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Redundant Alphabets with

E. Gorog

Desirable Frequency Spectrum Properties

Abstract: When alphabets of digital symbols are used to represent information for data processing, storage, and transmission, redun-
dancy in the alphabets is traditionally used for the purpose of error compensation. This paper deals with alphabets of redundant codes,
both binary and highet level, where the emphasis is on using redundancy to produce code alphabets with unique properties in their
frequency spectra that can be exploited in the design of the system in which they are used.

In particular, techniques are presented for synthesizing alphabets that produce spectral nulls at frequencies 1/k7T, where T is the
duration of a word element. Some of the interesting alphabets are a 10-word, 5-bit alphabet with spectrum zero at 1/2T; a 10-word,
6-bit alphabet with spectrum zero at 1/37T; a 36-word, 8-bit alphabet with zero at 1/47; and a 36-word, 8-bit alphabet with zeros at

both 0 and 1/27.

Introduction
Traditionally the design of data transmission, multiplexing,

and storage systems has been independent of the alphabet
selected to represent the information, and redundancy has
been used to provide the required protection against certain
types of errors that may occur during the transmission or
processing of the digital information. In the development
of transmission systems, the designer conventionally di-
rects his efforts toward providing equipment that accom-
modates and concentrates the frequency energy of the in-
formation independently of the way it is represented.

In this paper we will describe families of digital alphabets
of various sizes that are both redundant (error detecting)
and inherently modulating (their signal energy is concen-
trated into a predetermined range of the frequency spec-
trum). Since these alphabets can be chosen to exhibit pre-
determined frequency spectrum envelopes, they can, there-
fore, match specific requirements in the design of transmis-
sion, multiplexing or storage systems. This viewpoint on
code construction has implications for the design of systems
that process or transmit the coded information. Some of
the ways in which the availability of these alphabet families
might influence system design are mentioned at the end of
the paper.

The alphabet families have been found in a study of the
expression for the frequency spectrum of discrete-valued
signals. The amplitude-phase form of this expression is

1— e—j21rfT N—1 oaiTi
S = aie_] T 1
s 2 , (1

where a; is an m-ary valued element of an N-element se-
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quence having the form ay a; - - + ay—1 and T is the duration
of a;. A random sequence of elements will have its first
spectrum zero (S = 0) at the frequency 1/7.

Our purpose here will be to show how to construct alpha-
bets of code words that, when transmitted serially, will have
spectra with zeros occurring at f = 1/kT, where k is an
integer or a ratio of relatively prime integers. In most of
the cases considered, an expression is derived to calculate
the number of n-element words in the alphabet. In pre-
senting the alphabets, we will work from the specific to the
general in considering the values of k£ which define the
spectrum zeros. Also, we will begin the discussion by
considering only binary alphabets; later we will show the
extension to the m-ary case.

First, the condition for obtaining § = 0 at f = 0 is
given. Then the condition for obtaining a zero at f = 1/2T
is derived. An example of an alphabet meeting this require-
ment is shown to consist of ten 5-bit words, where the first
lobe of the spectrum envelope occupies 5/8 the bandwidth
required for the conventional 4-bit binary decimal code.

Binary alphabets meeting both requirements (S = 0 at
both f = 0 and f = 1/2T) are shown next. It is interesting
to find how the method of constructing these alphabets dif-
fers for the cases in which a, the number of bits per code
word, is a multiple of 4, is odd, and is even with n/2 odd. A
particularly interesting 36-word alphabet of 8-bit words is
presented. Called the STEAN code, this aiphabet might be
useful in the transmission of English alphanumeric data.

The author is located at IBM Corporate Headquarters in Armonk, New
York as Technical Advisor to the IBM Chief Scientist.




The first lobe of the spectrum is contained in the frequency
range from f = 0 to 1/27, with the signal energy con-
centrated around f = 1/8T, f = 1/4T and f = 3/8T, as if
the data had undergone some kind of modulation.

