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Redundant  Alphabets  with 
Desirable  Frequency  Spectrum  Properties 

Abstract: When alphabets of digital  symbols are used to represent  information  for data processing,  storage,  and  transmission,  redun- 
dancy  in the  alphabets is traditionally used  for the  purpose of error compensation.  This  paper  deals  with  alphabets of redundant  codes, 
both  binary and higher  level,  where the  emphasis is on using  redundancy to produce  code  alphabets  with  unique  properties in their 
frequency  spectra that can  be  exploited  in the design of the system  in  which  they are  used. 

In particular,  techniques are presented  for  synthesizing  alphabets that produce  spectral nulls at frequencies l / kT ,  where T is the 
duration of a word  element.  Some  of the  interesting  alphabets are a 10-word,  5-bit  alphabet  with  spectrum  zero at 1/2T; a 10-word, 
6-bit  alphabet  with  spectrum zero at 1/3T; a 36-word,  8-bit  alphabet  with  zero at 1/4T; and a 36-word,  8-bit alphabet with zeros at 
both 0 and 1/2T. 

Introduction 
Traditionally the design of data transmission, multiplexing, 
and storage systems has been independent of the alphabet 
selected to represent the information, and redundancy has 
been used to provide the required protection against certain 
types of errors  that may occur during the transmission or 
processing of the digital information. In the development 
of transmission systems, the designer conventionally di- 
rects his efforts toward providing equipment that accom- 
modates and concentrates the frequency energy of the in- 
formation independently of the way it is represented. 

In this  paper we  will describe families of digital alphabets 
of various sizes that  are  both redundant  (error detecting) 
and inherently modulating (their signal energy is concen- 
trated  into a predetermined range of the frequency spec- 
trum). Since these alphabets  can be chosen to exhibit pre- 
determined frequency spectrum envelopes, they can, there- 
fore,  match specific requirements in the design of transmis- 
sion, multiplexing or storage systems. This viewpoint on 
code  construction  has implications for the design of systems 
that process or transmit the coded information.  Some of 
the ways in which the availability of these alphabet families 
might influence system design are mentioned at  the  end of 
the paper. 

The alphabet families have been found in a study of the 
expression for the frequency spectrum of discrete-valued 
signals. The amplitude-phase form of this expression is 

234 where ai is an m-ary valued element of an N-element se- 

quence having the  form a0 al a . e Q N - ~  and  Tis  the  duration 
of ai. A random sequence of elements will have  its first 
spectrum  zero (S = 0) at the frequency 1/T. 

Our purpose  here will be to show how to construct  alpha- 
bets of code words that, when transmitted serially, will have 
spectra with zeros occurring at f = l / kT ,  where k is an 
integer or a ratio of relatively prime integers. In most of 
the cases considered, an expression is derived to calculate 
the number of n-element words in  the alphabet. In pre- 
senting the alphabets, we will work from  the specific to  the 
general in considering the values of k which define the 
spectrum zeros. Also, we will begin the discussion by 
considering only binary  alphabets;  later we will show the 
extension to the m-ary case. 

First,  the condition  for  obtaining S = 0 at f = 0 is 
given. Then the condition  for  obtaining  a  zero atf = 1/2T 
is derived. An example of an alphabet meeting this require- 
ment is shown to consist of ten 5-bit words, where the first 
lobe of the spectrum envelope occupies 5/8 the  bandwidth 
required for the conventional 4-bit binary decimal code. 

Binary alphabets meeting both requirements (S = 0 at 
bothf = 0 andf = 1/2T)  are shown next. It is interesting 
to find how  the  method of constructing these alphabets dif- 
fers for  the cases in which n, the number of bits per code 
word, is a multiple of 4, is odd,  and is  even with n/2 odd. A 
particularly interesting 36-word alphabet of 8-bit  words is 
presented. Called the  STEAN code,  this  alphabet might be 
useful in  the transmission of English alphanumeric data. 
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The first lobe of the spectrum is contained  in the frequency 
range from f = 0 to 1/2T, with the signal energy con- 
centrated around f = 1/8T, f = 1/4Tand f = 3/8T, as if 
the  data  had undergone some kind of modulation. 

