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Computation of Molecular Properties and Structure

Abstract: A discussion of general-purpose computer programs in theoretical chemistry is given, followed by a description of the pro-
cedur'es adopted in one such program written by the authors. Specific details on the use of the program for computing molecular wave
functions and properties for closed-shell linear molecules are presented. The details of a method for computing the axial components
of the static electric polarizability and shielding factor tensors are given. A “Table of Linear Molecule Wave Functions” is available,
on request to the authors, as a supplement to the paper. This tabulation was made with the program described in the paper and is
the most extensive compilation of molecular wave functions currently available.

Introduction

The quantitative characteristics of any chemical process,
with the exception of nuclear phenomena, can in principle
be derived from the masses and charges of the participating
nuclei and electrons, using the laws of quantum mechanics
and statistics. This is true at least to the accuracy currently
achievable in experimental observation. Until the advent
of the electronic computer, the effective utilization of this
powerful theory to provide information on molecular
systems, ab initio, was impossible. The most significant
computation of this precomputer era was that of James
and Coolidge on the hydrogen molecule,! which gave a
molecular dissociation energy 0.02 eV (161 cm™*) smaller
than observed. This result was hailed by chemists as a con-
vincing demonstration of the validity of quantum me-
chanics to solve problems of molecular structure. Apart
from this triumph, and a limited number of less impressive
results (but more difficult computations) on other very
small systems, the literature through the mid 1950°s is
essentially devoid of reliable quantitative predictions of
molecular properties through computation. The applica-
tion of electronic computers to chemical problems initiated
a revolution, the preliminary effects of which are currently
appearing. These include the semiquantitative prediction
of properties of molecules and radicals not accessible to
measurement, detailed analysis of the nature of chemical
bonding, and the determination of energy surfaces for the
study of chemical reactions, all from ab initio computa-
tion, 2
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While work in all these areas dates back 30 or more
years, ab initio computations accurate enough to provide
reliable information belong to the age of the computer.
Even so, nearly all work so far completed on systems more
complex than Hj, has not reached the level of accuracy of
the early calculation of James and Coolidge. However,
on the basis of work currently in progress, and the projected
speeds of future computers, we can confidently predict
that work of comparable accuracy on many hundreds of
molecular systems with up to 20 electrons will be available
by 1975.

To date, the Hs molecule is still the most complex system
on which a convincing demonstration of the validity of
quantum-mechanical principles has been attempted in a
molecular computation. This careful work of Kolos,
Roothaan and Wolniewicz:¢ has extended the calculations
of James and Coolidge to an accuracy such that, as the
work currently stands, a discrepancy between theory and
experiment has been revealed. (The computed dissociation
energy is approximately 3 cm™! larger than the observed,
and exhaustive analysis indicates this to be outside the
range of any errors or corrections considered so far.%) The
situation is potentially as important as the difference be-
tween theory and experiment in the hyperfine structure of
atomic spectra, due to the anomalous magnetic moment
of the electron, which led to important advances in quan-
tum electrodynamics.” This is an excellent example of the
importance of calculations of extremely high accuracy,
even though they are (and will be) restricted to very simple
systems. The explanation of this discrepancy for Hy will
probably turn out to be not particularly profound, al-




though it is certainly very puzzling. Both theoreticians and
experimentalists are carefully analyzing their results in an
attempt to resolve it.5 This level of accuracy is not necessary
for carrying out quantitative calculations of most chemical
data, where the original accuracy of the James and Coolidge
calculation with two less significant figures in the computed
energy is all that is reasonably desired. This is essentially
the limit with which we are concerned in the following
discussion,

® Characteristics of automatic computer programs

As can be seen by perusing the proceedings of confer-
ences on molecular quantum mechanics,?'% real progress
in quantitative theoretical chemistry depends on general-
purpose computer programs, whose broad characteristics
are as follows.

