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Abstract: A new  method is proposed  to  determine  the  tap  settings of a delay-line  filter  for distortion  correction of  digital data after 
transmission by a voice line. The  procedure  described  achieves  approximately  the  optimal tap settings by solving a system of linear 
equations with a circulant  matrix  of  coefficients.  When the  fast  Fourier  transform  algorithm of Cooley  and  Tukey  is  used, the result- 
ing quantity of computations is  considerably  smaller than in other known  methods.  Therefore,  much  faster  equalization  can be achieved. 

Tapped delay-line filters are often used for  the  distortion 
correction of digital data after transmission by a voice 
1 ine . I~~  
In the present application of delay-line filters, the main 

problem is to find a fast procedure for the determination of 
the optimal tap settings. First, the principal idea of the 
known  methods will be described. 

We suppose that  the message to be transmitted is a se- 
quence of zeros (spaces) and ones (marks). Let a unit pulse 
be sent  through  the voice line, which is assumed to be linear. 
The sample values of this pulse will be indicated by the 
sequence SI: 

s1 = ( . * . , o ,  “ . , O ,  1 , 0 ,  * . - , o ,  . a * ) .  (1) 

Owing to distortions, the sample values of the pulse re- 
ceived are different from s ~ ,  and  are denoted by s ~ :  

s2 = (. . . , a-v, . . ., a-1, ao, a l ,  . ., a,, . . .) . (2) 

Here a. indicates the position of the main peak. 
The purpose of equalization is to regenerate sequence SI 

from s2 as well as possible. 
In  the following, we assume the initial distortion D, i.e., 

the distortion before equalization, to be smaller than one, 
by which we mean 

D = - x’ lav[ < 1 . 1 “  
a0 Y=--oo 

The “prime” indicates that the  term laOl has  to be omitted 
in the sum, and we assume a. to be positive without loss of 
generality. Let T be the time between two sampling points 
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at  the receiver side. A delay-line filter with n delay elements 
each of delay T, and n -+ 1 tap amplifications Xk, k = 0, 
1, . . . , n, forms the following equalized sequence S2 from 
the input sequence s2: 

~2 = ( e - . ,  a ~ ,  * * . , ~ 1 , ~ o , ~ l ,  * “ , a v ,  - . . .) (4) 

with 

and the parameter m can assume any arbitrary  but fixed 
integer value from 0 to n. Lucky’ has proved that  the xi 
in such an equalizer achieve optimal reduction of distor- 
tion if and only if the m values preceding Lao and  the 
n - m ones immediately following it all vanish, and 

= 1. Then  the signal sampled after  equalization is of 
the form: 

The v < “m or v > (n - m) are certain new echoes, 
and  the distortion after equalization, which is defined by 

becomes 

Since m can only assume a finite number of values, it is 
theoretically very simple to find the minimum of D(m) over 
m. In practical realizations of equalizers, a fixed value for 331 
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rn is implemented and  no optimization with respect to this 
parameter is performed. Therefore,  in the sequel, we, too, 
assume rn, 0 5 rn 5 n, to be  arbitrary but fixed. 

It follows from (5) that  the  tap settings x k  forming the 
equalized signal (4') are the  solution of the following system 
of linear equations : 

Ax = e , ,  (7) 

with 
- - 

I .  a0 a1 . * .  a, 
a-1 Uo * . * G-1 

zeros 

- m zeros 

Since (3) is provided, the determinant of the matrix A 
does not vanish, and (7) therefore has a unique solution. In 
implemented equalizers, this system of equations is solved 
on a special purpose  computer by an iterative meth0d.l 

The new  procedure 
In  the following, the equalization is not based on a single 
pulse response but  on  the response of a periodic sequence 
of unit pulses, the distance between two succeeding pulses 
being (n + 1)T. This sequence sent will be called s3: 

sg = ( - . . , I ,  0,  - . . , O ,  1 , O ,  . - * ,  0,  1 , O ,  . . . ) .  (8) 

The sampled data received also form a periodic sequence 
with the same period 

s4 = ( . . . , b o ,  bl, * . * ,  b,, bo, - . . )  . (9 )  

bo again indicates the position of the main peak. 
The b, can  be expressed by the sample values a, of the 

single pulse response: 

From (3) and (10) follows: 

It can now be seen that the tap settings yk, k = 0, . . . , n,  
which regenerate the sequence s3 from s4 are  the solution to 
the following system of linear equations: 

By = e, (1 2) 

with 

y being the column vector of the  tap settings, and e, having 
the same meaning as in (7); rn is again an  arbitrary  but 
fixed integer between 0 and n. 

A matrix B of this special structure is called circulant. 
The eigenvalues X, of this matrix are known to be4 

with 

w = exp (3+) 
being an (n + 1) th root of unity. 