Next, the conditions are given for constructing alphabets
with spectrum zeros at f = 1/kT, where k is any integer.
Here, the cases where k is a prime number must be treated
separately from the others. For k¥ = 4 another 36-word
alphabet of 8-bit words is shown, the frequency spectrum
of which happens to be very close to the signal power spec-
trum of the public telephone network in the United
Kingdom.

Binary alphabets having
envelope spectrum zero at f=0
To find the subset of all N-bit sequences which have no dc

component, i.e., S = 0 at f = 0, the condition

> ai=0 @)

must be satisfied.* If N = An, the sequence can be de-
composed into A words of n bits each. Then, a sufficient
condition for Eq. (1) to be satisfied is that

jn—1

ai=0, j=1,2,---,\.

i=(7=Dn
In its simplest interpretation this expression means that the
i-th word of the A-word sequence must contain the same
number of 41’s as —1’s. Such an interpretation requires,
of course, that n, the number of bits per pattern, be even.
The sets of patterns that satisfy the above condition for n
even are called “n/2 out of n” codes; each of these codes
contains C,,, different patterns, where C,, /s is the number
of combinations of n bits taken n/2 at a time. The ““4 out of
8” code is one member of this family; it has been used, for
example, by IBM in the control of data transmission.

For the case of n odd and X even the expression can be
interpreted to mean that the j-th word must have one
less (more) 41 than —1 if j is even (odd), and one more
(less) 1 than —1 if j is odd (even). The sets of words that
satisfy this interpretation can be called “(n — 1)/2 out of
n” codes for j even, and “(n + 1)/2 out of n”* codes for j
odd.

Binary alphabets having
envelope spectrum zero at f=1/2T
Another subset of the N-bit sequences, in which § = 0 at

f = 1/2T, can be found by imposing the condition that

N-1

dai(—1)=0. (3)

=0

* The situation in which § = 0 for all f means that the amplitude is zero over
the entire spectrum, This can happen if, and only if, there is no signal present.
That is, when a; = 0 for all i. Therefore to avoid ambiguity in the present
analysis we have chosen to represent the binary values a; by 41 and —1
rather than by 1 and 0.

Table 1 5-bit decimal code for spectrum zero at f = 1/2T.*

0 00000
1 00011
2 00110
3 01001
4 01100
5 0t111
6 10010
7 11000
8 11011
9 11110

* The 0’s correspond to the —1’s of the analysis,

For words of n bits each, a sufficient condition for Eq. (3) is

Jn—1

Z a,-(—l)i =0

t=(j—Dn

j=1,21"'3>\-

The j-th word of a A-word sequence will satisfy this con-
dition if, for n even, a reversal of the signs of its odd-num-
bered bits produces a new word having the same number
of +1° as —1’. There are C,/, different patterns that
meet the condition for any even n. A set of patterns that
satisfy the condition for the special case of n = 8 has been
found previously and informally referred to by the author
as the “transmission-adapted code.”!

For n odd and A even, the condition will be met if the
sequence of words is chosen such that any pair of adjacent
words has the desired properties. That is, for the j-th
word, when there is one more (less) —1 in the odd-(even-)
numbered bits than in the even-(odd-)numbered bits, the
pair of words, j and j + 1, will then have the same number
of —1’s (and 1) in their # odd-numbered and » even-
numbered bits.

The subset of patterns which meets the condition of
Eq. Q) for n odd contains C (:_1)/2 different words. As an
example, n = 5 produces 10 words. This suggests that one
might use a 5-bit code rather than the conventional 4-bit
code to represent the decimal numbers. With such a code
the frequency of the first zero of the spectrum is reduced
by a factor of 2 as compared to that of all thirty-two 5-bit
words, and by a factor of 1.6 as compared to that of the ten
4-bit BCD words (see Fig. 1). Table 1 shows the 5-bit
decimal code. The following fortuitous relationship occurs,
which should simplify the circuitry for generating the code:

d — (3d), d=0,1,2,3,4,5,6)
d—[BUd+1), @=18)9),

where the decimal number d is transformed to the base-2
representation of the number at the right-hand-side of the
arrow.