The inpur is at an elemental level, being essentially re-
stricted to the number of nuclei, their charges, and the num-
ber of electrons in the system under study. Currently ex-
isting programs have not reached this minimum but this is
primarily due to restrictions in computer speed. For exam-
ple, we currently specify the geometry of the nuclei and the
electronic configuration and state, because the computation
for a single molecular geometry and state of even a small
molecule (having less than 20 electrons) runs into many
hours of computer time.

The methods are those of quantum mechanics at various
levels of approximation and, again, the accuracy of the
approximations that can be used is a function of computer
speed. Most effort to date has been in the single-configura-
tion, self-consistent field molecular orbital approximation,
based on the assumption that this would form the best
starting point for more accurate procedures which, except
for two-electron systems, have been largely restricted to
various forms of configuration mixing. Great improve-
ments in the levels of approximation implemented can be
expected in the next few years.

The output is the wave function and properties of the
system under study, examples of which will be given later.

The program must have the characteristics of ease of use
(simple input formats) and intelligibility of output, both at
the printed and display (visual) level. They must be versa-
tile, in that they can automatically produce results which
relate to a wide variety of applications. It must be empha-
sized that the scope of the programs, meaning the size of
the systems that can be studied and the accuracy attainable
for a given size, is restricted by the speed of the central
processor and the high-speed memory. (Secondarily it is
restricted by the total configuration of various elements in
the storage hierarchy and the data channels through which
data are transferred into high-speed memory, although we
assume in these discussions that the total configuration is
always adequate to support the central processor.)

The IBM 7094 (2 us access to high-speed core, 10-20 us

floating point arithmetic operations, 32K high-speed
memory, data channels allowing overlap of data trans-
mission with computation) is representative of the class of
computers that were first able to adequately support pro-
grams of the type described, in the sense that reasonably
accurate data can be generated in a reasonable amount of
time. The specific program to be described in this paper was
in fact written for this computer. The point to be made is
that the minimal requirement of general programs in this
field is close to the most capable computers even currently
available. To significantly extend the scope of these pro-
grams requires order-of-magnitude increases in computer
speeds, which should be available in the early 1970’s. The
reason for this requirement is that current techniques for
small systems, which are the best designed so far, involve
an amount of computation which increases as the fourth
or fifth power of the size of the basis set from which the
wave function is constructed. Alternative methods which
do not have this catastrophic dependence of the amount of
computation on the size of the system under study are not
efficient enough for small systems to have been imple-
mented in general programs on the computers available to
date, even though exploratory programs along these lines
have been written. Order-of-magnitude increases in com-
puter speed can require modified algorithms in the imple-
menting of existing techniques and can open up the pos-
sibility of new methods, and work in these directions is
progressing in a number of laboratories. Factors that would
affect computing algorithms are significant changes in the
ratio of the cycle time in the central processor to the trans-
mission rate of information from peripheral (tape, disk or
drum) storage, or the degree of parallelism (amount of
computation that can proceed simultaneously) in the cen-
tral processing unit.

Possibly the most useful development will be the use of
archive storage (characterized by low cost and long access
time) to support a library of molecular wave functions and
properties. A supervisory program would control the gen-
erating and editing of the library and would operate con-
tinuously, automatically producing molecular wave func-
tions and properties to increasing levels of accuracy and in
a systematic way, from input data taken from the library
itself, User intervention could provide input data which
override the automatic sequence, or could request display
of information from the library. Such programs could run
continuously as a back-up job in a time-shared computing
system.

To evaluate the potential impact of more powerful com-
puter programs it is instructive to consider the comparison
of computed results to measured ones. They are competitive
at the levels of ease of obtaining the result, the accuracy of
the result, and the cost. They are complementary to the ex-
tent that one procedure can obtain results inaccessible to
the other. For example, the extremely high accuracy of
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some experimental techniques, notably spectroscopic and
molecular beam, will never be accessible to computation,
whereas the detailed accurate information on charge den-
sity routinely available from computations will probably
continue to be inaccessible to measurement. Computation
and measurement can also be complementary in taking
some results from both to derive new information, as for
example in taking a measured susceptibility with a com-
puted quadrupole moment to derive a rotational magnetic
moment. Another element of this discussion is the fact that
a transient or unstable species is just as amenable to com-
putation as a stable one.

