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A Two-Dimensional Mathematical Analysis
of the Diffused Semiconductor Resistor*

Abstract: A two-dimensional mathematical analysis is presented of the electrical properties of the diffused semiconductor resistor. An
important conclusion is that substantially more electric current crowding exists within this semiconductor device than heretofore
suspected, particularly in the vicinity of the ohmic contacts. Considered in this analysis is the influence on the electrical character-
istics of various impurity atom distributions arising from a two-step diffusion process. The results of this investigation are presented

graphically.

Introduction

Diffused silicon resistors are used extensively in integrated
circuits. Despite the extensive use of this semiconductor
component, little theoretical information is available con-
cerning its electrical properties. For this reason, this paper
presents the results of a two-dimensional mathematical
investigation of the electrical properties of diffused resistors
in silicon. Included in this analysis are the influence of
impurity atom scattering and that of transport velocity
upon the mobility of holes and electrons in silicon ; separate
calculations are therefore presented for n-type and p-type
structures.

The diffused resistor is a simple structure. Diffusion tech-
niques are used to form in a slice of silicon a planar p—n
junction of stripe geometry. Thereafter, ohmic contacts are
located on the semiconductor surface at the two ends of
this diffused region. Electrical conduction between these
ohmic contacts (which provides the electrical resistance of
the structure) takes place through semiconductor material
of inhomogeneous impurity atom density. The p-n junction
produces electrical isolation for a diffused resistor; the
biasing voltage upon this junction is everywhere maintained
in the reverse direction.

Throughout this investigation, diffused resistor operation
is approximated by a type of boundary value problem
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seldom considered in the technical literature: electrical con-
duction within semiconductor material containing an in-
homogeneous impurity atom distribution. Complications
arise in this analysis because the main body of a diffused
resistor (the region far removed from the ohmic contacts)
contains an impurity atom gradient that is directed at right
angles to the electric field. This situation implies the neces-
sity of mathematically approximating the operation of a
diffused resistor by a boundary value problem containing
a minimum of two spatial variables.

The material presented here results from numerical solu-
tions of boundary value problems that mathematically
approximate the operation of a diffused semiconductor re-
sistor. Finite difference methods have been used. Although
these numerical methods do not provide explicit equations
describing the electrical properties of a diffused resistor,
such information is obtained indirectly. From a series of
computer calculations, parameters normally described by
mathematical formulae are presented in graphical form;
thereby, information derived from the present investigation
is readily available for engineering purposes.

Mathematical methods

This analysis involves the solution of two substantially
different boundary value problems. The first problem is
associated with the fabrication of a diffused resistor, and
the solution of this problem yields the two-dimensional im-
purity atom distribution in a completed device. The second




problem involves the operation of a diffused resistor, and
the solution of this problem yields the potential and electric
current distributions arising from an applied voltage be-
tween two ohmic contacts. The solution of this second
boundary value problem is subject to constraints imposed
by the boundary conditions of a diffused resistor, and also
to constraints imposed by the previously calculated im-
purity atom distribution. The following discussion outlines
the methods by which these two boundary value problems
are solved and describes the limitations imposed on the
applicability of these solutions because of the use of mathe-
matical simplifications.

® Impurity atom distribution

A two-step diffusion process is frequently used in the fabri-
cation of diffused resistors. A rectangular opening is first
made in an oxide diffusion mask located on the surface of
a slice of silicon. Thereafter, a constant Cp impurity atom
source is used to deposit impurity atoms on the exposed
silicon surface (Step 1); during this deposition process, im-
purity atoms diffuse only a short distance into the semi-
conductor material. Next the impurity atom source is re-
moved, and impurity atoms are diffused into the semi-
conductor material. During this diffusion process (Step II),
oxide growth takes place within the diffusion mask opening.

A one-dimensional analysis of the two-step diffusion
process' shows that the resulting impurity atom distribution
lies in between the distributions produced by the constant
C, diffusion process and an instantaneous source diffusion
process. After completing the initial impurity atom deposi-
tion (Step I), the resulting impurity atom distribution can
be approximated by a complementary error function. The
second step in this two-step diffusion process (diffusion
after removing the impurity atom source) changes this im-
purity atom distribution from a complementary error-
function distribution to something approaching a Gaussian
type of distribution. The degree of this change is determined
by the depth to which impurity atoms are permitted to
diffuse during Step II.