It should be noted that the minimum distance of the
code is 2, so that if “bit detection™ is used, a single error
within a character will always be detected.
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Figure 1 Locations of first zeros of spectra for decimal alphabets.

Binary alphabets having
envelope spectrum zeros at both f=0 and f=1/2T

® n is a multiple of 4

The subset of all N-bit sequences in which S = 0 at both
f = 0and f = 1/2T is the intersection of two subsets
which satisfy the Egs. (2) and (3), respectively. The con-
ditions for this new subset can also be stated as

wN/2—1
az; = 0 (4)
i=0
(N/-1
2 a1 =0. (5)
=0

For N = An, where there are A words of »n bits each, con-
ditions (4) and (5) each independently produce Czﬁ dif-
ferent words so that the subset in which both conditions
are met contains (Cgﬁ)“’ different words. Figure 2 shows
the envelopes of the spectra obtained by satisfying Egs.
(1), (2) and (3) independently; the cross-hatched area of
the figure is bounded by the envelope of the last new subset.

This new family of binary alphabets is particularly suited
to data transmission. The theoretical minimum frequency
required for binary data transmission without bit inter-
ference is known? to be 1/2T.. In the case of the new family
of alphabets, the entire first lobe is within the stated limit
so that transmission at the rate of 1/nT words per second
should be achieved practically through the use of non-ideal
filters of bandwidth 1/2T Hz. The binary elements of the
words are transmitted at a rate of 1/T bits per second and
the “information” transmission rate is (2/n log C;‘ﬁ) /T
bit per second. Curves comparing the information loss for
the new family with that of other reduced-band families are

shown in Fig. 3.

All n-bit sequences

Eq. (2)

Eq. (3)

Amplitude

0 1 1

Frequency

Figure 2 Frequency spectra envelopes for binary sequences satis-
fying various conditions. Cross-hatched area is bounded by
envelope corresponding to new family of patterns.

Figure 3 Information loss, 1 — 1/alog; C(n), for various families
of binary sequences. Curve a is the solution for C(n) = (C?/3)2
which gives the number of different patterns in the family that is
exemplified by the STEAN code for » = 8; curve & is the solution
for C(n) = C(t-yy,2 which corresponds to the family that contains
the 5-bit decimal code; curve c is the solution for C(n) = Cls,
the number of patterns in the families exemplified by the “4 out
of 8” code and the transmission adapted code for n = 8.
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® The STEAN code, an alphanumeric frequency concept code
alphabet

A specific application of the new family is given for the
case n = 8. There are 256 different words of 8-bit length.
Of these words 70 satisfy the condition of Eq. (2) (4 out of
8’ codes), and 70 that of Eq. (3) (transmission-adapted
codes). The intersection of the two groups of 70 words
gives 36 words which satisfy simultaneously the conditions
of Egs. (4) and (5). It is evident that a one-to-one cor-
respondence between the 36 words and the 26 letters and
10 numbers of the English alphanumeric alphabet can be
established. This has been done in defining the STEAN
code (Simple Transmission of English Alpha-Numeric
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Figure 4 Spectrum classes for new family of binary sequences.

data). Furthermore, a detailed frequency-spectrum analysis
of the 36 words reveals that they can be subdivided into
the four classes shown in Fig. 4.

Using statistics on letter usage obtained by Seibel,?
words were assigned to each of the letters and numbers. The
words in spectrum classes 1 and 2 were assigned to the
most-used letters and to the numbers because the shape of
the spectrum is better for these classes than for classes 3
and 4. Table 2 gives the usage statistics and word assign-
ments for the suggested STEAN code; it is expected here
that procedure control characters are either eliminated in
the system design or (if still needed) consist of very specific
combinations of code words.

The error-control capability of this code can also be
exploited if “bit-detection” is used. Every error which trans-
forms a word of the STEAN code into one of the 220 words
that do not belong to it will be detected. Since Egs. (4) and
(5) are satisfied independently, any burst of 2 errors in a
word will be detected.

