 

State equations  and  boundary  conditions 
Neglecting the inductive nonlinearity over a short distance, 
the system can  be  treated as a linear, lumped-parameter 
system, as shown in Fig. 3. This assumes that  the back 
emf caused by the  motion of the coil relative to  the per- 
manent  magnet is proportional  to  the coil velocity. Let 
XI = X, X, = 2, X, = i (where the  dot  notation indicates 
differentiation with respect to time). The  state  equations 
then become 

x 2  = ” x3 - - f (  xz) , ff1 P 
m m 

where 

f(xd = sgn  Xz, XZ + 0 ,  

and - (1 + E)  < ~ ( X Z )  < + (1 + E )  , 
x2 = 0 ( E  > 0 )  . (2) 

The boundary  conditions for  the time-optimal control 
problem of (1) are 

XI = x2 = x3 = 0 a t t  = 0 

and 

x1 = x,, x2 = x, = 0 a t t  = T ,  

where the final time, T, is not specified. For O+ 5 t 5 T-, 
Xz is positive. The nonlinear friction factor f ( X 2 )  may be 
eliminated from ( 1 )  if the initial time is taken as the  instant 
of impending motion, Le.,  when the current in  the coil 
causes a force on  the actuator that  just overcomes stiction. 
When this is done, (1) and (3) become 

XI = xz, 
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Figure 3 Moving-coil actuator as a linear  system with lumped 
parameters. 

e(t) = applied  voltage L = inductance 
f($= stiction/coulomb R = resistance 

p = coefficient of and  shaft 

i = current a1,a2 = electromechanical  coupling 

friction  characteristic rn = load mass, including coil 

coulomb  friction X = load  position 

constants 

XI = XZ = O+ x3 = -_- a t  t = o P ( 1  + 6 )  

ff1 

and ( 5 )  

x1 = x,, x2 = x3 = 0 a t  t = T .  

Time-optimal  control  problem 
We now turn to the  statement and solution of the time- 
optimal  control problem. Following the  formulation given 
by Kranc  and Sarachik: we write (4) in vector form as 

X(t)  = A X ( t )  + Bu(t) , 

where 

X\t) = 

and 

B =  

o - - a z / ~  - R / L  
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If we solve (6) with u = 0 such that +(O) is the identity 
matrix, the  components of +(t)  are  thus found to be 

42l ( t )  = 0 , 

where the characteristic roots of the system are 0, rl, r2 and 

Let 

u1 = -p (;) 
in 

u2 = (p>. 

then (15) becomes 

The initial and final values of y(t) are  found from (3, 
(8), (9) and (16) to be 

y(0)  = 0 , and (1 8) 

Notice that Y d  depends on  the final time, T. 
Continuing with Kranc's  functional analysis approach 

(see Appendix), we can write the required constraint on 
the  optimal control uo(t) as 

where E is the maximum voltage. 

must  be bounded. 
Clearly, the voltage applied to  the coil in the actuator 

For the  constraint given  by (20), we obtain 

or 

where TO is the final time obtained with the time-optimal con- 
trol function, uo(t). 

Equation (22) gives the voltage to be applied to the coil to 
achieve the desired time-optimal control. The  control is 
bang-bang with the switching points  corresponding to the 
zeros of the  function k(To - t). With a, b, and c as  con- 
stants, 

t < To. ( 2 3 )  

Therefore, if rl and r2 are positive real numbers, k(To - t )  
can have at most two zeros. This implies that  the  control 
is bang-bang with no more than two reversals on  the in- 
terval 0 < t < To. 

To avoid the complexity of an analytical expression for 
the time-optimal control, we  will solve for the switching 375 
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times, tl and t2, and  the final time, TO, numerically. Con- 
sider (17), whose scalar components are 

T 

yi(T) = 4i3 ( T  - t ) u ( t ) d t ,  j = 1 , ~  3 .  
(24) 

Now take 

where tl and t2 are the unknown switching times to be found 
such that 0 < tl < t2 < T,  and where U(T) is defined as  the 
unit  step  function; i.e., 

Let @ j k ( t )  denote  the antiderivative of 4 1 k ( t ) ,  [ j ,  k = 1,2 ,  
31, Le., 

Substituting (25) into (24) and integrating, we obtain 

@j3(T - t l )  - @j3(T - 1 2 )  = 

E 
j = 1 ,  2, 3 . (27) 

Equation (27) shows that for  any given T the right-hand 
side of the equation is known. Let this quantity be y5i(T). 
If we denote T - ti  by ri, i = 1, 2, then (27) becomes 

@j3(T1) - @ j 3 ( 7 2 )  = 9 j = 1, 2, 3 (28) 

The simultaneous  solution of (28) yields the three  unknowns 
rl, r,, and T ,  and a  straightforward  graphical method  can 
solve for these. Note, in (19), that only y l (T)  depends on 
the desired final position X,; y,(T) and y3(T) do  not. Sub- 
stituting yl(T)  from (19) into  the first of (27) or (28) yields 

The graphical solution, which is facilitated by drawing 
curves of @ j 3 ( ~ )  beforehand, can be carried out in the 
following manner: 

(a) Choose a value of T. 

