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Time-Optimal Control of a Moving-Coil Linear Actuator

Abstract: The time-optimal control problem for a moving-coil linear actuator has been worked out by means of functional analysis and
a related graphical procedure requiring only data from an impulse response. On the basis of experience with a test model, there is good
correlation between the theoretical and the experimental methods. While the latter is accurate over only very short distances, the use-
fulness of the technique can be extended as needed by operating the system in piecewise linear fashion. The nonlinearity of the coil
inductance can be handled under computer control by including in the program the inductances for successive segments of travel,

Introduction
In engineering applications where mechanisms must operate
repetitively at high speed and with great precision, time-
optimal control is often essential. This is the case with the
moving-coil linear actuator built and tested in the course
of the work reported here. In general, time-optimal control
requires finding that input function, with suitable con-
straints, which causes a dynamic system to pass from some
initial state to a desired final state in minimum time. In this
case, the change of state involves a travel range of one
inch, and the load is moved in 10-mil steps. As is typical, the
magnitude of the input (specifically, the voltage to be ap-
plied to the coil) is bounded, and the control is bang-bang.
As Friedland® points out, two related factors stimulate,
in a profitable way, attention to problems of optimum con-
trol: ““. . . the increasing demand for systems of high per-
formance, and . . . the availability of computing machinery
which makes feasible the calculations attendant on the
design of an optimum control system.” Since the time-op-
timal problem can be approached in a number of ways, and
since each approach involves special mathematical prob-
lems, we are particularly interested in methods whose ac-
companying problems are amenable to computer solution.
Such amenability is not typical of some widely known ap-
proaches described in the literature.?~® Pontriagin’s maxi-
mum principle, for example, usually entails a two-point
boundary value problem not readily handled by computer
methods, and the same thing is true of variational methods.
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In addition, these approaches (and other familiar ones such
as dynamic programming and gradient methods) do not in
general offer a straightforward procedure for determining
the optimal control explicitly. In the Pontriagin formula-
tion, for instance, the initial values of the adjoint variables
which determine the switching function are not known a
priori, and often must be found by trial and error.

The approach taken in this paper is an impulse response
method. This method has the advantage that the mathe-
matical problem is well adapted to experimental and com-
puter solution. Such an approach is especially suited to the
practical application of interest to us here—finding out
how to achieve time-optimal control in a moving-coil
linear actuator—for two reasons:

First, it affords a straightforward graphical procedure for
determining the times at which the control is reversed,
i.e., the switching times (when the characteristic roots of
the system are nonpositive real numbers and the control
is bang-bang, which is the case with the moving-coil
linear actuator).

Second, system parameters need not be determined
accurately, since an impulse response, determined ex-
perimentally, satisfies this approach. That is, the optimal
control can be calculated without explicit knowledge of
the system dynamics, since the experimentally deter-
mined impulse response can be fed directly into a com-
puter. This offers a simple means of updating the control
for changes in system parameters due to some char-
acteristic changes in the components.
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Figure 1 Test model of the moving-coil linear actuator system.

For the moving-coil linear actuator system, stiction and
coulomb friction effects are present, but properly chosen
initial conditions can remove these nonlinearities in the
mathematical formulation of the time-optimal control
problem. In a real-time simulation of the system these
effects must, of course, be included.

This paper includes, first, a physical description of the
moving-coil linear actuator, with a brief qualitative dis-
cussion of its dynamic characteristics. Next, the mathe-
matical representation of the systermn is derived as a set of
third-order ordinary differential equations. The following
section formulates the time-optimal control problem and
gives the form of the control and a graphical procedure for
finding the switching times. Finally, the theoretical basis is
discussed for experimentally determining the impulse re-
sponse, and the results obtained with the test model of the
moving-coil linear actuator system are presented. From
these data the switching times are calculated and com-
pared with those found by adjusting the control of the test
model until the optimal control was achieved.

System description
The system to be analyzed (Fig. 1) consists of a moving-coil
linear actuator, a simulated load attached to an optical-
grating transducer, a linear tachometer, a light source, and
a lens assembly. The linear actuator, the simulated load,
and the linear tachometer are connected by a common
hardened shaft (nonmagnetic stainless steel) mounted in
linear bearings. The load glides horizontally on hardened
guide rails, with three roller bearings to minimize friction.
The range of travel is one inch and the band is moved in
10-mil steps. Since the center of mass of the assembly is
near the centerline of the shaft, the driving force acts on
the center of mass of the total system. This prevents an
induced moment, which would tend to cause oscillations
in the system.

