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Abstract: A new method is proposed to determine the tap settings of a delay-line filter for distortion correction of digital data after
transmission by a voice line. The procedure described achieves approximately the optimal tap settings by solving a system of linear
equations with a circulant matrix of coefficients. When the fast Fourier transform algorithm of Cooley and Tukey is used, the result-
ing quantity of computations is considerably smaller than in other known methods. Therefore, much faster equalization can be achieved.

Tapped delay-line filters are often used for the distortion
correction of digital data after transmission by a voice
line =3

In the present application of delay-line filters, the main
problem is to find a fast procedure for the determination of
the optimal tap settings. First, the principal idea of the
known methods will be described.

We suppose that the message to be transmitted is a se-
quence of zeros (spaces) and ones (marks). Let a unit pulse
be sent through the voice line, which is assumed to be linear.
The sample values of this pulse will be indicated by the
sequence s;:

s1=(..-’0’..-’0’1’0’..-,0’...)‘ (1)

Owing to distortions, the sample values of the pulse re-
ceived are different from s;, and are denoted by s,:

s2=(...,a_y’...,a_l’ao’ah..-’a”...)_ (2)

Here a, indicates the position of the main peak.

The purpose of equalization is to regenerate sequence §;
from s, as well as possible.

In the following, we assume the initial distortion D, i.e.,
the distortion before equalization, to be smaller than one,
by which we mean

D=—§;i'[ay[<l. (3)

y=—00
The “prime” indicates that the term |ay| has to be omitted
in the sum, and we assume a, to be positive without loss of
generality. Let T be the time between two sampling points
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at the recetver side. A delay-line filter with » delay elements
each of delay T, and n -+ 1 tap amplifications xz, k = 0,
1, - -+, n, forms the following equalized sequence 5. from
the input sequence ss:

§2=("',a_y,"',5_—1,50,(71,"',(._lv,"') (4)
with

n
a = J_Z;xjay—mw, (5)

and the parameter m can assume any arbitrary but fixed
integer value from 0 to n. Lucky! has proved that the x;
in such an equalizer achieve optimal reduction of distor-
tion if and only if the m values @, preceding Gy and the
n — m ones immediately following it all vanish, and
@y = 1. Then the signal sampled after equalization is of
the form:

So=( "m0, -,0,1, 0,---,0, Gumt1,**").
M Zeros N — i Zeros 4)

The @,, v < —mor v > (n — m) are certain new echoes,
and the distortion after equalization, which is defined by

D) =L 37 1a (©
becomes
pm) = 3, i+ V=§+l ). )

Since m can only assume a finite number of values, it is
theoretically very simple to find the minimum of D(m) over
m. In practical realizations of equalizers, a fixed value for
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m is implemented and no optimization with respect to this
parameter is performed. Therefore, in the sequel, we, too,
assume m, 0 < m < n, to be arbitrary but fixed.

It follows from (5) that the tap settings x; forming the
equalized signal (4") are the solution of the following system
of linear equations:

AX = e, )]
with
ayg day - A
a_1ap **°* n
A =
A_pniy1 * - Qo 1
La—n cccdoy Aol
X0 T 0
X1
. m Zeros
X = , em=|1

>n — m Zeros
Xr—1

Xn _ 10 J

Since (3) is provided, the determinant of the matrix A
does not vanish, and (7) therefore has a unique solution. In
implemented equalizers, this system of equations is solved
on a special purpose computer by an iterative method.!

The new procedure

In the following, the equalization is not based on a single
pulse response but on the response of a periodic sequence
of unit pulses, the distance between two succeeding pulses
being (n -+ 1)T. This sequence sent will be called s3:

S3=("',1,0,"',0,1,0,"',0,1,0,"'). (8)

The sampled data received also form a periodic sequence
with the same period

S4=("', ’bmbo’...)_ (9)

by again indicates the position of the main peak.
The b, can be expressed by the sample values a, of the
single pulse response:

bo, bl,

> Gt - (10)

1w

From (3) and (10) follows:

bo> 2 I (11)
It can now be seen that the tap settings yx, k = 0, - - -, n,

which regenerate the sequence s; from s, are the solution to
the following system of linear equations:

By = e, a2
with
_bo b1 st bn—l bn ]
bn bO ct bn—2 bn—l
B = s

b2b3"'bo b1
Lbibs -+ by b J

y being the column vector of the tap settings, and e,, having
the same meaning as in (7); m is again an arbitrary but
fixed integer between O and #.

A matrix B of this special structure is called circulant.
The eigenvalues )\, of this matrix are known to be?

- ;)le‘“‘, (13)

with

W= exp( 2:1)

being an (n -} 1) *® root of unity.

