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Abstract: A two-dimensional  mathematical  analysis  is  presented of the electrical  properties of the diffused  semiconductor  resistor.  An 
important  conclusion  is that substantially  more  electric  current  crowding  exists  within  this  semiconductor  device than heretofore 
suspected,  particularly  in  the  vicinity of the  ohmic  contacts.  Considered  in  this  analysis is the influence on  the  electrical  character- 
istics  of  various  impurity atom  distributions  arising  from a two-step  diffusion  process. The  results of  this  investigation are  presented 
graphically. 

Introduction 
Diffused silicon resistors are used extensively in  integrated 
circuits. Despite the extensive use of this semiconductor 
component, little theoretical information is available con- 
cerning its electrical properties. For this reason, this paper 
presents the results of a two-dimensional mathematical 
investigation of the electrical properties of diffused resistors 
in silicon. Included in this analysis are  the influence of 
impurity atom scattering and  that of transport velocity 
upon  the mobility of holes and electrons in silicon;  separate 
calculations are therefore presented for n-type and p-type 
structures. 

The diffused resistor is a simple structure. Diffusion tech- 
niques are used to  form in a slice of silicon a planar p-n 
junction of stripe geometry. Thereafter, ohmic contacts are 
located on  the semiconductor surface at  the two  ends of 
this diffused region. Electrical conduction between these 
ohmic  contacts (which provides the electrical resistance of 
the structure)  takes place through semiconductor material 
of inhomogeneous impurity atom density. The p-n junction 
produces electrical isolation for a diffused resistor; the 
biasing voltage upon this  junction is everywhere maintained 
in the reverse direction. 

Throughout this investigation, diffused resistor operation 
is approximated by a type of boundary value problem 
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seldom considered in the technical literature: electrical con- 
duction within semiconductor material containing an in- 
homogeneous impurity atom distribution. Complications 
arise in  this analysis because the main body of a diffused 
resistor (the region far removed from the ohmic contacts) 
contains an impurity atom gradient that is directed at right 
angles to  the electric field. This  situation implies the neces- 
sity of mathematically approximating the operation of a 
diffused resistor by a boundary value problem containing 
a minimum of two spatial variables. 

The material presented here results from numerical solu- 
tions of boundary value problems that mathematically 
approximate the operation of a diffused semiconductor re- 
sistor. Finite difference methods have been used. Although 
these numerical methods do  not provide explicit equations 
describing the electrical properties of a diffused resistor, 
such information is obtained indirectly. From a series of 
computer calculations, parameters normally described by 
mathematical  formulae are presented in graphical form; 
thereby, information derived from the present investigation 
is readily available for engineering purposes. 

Mathematical methods 
This analysis involves the  solution of two substantially 
different boundary value problems. The first problem is 
associated with the fabrication of a diffused resistor, and 
the solution of this problem yields the two-dimensional im- 
purity atom distribution in a completed device. The second 
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problem involves the operation of a diffused resistor, and 
the solution of this problem yields the potential and electric 
current  distributions arising from  an applied voltage be- 
tween two ohmic contacts. The solution of this second 
boundary value problem is subject to constraints imposed 
by the boundary  conditions of a diffused resistor, and also 
to constraints imposed by the previously calculated im- 
purity atom distribution. The following discussion outlines 
the methods by which these two  boundary value problems 
are solved and describes the limitations imposed on  the 
applicability of these solutions because of the use of mathe- 
matical simplifications. 

Impurity atom distribution 
A two-step diffusion process is frequently used in  the fabri- 
cation of diffused resistors. A rectangular opening is first 
made  in an oxide diffusion mask located on  the surface of 
a slice of silicon. Thereafter, a constant CO impurity atom 
source is used to deposit impurity  atoms on  the exposed 
silicon surface (Step I); during this deposition process, im- 
purity atoms diffuse only a short distance into  the semi- 
conductor material. Next the  impurity atom source is re- 
moved, and impurity atoms are diffused into  the semi- 
conductor  material.  During this diffusion process (Step II), 
oxide growth  takes place within the diffusion mask opening. 