The actuator assembly (Fig. 2) includes Alnico V ring
magnets, grain-oriented axially. The moving coil itself is
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Figure 2 Actuator assembly.

made of two layers of No. 24 Formvar* magnet wire, bi-
filar wound for low inductance. The coil is supported at
one end by an aluminum structure which transmits the
generated force to the moving part of the actuator. The
measured flux density in the working air gap was 8,200
gauss; the coils had a measured resistance of 1.55 ohms and
inductance of 3.4 mH at 100 Hz.

The force generated by a current-carrying conductor in a
magnetic field is given by: F = 5.63 (10~7) BDi, where F is
the 10rce in pounds, B is the flux density in gauss, D is the
length of the conductor in inches, and i is the current in
amperes. The selected length of the conductor produces a
force of approximately 2 pounds per ampere.

The optical position transducer, a glass grating with
narrow parallel lines, alternately opaque and transparent,
is attached to the load. The transducer is positioned be-
tween a light source and a lens system which magnifies
(10XX) the light that reaches two phototransistors. The
servomechanism moves the load and the transducer until
each phototransistor is aligned half on an opaque line and
half on a transparent line. Since the two phototransistors
then see the same level of “grey,” the push-pull system is
nulled and the system reaches the desired state.

A tachometer attached to the opposite side of the load
mass provides a velocity feedback signal for the actuator
control system. The control electronics generate the control
signals to the actuator and provide negative feedback pro-
portional to position and velocity errors, for control after
the bang-bang control mode.

Since the complete assembly is rigid and the force ap-
plied passes through its center of mass, the assembly can,
for practical purposes, be treated as a particle with one
degree of freedom. The applied force is assumed to be pro-
portional to the current in the conductor. It is assumed that
dry, or coulomb, friction is the type generated.

* Shawinigan Products Corporation.
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The dynamics of the moving coil are difficult to describe
since, over a long stroke, the effective inductance varies
with the coil position relative to the permanent magnet.
Over a short distance, the dynamic characteristics can be
considered linear. If the total travel of the coil is desired,
the windings of the coil can be arranged to compensate for
the variations in inductance. In the case described here,
eddy currents have little effect on the moving coil dynamics,
and therefore are neglected in this study.

State equations and boundary conditions

Neglecting the inductive nonlinearity over a short distance,
the system can be treated as a linear, lumped-parameter
system, as shown in Fig. 3. This assumes that the back
emf caused by the motion of the coil relative to the per-
manent magnet is proportional to the coil velocity. Let
X1 = X, X, = X, X; = i (where the dot notation indicates
differentiation with respect to time). The state equations
then become

Xl = X,
oo %1 _ &
X, = " X3 mf(Xz),

=R 2yl )

where

f(Xs) = sgn X, Xe # 0,
and — (1 +¢) < f(Xy) < +(1 + ),
X,=0 (>0. (2

The boundary conditions for the time-optimal control
problem of (1) are

X1=X2=X3=0 att=0
and ®

X1 = X5, Xo = X; =0 attr =T,

where the final time, 7, is not specified. For 07 < ¢ < T,
X, is positive. The nonlinear friction factor f(X>) may be
eliminated from (1) if the initial time is taken as the instant
of impending motion, i.e., when the current in the coil
causes a force on the actuator that just overcomes stiction.
When this is done, (1) and (3) become

Xl = X2,
Xg = gl X3 - "IJL )
m m
. —R [+ )] 1
— —— — == ;‘{ -
Xz 3 X3 7 2+Le<t)’ (4,
and then
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Figure 3 Moving-coil actuator as a linear system with lumped
parameters.

e(t) = applied voltage L = inductance
F(X)= stiction/coulomb R = resistance
friction characteristic m = load mass, including coil

p = coefficient of and shaft
coulomb friction X = load position
i = current a,ae = electromechanical coupling
constants
1
Xi= X, =0, x=2lto .., _
23]
and (5)
X1=Xf, X2=X3=0 att = T.