(b) Compute +j(T),j = 2, 3, and plot curves of T, and r1 

which satisfy the second and  third parts of (28). The inter- 
section of these two curves gives 7 1  and r2 for the value of 
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(c) With these values (71, r2, and T )  calculate Xf by (29). 

(d)  Repeat  this  procedure to obtain curves of X, vs T, tl, 
and tz. The final and switching times can be obtained for 
any desired final position, X,, from these curves. 

Since we have taken  the initial  time (t = 0) to be the 
instant of impending motion, we must  make  a  correspond- 
ing adjustment  here. To the final and switching times found 
above, we must add  the time required  for the moving coil 
current to reach the value p(1 + €)/al,  given in ( 5 ) .  This 
occurs in the shortest  time when the voltage applied to  the 
coil is maximum. The time  correction is obtained from (l), 
with X ,  = 0 and e(t) = E: 

For completeness, the functions @ j k ( r )  appearing  in (28) 
and (29) are given below: 

(34) 

Theoretical basis for impulse  response  method 
The  method described thus  far can provide time-optimal 
control of the moving-coil linear actuator if the system 
parameters used in the mathematical  model are accurately 
known. Such knowledge is  difficult to  obtain for the effec- 
tive inductance and resistance of the coil, and  the frictional 
coefficients. But an alternative is suggested by the fact that 
a linear,  time-invariant system can be characterized by its 
response to a unit-impulse function. If the system is de- 
signed to  make stiction and  coulomb friction negligible, 
we need only measure and record the impulse response. In 
such a case the output is given  by 

where the impulse response is denoted by g(r). 
When we apply a step voltage to the coil and measure the 

signal output of the tachometer,  this signal (modified by 
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Figure 4 Impulse  response  measured  as  input data for  calculation 
of switching  times. The  curve  in (b) is a horizontal  expansion 
of (a). 

appropriate scale factors)  corresponds to  the impulse re- 
sponse of the system. The impulse response thus obtained 
for the test model is shown in Fig. 4. The tachometer con- 
version factor was 5.1 ips/volt, and 18 volts was applied to 
the coil. 

We can  compute the switching times for  optimal  control 
on  the basis of the function g(t) given in Fig. 4. (These con- 
ditions are assumed: g(0) = g' (0)  = 0 and X(T) = 

x(T) = 0.) We differentiate both sides of  (35)  successively 
with respect to time. Substituting, 

e(t) = E { 1 - 2 [U(t - r l )  - U(t - t2 ) ] }  , 

0 < t l  < t z  < T ,  (36) 

for  the  control, and integrating between 0 and T, we obtain 
the following equations: 

(37) 

g ( T  - td - g ( T  - 1 2 )  = i g ( 7 - 1  , (38) 

g'( T - t l )  - g'( T - tz) = 3 g'( T )  . (39) 

Since (37) to (39) are in the form of (28), the  graphical 
procedure applicable there can be applied  again at this 
point. The integrals and derivatives of g(t) in (37) and (39) 
can be conveniently computed from  the graph of g(t). 

Since the inductance of the coil varies with the position 
of the actuator, this  method is accurate only over a short 
distance of - 0.050". But if we consider the  total travel as 
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consisting of linear segments of constant  inductance, i.e., 
if  we treat  the system as piecewise linear, we can obtain a 
set of impulse responses for these segments and  thus cover 
the whole range of travel for purposes of computation.* 

Calculated results vs measured  results 
We have shown that  the impulse response of the system is 
simple to obtain experimentally when friction is negligible 
and  that, once obtained, it can be substituted into  the ap- 
propriate  equations and  the switching times can be cal- 
culated. It remains  then to determine the accuracy of this 
approach by comparing  the calculated switching and final 
times with those  found by trial-and-error  adjustment of 
the moving-coil test model. Such a comparison  can  be 
made  on  the basis of Fig. 5 ,  which shows the  output  from 
the phototransistor  (optical positioning transducer). 
Movement from  track to track is shown for three different 
positions on  the recording surface. For  the same distance 
moved (final position XT = 10 mils), there is relatively 
good agreement: 

Times (milliseconds) 

Track No. 10 Calculated Measured 

Switching  time t l  1.72  2.00 
Switching  time tz 3.63  3.80 
Final  time T 3.98 4.00 

The discrepancies may be due in part  to these cir- 
cumstances: 

(a) The step input voltage to  the coil varied somewhat, the 
amplitude decreasing with time. (The tachometer output 
signal thus varied slightly from  the true value.) 