A simple transmission scheme like that of Fig. 5 could
be used to transmit STEAN-coded information. Using the
2.4 kHz bandwidth provided by a telephone line, single-
sideband modulation with carrier injection is sufficient to
place the data spectrum directly within the telephone chan-
nel in such a way that a straightforward 2-level detection
scheme, after demodulation by the recovered carrier, per-
mits transmission at a rate of 600 characters per second.

This specific alpha-numeric code and transmission
scheme have not yet been tested; however, a series of mo-
dems based on the configuration given in Fig. 5 has been
successfully implemented.* These modems correspond to
the case n = 4, where the four words,

(G = 4,
0011, 0110, 1001 and 1100,

are precisely the digital binary signal elements correspond-
ing to a four-phase modulation scheme.

STEAN code

l

Low-pass filter, cut off
frequency 2400 Hz
{if exactly st lobe is
to be conserved)

l

SSB modulation
carrier injection

l

Telephone channel

Carrier recovery
SSB demodulation

1

Binary detection
4800 bps

1

STEAN code
error control

Figure 5 Transmission scheme for STEAN-coded data.

Table 2 The STEAN code.

Spectrum
Character Binary pattern® Relative usage class
0 11001100 1
1 01100110 1
2 00110011 1
3 10011001 1
4 11100100 2
5 01110010 2
6 00111001 2
7 10011100 2
8 01001110 2
9 00100111 2
A 10010011 .088 2
B 10100101 .014 3
C 11010010 .032 3
D 11001001 .041 2
E 00011011 122 2
F 01101001 .020 3
G 10110100 .020 3
H 10001101 .046 2
I 11000110 .050 2
J 01011010 .002 3
K 00101101 .008 3
L 10010110 .040 3
M 01001011 .022 3
N 01100011 076 2
O 10110001 076 2
P 11100001 .020 4
Q 11000011 .001 4
R 11011000 .064 2
S 01101100 .066 2
T 00110110 .088 2
U 10000111 .023 4
\% 00001111 .010 4
w 00011110 .018 4
X 00111100 .002 4
Y 01111000 .017 4
Z 11110000 .001 4

*The 0’s correspond to —1’s of the analysis.
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® 5 is even but n/2 is odd
When # is not a multiple of 4, #-bit alphabets producing N
bit sequences which will satisfy both (4) and (5) still exist,
but their construction requires that all the bits of some
words be systematically inverted.

We will briefly show how to construct such alphabets,
first in the case where n is even and n/2 is odd.

Let us define the j-th word of a A-word sequence by the
following relationships:

n/2)—1
ao; = —1 » (6)
=0
(/-1
as;p1 = —1, (7)

Here, we are saying that there is one more —1 than <1 in
both the odd-numbered bits and the even-numbered bits.
Now, if we invert this situation in the (j 4 1)-st word, the
following relationships occur:

Z ar; =1, (8)
i=n/2
n—1
Z agip1 =1, (9)
i=n/2

such that for the 2 adjacent words we will get:

n—1
Zagi =0 N

(10)
=
n—1
D a1 =0, (11)
=0

This means that conditions (4) and (5), which assure spec-
trum zeros at both f = 0 and f = 1/27T, are satisfied for
any message constituted of an even number of words de-
fined by (6) and (7), provided the bit values of every second
word are inverted.

It can be noticed that there are C (:ﬁ “;) /4 combinations
of bits that will satisfy independently conditions (6) and
(7), so that there will be

C(”) = [C?n/iz)/:;]z
different words within this alphabet.

® nis odd .
In the case where n is odd, let us define the j-th word in a
sequence by the following relationships:

[(n+1)/2]1—1
as; = —1
=0
[(n—1)/2]—1
az;py = 0. (13)
=0

This says that there are an equal number of +1’sand -1’s
in the odd-numbered bits, and there is one more —1 than

Table 3 Number, C(n), of characters in an #-bit binary alphabet
having spectrum zeros at both f= 0 and f= 1/2T.