Time-optimal control problem

We now turn to the statement and solution of the time-
optimal control problem. Following the formulation given
by Kranc and Sarachik,® we write (4) in vector form as

X (1) = AX(1) + Bu(r) , (6)
where

X (1) 0o 1 0
X\t) = Xg(t) 5 A= 0 0 C{l/ﬂ’l

X (1) 0 —ay/L —R/L
and

0 0 —u/m

S I R VIO 0

The solution of (6) is

X0 =60 XO0) + [ 60— O BuOE, ()

where ¢(7) is solution matrix and

X,(0) 0
XO =1 %0 | ~ 0 . (8)
X;(0) w(l + €)/a;
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If we solve (6) with u = 0 such that ¢(0) is the identity
matrix, the components of ¢(#) are thus found to be

¢u(t) =1,
1 ¥o —rit r —rot
¢12(1)=‘”—[—(1—€ )—r_z(l*'e )],

Fo — ¥1 LN

_af 1
¢13(t) T om <r2 - r1>
1 —r1t _1_ _ —~7rot
x[;u—e )= (- ﬂ,
$21(t) = 0,
¢22(t) — 1 [r2e—rll - rle—T2t] ,

rg — r
a 1 —7r1d —rat
¢23(t)=_< —> (e =),
m\rs — n
¢31(t) =0,
mm:ﬂ(il)wm—fﬂ,
a1 \r: — n
1 —rot —rit
$ss(t) = P— (ree™™ —ne™™), 9)

where the characteristic roots of the system are 0, r1, 2 and

e \/<_1i>2 _ e (10)
ro 2L 20) T mL

Let

w-22(). o

- (3).

H(t — £) = ¢(t — £)Bus, (13)

and

w(t) = L e (14)
L

Substituting into (7), we obtain
X() = $(0XO) + [ 9 — OBus

+L}m—fﬂ@ﬁ- (15)

When we define

v £ x0) = $0x© ~ [ 80 ~ OBuct,
(16)
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then (15) becomes

v = [ 0 - Duwa

t ¢13(t - E)
= / bos(t — &) |u(§)dt.
$33(t — &) a7

The initial and final values of y(r) are found from (5),
(8), (9) and (16) to be

y(0) = 0, and (18)
X, ¢13(T)
w1y =yi=| 0 |- £ g 0
0 ! $33(T)
7| $12{T — &)
+% boo(T — £) | dt .
¢ Lepao(T — &) (19)

Notice that y4 depends on the final time, 7.

Continuing with Kranc’s functional analysis approach
(see Appendix), we can write the required constraint on
the optimal control uy(?) as

E
Illo(f)l < L’ (20)
where E is the maximum voltage.
Clearly, the voltage applied to the coil in the actuator
must be bounded.
For the constraint given by (20), we obtain

uo(r) = fsgn [k(To — )], (21)

or
e(t) = Esgn [k(T, — 1)]. 22)

where T is the final time obtained with the time-optimal con-
trol function, (7).

Equation (22) gives the voltage to be applied to the coil to
achieve the desired time-optimal control. The control is
bang-bang with the switching points corresponding to the
zeros of the function k(Ty — 7). With a, b, and ¢ as con-
stants,

K(To — t) = a+ be V770 o2 T8
t< To. (23)

Therefore, if r; and r, are positive real numbers, k(Ty — 1)
can have at most two zeros. This implies that the control
is bang-bang with no more than two reversals on the in-
terval 0 < r < Tq.
To avoid the complexity of an analytical expression for
the time-optimal control, we will solve for the switching 375
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times, #; and ¢, and the final time, Ty, numerically. Con-
sider (17), whose scalar components are

yi(T) = _/; o (T — gule)ds, j=1,2,3. (24)

Now take

E
=211 — — — —
where #; and ¢; are the unknown switching times to be found
such that 0 < 1 < t, < T, and where U(r) is defined as the
unit step function; i.e.,

f1, r>0
vir) = o, r<o0° (26)

Let ® ;;(r) denote the antiderivative of ¢ ;x(0), [/, k =1, 2,
3l,ie.,

d® ;i (t)

a b (1) .

Substituting (25) into (24) and integrating, we obtain

Pi3(T — 1) — ®;5(T — 1) = % [‘Pﬁ.(T) — ®;3(0)

L .
e ) T Ty
Equation (27) shows that for any given T the right-hand
side of the equation is known. Let this quantity be ¢ (7).
If we denote T — ¢; by 7, i = 1, 2, then (27) becomes

D 3(r1) — ‘I’js(T 2) = YT,

The simultaneous solution of (28) yields the three unknowns
71, T9, and T, and a straightforward graphical method can
solve for these. Note, in (19), that only y(7) depends on
the desired final position X;; y(T) and y3(T) do not. Sub-
stituting y1(T) from (19) into the first of (27) or (28) yields

i=1,23. (28)

X, = f{‘i’w(T) — $33(0) — 2 [®13(r1) — (I>18(7'2>]}

+ L (1) — @)1 - HEED () 09

The graphical solution, which is facilitated by drawing
curves of ® ;(r) beforehand, can be carried out in the
following manner:

(a) Choose a value of 7.