A one-dimensional analysis of the two-step diffusion 
process1 shows that  the resulting impurity atom distribution 
lies in between the distributions produced by the constant 
CO diffusion process and  an instantaneous source diffusion 
process. After completing the  initial impurity atom deposi- 
tion (Step I), the resulting impurity atom distribution can 
be approximated by a complementary error  function. The 
second step  in  this two-step diffusion process (diffusion 
after removing the impurity atom source) changes this im- 
purity atom distribution  from a complementary error- 
function  distribution to something approaching a Gaussian 
type of distribution. The degree of this change is determined 
by the depth to which impurity atoms are permitted to 
diffuse during Step 11. 

Throughout the present investigation, these two impurity 
atom distributions (constant source and instantaneous 
source) are used to  bound the various impurity atom distri- 
butions  obtained from a two-step diffusion process. This 
analytical technique has obvious advantages; the mathe- 
matical characterization of a two-step diffusion involves 
substantially more independent variables than either a con- 
stant CO diffusion or  an instantaneous  source diffusion. In 
this analysis, the use of two substantially different impurity 
atom distributions permits us to  bound  the electrical prop- 
erties of a diffused resistor (fabricated by any  arbitrary 
two-step diffusion process), and minimize the number of 
independent variables in the characterization of a device. 

From  the elementary theory of thermal diffusion: the 
impurity atom distribution  in a diffused resistor is assumed 

to be well approximated by solutions of the differential 
equation 

d2C - d2C 1 d C  
ax2 dy  D at 
+z =--,  (1) 

where C(x, y ,  t )  is the impurity atom distribution, and D 
is the diffusion constant for these impurity atoms in silicon. 
In addition to satisfying Eq. (l), the resulting impurity 
atom distribution must satisfy all  boundary  conditions im- 
posed during device fabrication. 

For this calculation of the impurity atom distribution, 
the semiconductor material  (prior to impurity atom dif- 
fusion) is approximated by a matrix of several thousand 
spatial locations. This  approximating matrix contains  all 
necessary information concerning the  location of the diffu- 
sion mask, the diffusion mask opening, and  the boundary 
conditions imposed at  the exposed semiconductor surface. 
Relaxation methods3 are used to approximate the process 
of diffusion in semiconductor material; thereby we obtain 
the impurity atom distribution in a diffused resistor. Details 
of this  computational  method have been described in a 
previous p~~blication~ and need not be repeated here. 

It is emphasized that these impurity atom distribution 
calculations are based on  an assumption that impurity 
atom transport  in a semiconductor is governed by  ele- 
mentary laws of thermal diffusion. This  assumption has 
been questioned by many workers. It is therefore suggested 
that  the analysis presented here may be subject to revision 
when more complete information is available concerning 
the mechanisms of impurity atom diffusion in a semicon- 
ductor. 

Electrical properties of the  diffused resistor 
A rigorous  mathematical  treatment of the diffused resistor 
problem differs little from an analysis of the high-low semi- 
conductor j ~ n c t i o n . ~  An inhomogeneous impurity atom 
distribution exists throughout  the semiconductor material 
comprising a diffused resistor;  this  material therefore con- 
tains a distribution of electrostatic charge. Furthermore, by 
applying a voltage to  the diffused resistor, this electrostatic 
charge distribution  can undergo a significant modification; 
hence, the voltage distribution within a diffused resistor is 
rigorously described by solutions of Poisson's equation. 
Although under some conditions this electrostatic charge 
density may become insignificant (if so, the voltage distri- 
bution would be well approximated by solutions of La- 
place's equation), a condition of near charge neutrality can- 
not be taken  for  granted  in an analysis of this type. 