For some properties, computer programs have already
given significantly more information than can be obtained
experimentally. On more powerful computers the balance
between computation and measurement will be pushed
significantly towards computation. Thus, we can anticipate
the existence of more powerful computer programs that
will create a demand for the computers to support them. It
seems quite likely that these programs will prove to be the
most important tool in the investigation of molecular
structures of the next decade.

8 Methods used in this study

Returning to the current situation, the purpose of this pa-
per is to describe in some detail the procedures which we
have incorporated into a computer program that has been
used to significantly advance the level of computation on a
number of molecular systems.!* The description is com-
plete enough for the reader to intelligently use the pro-
gram, which is being distributed by the Quantum Chem-
istry Program Exchange at Indiana University. It also in-
cludes some procedures which we hope will be routinely
incorporated into more advanced programs in the future.
While it falls far short of the ultimate program outlined
above, which has the computer behave as a molecular sys-
tem with output immediately intelligible to a non-specialist
user, it does incorporate some features that will lie at the
heart of such a program. On the basis of a small amount of
input data it can evaluate single-configuration, closed-shell
ground state wave functions, and a limited number of ex-
pectation values computed with these wave functions, for
linear molecules. Intermediate results of a previous calcula-
tion can be called on in a subsequent one to minimize the
amount of computation in the latter, Automatic optimiza-
tion of various parameters in the calculation can be per-
formed without user intervention. Different phases of the
computation are executed by program modules independ-
ent of each other, apart from an interface of data. The
path of the computation through the program modules is
controlled by a short supervisory program easily modified
to expand the number of different types of computation
which the program can perform. (The path through the
program modules for the current computation is set by a
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single input flag.)

The approximation used for wave functions which can
be computed with this program is the self-consistent field
matrix Hartree-Fock procedure,'? which has been elegantly
formulated by Roothaan.'®* Thus, the wave function of an
electronic state of a molecular system is constructed, from
a single configuration of molecular orbitals, as a linear
combination of determinants which is an eigenfunction of
the total electron spin and one of its components, and also
of the covering operations of the symmetry group of the
nuclei. (For the closed-shell case, this is a single deter-
minant.) These molecular orbitals are, in turn, expanded
from basis functions, which in this program are Slater-type
functions having origins on the different nuclei. (These
functions are simple products of a polynomial and
exp(—{r), where r is measured from some nucleus and { is
the so-called orbital exponent of the function.) The ac-
curacy of such wave functions falls far short of the James-
Coolidge accuracy discussed earlier and is a severe short-
coming. (For the total energy the error is of the order
1 to 2 eV per electron pair in the molecule.) However, at
this point in development, Hartree-Fock wave functions
have been useful in many applications and we considered
it worth while to significantly expand the range of such
calculations.

One extension of the method employed in our computer
programs is in the direction of configuration interaction.
In particular, configuration interaction expansions in
terms of natural orbitals!* look very promising and may
be a practical way of achieving James-Coolidge type ac-
curacy for small systems (less than 20 electrons), although
the calculations will need a much faster computer than the
IBM 7090. If these more sophisticated wave functions are
expanded in the space of a set of Slater basis functions,
the major sections of our current program will still be
fundamental to future programs. However, for larger
systems the use of more complicated basis functions and
more direct numerical integration procedures may prove
more efficient.!? In fact, our current work at this laboratory
is directed along such lines.

The most significant feature of the computer program
discussed in this paper is its capacity, measured in terms
of the size of the Slater function basis sets it can handle
efficiently. Organizing the computations required the handl-
ing of long data lists (10° to 107 entries) generated by the
program and stored on magnetic tape. We were able to do
this in a way which essentially completely overlapped
computation in the central processing unit with data flow
between core and magnetic tape. In other words, we were
able to effectively use the computer as an infinite core
machine. This can be done only if the average amount of
computation per word on the data coming to or from tape
through storage buffers in the core (typically assigned capa-
cities of ~500 words) is in excess of the transfer time be-




Table 1 Index to Table of Linear Molecule Wave Functions®.