Next, the conditions are given for constructing  alphabets 
with spectrum zeros at f = l/kT, where k is any integer. 
Here, the cases where k is a prime number  must  be  treated 
separately from  the others. For k = 4 another 36-word 
alphabet of 8-bit words is shown, the frequency spectrum 
of which happens to be very close to the signal power spec- 
trum of the public telephone network  in the United 
Kingdom. 

Binary  alphabets  having 
envelope  spectrum  zero at f = 0 
To find the subset of all N-bit sequences which have no dc 
component, i.e., S = 0 at f = 0, the condition 
N-1 

must be satisfied? If N = An, the sequence can be de- 
composed into X words of n bits each. Then, a sufficient 
condition for Eq. (1) to be satisfied is that 

jn-1 

In its simplest interpretation  this expression means that  the 
i-th word of the X-word sequence must  contain the same 
number of +l’s as - 1’s. Such an interpretation requires, 
of course, that n, the number of bits per pattern,  be even. 
The sets of patterns that satisfy the above  condition for n 
even are called “n/2 out of n” codes; each of these codes 
contains C,”,z different patterns, where Cz,2 is the number 
of combinations of n bits  taken n / 2  at a time. The  “4  out of 
8” code is one member of this family; it  has been used, for 
example, by IBM in  the control of data transmission. 

For  the case of n odd  and X even the expression can be 
interpreted to mean that  the  j-th word must  have  one 
less (more) +1 than - 1 if j is even (odd), and  one more 
(less) + 1 than - 1 if j is odd (even). The sets of words that 
satisfy this  interpretation can be called “(n - 1)/2  out of 
n” codes for j even, and “(n + 1)/2 out of n” codes for j 
odd. 

Binary  alphabets  having 
envelope  spectrum  zero  at f = 1/2T 
Another subset of the N-bit sequences, in which S = 0 at 
f = 1/2T,  can  be found by imposing the condition that 
N-1 

a i ( - - l y  = 0 ,  
i=O 

* The situation in which S = 0 for allfmeans that the amplitude is zero over 
the entire spectrum. This can happen if, and only if, there is no signal present. 
That is, when ui = 0 for  all i. Therefore to avoid ambiguity in the present 
analysis we have chosen to represent the binary values ui  by +1 and “1 
rather than by 1 and 0. 

Table 1 5-bit  decimal  code for spectrum  zero at f = 1/2T.* 

0 0 0 0 0 0  
1 0 0 0 1  1 
2 0 0 1 1 0  
3 0 1 0 0 1  
4 0 1 1 0 0  
5 0 1 1 1 1  
6 1 0 0 1 0  
7 1 1 0 0 0  
8 1 1 0 1 1  
9 1 1 1 1 0  

*The 0’s correspond to the - 1’s of the analysis. 

For words of n bits each, a sufficient condition for Eq. (3) is 
in-1 

The  j-th word of a X-word sequence will satisfy this  con- 
dition if, for n even, a reversal of the signs of its odd-num- 
bered bits  produces a new word having the same  number 
of +l’s as -1’s. There are C,”12 different patterns that 
meet the condition for any even n. A set of patterns that 
satisfy the  condition for  the special case of n = 8 has been 
found previously and informally referred to by the  author 
as  the “transmission-adapted code.”’ 

For n odd  and X even, the condition will be met if the 
sequence of words is chosen such that any  pair of adjacent 
words has  the desired properties. That is, for  the  j-th 
word, when there is one more (less) - 1 in the odd-(even-) 
numbered  bits than  in  the even-(odd-)numbered bits, the 
pair of words, j and j + 1, will then have the same  number 
of - 1’s (and  +l’s) in their n odd-numbered and n even- 
numbered bits. 