" C(n)
4 4
5 6
6 9
7 18
8 36
9 60

10 100
11 200
12 400
13 700
14 1225
15 2450
16 4900
17 8820
18 15876
19 31752
20 62504

41 in the even-numbered bits. If the same conditions hold
for the (j + 1)-st word, these two consecutive words will
be a sequence of 2r bits having the relationships:

n—1
E as; = —1 (14)
=0
n—1
Z azipr = —1, (15)
i=0

Relationships (14) and (15) are the same as (6) and (7),
except that two n-bit characters are involved instead of one.
This means that the basic conditions (4) and (5) are satisfied
for any message constituted of a multiple of 4 characters
as defined by Egs. (12) and (13), provided all the bits of
every third and fourth character are inverted.

If the number of bits per word is expressed as n =
dh+r,(r=1,2,3,4andh = 1,2,3, - - -), the number of
words in the alphabets for odd # is given by

n—1)/2 /

C(n) = [CoTDA [CGIBA] for r=1,
n—1)/2 /

C(n) = [Cozvil [Codnri]l for r =13,

Compare these formulas with the previously derived ex-
pressions for even n:

C(n) = [CZ;Z]Z for r=0,

C(") = [C?n/f2)/4]2 for r=2.

Table 3 gives the values of C(n) for word lengths up to 20
bits. The following recurrent formulas for the number of
words per alphabet can easily be deduced from the table:

Cln+ 1) = 2C(n) for r=2,3.

2h+ 1

P C(n) for r=20,1.

Cn+1) =




This completes the analysis of binary alphabets that
produce spectrum zeros at both f = 0 and f = 1/2T. The
next section will still be concerned with synthesis of binary
alphabets, but the procedure will be extended to include
alphabets that produce spectrum zeros at almost any de-
sired frequency.

Binary alphabets with S=0 at f=1/kT

In order for a sequence of n bits, apay az - - + a,—1, tohave a
spectrum zero at the frequency 1/kT, it is sufficient to
satisfy the following condition:

n—1

Sae =0, (16)
=0

A graphical interpretation of this equation states that the
sum of n vectors in the complex plane must be zero. How-
ever, the identity

e—j21ri/k - e—j?w(i+k)/k (17)

indicates that one may construct a desired sequence by
balancing k rather than n vectors. Since the phase angles
are determined completely by the value of &, the vectors
can only be balanced by choosing their amplitudes cor-
rectly. If, for the time being, we restrict the word length,
n, to an integral multiple of &, i.e.,, n = ks, then we can
denote the vector amplitudes by the summation

{
AR

8

A; = Aiyrk s i=0:1525”'3k—1 (18)
r=0

and Eq. (16) becomes

k—1 o)

Z A,‘e_ﬂ,” k = 0. (19)

i=0

® k is a prime number
If k is a prime number, the system can be in equilibrium
only if all the vectors are equal in amplitude:

Ay = A1 = +++ = Ap_:. (20)

As an example, if ¥ = 3 and n = 6, the following relation-
ship must hold:

ay+ a3 =a+ as = a + as. (21)

Since the amplitudes are each the sum of two binary ele-
ments, they can take only three possible values in this
example: —2, 0, +2. There is just one word such that
the three amplitudes equal +2: 11111 1; and similarly,
one word such that the amplitudes equal —2: —1 —1 —1
—1 —1 -1. Eight different words exist such that the
three amplitudes equal zero. These ten six-bit words are
presented in Table 4 as a decimal code.

Table 4 6-bit decimal code with spectrum zero at f= 1/37.* The
binary patterns in this alphabet are arranged so that the character
corresponding to the decimal number, d, is the base-2 represen-
tation of the decimal number 7d.

0 000000
1 000111
2 001110
3 010101
4 011100
5 100011
6 101010
7 110001
8 111000
9 111111

* The 0's correspond to the —1I’s of the analysis.