Because of (l l) ,  all X, are different from zero and (12) is 
uniquely solvable. Furthermore, the solution of (12) can  be 
represented as:4 

For completeness, the simple proof will be given. Since 
(14) defines y j  even for all integer subscripts j ,  and 
y j  = ~ j + , + ~  holds, the sample values after equalization 6, 
are given by 

Combining (13),  (14) and (15), and changing the order of 
summation, results in 

1 "  i;, = "~ 

W ( m - v ) p  = { 1 for v = rn 
n + 1 ,=o 0 otherwise. 

The  tap settings given by (14) are real, since they are  the 
solution of (12) with real coefficients and a real  right-hand 
side. 
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Comparison of results  and  computing time 
The difference between the  tap settings x and y resulting 
from  the old and  the new methods, respectively, can  be 
written in the form: 

x - y = (A-I - B")e, . (1 6 )  

Because of (3), A" and B" have the converging series 
expansions 

Table 1 Comparison of the two  methods for  input with  large 
number of echoes. 

Initial 
distortion  Distortion  after equalization 

Conventional method New method 
5 taps 9 taps 5 taps 9 taps 

1.66 0.86 0.64 0.92 0.67 
0.93 0.55 0.49 0.63 0.56 
0.88 0.14 0.59  0.84 0.65 
0.66  0.38 0.31 0.44 0.34 
0.28  0.09 0.08 0.11 0.09 

and we get the following first-order approximation for 
x - y:  

This shows that  the difference between x and y is small 
if the difference between the matrices A and B is small; 
the latter will clearly be fulfilled for small initial distor- 
tions. Then both methods yield approximately the same 
results. 

It follows further  from (7), (10) and (12) that  the  tap 
settings x are also a solution to  the system of equations: 

Bx = e, f A b ,  (19) 

where the vth component Abp of the column vector Ab 
is  given by 

v = -m, . . . ,  0,  . . .  , n -  m ,  

and  the term with 1 = 0 has  to be omitted in  the sum. The 
8, are  the distortions  after equalization defined by ( 9 ,  
which are small if the equalizer with tap settings x works 
well. Then  the components of the vector Ab are also small. 
Since the right-hand sides of (12) and (19) differ just by Ab, 
we can conclude that  the difference x - y also decreases 
with decreasing distortion  after  equalization using tap 
settings x. In  other words, the better the conventional 
method works, the better are  the results of the new method. 
In  the limit as n tends to infinity, both methods yield ideal 
equalization. 

Some results of a simulation are shown in the following 
Tables. Two limiting cases have been considered. Table 1 
corresponds to a transmission channel with rectangular 
amplitude characteristics and a sinusoidal phase character- 
istic, such that a large  number  (more than 100) of rela- 
tively small echoes occur. For a more complete descrip- 
tion of the channel model used,  see Ref. 5. Table 2 gives the 
results in  the case where the  distorted signal has only two 
echoes on either side. Realistic channels lie in between these 
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Table 2 Comparison of the two  methods for input with two 
echoes. 

Initial 
distortion Distortion  after equalization 

Conventional method New method 
5 taps 9 taps 5 taps 9 taps 

0.6 0.043 0.003 0.079 0.006 
0.6 0.074 0.008 0.112 0.012 
0.8 0.068 0.011 0.154 0.019 
0.8 0.246 0.062 0.323 0.083 
1.2 0.208 0.045 0.341 0.074 

limiting cases. We can see that the new method gives only 
slightly worse results than  the conventional one, and  both 
methods work even for initial distortion larger than one. 

The necessary amount of computations  for both methods 
will now be compared. For solving the system of equations 
(7), the fastest method would be  Gaussian elimination. This 
requires, setting N = n + 1, N real divisions, N(#/3 + N 
- 1/3) real multiplications and N ( W / 3  + N / 2  - 5 / 6 )  
real  additions; i.e., the number of multiplications and addi- 
tions is proportional to N3. (See Ref. 6.) 

To solve the system of equations (12) with the circu- 
lant matrix of coefficients, the eigenvalues X, given by (13) 
must first be calculated. The formula  for the Xp has 
exactly the same form  as a discrete Fourier  transform. To 
calculate the eigenvalues, the fast  Fourier  transform algo- 
rithm of Cooley and Tukey7  can be applied, requiring a 
number of complex multiplications and additions,  both 
being proportional to N log N .  Next, in order  to evaluate 
(14), this  algorithm can be easily modified, and  the number 
of necessary multiplications and additions is still propor- 
tional to N log N .  If N = 2' is chosen, a power-of-two 
algorithm  can be used8 and  the computing  time  for the new 
method is proportional to r . 2' compared to Z3" for the 
old  method, i.e., our method saves a considerable amount 
of computation. As an example, the computing times re- 333 
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quired  by  the  old  and  the  new  methods  for  calculation o ‘f 
the  tap  settings of a n  equalizer  with 26 delay  elements 
(n = 26, N = 27) would  be 0.725 sec and 0.101 sec, re- 
spectively, on a n  IBM System/360  Model 40 computer. 
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