The subset of patterns which meets the condition of 
Eq. (3) for n odd contains C(:-1),2 different words. As an 
example, n = 5 produces 10 words. This suggests that  one 
might use a 5-bit code rather  than  the conventional 4-bit 
code to represent the decimal numbers. With such a code 
the frequency of the first zero of the spectrum is reduced 
by a factor of 2 as  compared to  that of all thirty-two 5-bit 
words, and by a factor of 1.6 as  compared to  that of the ten 
4-bit BCD words (see Fig. 1). Table 1 shows the 5-bit 
decimal code. The following fortuitous  relationship occurs, 
which should simplify the circuitry for generating the code: 

where the decimal number d is transformed to the base-2 
representation of the  number at  the right-hand-side of the 
arrow. 

It should  be  noted that  the minimum distance of the 
code is 2, so that if “bit detection” is used, a single error 
within a character will always be detected. 235 
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Figure 1 Locations of  first  zeros of spectra  for decimal alphabets. 

Binary  alphabets  having 
envelope  spectrum  zeros at both f = 0 and f = 1/2T 

n is a multiple of 4 
The subset of all N-bit sequences in which S = 0 at both 
f = 0 and f = 1/2T is the intersection of two subsets 
which satisfy the Eqs. (2) and (3), respectively. The con- 
ditions for this new subset can  also be  stated  as 

( N / 2 ) - 1  

a 2 i = 0  
i=O 

For N = Xn, where there are X words of n bits each, con- 
ditions (4) and (5) each independently produce C$ dif- 
ferent words so that  the subset  in which both conditions 
are met contains (C$i)2 different words. Figure 2 shows 
the envelopes of the spectra obtained by satisfying Eqs. 
(l), (2) and (3) independently;  the cross-hatched area of 
the figure is bounded by the envelope of the last new subset. 

This new family of binary  alphabets is particularly suited 
to data transmission. The theoretical minimum frequency 
required for binary data transmission without  bit  inter- 
ference is known2 to be 1/2T. In  the case of the new family 
of alphabets, the entire first lobe is within the  stated limit 
so that transmission at the  rate of l/nT words per second 
should  be achieved practically through  the use of non-ideal 
filters of bandwidth 1/2T Hz. The binary elements of the 
words are transmitted at a rate of 1/T bits per second and 
the “information” transmission rate  is (2/n log Cz::) /T 
bit per second. Curves comparing the information loss for 
the new family with that of other reduced-band families are 

236 shown in Fig. 3. 
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Figure 2 Frequency  spectra  envelopes  for  binary  sequences  satis- 
fying  various  conditions.  Cross-hatched  area  is  bounded by 
envelope  corresponding to new  family of patterns. 

Figure 3 Information loss, 1 - l /n lo& C(n), for various  families 
of  binary  sequences.  Curve a is the  solution  for C(n) = (C:;:? 
which  gives the  number of  different patterns  in  the  family that 1s 
exemplified  by the STEAN code  for n = 8; curve b is the  solution 
for C(n) = C&.1)/2 which corresponds to the family that contains 
the 5-bit  decimal code; curve c is the solution for C(n) = C ~ Z ,  
the number  of patterns in the families  exemplified  by  the “4 out 
of 8” code  and the  transmission  adapted  code  for n = 8. 
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The STEAN code, an alphanumeric frequency concept code 
alphabet 
A specific application of the new family is given for the 
case n = 8. There are 256 different words of 8-bit length. 
Of these words 70 satisfy the condition of Eq. (2) (“4 out of 
8” codes), and 70 that of Eq. (3) (transmission-adapted 
codes). The intersection of the two  groups of 70 words 
gives 36 words which satisfy simultaneously the conditions 
of Eqs. (4) and (5). It is evident that a one-to-one cor- 
respondence between the 36 words and  the 26 letters and 
10  numbers of the English alphanumeric  alphabet  can be 
established. This has been done in defining the  STEAN 
code (Simple Transmission of English Alpha-Numeric 
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Figure 4 Spectrum  classes for new  family of binary  sequences. 

data).  Furthermore, a detailed frequency-spectrum analysis 
of the 36 words reveals that they can  be subdivided into 
the four classes shown in Fig. 4. 