Throughout the present investigation, these two impurity
atom distributions (constant source and instantaneous
source) are used to bound the various impurity atom distri-
butions obtained from a two-step diffusion process. This
analytical technique has obvious advantages; the mathe-
matical characterization of a two-step diffusion involves
substantially more independent variables than either a con-
stant C, diffusion or an instantaneous source diffusion. In
this analysis, the use of two substantially different impurity
atom distributions permits us to bound the electrical prop-
erties of a diffused resistor (fabricated by any arbitrary
two-step diffusion process), and minimize the number of
independent variables in the characterization of a device.

From the elementary theory of thermal diffusion,? the
impurity atom distribution in a diffused resistor is assumed

to be well approximated by solutions of the differential
equation

2 2
-1, &
dx dy D at
where C(x, y, ©) is the impurity atom distribution, and D
is the diffusion constant for these impurity atoms in silicon.
In addition to satisfying Eq. (1), the resulting impurity
atom distribution must satisfy all boundary conditions im-
posed during device fabrication.

For this calculation of the impurity atom distribution,
the semiconductor material (prior to impurity atom dif-
fusion) is approximated by a matrix of several thousand
spatial locations. This approximating matrix contains all
necessary information concerning the location of the diffu-
sion mask, the diffusion mask opening, and the boundary
conditions imposed at the exposed semiconductor surface.
Relaxation methods? are used to approximate the process
of diffusion in semiconductor material; thereby we obtain
the impurity atom distribution in a diffused resistor. Details
of this computational method have been described in a
previous publication* and need not be repeated here.

It is emphasized that these impurity atom distribution
calculations are based on an assumption that impurity
atom transport in a semiconductor is governed by ele-
mentary laws of thermal diffusion. This assumption has
been questioned by many workers. It is therefore suggested
that the analysis presented here may be subject to revision
when more complete information is available concerning
the mechanisms of impurity atom diffusion in a semicon-
ductor.

® Electrical properties of the diffused resistor

A rigorous mathematical treatment of the diffused resistor
problem differs little from an analysis of the high-low semi-
conductor junction.’ An inhomogeneous impurity atom
distribution exists throughout the semiconductor material
comprising a diffused resistor ; this material therefore con-
tains a distribution of electrostatic charge. Furthermore, by
applying a voltage to the diffused resistor, this electrostatic
charge distribution can undergo a significant modification;
hence, the voltage distribution within a diffused resistor is
rigorously described by solutions of Poisson’s equation.
Although under some conditions this electrostatic charge
density may become insignificant (if so, the voltage distri-
bution would be well approximated by solutions of La-
place’s equation), a condition of near charge neutrality can-
not be taken for granted in an analysis of this type.

The present analysis makes use of mathematical simpli-
fications previously used in connection with heat conduc-
tion in material of inhomogeneous thermal conductivity.®
It can be shown that the temperature distribution in such
material is representable as a sum of two different tempera-
ture distributions: first, the temperature distribution when
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the structure under consideration is assumed to have a
homogeneous thermal conductivity, and second, the tem-
perature distribution arising from a prescribed distribution
of thermal sources and sinks within this same structure. As
in a thermal conductor, it can be shown that the potential
distribution in a diffused resistor is well approximated by
the sum of two different potential distributions: the poten-
tial distribution within a resistor of homogeneous impurity
atom distribution, and the potential distribution arising
from a prescribed distribution of electrostatic charges
within this resistor.

In a rigorous fashion, the electrical properties of a
diffused resistor are given by solutions of the following set
of differential equations:’

div grad ¥ = -—afe—o (C—n+p); (22)
J, = —qDp grad p — qupp grad ¥ ; (2b)
J., = gD, grad n — qu,n grad ¥ ; (2¢)
div J, = q®, ; (2d)
divJ, = g®, ; (2e)
Jr=Jdp+ dn. (2f)

By combining the set of equations above, three nonlinear
differential equations are obtained, and these must be
solved simultaneously. This solution must satisfy all con-
straints imposed by both the geometrical and the physical
properties of a diffused resistor.