(b) Compute y (T),j = 2, 3, and plot curves of , and 71
which satisfy the second and third parts of (28). The inter-
section of these two curves gives 71 and 7, for the value of
T chosen, and 71 > 72.

C.J. BROWN AND J. T. MA

(c) With these values (71, 72, and T) calculate X, by (29).

(d) Repeat this procedure to obtain curves of X, vs T, 71,
and #,. The final and switching times can be obtained for
any desired final position, X}, from these curves.

Since we have taken the initial time (+ = 0) to be the
instant of impending motion, we must make a correspond-
ing adjustment here. To the final and switching times found
above, we must add the time required for the moving coil
current to reach the value u(1 + €)/ey, given in (5). This
occurs in the shortest time when the voltage applied to the
coil is maximum. The time correction is obtained from (1),
with X, = Oand e(r) = E:

s = L [1 - RellEd] (50

For completeness, the functions ® () appearing in (28)
and (29) are given below:

1
v = 2 [ ]

—71T —rar\
e N L
rn r re r

(31)
By (r) = & <~i—> (—L oL e"“’> . (32)
m\ re—r re r
1 — 71T —7roT
Dy3(r) = P (e =€), (33)
—riT —7raTr
Bulr) = [Q (’ +* ) - ﬂ(’ * e"_ﬂ'
Foe —rniLn ry Fo ¥o
(34)

Theoretical basis for impulse response method

The method described thus far can provide time-optimal
control of the moving-coil linear actuator if the system
parameters used in the mathematical model are accurately
known. Such knowledge is difficult to obtain for the effec-
tive inductance and resistance of the coil, and the frictional
coeflicients. But an alternative is suggested by the fact that
a linear, time-invariant system can be characterized by its
response to a unit-impulse function. If the system is de-
signed to make stiction and coulomb friction negligible,
we need only measure and record the impulse response. In
such a case the output is given by

t
X0 = [ st~ Vet (35)
where the impulse response is denoted by g(z).

When we apply a step voltage to the coil and measure the
signal output of the tachometer, this signal (modified by
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Figure 4 Impulse response measured as input data for calculation
of switching times. The curve in (b) is a horizontal expansion
of (a).

appropriate scale factors) corresponds to the impulse re-
sponse of the system. The impulse response thus obtained
for the test model is shown in Fig. 4. The tachometer con-
version factor was 5.1 ips/volt, and 18 volts was applied to
the coil.

We can compute the switching times for optimal control
on the basis of the function g(¢) given in Fig. 4. (These con-
ditions are assumed: g(0) = g’ (0) = 0 and X(T) =
X(T) = 0.) We differentiate both sides of (35) successively
with respect to time. Substituting,

e() = E{l —2[U(t — 1)) — Ut — L)1},
0< 1 <8<T, (36)

for the control, and integrating between 0 and T, we obtain
the following equations:

= E{/()Tg(g)dé -2 [/()T_“g(é)dé
- foT_mg@)de]}, (37)

g(T— 1) —g(T— 1) =5g(T), (38)
g(Tr—tn)—e(r—1tn)=3¢(T). (39)

Since (37) to (39) are in the form of (28), the graphical
procedure applicable there can be applied again at this
point. The integrals and derivatives of g(¢) in (37) and (39)
can be conveniently computed from the graph of g(s).

Since the inductance of the coil varies with the position
of the actuator, this method is accurate only over a short
distance of ~ 0.050”. But if we consider the total travel as

X, = X(T

SEPTEMBER 1968

consisting of linear segments of constant inductance, i.e.,
if we treat the system as piecewise linear, we can obtain a
set of impulse responses for these segments and thus cover
the whole range of travel for purposes of computation.*

Calculated results vs measured results

We have shown that the impulse response of the system is
simple to obtain experimentally when friction is negligible
and that, once obtained, it can be substituted into the ap-
propriate equations and the switching times can be cal-
culated. It remains then to determine the accuracy of this
approach by comparing the calculated switching and final
times with those found by trial-and-error adjustment of
the moving-coil test model. Such a comparison can be
made on the basis of Fig. 5, which shows the output from
the phototransistor (optical positioning transducer).
Movement from track to track is shown for three different
positions on the recording surface. For the same distance
moved (final position Xy = 10 mils), there is relatively
good agreement:

Times (milliseconds)

Track No. 10 Calculated  Measured
Switching time #, 1.72 2.00
Switching time #» 3.63 3.80
Final time T 3.98 4.00

The discrepancies may be due in part to these cir-
cumstances:

(a) The step input voltage to the coil varied somewhat, the
amplitude decreasing with time. (The tachometer output
signal thus varied slightly from the true value.)