Using statistics on letter usage obtained by Seibel,3 
words were assigned to each of the letters and numbers. The 
words in spectrum classes 1 and 2 were assigned to the 
most-used letters and  to  the numbers because the shape of 
the spectrum is better for these classes than  for classes 3 
and 4. Table 2 gives the usage statistics and word assign- 
ments for  the suggested STEAN  code;  it is expected here 
that procedure control characters are either eliminated in 
the system design or (if still needed) consist of very  specific 
combinations of code words. 

The error-control capability of this  code can also  be 
exploited if “bit-detection” is used. Every error which trans- 
forms a word of the  STEAN code into one of the 220 words 
that  do  not belong to  it will be detected. Since Eqs. (4) and 
(5) are satisfied independently, any  burst of 2 errors in a 
word will be detected. 

A simple transmission scheme like that of Fig. 5 could 
be used to transmit  STEAN-coded  information. Using the 
2.4 kHz bandwidth provided by a telephone line, single- 
sideband  modulation with carrier injection is sufficient to 
place the  data spectrum directly within the telephone chan- 
nel in such a way that a straightforward 2-level detection 
scheme, after  demodulation by the recovered carrier, per- 
mits transmission at a rate of 600 characters per second. 

This specific alpha-numeric  code and transmission 
scheme have  not yet been tested; however, a series of mo- 
dems based on  the configuration given in Fig. 5 has been 
successfully im~lemented.~ These modems correspond to 
the case n = 4, where the four words, 

(C12)2 = 4, 

0011,0110, 1001 and 1100, 

are precisely the digital binary signal elements correspond- 
ing to a four-phase  modulation scheme. 

STEAN code 

frequency 2400Hz 
( i f  exactly 1st lobe is 

to be  conserved) 

I 
I SSB modulation 

Carrier injection 

I- Telephone  channel 

Carrier  recovery 
SSB demodulation 

STEAN code 
error  control 

Figure 5 Transmission scheme for  STEAN-coded data. 

Table 2 The  STEAN  code. 

Spectrum 
Character  Binary  patfern* Relafive usage clars 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

A 
B 
C 
D 
E 

F 
G 
H 
I 
J 

K 
L 
M 
N 
0 

P 

R 
S 
T 

U 
V 
W 
X 
Y 
Z 

Q 

1 1 0 0 1 1 0 0  
0 1 1 0 0 1 1 0  
0 0 1   1 0 0 1  1 
1 0 0 1 1 0 0 1  
1 1 1 0 0 1 0 0  

0 1   1 1 0 0 1 0  
0 0 1 1   1 0 0 1  
1 0 0 1 1 1 0 0  
0 1 0 0 1   1 1 0  
0 0 1 0 0 1 1 1  

1 0 0 1 0 0 1 1  
1 0 1 0 0 L 0 1  
1 1 0 1 0 0 1 0  
1 1 0 0 1 0 0 1  
0 0 0 1   1 0 1  1 

0 1   1 0 1 0 0 1  
1 0 1   1 0 1 0 0  
1 0 0 0 1 1 1 0 1  
1 1 0 0 0 1 1 1 0  
0 1 0 1 1 0 1 0  

O O l O l h O 1  
1 0 0 1 0 1 1 0  
0 1 0 0 1 0 1 1  
0 1   1 0 0 0 1  1 
1 0 1 1 0 0 0 1  

1 1 1 0 0 0 0 1  
1 1  0 0 0 0 1  1 
1 1 0 1   1 0 0 0  
0 1 1 0 1 1 0 0  
0 0 1 1 0 1  1 0  

1 0 0 0 0 1   1 1  
0 0 0 0 1 1 1 1  
0 0 0 1 1 1 1 0  
0 0 1 1 1 1 0 0  
0 1   1 1   1 0 0 0  
1 1   1 1 0 0 0 0  

1 
1 
1 
1 
2 

2 
2 
2 
2 
2 

.088 2 

.014 3 

.032  3 

.041 2 

.122  2 

.020 3 

.020 3 

.046 2 

.050 2 

.002  3 

.008 3 

.040 3 

.022  3 

.076 2 

.076 2 

.020 4 

.001 4 

.064 2 

.066 2 

.088 2 

.023 4 

.010 4 

.018 4 

.002 4 

.017 4 

.001 4 

* The 0 ’ s  c o r r e s p o n d  to - 1’s of the analysis. 237 
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n is even but n / 2  is odd 
When n is not a multiple of 4, n-bit alphabets  producing N 
bit sequences which will satisfy both (4) and ( 5 )  still exist, 
but their construction requires that all the bits of some 
words  be systematically inverted. 

