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Implicit Implementation of the Weighted

Backward Euler Formula

Abstract: This communication describes how the weighted backward Euler formula, as applied to analyze electromechanical systems,
can be implicitly implemented by replacing capacitors and inductors by resistors and voltage or current sources, respectively, and by
replacing the driving functions by their first differences. This replaces the set of differential equations, which describes the capacitive
voltages and the inductive currents, by a set of algebraic first difference equations.

It has been shown! that the set of first order differential
equations in the form:

dF

~, = —BF+ DE (1)
can be accurately solved for the vector F, independently of
the integration step size, using a weighted backward Euler
formula. An orders of magnitude increase in speed can be
accomplished, with comparable accuracy, by using the
weighted backward Euler formula instead of the fourth
order Runge-Kutta formula. It has also been shown? that
Eq. (1) describes the state vector for electromechanical
systems. Hence the weighted backward Euler formula is of
great usefulness, especially in systems that contain rela-
tively small time constants. It will be demonstrated now
how the weight factors can be related to the different sys-
tem constituents and how to obtain a set of algebraic
equations that form an implicit application of the weighted
backward Euler formula to obtain the solution for the
vector F in Eq. (1).

Application of the weighted backward Euler formula
to electromechanical systems consisting of two-part
components

Following Wirth? it can be shown that the state vector of

an electromechanical system has the form:
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where X; and Y, are the across and through variables of

the capacitive branches and inductive links, respectively,

and E; and I, are the across and through drivers included

as branches and links, respectively.

This can be written in the compact form

dF _ .

o= —Z7'BF 4+ Z7'DE. (3)
Applying the weighted backward Euler formula to Eq.

(3) yields the following recursion equation:

(U+ HAtZ'B)F,., = F. + AtZ"'DE,,, , 4)

where the Z and H matrices are assumed to be piecewise
constant.

We approximate the driving function by a set of step
functions; the response of the system is the summation of
the responses due to each such step. Thus, taking the first
difference of (4) yields

(U+ HAtZ'B)AF,;, = AF, + AtZ 'DAE,.;, (5)

where
AXppy = Xop1 — X (6)
Consider
o [Ha o0 ] |:C_1 0 —J
HAtZ7 = |:0 Has. At 0 ISk (7

Hy and Hss are diagonal submatrices and since C—1, L1
represent one-port capacitors and inductors, they are also
diagonal. Thus

—1
HAtZ ™' = At [H“C 0 }

0 Hypo L™
_atHac™ 0 :l
N [0 AtHa 7' 1" (8)
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Figure 1 Equivalent representation of capacitors and inductors.

Consequently, the weight factors can serve as modification
factors, which change the values of the capacitive and
inductive components, so that the final answer is accurate.
Since H is dimensionless and ArZ~! has the dimensions of
ohms, it is possible to replace the capacitive and inductive
components by equivalent resistances. Further, Eq. (5)
implies a driving function AF, in connection with each
equivalent ohmic representation of an inductive or capaci-
tive component. Equation (5) also states that the (n 4+ 1)th
difference is a function of the nth difference of the state
vector and the (n + 1)th difference of the driving function.
It also states that once the weight factors have been applied
to modify the values of the capacitive and inductive com-
ponents, the portion of the (n 4+ 1)th difference of the
state vector F that is due to the (n + 1)th difference of the
driving function has to be amplified by the same weight
factor. Figure 1 suggests one possible way of specifying the
equivalent representation of the capacitive and inductive
components. One should follow the following steps if the
solution for Eq. (1) is to be obtained implicitly, using
difference equations:

(a) Choose a solution step At such that the driving func-
tion is adequately described;

(b) calculate the weight factors?;

(c) replace each capacitor and each inductor by its equiva-
lent representation (Fig. 1);
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(d) replace all the driving functions by first difference
generators!;

(e) for the nth step, calculate the capacitive currents and
inductive voltages due to the first difference generator at
time # -+ nAr and amplify them by the inverse of the
weight factor; and

(f) calculate the capacitive voltages and inductive currents
due to the incremental capacitive voltages and inductive
currents at time 7, -+ (n — 1)Az. Steps (e) and (f) can be
accomplished by using the Gauss-Jordan elimination
technique.?

(g) Then the incremental capacitive voltages and inductive
currents, AF,, at t, + nAt are equal to the summation of
the results of (e) and (f).

(h) The value of the state vector at the nth step is given by
F, = Y AF;. (9)
=1

Conclusions

It is possible not only to increase the accuracy of the back-
ward Euler formula by the introduction of a set of weight
factors, but also to obtain these accurate results implicitly,
using the equivalent representation of Fig. 1 and following
the steps (a) through (h).
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