The present analysis makes use of mathematical simpli- 
fications previously used in connection with heat conduc- 
tion in material of inhomogeneous thermal conductivity.'j 
It can be shown that the temperature  distribution  in such 
material is representable as a sum of two different tempera- 
ture distributions: first, the temperature  distribution when 243 
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the structure  under  consideration is assumed to have a 
homogeneous thermal conductivity, and second, the tem- 
perature  distribution arising from a prescribed distribution 
of thermal sources and sinks within this same structure. As 
in a thermal  conductor, it can  be shown that  the potential 
distribution in a diffused resistor is well approximated by 
the sum of two different potential  distributions:  the  poten- 
tial distribution within a resistor of homogeneous impurity 
atom distribution, and  the potential  distribution arising 
from a prescribed distribution of electrostatic charges 
within this resistor. 

In a  rigorous fashion, the electrical properties of a 
diffused resistor are given  by solutions of the following set 
of differential equations:’ 

div grad \k = - -- ( C  - n + p )  ; 

Jp = -qDp grad p - q p p p  grad \k ; (2b) 

J, = q D ,  grad n - qpnn grad \k ; (2c) 

div Jp = g a p  ; ( 2 4  

div J, = ; (2e) 

4 (2a) 

JT = Jp + J, . O f )  

By combining the set of equations  above,  three nonlinear 
differential equations are obtained, and these must be 
solved simultaneously. This solution  must satisfy all con- 
straints imposed by both  the geometrical and  the physical 
properties of a diffused resistor. 

A  rigorous  solution of the diffused resistor problem 
would be an unwarranted expenditure of time and effort. 
The mechanisms characterized by Eqs. (2) are all rigorously 
correct, but many of these mechanisms have a trivial influ- 
ence on  the electrical properties of most diffused resistors. 
For example, by restricting this analysis to diffused resistors 
composed of extrinsic semiconductor material, the minority 
carrier mechanisms implied in Eqs. (2) have little signifi- 
cance  in the applicability of this analysis to practical dif- 
fused resistors. These terms are therefore neglected, as well 
as  the contribution of diffusion mechanisms to the electric 
current within a diffused resistor. In combination, these 
mathematical simplifications reduce Eqs. (2) to two differ- 
ential  equations. 

div  grad 9 = - -- (C + p )  , 

div  grad 9 = - q grad 9 . grad ( p p p )  , (3b) 

which are applicable to diffused resistors composed of 
p-type semiconductor material. Obvious modifications of 
these equations will render them applicable to diffused re- 
sistors composed of n-type material. 

9 
K E D  

(3a) 

From (3)  we have 

244 grad ( p P p )  grad \k = ( C  + P ) / K E O .  (4) 
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Equation (4) shows that Eqs. (3a) and (3b) are equivalent 
forms of Poisson’s equation, the right side of (3b) being 
another mathematical  formulation for  the electrostatic 
charge within the semiconductor material. 

Equation (3b) is the mathematical  equation used in the 
solution of this boundary value problem. From (3b), when 
the material comprising a semiconductor resistor contains 
a homogeneous electrical conductivity [0 = grad (ppp)] ,  the 
voltage distribution is characterized by solutions of La- 
place’s equation. If, instead, this material  contains  a large 
electrical conductivity gradient, yet a negligible electric field 
(E = -grad q), Eq. (3b) shows that the voltage distribu- 
tion remains a  solution of Laplace’s equation. If, instead, 
the  product [grad (ppp).grad \k] is non-zero (yet small when 
compared with the impurity atom density), Eq. (3b) shows 
that  the region under consideration is no longer approxi- 
mated by only Laplace’s equation; instead the resulting 
voltage distribution becomes a sum of the voltage distribu- 
tions derived from Laplace’s equation and  from  the elec- 
trostatic charges existent within the semiconductor ma- 
terial (Poisson’s equation).  This mathematical view of the 
problem is equivalent to the previously mentioned formu- 
lation for the temperature  distribution within material of 
inhomogeneous thermal conductivity. 