We will  briefly show how to construct such alphabets, 
first in  the case where n is even and n/2 is odd. 

Let us define the  j-th word of a X-word sequence by the 
following relationships: 
(n/2)-1 

f l 2 i  = - 1  , (6) 
i=n 

(n/2)--1 

f l 2 i i - l  = -1 . 
i = O  

Here, we are saying that there is one more - 1 than + 1 in 
both  the odd-numbered  bits and  the even-numbered bits. 
Now, if  we invert this situation  in  the (j + 1)-st word, the 
following relationships occur: 

n-I 

&i+l = 1 , 
i=n/Z 

such that for the 2 adjacent  words we will get: 
n-1 

c a 2 i  = 0 ,  
i"0 

'E f l 2 i f l  = 0 .  
i=O 

This means that conditions (4) and ( 3 ,  which assure spec- 
trum zeros at both f = 0 and f = 1/2T, are satisfied for 
any message constituted of an even number of words de- 
fined by (6) and (7), provided the bit values of every second 
word are inverted. 

It can be noticed that there are C(:2,/4 combinations 
of bits that will satisfy independently conditions (6) and 
(7), so that there will be 

c(n> = [cT!A)/J 
different words within this  alphabet. 

n is odd 
In  the case where n is odd, let us define the  j-th word in a 
sequence by the following relationships: 

[(n+l)/Zl-l 

i -n 
uzi = "1 

This says that there are  an equal number of +l's and - 1's 
238 in  the odd-numbered  bits, and there is one  more - 1 than 
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Table 3 Number, C(n), of characters in an n-bit  binary alphabet 
having  spectrum zeros at bothf = 0 andf = 1 /2T. 

4  4 
5 6 
6 9 
7 18 
8  36 
9 60 

10 100 
11 200 
12 400 
1 3  700 
14 1225 
15 2450 
16 4900 
17 8820 
18 15876 
19 31752 
20  62504 

+ 1 in  the even-numbered bits. If the same conditions  hold 
for the ( j  + 1)-st word, these two consecutive words will 
be a sequence of 2n bits having the relationships: 

n-1 

cflzi = -1 
i=n 

n-1 

f l 2 i + l  = - 1 . 
2-0 

Relationships (14) and (15) are the same as (6) and (7), 
except that two n-bit characters are involved instead of one. 
This means that  the basic conditions (4) and ( 5 )  are satisfied 
for any message constituted of a multiple of 4 characters 
as defined  by Eqs. (12) and (13), provided all the bits of 
every third  and fourth  character are inverted. 

If the number of bits per word is expressed as n = 
4h+r , ( r=1 ,2 ,3 ,4andh=l ,2 ,3 ; . . ) , t henumbero f  
words in the  alphabets  for odd It is given  by 

C ( n )  = [ ~ ( , - 1 , / i ]  [C(n-1)/4] for r = 1 , 

C ( n )  = [C(n+l)/4] [Ccn+4)/4] for r = 3 . 
Compare these formulas with the previously derived ex- 
pressions for even n :  

~ ( n )  = [C$:]' for r = 0 ,  

c(n) = [ C ; " ~ - Z ) / ~ ] ~  for r = 2 . 

(n-l)/* (n+1)/2 

(n-1) in (n+l) / z  

/Z 

Table 3 gives the values of C(n) for word lengths up  to 20 
bits. The following recurrent formulas  for the number of 
words per alphabet  can easily be deduced from  the table: 

C ( n  + 1) = 2C(n) for r = 2, 3 . 