(b) The impulse response curve was differentiated graphic-
ally to compute the switching times, and some error is in-
troduced when the amplitudes of points are read from the
curve.

We can estimate the effect of the voltage variations on the

impulse response in this way: Consider the input
e(t) =a — br, t>0;a,b>0,

where b is small. Then the impulse response is given by

£() = 10+ X(0)

+é<§) /0 X(5)e® 0 g | (40)

* This statement is valid only if the system is operated in a track-to-track
fashion; e.g., it cannot be applied to compute switching times for a step of,
say, 100 mils.
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(a)

Figure 5 Output voltage of optical positioning transducer, show-
ing actual switching times. The ordinate scale is voltage output
and the abscissa is time, 1.0 msec per large division.

Observed results are:

(@) (b) ©
Track 10 Track 45 Track 92
12 3.8 msec 3.9 msec 3.9 msec
h 2.0/1.8 2.1/1.8 2.2/1.7
T 4.0 4.0 41

Therefore, as a first-order correction we will take
1 b
g(t) == X(t) + 5 Xx(t)
a a
or, if v(r) is the signal out of the tachometer,
1 b [
() = 20() + 5 | or)dr.
a a 0

From the specific data shown in Fig. 4, we have
v(d) = 2.7

and

/:u(f)dT = 5.0-

Therefore, if 5 > 0.06, the error may be significant.

Conclusion
Starting from the functional analysis approach of Kranc

and Sarachik, we have worked out one practical way of
achieving time-optimal control of a moving-coil linear
actuator. To circumvent the difficulties caused by the lack

C.J. BROWN AND J. T. MA

yu

S
i

-

N
|

(c)

of precise information about system parameters, we varied
the approach to show how the results can be conveniently
obtained by an impulse response method. When we com-
pare the calculated results and the results obtained with a
test model of the actuator, we find good correlation, which
tends to support this as a sound approach.

To implement the method in hardware over the whole
range of travel for such mechanisms will require further
attention to the problems raised by the nonlinearity of the
coil inductance. Since such an actuator is usually accessed
under computer control, the system could be operated
piecewise linearly, with the values of the coil inductances
over the segments of travel programmed into the instruc-
tions.
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Appendix:
Time-optimal contro! problem as described by

functional analysis

The time optimal control problem can be stated as follows: For
the linear, time-invariant system with response given by Eq. (17),
determine a control Uy(r) which causes the system to pass from
the given initial state 3(0) to the desired final state y,; in minimum
time, 7. In addition, the norm of Uy(r), defined by

T 1/p
Ui, & [/ on(t)I"dt:I , 4y

is to be bounded, i.e.,
Ul £ N, 42)

where N is a given number. By assigning different values to the
parameter p in (41), we vary the nature of the constraint. When
p = »,the norm of Ur) is the maximum value it can take in the
interval (0, 7) whenever the function is piecewise continuous.
Clearly, the voltage applied to the coil must be bounded, i.e.,

le()] < E, 43
where E is known, so that the p-infinity norm corresponds to a
realistic constraint on the control. The required constraint on
the control Uy¢) thus becomes
Ul = 1UW| < E/L. 49

The optimal control, Uyr), for the problem stated above is
given by:

[4 1
(%) ()

Udn) = N [k(To — 0] 77" sgn [k(Tw — 1], (45)
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where

3
KT — 0 =2 Nos (T —1). (46)

jel

The ¢, are elements of the fundamental matrix, and the X; are
constants as yet undetermined. For the constraint given by
equation (43), we obtain

Ui(t) = E/Lsgn [K(T — 0], ‘ “n
or
el) = Esgn [K(T — 1)]. (48)

Equation (48) gives the voltage that is to be applied to the coil to
achieve the desired time-optimal control.

An explicit analytical expression for the optimal control may
be difficult, if not impossible, to obtain because determining the
constants A; and 7' analytically is such a complex problem.
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