A rigorous solution of the diffused resistor problem
would be an unwarranted expenditure of time and effort.
The mechanisms characterized by Eqgs. (2) are all rigorously
correct, but many of these mechanisms have a trivial influ-
ence on the electrical properties of most diffused resistors.
For example, by restricting this analysis to diffused resistors
composed of extrinsic semiconductor material, the minority
carrier mechanisms implied in Egs. (2) have little signifi-
cance in the applicability of this analysis to practical dif-
fused resistors. These terms are therefore neglected, as well
as the contribution of diffusion mechanisms to the electric
current within a diffused resistor. In combination, these
mathematical simplifications reduce Egs. (2) to two differ-
ential equations.

divgrad ¥ = — ;;L (C+ p), (3a)
0

divgrad ¥ = — ggrad ¥ - grad (u,p) , (3b)

which are applicable to diffused resistors composed of
p-type semiconductor material. Obvious modifications of
these equations will render them applicable to diffused re-
sistors composed of n-type material.

From (3) we have

grad (uyp) - grad ¥ = (C + p)/xeo . (4)
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Equation (4) shows that Eqs. (3a) and (3b) are equivalent
forms of Poisson’s equation, the right side of (3b) being
another mathematical formulation for the electrostatic
charge within the semiconductor material.

Equation (3b) is the mathematical equation used in the
solution of this boundary value problem. From (3b), when
the material comprising a semiconductor resistor contains
a homogeneous electrical conductivity [0 = grad (u,p)], the
voltage distribution is characterized by solutions of La-
place’s equation. If, instead, this material contains a large
electrical conductivity gradient, yet a negligible electric field
(E = —grad ¥), Eq. (3b) shows that the voltage distribu-
tion remains a solution of Laplace’s equation. If, instead,
the product [grad (u,p)- grad ¥] is non-zero (yet small when
compared with the impurity atom density), Eq. (3b) shows
that the region under consideration is no longer approxi-
mated by only Laplace’s equation; instead the resulting
voltage distribution becomes a sum of the voltage distribu-
tions derived from Laplace’s equation and from the elec-
trostatic charges existent within the semiconductor ma-
terial (Poisson’s equation). This mathematical view of the
problem is equivalent to the previously mentioned formu-
lation for the temperature distribution within material of
inhomogeneous thermal conductivity.

The present solution of this diffused resistor problem is
obtained from numerical solutions of Eq. (3b). Relaxation
methods?® are used, in two spatial dimensions. At each loca-
tion within the relaxation matrix, the magnitude of [grad
W -grad (u,p)] is determined, relative to the impurity atom
density at this same location; this test shows where the
present mathematical simplifications are satisfactory. In
regions where [grad ¥-grad (u,p)] is small (relative to the
impurity atom density), solutions of Eq. (3b) adequately
characterize the resulting potential distribution. If, instead,
the magnitude of [grad ¥ -grad (u,p)] approaches the im-
purity atom density at this same location, Eq. (3b) becomes
an inadequate representation of the potential distribution;
throughout such a region the more complete formulation
of Egs. (2) must be used.

In this analysis, only one region exists within the diffused
resistor where Eq. (3b) is of questionable accuracy: in the
immediate vicinity of the p—n junction. Because this region
has little influence upon the overall electrical characteristics
of a diffused resistor (this will be shown at a later time), the
error arising from Eq. (3b) is of little consequence.

Consideration must be given, in the analysis of a diffused
resistor, to mechanisms that influence charge carrier mo-
bility.®? Semiconductor materials exhibiting large values of
impurity atom density are known to exhibit reduced hole
and electron mobilities. Furthermore, it has been shown
that the average drift velocity of conduction band electrons
and valence band holes is not always proportional to an
applied electric field. For this reason, throughout the
present analysis published values are used for the small field
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Figure 1 Calculated constant voltage contours in the ohmic contact region of a diffused silicon resistor: (a) top view; (b) side view.

(L = 2D1)

drift mobilities of holes and electrons.®! In addition, the
present analysis utilizes the published experimental results
of Ryder®® concerning the influence of large values of
electric field upon charge carrier mobility.