C ( n  + 1 )  = --- C ( n )  for r = 0, 1 
2h f 1 
h + l  



This completes the analysis of binary alphabets that 
produce spectrum zeros at  bothf = 0 andf = 1/2T. The 
next section will still be concerned with synthesis of binary 
alphabets, but  the procedure will be extended to include 
alphabets that produce spectrum zeros at almost  any de- 
sired frequency. 

Binary alphabets with S = 0 at f = l/kT 
In order for a sequence of n bits, a0 a1 a2 . . . an-l, to have a 
spectrum  zero at  the frequency l/kT, it is sufficient to 
satisfy the following condition: 

Table 4 6-bit decimal code with  spectrum  zero a t f=  1 /3T.* The 
binary patterns in this alphabet are arranged so that the character 
corresponding to the decimal  number, d, is the base-2  represen- 
tation of the decimal  number 7d. 

0 0 0 0 0 0 0  
1 0 0 0 1  1 1  
2 0 0 1 1 1 0  
3 0 1 0 1 0 1  
4 0 1 1 1 0 0  
5 1 0 0 0 1 1  
6 1 0 1 0 1 0  
7 1 1 0 0 0 1  
8 1 1  1 0 0 0  
9 1 1 1 1 1 1  

A graphical  interpretation of this  equation  states that  the 
sum of n vectors in  the complex plane must be zero. How- 
ever, the identity 

e = e  (1 7) - j 2 r i / k  - j l r ( i f k ) / k  

indicates that  one may construct  a desired sequence by 
balancing k rather than n vectors. Since the phase angles 
are determined completely by the value of k, the vectors 
can only be balanced by choosing their amplitudes cor- 
rectly. If,  for  the time being, we restrict the word length, 
n, to  an integral multiple of k, i.e., n = ks, then we can 
denote the vector amplitudes by the  summation 

a-1 

and Eq. (16) becomes 

k-1 
A i e - j 2 r i / k  = o  

i = O  

k is a prime number 
If k is a prime number, the system can  be  in equilibrium 
only if all the vectors are equal  in  amplitude: 

A .  = A 1  = .. .  = Ak--l . (20) 

As an example, if k = 3 and n = 6, the following relation- 
ship  must hold: 

A0 1 A1 = A 2 ,  

a0 + u3 = U l  + a4 = a2 + a5 . (21) 

Since the amplitudes are each the sum of two binary ele- 
ments, they can take only three possible values in  this 
example: -2, 0, +2. There is just one word such that 
the  three amplitudes equal +2:  1 1  1 1  1  1 ; and similarly, 
one word such that the amplitudes equal - 2: - 1 - 1 - 1 
- 1 - 1 - 1 .  Eight different words exist such that  the 
three amplitudes equal zero. These ten six-bit words are 
presented in Table 4 as a decimal code. 

* The 0's correspond to the - 1's of the analysis. 

In general, for k a prime number and n an integral mul- 
tiple of k, the size of the binary  alphabets is given by 

n / k  

k is not a prime number 
Suppose that k = c X d, where c and dare integer factors 
of k. Then,  solutions of Eq. (19) are given  by 

w h e r e u = 0 , 1 , 2 , ~ ~ ~ , c - l 1 , a n d v = 1 , 2 , 3 ; ~ ~ , d - l .  
The complete alphabet  for a given k is the union of the 
solutions to  Eq. (22) for each possible pair of factors; 
e.g., if k = 12, Eq. (22) should be solved under the con- 
ditions 6 X 2,  4 X 3, 3 X 4, and 2 X 6 to find all the 
words in the alphabet. 

As an example, for k = 4 and n = 8, the following 
relationships will hold: 

AO = Az,  UO a4 = U2 + a6 
A1 = A& a1 + uj = a3 + a7. 

These expressions are valid here since it is not necessary 
that all four vectors be equal in  order to balance the sys- 
tem. As long as diametrically opposed  pairs of vectors are 
equal,  the system will be in equilibrium. 