The present solution of this diffused resistor problem is 
obtained  from numerical solutions of Eq. (3b). Relaxation 
methods3 are used, in  two  spatial dimensions. At each loca- 
tion within the relaxation matrix, the magnitude of [grad 
\k .grad (p,p)] is determined, relative to  the impurity atom 
density at this  same location; this  test shows where the 
present mathematical simplifications are satisfactory. In 
regions where [grad *.grad (ppp) ]  is small (relative to  the 
impurity atom density), solutions of Eq. (3b) adequately 
characterize the resulting potential  distribution. If, instead, 
the magnitude of [grad *.grad (ppp) ]  approaches  the im- 
purity atom density at this same location,  Eq. (3b) becomes 
an inadequate  representation of the potential  distribution; 
throughout such a region the more complete formulation 
of Eqs. (2) must be used. 

In this analysis, only one region exists within the diffused 
resistor where Eq. (3b) is of questionable accuracy:  in the 
immediate vicinity of the p-n junction. Because this region 
has little influence upon  the overall electrical characteristics 
of a diffused resistor (this will be shown at a later time), the 
error arising from Eq. (3b) is of little consequence. 

Consideration must be given, in the analysis of a diffused 
resistor, to mechanisms that influence charge carrier mo- 
bility.8 Semiconductor materials exhibiting large values of 
impurity atom density are known to exhibit reduced hole 
and electron mobilities. Furthermore, it  has been shown 
that  the average drift velocity of conduction band electrons 
and valence band holes is not always proportional to an 
applied electric field. For this  reason, throughout the 
present analysis published values are used for  the small field 
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Figure 1 Calculated  constant  voltage  contours  in the ohmic  contact  region  of a diffused  silicon resistor:  (a)  top view; (b) side  view. 
( L  = 24Dr.) 

drift mobilities of holes and electrons.8f In addition, the 
present analysis utilizes the published experimental results 
of RyderSn concerning the influence of large values of 
electric field upon  charge carrier mobility. 

Voltage distribution within a diffused resistor 
Figure 1 illustrates the distribution of an applied voltage 
throughout  the ohmic contact region of a typical diffused 
resistor. Because the present analysis is based on a two- 
dimensional approximation of this  structure, the  top  and 
side views in Fig. 1 result from separate calculations of the 
problem. All dimensions are normalized in  terms of the 
impurity atom diffusion length (L = 2 d z ) ;  the structure 
shown has  the geometrical dimensions of a typical device. 
The contours within this  illustration show the calculated 
surfaces of constant voltage arising from an applied voltage. 

In a diffused resistor, an electric current results from  the 
drift of majority carriers in an electric field produced by the 
applied voltage. For this reason, the calculations illustrated 
in Fig. 1 provide important qualitative information  con- 
cerning diffused resistor operation. In  the  top view of this 
structure (Fig. la), a negligible electric field exists in a di- 
rection perpendicular to the back and sides of the ohmic 
contact. In contrast, a substantial electric field exists near 
the  end of this  contact facing the  main  body of the diffused 
resistor;  a  variation of approximately factor  two is present 
in the magnitude of this calculated electric field. 

The side view of this  ohmic  contact region (Fig. lb) 
shows little or  no electric field in a direction perpendicular 
to almost  all of the metal-semiconductor interface. A large 
part of the ohmic contact is therefore inactive and con- 
tributes little to the electrical properties of the semicon- 
ductor device. In fact, Fig. l b  shows that  the only active 
portion of this ohmic contact is a small region (approxi- 
mately 2.5 L in length) toward the main body of the resistor. 

A slight disagreement can  be observed in the location of 
some constant  potential  contours shown in Figs. l a  and l b ;  
this disagreement arises from  the use of two spatial dimen- 
sions to approximate  a three-dimensional structure. A con- 
sequence of this disagreement is a small uncertainty in  the 
electric current  distribution in  the vicinity of an ohmic con- 
tact; this uncertainty, however, has little influence upon  the 
applicability of the present analysis. 