(b)  The impulse response curve was differentiated graphic- 
ally to compute  the switching times, and some error is in- 
troduced when the amplitudes of points are read from  the 
curve. 

We can estimate the effect of the voltage variations on  the 
impulse response in this way: Consider the  input 

e(t) = a - bt , t 2 O ; a , b  > 0 ,  

where b is small. Then the impulse response is given by 

fashion; e.g., it  cannot be applied to compute switching times for a step of, 
* This statement is valid only if the system is operated in a track-to-track 
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Figure 5 Output  voltage of optical  positioning  transducer,  show- 
ing actual switching  times. The  ordinate scale  is  voltage output 
and  the abscissa  is  time, 1 .O msec per  large  division. 

Observed  results are: 

(a) (b) (c) 
Track 10 Track 45 Track 92 

t 2  3.8 msec 3.9 msec 3.9 msec 
tl 2.0/1.8 2.1/1.8 2.2/1.7 
T 4.0 4.0 4.1 

Therefore, as a first-order correction we  will take 

or, if u(t) is  the signal out of the  tachometer, 

From the specific data shown  in Fig. 4, we have 

44) = 2.7 

and 

[ u ( T ) ~ T  = 5.0.  

Therefore, if b > 0.06, the  error may be significant. 

Conclusion 
Starting from  the functional analysis approach of Kranc 
and Sarachik, we have worked out one  practical way of 
achieving time-optimal control of a moving-coil linear 
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of precise information about system parameters, we varied 
the  approach  to show how the results can  be conveniently 
obtained by an impulse response method.  When we com- 
pare the calculated results and  the results obtained with a 
test  model of the  actuator, we find good correlation, which 
tends to support this  as a sound approach. 

To implement the method  in  hardware over the whole 
range of travel  for such mechanisms will require  further 
attention to the problems raised by the nonlinearity of the 
coil inductance. Since such an  actuator is usually accessed 
under  computer control, the system could be operated 
piecewise linearly, with the values of the coil inductances 
over the segments of travel programmed into the instruc- 
tions. 

Acknowledgments 
The  authors appreciate  the work of R. G .  Edmondson in 
obtaining the impulse response, and  the generous advice 
of other IBM associates, L. Beach and R. J. Black, in 
regard to  the design of the moving-coil linear actuator.  The 
counsel of Dr. G .  Thaler, an  IBM consultant, is also 
greatly appreciated. 

IBM J. RES. DEVELOP. 



Appendix: 
Time-optimal  control  problem  as  described by 
functional  analysis 
The time optimal control problem can be stated as follows: For 
the linear, time-invariant system with response given  by Eq. (17), 
determine a  control Uo(r) which  causes the system to pass from 
the given initial state y(0) to the desired  final state yd in minimum 
time, TO. In addition, the norm of UO(/), defined by 

where N is a given number. By assigning different values to the 
parameter p in (41), we vary the  nature of the constraint. When 
p = m , the  norm of UO(/ )  is the maximum value it can take in the 
interval (0, T )  whenever the function is  piecewise continuous. 
Clearly, the voltage applied to the coil must be bounded, i.e., 

l e (0  I E ,  (43) 

where E is known, so that the p-infinity norm corresponds to a 
realistic constraint on the control. The required constraint on 
the control Uo(t) thus becomes 

I l u l l m  = Iu(t)I I E / L .  (44) 

The optimal control, Uo(t), for the problem stated above is 
given by: 

(45) 

where 

The 4,k are elements of the fundamental matrix, and the hj are 
constants as yet undetermined. For the constraint given  by 
equation (43), we obtain 

Uo(r) = E/L  sgn [k(T - t)]  , (47) 

or 

eo(t) = E sgn [k(T - f ) ]  . (48) 

Equation (48)  gives the voltage that is to be applied to the coil to 
achieve the desired time-optimal control. 

An explicit analytical expression for the optimal control may 
be  difficult, if not impossible, to obtain because determining the 
constants xi and To analytically is  such a complex problem. 
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