In  the present example each vector can have the values 
4-2, 0, or -2. There is one  combination of four bits such 
that A0 = As = +2, and one combination such that they 
equal -2;  four  combinations yield zero. Similarly, there 
are six combinations of four  bits that produce A1 = A3 = 

+2, 0, or - 2. Since each of the six combinations  for 
A .  = A z  can be combined with each of the six for A1 = As,  
the alphabet of 8-bit words producing a  spectrum  zero at 
1/4T contains 36 words. 

It should be noted  here that if the transmission speed 
is  3000 bits per second,  the frequency spectrum envelope 
of this 36-word alphabet is very close to  that of the avail- 
able frequency bandwidth of the public telephone network 239 
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Figure 6 Channel  amplitude  response of the public  telephone 
network of the United  Kingdom.  (After Cook.3 

in  the  United Kingdom4 as shown  in  Fig. 6 .  It can be  fur- 
ther observed that  the code satisfies the relationships, 

while in  the STEAN code described earlier, the relation- 
ships happen to be 

A very simple transcoder from one  code to  the other  con- 
sists of inverting every third, fourth, seventh, and eighth 
bit of either code. The maximum frequency contribution 
of one  alphabet  corresponds to the minimum frequency 
contribution of the other. 

n is not a multiple of k 
When n is not a multiple of k,  alphabets with spectrum 
zeros at l / k T  exist, but  the techniques for synthesizing 
them involve grouping the words into sequences long 
enough to satisfy the basic conditions. For instance, if 
k = 3 and n = 7, messages constituted of multiples of 3 
words will satisfy the conditions if the words are properly 
synthesized. We will not discuss the problem of construc- 
ting these alphabets  in  this  paper. 

k is a rational fraction 
This study was done for k being any integer, but  it can 
easily be extended to any rational fraction. The extension 
relationship is simply given by the fact that if an  alphabet 
has a zero frequency spectrum atf = l /kTit  will necessarily 
have  also a zero frequency contribution at f = x/kT if 
x and k are relatively prime numbers. 

As an example, it is easy to check that  for k = 4 and 
x = 3 the relationships An = A2 and A1 = A3 are precisely 
the same as  for x = 1 where Ai represents the same sum of 

240 elements in  both cases. 

More general alphabets can be  constructed if an alphabet 
is required with preselected zero frequency contribution at 
f = l /k lT ,  f = l/kzT, f = l/kaT. It will simply be  the 
intersection of the alphabets presenting no frequency con- 
tribution at f = l / k lT ,  f = l /k2T,  and f = l /k3T.  In Fig. 
7 frequency spectrum envelopes corresponding to various 
aIphabets are shown. 

Binary  alphabets  having 
envelope  spectrum  zero  at  both f = 0 and f = l /kT 
Alphabets with zero  spectrum  amplitude at .f' = 0 are de- 
termined by the following equation: 
k-1 

A i  = 0 .  
i= 0 

Alphabets such that  the frequency spectrum is zero at 
bothf = 0 and f = l / kT ,  where k is a prime number, will 
be such that each word satisfies simultaneously Eq. (19) 
and  Eq. (25).  That is, 

A i  = 0 , i = 0, 1, 2,  . . . ,  k - 1 .  ( 2 6 )  

In a special case where IZ = 2k the alphabets consist 
of 2k characters or k information bits. The particular 
systems can be characterized by a signal element of the 
following nature: 

100 . . .  0 - 100 e . .  0 .  
-7- 

k k 

In general, if Ai = 0 has C solutions, the alphabet will 
consist of Ck elements. Reference 3 corresponds to C = 

2, k = 2. 

Figure 7 Spectrum  envelopes of binary alphabets chosen to 
satisfy  various  spectrum  characteristics.  The  alphabet  chosen to 
produce a zero at f = 1/4T (and  consequently, at f = 3/4T) 
contains 36 characters.  The  alphabet that produces  zeros at both 
f = 0 andf = 1 /4T contains 18 characters, as  does the  alphabet 
with zeros at both f = 1/4T and f = 1/2T. The  alphabet  giving 
zeros at f = 0 , f  = 1/5T, and f - 1/2T contains 16 characters. 