From Fig. 1, it is concluded that only a  small portion of 
the ohmic contact actively contributes to the electrical 
properties of a diffused resistor. Because the electric current 
at a particular location is determined by the electric field at 
this same location, the potential distribution in a diffused 
resistor keeps almost the entire ohmic contact inactive. 

One important conclusion can  be derived from  the calcu- 
lations shown in Fig. 1. From these potential  distributions, 
little advantage is gained by increasing the length of the 
ohmic contact;  an increase in length has a negligible influ- 
ence on the  current density at the metal-semiconductor 245 
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Figure 2 Calculated  constant  voltage  contours at the edge of the 
ohmic  contact:  (a)  instantaneous  source diffusion; (b) constant 
Co diffusion. (L = 2 d X j  

interface. In fact, the only geometrical dimension signifi- 
cantly influencing this  current density is the ohmic contact 
width. For this reason, the remaining calculations are based 
on a structure in which this design modification has been 
introduced. The ohmic contact is assumed to extend across 
the entire width of this diffused region, and thereby the 
structure is well approximated by a two-dimensional ana- 
lytical model. 

There is little advantage  in presenting further calculations 
of the  entire  ohmic  contact  region; only the right-hand end 
in Fig. 1 contributes to  the electrical resistance of the struc- 
ture. Therefore, the remainder of this investigation is di- 
rected toward the active region of an ohmic  contact. 

Throughout this series of potential calculations, little 
difference is observed between the voltage distribution 
within resistors fabricated by a constant CO diffusion process 
and  that within instantaneous source-diffused structures. 
Figure 2 illustrates the calculated constant voltage contours 
for two such devices of identical geometrical dimensions. 
Although the calculations shown in Fig. 2 are  for structures 
composed of p-type material, and  at small values of applied 
voltage, little difference is observed when the material is as- 

246 sumed to be composed of n-type semiconductor material. 

Furthermore, only minor  variations are observed in these 
potential  distribution calculations when sufficient voltage is 
applied to  attain  the large-field mobility of holes and elec- 
trons  in silicon. 

Figure 2 provides a detailed view of the  manner in which 
these contours of constant voltage are crowded near one 
end of the ohmic contact, and therefore shows that  the 
electric current exhibits a substantial degree of crowding. 
At comparatively small values of total electric current,  the 
current density at  the ohmic  contact  can become exceed- 
ingly large as a result of the potential  distribution shown in 
Fig. 2. 

Electric current  distribution in a diffused  resistor 
In regions far removed from  the ohmic  contacts,  the electric 
current  in a diffused resistor is crowded into a layer that is 
located near  the semiconductor surface. This  situation is a 
consequence of the impurity atom distribution  introduced 
during device fabrication.  Impurity atom diffusion from  the 
semiconductor surface assures that  the material residing 
near this surface has  the largest electrical conductivity; this 
high conductivity material will therefore contain a large 
fraction of the  total electric current. 

Figure 3 shows the manner in which the electric flux  be- 
comes distributed within the main  body of a diffused re- 
sistor (at a distance of at least 2.5 L from  the ohmic con- 
tacts). The normalized electric flux in Fig. 3 is plotted 
against a normalized distance from  the semiconductor 
surface (y /L) .  Figure 3 illustrates the calculated flux distri- 
bution  in  both n-type and p-type silicon, and  in devices 
assumed to be fabricated by both a constant CO diffusion 
process and by an instantaneous source diffusion process 
(Gaussian). All of the calculations shown in Fig. 3 repre- 
sent the operation of a diffused resistor at voltages not 
sufficient to produce an electric field dependence of charge 
carrier mobility. 

Figure 4 gives the relative electric current  distribution in 
the main body of a diffused resistor. This  illustration shows 
the proportional  distribution of electric current in a layer 
of material of arbitrary thickness ( y / L )  that is bounded on 
one side by the semiconductor surface. Figure 4 gives the 
calculations only for p-type semiconductor material; the 
difference between p-type and n-type material is  not suf- 
ficient to require calculations for  both. 