Voltage distribution within a diffused resistor
Figure 1 illustrates the distribution of an applied voltage
throughout the ohmic contact region of a typical diffused
resistor. Because the present analysis is based on a two-
dimensional approximation of this structure, the top and
side views in Fig. 1 result from separate calculations of the
problem. All dimensions are normalized in terms of the
impurity atom diffusion length (L. = 2/ D1); the structure
shown has the geometrical dimensions of a typical device.
The contours within this illustration show the calculated
surfaces of constant voltage arising from an applied voltage.
In a diffused resistor, an electric current results from the
drift of majority carriers in an electric field produced by the
applied voltage. For this reason, the calculations illustrated
in Fig. 1 provide important gualitative information con-
cerning diffused resistor operation. In the top view of this
structure (Fig. 1a), a negligible electric field exists in a di-
rection perpendicular to the back and sides of the ohmic
contact. In contrast, a substantial electric field exists near
the end of this contact facing the main body of the diffused
resistor; a variation of approximately factor two is present
in the magnitude of this calculated electric field.

The side view of this ohmic contact region (Fig. 1b)
shows little or no electric field in a direction perpendicular
to almost all of the metal-semiconductor interface. A large
part of the ohmic contact is therefore inactive and con-
tributes little to the electrical properties of the semicon-
ductor device. In fact, Fig. 1b shows that the only active
portion of this ohmic contact is a small region (approxi-
mately 2.5 L in length) toward the main body of the resistor.

A slight disagreement can be observed in the location of
some constant potential contours shown in Figs. 1a and 1b;
this disagreement arises from the use of two spatial dimen-
sions to approximate a three-dimensional structure. A con-
sequence of this disagreement is a small uncertainty in the
electric current distribution in the vicinity of an ohmic con-
tact; this uncertainty, however, has little influence upon the
applicability of the present analysis.

From Fig. 1, it is concluded that only a small portion of
the ohmic contact actively contributes to the electrical
properties of a diffused resistor. Because the electric current
at a particular location is determined by the electric field at
this same location, the potential distribution in a diffused
resistor keeps almost the entire ohmic contact inactive.

One important conclusion can be derived from the calcu-
lations shown in Fig. 1. From these potential distributions,
little advantage is gained by increasing the length of the
ohmic contact; an increase in length has a negligible influ-
ence on the current density at the metal-semiconductor
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Figure 2 Calculated constant voltage contours at the edge of the
ohmic contact: (a) instantaneous source diffusion; (b) constant
C, diffusion. (L = 2+/Dt.)

interface. In fact, the only geometrical dimension signifi-
cantly influencing this current density is the ohmic contact
width. For this reason, the remaining calculations are based
on a structure in which this design modification has been
introduced. The ohmic contact is assumed to extend across
the entire width of this diffused region, and thereby the
structure is well approximated by a two-dimensional ana-
Iytical model.

There is little advantage in presenting further calculations
of the entire ohmic contact region; only the right-hand end
in Fig. 1 contributes to the electrical resistance of the struc-
ture. Therefore, the remainder of this investigation is di-
rected toward the active region of an ohmic contact.

Throughout this series of potential calculations, little
difference is observed between the voltage distribution
within resistors fabricated by a constant Cj diffusion process
and that within instantaneous source-diffused structures.
Figure 2 illustrates the calculated constant voltage contours
for two such devices of identical geometrical dimensions.
Although the calculations shown in Fig. 2 are for structures
composed of p-type material, and at small values of applied
voltage, little difference is observed when the material is as-
sumed to be composed of n-type semiconductor material.
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Furthermore, only minor variations are observed in these
potential distribution calculations when sufficient voltage is
applied to attain the large-field mobility of holes and elec-
trons in silicon.

Figure 2 provides a detailed view of the manner in which
these contours of constant voltage are crowded near one
end of the ohmic contact, and therefore shows that the
electric current exhibits a substantial degree of crowding.
At comparatively small values of total electric current, the
current density at the ohmic contact can become exceed-
ingly large as a result of the potential distribution shown in
Fig. 2.

Electric current distribution in a diffused resistor
In regions far removed from the ohmic contacts, the electric

current in a diffused resistor is crowded into a layer that is
located near the semiconductor surface. This situation is a
consequence of the impurity atom distribution introduced
during device fabrication. Impurity atom diffusion from the
semiconductor surface assures that the material residing
near this surface has the largest electrical conductivity ; this
high conductivity material will therefore contain a large
fraction of the total electric current.