- 36 Characters "_ 18 Characters 

18 Characters 

16 Characters 
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- - - - - - - 

I - 
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1 - 
2T 
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4T 
3 - 

T 
1 
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Table 5 Number, C(n), of characters in an  n-element,  m-level 
alphabet having  spectrum  zeros at bothf = 0 andf = 1/2T. 

C(n) 
n m = 2  m = 3   m = 4  

4  4 9 16 
5 6 21 48 
6  9 49 144 
7 18 133 528 
8 36 361 1936 
9 60 963 6820 

10 100 2601  24025 

If  bit detection is used, any  burst of k errors  in a word 
will be detected in these alphabets. 

When k is  not a prime number, (k = cd), solutions will 
be given by satisfying simultaneously Eq. (22) and  the 
following equation: 

2 A u =  0 .  (27) 
U=O 

Non-binary  alphabets 
Clearly, the basic theory  holds for any digital signal 
whether it is binary or  not,  and  the same techniques will 
apply to the construction of an m-level alphabet. The only 
difference being that  the value “permitted” for  the a’s 
will be denoted as: 

-1, 0, +1 for m = 3. 
- 3 ,  -1,  +1, + 3  form = 4 
-2, -1, 0, +1, +2  for m = 5, etc. 

Table 5 gives a comparison of the numbers of characters 
which exist within binary,  ternary, and quarternary  alpha- 
bets for n less than  and equal to 10. This table concerns 
again the case where the spectrum frequency is zero at 
both f = 0 and f = 1/2T. 

The same technique such as systematic inversion of 
every second character could and should be used in some 
instances. m = 4 and IZ = 6 is an example. Naturally,  the 
size of the  alphabet, which corresponds to  the number of 
code combinations satisfying the basic relationship, in- 
creases very rapidly with m. 

If transition (zero crossing) within the data signals is 
required for clock recovery, the sequence 00. . . O  when m is 
odd should be eliminated. For example, 132 distant voice 
signal amplitudes can be encoded at  an 8 kHz sampling 
rate  into a 7 element self-clocking 3 level digital code which 
will have no frequency contribution at f = 0 and f = 28 
kHz. 

Three level digit coding such as  proposed in references 
4,6 and 7 generate sequences belonging to the same family 
(no frequency contribution at  both f = 0 and f = 1/27‘) 
and, therefore, satisfy Eqs. (2) and (3). In these cases N - 2 
bits are encoded into a N-bit message where the two first 

and  the two last elements are binary digits while the re- 
maining N - 4 elements are ternary digits. The interest 
here is in  the simplicity of these coding schemes and  in 
their efficiency for long messages. In order to compare 
them formally with the fixed-length character  alphabets, 
one would let m = 3 - (4/N); the size of the alphabets 
is 2N-2 characters. 

Conclusions 
We have described in this  paper a number of alphabet and 
sub-alphabet families which can be stored in a computer, 
have unique characteristics in their frequency spectra, and 
may fit particular requirements. These requirements may 
come  from the user as, for example, the assignment of 
characters with frequencies in the middle of the  band to 
represent information requiring maximum security; or 
they may come from  the transmission system as,  for exam- 
ple, avoiding data contributions at specified frequencies. 

The application of conventional “time domain equaliza- 
tion” or “character detection” schemes is not straight- 
forward. Conventional time domain  equalization is based 
on signal element responses. Here, an individual impulse 
response is not a meaningful way to characterize the trans- 
mission system. Special algorithms for the decisions that 
provide best recognition will have to be developed since 
the procedures will be based on whole characters and  not 
on  random combinations of single bits. Another interesting 
aspect is that if extra  error  protection is required the  error 
control characters  must belong to the same alphabet. 

More work is still needed to get a better understanding 
of these alphabets and where they will be used most ef- 
fectively. The purpose of this paper is simply to show the 
existence of these families of natural frequency concept 
code alphabets. 
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