In combination, Figs. 3 and 4 establish the degree of 
current crowding in  the main  body of a diffused resistor. 
For example, from Fig. 3, the current density at  the semi- 
conductor surface and  at a depth of 2.0 L from this surface 
has ratios of approximately 20:l and 40:l respectively; 
these ratios  depend upon  the impurity atom distribution 
and  upon the  type of electrical conductivity (n-type or p- 
type). Figure 4 establishes the full consequence of this 
electric current  distribution. From Fig. 4, we observe that 
about 99 per cent of the electric current in  the main body 
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Figure 3 Calculated  electric Aux distribution in the main body 
of a diffused resistor:  (a) constant CO diffusion; (b) instantane- 
ous  source  diffusion. (L = 24Dt.)  

of a diffused resistor lies within a layer of thickness 2.0 L 
from  the semiconductor surface. 

The extensive current crowding in a diffused resistor im- 
plies that little error is introduced by the use of previously 
outlined  mathematical simplifications. It  has been shown 
that  the equation used to approximate the potential distri- 
bution in a diffused resistor is not adequate in  the vicinity 
of the p-n junction space-charge layer. However, because 
the p-n junction in most diffused resistors is located at a 
distance of at least 2.0 L from  the semiconductor surface, 
Fig. 4 shows that this region contributes little to  the electri- 
cal properties of the device. About 1 per cent of the  total 
electric current in a diffused resistor is carried by material 
residing at a depth in excess of 2.0 L from the semiconductor 
surface. 

The crowding shown in Figs. 3 and 4 becomes increas- 
ingly greater near an ohmic  contact.  Figure 5 illustrates  the 
calculated contours of relative electric current  distribution 
between the main body of a diffused resistor and its ohmic 
contact. The material residing between each contour  and 
the bounding surface contains a specified fraction of the 
total electric current within the diffused resistor. Figure 5 is 
for a diffused resistor composed of p-type semiconductor 
material. In this illustration, the resulting electric field is 
maintained everywhere at a value insufficient to modify the 
mobility of holes. 

At  the ohmic contact, a substantial  part of the  total 
electric current exists within a short distance from  the con- 
tact edge facing the main body of the resistor. In Fig. 6, the 
origin of the coordinate ( x / L )  is the edge of the ohmic con- 
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Figure 4 Relative  electric  current  distribution  in  the  main  body 
of a diffused resistor. (L = 2 4 m  

Figure 5 Relative  electric  current  distribution  near  the  ohmic 
contact of a diffused resistor: (a) instantaneous  source  diffusion; 
(b) constant Co diffusion. (L = 24Dtl) 
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tact.  This figure illustrates the calculated electric flux distri- 
bution at this  location,  for n-type and p-type semiconductor 
material, and for the two types of impurity atom distribu- 
tions. From this calculation, it is reasonable to assume that 247 
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Figure 6 Calculated  electric flux distribution at the ohmic  contact 
of a diffused resistor:  (a)  instantaneous  source  diffusion; (b) 
constant Co diffusion. (L = 24Dt.) 
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Figure 7 Relative  electric  current  distribution at the ohmic con- 
tact of a diffused  resistor. (L = 24m 

the electric flux density exhibits a variation of approxi- 
mately two  orders of magnitude within a distance of 2.5 L 
from  the ohmic  contact edge. 

A consequence of this calculation is readily seen by apply- 
ing Fig. 6 to a typical diffused resistor. From Fig. 6, at  the 
edge of an ohmic  contact (x/L = 0) we obtain J = 5(Z/ 
LW). A typical diffused resistor has a width W of about 
1.5 X lop3 cm, and  the impurity atom distribution can  be 
characterized by a diffusion length (L = 2 d B )  of about 
0.65 X cm. From Fig. 6, at this location we obtain  an 
electric current density J of about 5 X lo4 amps/cm2, for 
each milliampere of electric current Zin the diffused resistor. 