In general, for k£ a prime number and » an integral mul-
tiple of k, the size of the binary alphabets is given by

nlk
Cl:k, %] = S (.
7=0

® L is not a prime number
Suppose that £ = ¢ X d, where ¢ and d are integer factors
of k. Then, solutions of Eq. (19) are given by

Au = Au+vc s (22)

whereu = 0,1,2, -+ -,c — l,andv =1,2,3, - --,d — 1.
The complete alphabet for a given k is the union of the
solutions to Eq. (22) for each possible pair of factors;
e.g., if k = 12, Eq. (22) should be solved under the con-
ditions 6 X 2,4 X 3,3 X 4, and 2 X 6 to find all the
words in the alphabet.

As an example, for k¥ = 4 and n = 8, the following
relationships will hold:

ao+tl4=az+ae
a; + as = a3 + ar.

Ao = A2,
Ay = A,

These expressions are valid here since it is not necessary
that all four vectors be equal in order to balance the sys-
tem. As long as diametrically opposed pairs of vectors are
equal, the system will be in equilibrium.

In the present example each vector can have the values
42,0, or —2. There is one combination of four bits such
that 4 = A; = 42, and one combination such that they
equal —2; four combinations yield zero. Similarly, there
are six combinations of four bits that produce 4; = 4; =
—+2, 0, or —2. Since each of the six combinations for
Ay = A, can be combined with each of the six for 4; = A4,
the alphabet of 8-bit words producing a spectrum zero at
1/4T contains 36 words.

It should be noted here that if the transmission speed
is 3000 bits per second, the frequency spectrum envelope
of this 36-word alphabet is very close to that of the avail-
able frequency bandwidth of the public telephone network
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Figure 6 Channel amplitude response of the public telephone
network of the United Kingdom. (After Cook.9)

in the United Kingdom* as shown in Fig. 6. It can be fur-
ther observed that the code satisfies the relationships,
ao—a2+a4——-a6=0
a—as+as—ar =0,

(23)

while in the STEAN code described earlier, the relation-
ships happen to be

a+ ar+ as+ag =0

a4+ a3+ as + ar = 0. (24)

A very simple transcoder from one code to the other con-
sists of inverting every third, fourth, seventh, and eighth
bit of either code. The maximum frequency contribution
of one alphabet corresponds to the minimum frequency
contribution of the other.

® 1 is not a multiple of k

When 7 is not a multiple of k, alphabets with spectrum
zeros at 1/kT exist, but the techniques for synthesizing
them involve grouping the words into sequences long
enough to satisfy the basic conditions. For instance, if
k = 3 and n = 7, messages constituted of multiples of 3
words will satisfy the conditions if the words are properly
synthesized. We will not discuss the problem of construc-
ting these alphabets in this paper.

® k is a rational fraction
This study was done for & being any integer, but it can
easily be extended to any rational fraction. The extension
relationship is simply given by the fact that if an alphabet
has a zero frequency spectrum at f = 1/kT it will necessarily
have also a zero frequency contribution at f = x/kT if
x and k are relatively prime numbers.

As an example, it is easy to check that for £ = 4 and
x = 3 the relationships 4, = A» and 4; = A3 are precisely
the same as for x = 1 where 4; represents the same sum of
elements in both cases.

More general alphabets can be constructed if an alphabet
is required with preselected zero frequency contribution at
f = 1/k:T, f = 1/k:T, f = 1/k3T. 1t will simply be the
intersection of the alphabets presenting no frequency con-
tribution at £ = 1/k:T, f = 1/k,T, and f = 1/ksT. In Fig.
7 frequency spectrum envelopes corresponding to various
alphabets are shown.

Binary alphabets having

envelope spectrum zero at both f=0 and f=1/kT
Alphabets with zero spectrum amplitude at f = 0 are de-
termined by the following equation:

(25)

Alphabets such that the frequency spectrum is zero at
both f = 0 and f = 1/kT, where k is a prime number, will
be such that each word satisfies simultaneously Eq. (19)
and Eq. (25). That is,

Ai=0, i=01,2 - k—1. (26)

In a special case where n = 2k the alphabets consist
of 2* characters or k information bits. The particular
systems can be characterized by a signal element of the
following nature:

100 ---0—100---0.
S—— S——
k k

In general, if 4; = 0 has C solutions, the alphabet will
consist of C* elements. Reference 3 corresponds to C =
2,k = 2.