Basisb Accuracy®  Internuclear Separations? Basis® Accuracy®  Internuclear Separationsd

Molecule Ser (a.u) (a.u) Page Molecule Set (a.u) (a.u) Page

FH BA 4+ P 0.0005 1.7328 1 SrO DZ + P 3.1;3.25;3.4;3,525; 142

LiF DZ+ P 0.012 2.85 2 3.6283*%;3.78;4.1

LiF BA 4+ P 0.0005 2.45;2.65;2.7877;2.8877; 3 HCN DZ 4+ P 0.007  2.0143,2.1791 156
2.9877%,3.2;3.55 HCN BA 4+ P 0.001 1.81287,1.96119;2.00899, 157

BeO BA + P 0.0005 1.8;2.1;2.35;2.4377%; 10 1.76507;1.93430, 2.1091*;
2.5;2.75;3.1;3.8;5.5 1.9343,2,2491; 2.0843,

BF DZ 4+ P 0.010  2.391 19 2.1091;1.81287, 2.38053;

BF BA + P 0.001  2.0;2.1;2.1925;2.391%; 20 2.0143,2.1791; 2.23221,
2.5775;2.77;2.9625 1.96119;2.0843,2.2491;

CcOo DZ + P 0.011 2.132 27 2.00899, 2.60325; 2.23221

Co BA + P 0.001 1.8;1.898;2.015;2,132%; 28 2.38053;2.47026,2.14248
2.249;2.366;2.483 FHF- DZ 4P 0.020 1.9, 1.9,2 0,2.0;1.8, 169

CIH BA 4+ P 0.001 2.4087 35 2.3;1.9,2.2;2.0,2.1;

LiCl DZ + P 0.010  3.7228 36 2.05,2.05;1.85,2.35;

LiCl BA+P 0.003 3.35;3.6;3.66; 3.7228; 37 1.95,2.25;2.05,2.15;
3. 825* 3.91;4.0;4.1; 2.1,2.1%;1.9,2.4; 2.0,
4.55 2.3;2.1,2.2;2.15,2.15;

NaF DZ+P 0.020 3.779 46 2.15,2.25;2.2,2.2;1.75,

NaF BA + P 0.005 3.1;3.56;3.62883*; 47 2.75;1.875,2.625;2.0,2.5;
3.779;4.35 2.1,2.4;2.2,2.3

MgO DZ + P 0.013  2.5;3.0; 3.2; 3.3052%; 52 CO; DZ + P 0.021 2.1944,2.1944 190
3.4;3.6;4.1;5.1 CO; BA+P 0.002  2.0444,2.0444;2.1444, 191

MgO BA 4 P 0.002  3.3052 60 2.1444%;2.1944,2.1944;

AlF DZ + P 0.014 3.45 61 2.2944,2.2944

AlIF BA+P 0.003  2.6;2.85;3.05;3.126*%; 62 NNO DZ 4+ P 0.019°  2.1273,2.2418 195
3. 25 3.45;3.7 NNO BA + P 0.007 1.72311,2.20908;1.91457, 196

Sio DZ 4P 0.014 2.854 69 2.01762;2,11633,1.81586;

Si0 BA + P 0.003  2.304;2.5;2.604;2.75%; 70 1.91457,2.45453;2.1273,
2.854;3.104; 3.404 2.2418*;2.35148,2.01762;

PN DZ 4P 0.013  2.818 77 2.10603, 2.69998; 2.34003,

PN BA 4+ P 0.003  2.268;2.45;2.568,2,67%; 78 2.46598;2.58663,2.21938 .
2.818;3.068; 3.368 OCN- DZ + P 0.021 2.213,2.281 205