Figure 3 shows the manner in which the electric flux be-
comes distributed within the main body of a diffused re-
sistor (at a distance of at least 2.5 L from the ohmic con-
tacts). The normalized electric flux in Fig. 3 is plotted
against a normalized distance from the semiconductor
surface (y/L). Figure 3 illustrates the calculated flux distri-
bution in both n-type and p-type silicon, and in devices
assumed to be fabricated by both a constant Cy diffusion
process and by an instantaneous source diffusion process
(Gaussian). All of the calculations shown in Fig. 3 repre-
sent the operation of a diffused resistor at voltages not
sufficient to produce an electric field dependence of charge
carrier mobility.

Figure 4 gives the relative electric current distribution in
the main body of a diffused resistor. This illustration shows
the proportional distribution of electric current in a layer
of material of arbitrary thickness (/L) that is bounded on
one side by the semiconductor surface. Figure 4 gives the
calculations only for p-type semiconductor material; the
difference between p-type and n-type material is not suf-
ficient to require calculations for both.

In combination, Figs. 3 and 4 establish the degree of
current crowding in the main body of a diffused resistor.
For example, from Fig. 3, the current density at the semi-
conductor surface and at a depth of 2.0 L from this surface
has ratios of approximately 20:1 and 40:1 respectively;
these ratios depend upon the impurity atom distribution
and upon the type of electrical conductivity (n-type or p-
type). Figure 4 establishes the full consequence of this
electric current distribution. From Fig. 4, we observe that
about 99 per cent of the electric current in the main body
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Figure 3 Calculated electric flux distribution in the main body
of a diffused resistor: (a) constant C, diffusion; (b) instantane-
ous source diffusion. (L = 2+/Dt)

of a diffused resistor lies within a layer of thickness 2.0 L
from the semiconductor surface.

The extensive current crowding in a diffused resistor im-
plies that little error is introduced by the use of previously
outlined mathematical simplifications. It has been shown
that the equation used to approximate the potential distri-
bution in a diffused resistor is not adequate in the vicinity
of the p—n junction space-charge layer. However, because
the p—n junction in most diffused resistors is located at a
distance of at least 2.0 L from the semiconductor surface,
Fig. 4 shows that this region contributes little to the electri-
cal properties of the device. About 1 per cent of the total
electric current in a diffused resistor is carried by material
residing at a depth in excess of 2.0 L from the semiconductor
surface.

The crowding shown in Figs. 3 and 4 becomes increas-
ingly greater near an ochmic contact. Figure 5 illustrates the
calculated contours of relative electric current distribution
between the main body of a diffused resistor and its ohmic
contact. The material residing between each contour and
the bounding surface contains a specified fraction of the
total electric current within the diffused resistor. Figure 5 is
for a diffused resistor composed of p-type semiconductor
material. In this illustration, the resulting electric field is
maintained everywhere at a value insufficient to modify the
mobility of holes.

At the ohmic contact, a substantial part of the total
electric current exists within a short distance from the con-
tact edge facing the main body of the resistor. In Fig. 6, the
origin of the coordinate (x/L) is the edge of the ohmic con-
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Figure 4 Relative electric current distribution in the main body
of a diffused resistor. (L = 2+/Dr.)

Figure 5 Relative electric current distribution near the ohmic
contact of a diffused resistor: (a) instantaneous source diffusion;
(b) constant C, diffusion. (L = 2VDFL)
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tact. This figure illustrates the calculated electric flux distri-
bution at this location, for n-type and p-type semiconductor
material, and for the two types of impurity atom distribu-
tions. From this calculation, it is reasonable to assume that

247

ANALYSIS OF DIFFUSED RESISTOR




248

————— n-type
p-type

100

TTTTTT]
IRAN|

T

!

T
|

107!

- -
i J@
~

=

B

S~ 1072 ! ! \ 1 !
0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0
x/L

Figure 6 Calculated electric flux distribution at the ohmic contact
of a diffused resistor: (a) instantaneous source diffusion; (b)
constant C, diffusion. (L = 2+/Dz.)

the electric flux density exhibits a variation of approxi-
mately two orders of magnitude within a distance of 2.5 L
from the ohmic contact edge.