Figure 7 Spectrum envelopes of binary alphabets chosen to
satisfy various spectrum characteristics. The alphabet chosen to
produce a zero at f = 1/4T (and consequently, at f = 3/47)
contains 36 characters. The alphabet that produces zeros at both
f = 0andf = 1/4T contains 18 characters, as does the alphabet
with zeros at both f = 1/47 and f = 1/2T. The alphabet giving
zeros at f = 0, f = 1/5T, and £ — 1/2T contains 16 characters.

36 Characters
—— —— —— 18 Characters
=—— = ——= 18 Characters

_______ 16 Characters

e

Amplitude
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Table 5 Number, C(n), of characters in an n-element, m-level
alphabet having spectrum zeros at both f = 0 and f = 1/2T.

C(n)
n m=2 m =3 m=4
4 4 9 16
5 6 21 48
6 9 49 144
7 18 133 528
8 36 361 1936
9 60 963 6820
10 100 2601 24025

If bit detection is used, any burst of k errors in a word
will be detected in these alphabets.

When £ is not a prime number, (k = cd), solutions will
be given by satisfying simultaneously Eq. (22) and the
following equation:

> A4, =0. (27)

Non-binary alphabets

Clearly, the basic theory holds for any digital signal
whether it is binary or not, and the same techniques will
apply to the construction of an m-level alphabet. The only
difference being that the value “permitted” for the a’s
will be denoted as:

—1,0, +1 for m = 3.
-3, —1, 41, +3form = 4
-2, —1,0, +1, 42 for m = 5, etc.

Table 5 gives a comparison of the numbers of characters
which exist within binary, ternary, and quarternary alpha-
bets for n less than and equal to 10. This table concerns
again the case where the spectrum frequency is zero at
both f = 0 and f = 1/2T.

The same technique such as systematic inversion of
every second character could and should be used in some
instances. m = 4 and n = 6 is an example. Naturally, the
size of the alphabet, which corresponds to the number of
code combinations satisfying the basic relationship, in-
creases very rapidly with m.

If transition (zero crossing) within the data signals is
required for clock recovery, the sequence 00- - -0 when m is
odd should be eliminated. For example, 132 distant voice
signal amplitudes can be encoded at an 8 kHz sampling
rate into a 7 element self-clocking 3 level digital code which
will have no frequency contribution at f = 0 and f = 28
kHz.

Three level digit coding such as proposed in references
4, 6 and 7 generate sequences belonging to the same family
(no frequency contribution at both f = 0 and f = 1/27)
and, therefore, satisfy Egs. (2) and (3). In these cases N — 2
bits are encoded into a N-bit message where the two first

and the two last elements are binary digits while the re-
maining N — 4 elements are ternary digits. The interest
here is in the simplicity of these coding schemes and in
their efficiency for long messages. In order to compare
them formally with the fixed-length character alphabets,
one would let m = 3 — (4/N); the size of the alphabets
is 2¥—2 characters.

Conclusions
We have described in this paper a number of alphabet and

sub-alphabet families which can be stored in a computer,
have unique characteristics in their frequency spectra, and
may fit particular requirements. These requirements may
come from the user as, for example, the assignment of
characters with frequencies in the middle of the band to
represent information requiring maximum security; or
they may come from the transmission system as, for exam-
ple, avoiding data contributions at specified frequencies.

The application of conventional “time domain equaliza-
tion” or “‘character detection” schemes is not straight-
forward. Conventional time domain equalization is based
on signal element responses. Here, an individual impulise
response is not a meaningful way to characterize the trans-
mission system. Special algorithms for the decisions that
provide best recognition will have to be developed since
the procedures will be based on whole characters and not
on random combinations of single bits. Another interesting
aspect is that if extra error protection is required the error
control characters must belong to the same alphabet.

More work is still needed to get a better understanding
of these alphabets and where they will be used most ef-
fectively. The purpose of this paper is simply to show the
existence of these families of natural frequency concept
code alphabets.
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