Because of (11), all A, are different from zero and (12) is
uniquely solvable. Furthermore, the solution of (12) can be
represented as:*

n W(m—m:
iz, + 1 ; ‘ (14)

For completeness, the simple proof will be given. Since
(14) defines y; even for all integer subscripts j, and
¥; = ¥jpns1 holds, the sample values after equalization b,
are given by

b= 2 vk - (15)
k=0

Combining (13), (14) and (15), and changing the order of
summation, results in

;o1 S (M—v)u_{l for v =m
i ; W ~ 10 otherwise.

The tap settings given by (14) are real, since they are the
solution of (12) with real coefficients and a real right-hand
side.
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Comparison of results and computing time
The difference between the tap settings x and y resulting

from the old and the new methods, respectively, can be
written in the form:

x—y=(A"1—BVe,. 16)

Because of (3), A—! and B~ have the converging series
expansions

and (17)

R
B b & I boB ’

and we get the following first-order approximation for
X —y:

11 1 1)

This shows that the difference between x and y is small
if the difference between the matrices A and B is small;
the latter will clearly be fulfilled for small initial distor-
tions. Then both methods yield approximately the same
results.

It follows further from (7), (10) and (12) that the tap
settings X are also a solution to the system of equations:

Bx = e, + Ab, (19)

where the »t® component Ab, of the column vector Ab
is given by

1=

Ab, = Zl Ty I(n41) 3
== (20)

v=—m -0 -, n—m,

and the term with / = 0 has to be omitted in the sum. The
@, are the distortions after equalization defined by (5),
which are small if the equalizer with tap settings x works
well. Then the components of the vector Ab are also small.
Since the right-hand sides of (12) and (19) differ just by Ab,
we can conclude that the difference x — y also decreases
with decreasing distortion after equalization using tap
settings X. In other words, the better the conventional
method works, the better are the results of the new method.
In the limit as » tends to infinity, both methods yield ideal
equalization.

Some results of a simulation are shown in the following
Tables. Two limiting cases have been considered. Table 1
corresponds to a transmission channel with rectangular
amplitude characteristics and a sinusoidal phase character-
istic, such that a large number (more than 100) of rela-
tively small echoes occur. For a more complete descrip-
tion of the channel model used, see Ref. 5. Table 2 gives the
results in the case where the distorted signal has only two
echoes on either side. Realistic channels lie in between these
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Table 1 Comparison of the two methods for input with large
number of echoes.

Initial
distortion Distortion after egualization
Conventional method New method
5 taps 9 taps 5 taps 9 taps
1.66 0.86 0.64 0.92 0.67
0.93 0.55 0.49 0.63 0.56
0.88 0.74 0.59 0.84 0.65
0.66 0.38 0.31 0.44 0.34
0.28 0.09 0.08 0.11 0.09

Table 2 Comparison of the two methods for input with two
echoes.

Initial
distortion Distortion after equalization
Conventional method New method
5 taps 9 taps 5 taps 9 taps
0.6 0.043 0.003 0.079 0.006
0.6 0.074 0.008 0.112 0.012
0.8 0.068 0.011 0.154 0.019
0.8 0.246 0.062 0.323 0.083
1.2 0.208 0.045 0.341 0.074

limiting cases. We can see that the new method gives only
slightly worse results than the conventional one, and both
methods work even for initial distortion larger than one.

The necessary amount of computations for both methods
will now be compared. For solving the system of equations
(7), the fastest method would be Gaussian elimination. This
requires, setting N = n + 1, N real divisions, N(N*/3 + N
— 1/3) real multiplications and M(N?/3 + N/2 — 5/6)
real additions; i.e., the number of multiplications and addi-
tions is proportional to N3. (See Ref. 6.)

To solve the system of equations (12) with the circu-
lant matrix of coefficients, the eigenvalues \, given by (13)
must first be calculated. The formula for the Ay has
exactly the same form as a discrete Fourier transform. To
calculate the eigenvalues, the fast Fourier transform algo-
rithm of Cooley and Tukey’ can be applied, requiring a
number of complex multiplications and additions, both
being proportional to N log N. Next, in order to evaluate
(14), this algorithm can be easily modified, and the number
of necessary multiplications and additions is still propor-
tional to N log N. If N = 27 is chosen, a power-of-two
algorithm can be used® and the computing time for the new
method is proportional to r - 2" compared to 2% for the
old method, i.e., our method saves a considerable amount
of computation. As an example, the computing times re-
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quired by the old and the new methods for calculation of
the tap settings of an equalizer with 26 delay elements
(n = 26, N = 27) would be 0.725 sec and 0.101 sec, re-
spectively, on an IBM System/360 Model 40 computer.
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