A consequence of this calculation is readily seen by apply-
ing Fig. 6 to a typical diffused resistor. From Fig. 6, at the
edge of an ohmic contact (x/L = 0) we obtain J = 5(I/
LW). A typical diffused resistor has a width W of about
1.5 X 1072 cm, and the impurity atom distribution can be
characterized by a diffusion length (L = 2 v Df) of about
0.65 X 10~* cm. From Fig. 6, at this location we obtain an
electric current density J of about 5 X 10* amps/cm?, for
each milliampere of electric current [in the diffused resistor.

Regardless of the impurity atom distribution used during
device fabrication (erfc, Gaussian, or any combination of
the two-step diffusion), approximately 85 per cent of the
total electric current in a diffused resistor enters the struc-
ture within a distance of about 1.0 L of its chmic contact.
This situation is illustrated in calculations shown in Fig. 7.

During this investigation, it was initially suspected that
mobility variations (due to the large electric fields) would
substantially reduce current crowding at the ohmic contact.
For this reason, calculations were conducted for an n-type
diffused resistor; electron mobility has been shown to be
influenced by a smaller value of electric field than is the
mobility of holes.?* Concluded from this calculation is that
an unreasonable value of voltage is required to attain the
terminal velocity for electrons, although this mechanism
would substantially reduce current crowding. At practical
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Figure 7 Relative electric current distribution at the ohmic con-
tact of a diffused resistor. (L = 2+ Dr.)

operating levels, insufficient difference is observed in the
mobility of electrons to obtain a significant reduction of elec-
tric flux crowding; this calculation is illustrated in Fig. 8.

Electrical resistance
For engineering purposes, the electrical resistance of a
diffused resistor can be considered the sum of three resistive
components: a main body and two end contacts. These
three regions are separable at any location where the sur-
faces of constant potential (Fig. 1) are perpendicular to the
semiconductor surface. From Fig. 1, it appears reasonable
to assume that the end contacts are separable at a location
that is 2.5 L (minimum) from the edge of the ohmic con-
tact. In this fashion the electrical resistance of each region
can be established, and the total resistance of a diffused
resistor becomes the sum of these three terms.

The electrical resistance contributed by the main body is
given by
R = *V[I—/ Ps (5)
where p, is the so-called sheet resistance. For convenience,
Fig. 9 presents a simple relation between the C; and p,; this
illustration is based on an assumption that the p-n junction
is a minimum of 2.0 L from the semiconductor surface.
From either a measurement of p, or from Fig. 9, Eq. (5)
provides a means to establish the electrical resistance con-
tribution from the main body of a diffused resistor.
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Figure 8 Calculated large field electric flux distribution near the
ohmic contact of an n-type diffused resistor. (L = 2+ Dz.)

Separation of the end contact region was assumed to take
place at a point 2.5 L from the edge of the ohmic contact.
It can be shown that the calculated electrical resistance of a
two-dimensional end contact region is within 5.0 per cent
of the electrical resistance given by Eq. (5) when / is as-
sumed to be 3.0 L (instead of 2.5 L). Because the electrical
resistance of this end contact region is only a small part of
the total resistance of the entire structure, this rule-of-
thumb provides a simple means to calculate the electrical
resistance of a diffused resistor with sufficient accuracy for
engineering purposes.
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List of Definitions

C = Impurity atom concentration.

Co = Impurity atom surface concentration.

D = Impurity atom diffusion constant.

I = Total electric current in diffused resistor.

J(x), J(y) = Electric current densities.

L = 2 D¢ = Impurity atom diffusion length.

w = Width of diffused resistor.

! = Length of main body of diffused resistor.

n = Mobile electron density in semiconductor
material.
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Figure 9 Calculated sheet resistance vs. impurity atom surface
concentration. (L = 2+/Dt)

)4 = Mobile hole density in semiconductor ma-
terial.

Ry, Rn = Recombination rate for holes and electrons,
respectively.

t = Diffusion time.

= Spatial variable parallel to semiconductor

surface.

y = Spatial variable perpendicular to semicon-
ductor surface.

Vi = Junction depth.

Hps Mn = Mobility of mobile holes and electrons, re-
spectively.

Ps = Sheet resistance.
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