Regardless of the impurity atom distribution used during 
device fabrication (erfc, Gaussian, or any  combination of 
the two-step diffusion), approximately 85 per cent of the 
total electric current in a diffused resistor enters the struc- 
ture within a distance of about 1.0 L of its ohmic contact. 
This  situation is illustrated in calculations shown in Fig. 7. 

During  this investigation, it was initially suspected that 
mobility variations (due to  the large electric fields) would 
substantially reduce  current crowding at  the ohmic contact. 
For this  reason, calculations were conducted for  an n-type 
diffused resistor; electron mobility has been shown to be 
influenced by a smaller value of electric field than is the 
mobility of holes.8a Concluded from this calculation is that 
an unreasonable value of voltage is required to  attain  the 
terminal velocity for electrons, although this mechanism 

248 would substantially reduce current crowding. At practical 

operating levels,  insufficient difference is observed in the 
mobility of electrons to  obtain a significant reduction of elec- 
tric flux crowding; this calculation is illustrated in Fig. 8. 

Electrical resistance 
For engineering purposes, the electrical resistance of a 
diffused resistor can  be considered the  sum of three resistive 
components: a main  body and two end contacts. These 
three regions are separable at any  location where the sur- 
faces of constant  potential (Fig. 1) are perpendicular to  the 
semiconductor surface. From Fig. 1, it appears reasonable 
to assume that  the  end contacts are separable at a location 
that is 2.5 L (minimum) from  the edge of the  ohmic  con- 
tact. In this  fashion the electrical resistance of each region 
can be established, and  the  total resistance of a diffused 
resistor becomes the sum of these three terms. 

The electrical resistance contributed by the main  body is 
given by 

I 
W R = - p . ,  

where ps is the so-called sheet resistance. For convenience, 
Fig. 9 presents a simple relation between the CO and p s ;  this 
illustration is based on  an assumption that  the p-n junction 
is a minimum of 2.0 L from  the semiconductor surface. 
From either a measurement of ps or from Fig. 9, Eq. (5) 
provides a means to establish the electrical resistance con- 
tribution  from the main  body of a diffused resistor. 
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Figure 8 Calculated  large  field  electric flux distributionnear the 
ohmic  contact of an  n-type diffused  resistor. (L = 24Dt.)  

Separation of the  end contact region was assumed to  take 
place at a point 2.5 L from the edge of the ohmic  contact. 
It can be shown that  the calculated electrical resistance of a 
two-dimensional end contact region is within 5.0 per cent 
of the electrical resistance given by Eq. (5) when 1 is as- 
sumed to be 3.0 L (instead of 2.5 L). Because the electrical 
resistance of this end contact region is only a small part of 
the  total resistance of the entire  structure,  this rule-of- 
thumb provides a simple means to calculate the electrical 
resistance of a diffused resistor with sufficient accuracy for 
engineering purposes. 
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List of Definitions 
C = Impurity atom concentration. 
co = Impurity atom surface concentration. 
D = Impurity atom diffusion constant. 
I = Total electric current in diffused resistor. 
J(x), J (y )  = Electric current densities. 
L = 2 4-E = Impurity atom diffusion length. 
W = Width of diffused resistor. 
I = Length of main  body of diffused resistor. 
n = Mobile electron density in semiconductor 

material. 

t 
10-1k 

"_" Cons tant C, diffusion 4 t -  Instantaneous source diffusion 

Figure 9 Calculated sheexesistance vs.  impurity atom  surface 
concentration. (L = 24Dt.)  

= Mobile hole density in semiconductor ma- 

= Recombination rate for holes and electrons, 
respectively. 

= Diffusion time. 
= Spatial variable parallel to semiconductor 

= Spatial variable perpendicular to semicon- 

= Junction  depth. 
= Mobility of mobile holes and electrons, re- 

spectively. 
= Sheet resistance. 

terial. 

surface. 

ductor surface. 
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