NaCl DZ 4P 0.025  4.4609 85 OCN-~ BA + P 0.008  2.213,2.281 206

NaCl BA + P 0.009 3.7;4.3; 4 4609*; 4.485; 86 FCN DZ + P 0.021 2.38109, 2.20156 207
4.6;4.75;5.0 FCN BA 4 P 0.008  2.38109,2.20156 208

KF DZ + P 4.1035 93 SCOo DZ+ P 0.025 2.9442,2.2016 209

KF BA 4+ P 3.5;3.95;4.04; 4.10348*; 94 SCN- DZ + P 0.025 2.95,2.3 210
4.15;4.4;4.8 CICN DZ + P 0.025 3.0784,2.1978 211

CaO DZ 4P 0.020  2.9912;3.1412;3.2912; 101 C.H. DZ 4+ P 0.006  2.002,2.281,2.002 212
3.4412%;3.6412;3,8912; C.H, BA + P 0.001 2.002,2.281,2.002 213
4.1412 LiCCH DZ + P 0.014  3.55,2.2696,2.0088 214

LiBr DZ + P 3.05;3.55;3.8;3.93; 108 LiCCH BA + P 0.006  3.55,2.2696,2.0088 215
4.0655%;4,175; 4.26; FCCH DZ+ P 0.020  2.417,2.2639,1.9899 216
4.4;4.85;5.6 FCCH BA + P 0.008  2.417,2.2639,1.9899 217

KCl DZ+ P 4.3,4,7,5.039%;5.29; 128 CoNy DZ 4P 0.020  2.186,2.608,2.186 218
5.65 C:N, BA + P 0.010  2.186,2.608,2.186 220

NaBr DZ 4 P 4,728 138 CICCH DZ + P 0.025 3.084,2.2885,1.988 222

RLF DZ+ P 4,3653 140 NCCCH DZ + P 0.020  2.1864,2.6116,2.2734, 223

1.9975

a The “Tables of Linear Molecule Wave Functions” is available on request to the authors.

b Depending on the size of the basis set, it is labeled DZ 4+ P or BA + P. [See M. Yoshimine and A. D. McLean, Intern. J. Quantum Chem. (to be published),
Slater Symposium issue]. In the DZ 4 P sets there are two basis functions for each occupied atomic orbital in the separated neutral atoms. The BA + P sets con-
tain a more liberal number of atomic basis functions. Both contain additional functions 1o help represent polarization of the atoms in a molecule.

¢ This column contains an estimate of the amount the total energy of the tabulated functions is above the Hartree-Fock limit.

d Adjacent internuclear separations (for molecules with more than 3 atoms) are given; different nuclear configurations are separated by a semicolon; the nucle-
ar configuration at which the computed total energy is lowest is identified with an asterisk.

tween core and tape. The key to a well-organized computer
program is to arrange the sequence of computation so that
this is the case. Detailed information on the computer
program used to accomplish this data handling is given in
a User Manual to the program.'® The large capacity of this
computer program has been important in allowing easy
evaluation of single-configuration molecular wave functions
to some preset level of accuracy, relative to the Hartree-
Fock limit, with a minimum amount of computation.!?
The following sections of this paper will outline the com-
putational procedures, give precise description of program

input blocks, and present examples of input decks to il-
lustrate the type of computations that can be made and to
provide examples around which subsequent discussion can
be focused. Also included will be a description of some
molecular properties which can be routinely computed by
the program. The program has been rigorously tested and
used extensively by us. Final wave functions for a variety
of systems obtained after varying degrees of optimization,
have been tabulated in a set of “Tables of Linear Molecule
Wave Functions,” which form a supplement to the current
paper.!® Table 1 contains the index to these Tables and is
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presented here both to indicate specifically the contents
and to demonstrate the range of systems on which close to
Hartree-Fock computations can be made. Compilations of
molecular properties evaluated from the wave functions
contained in these Tables are being made. Published results
contain dissociation energies and dipole moments.!? Still
in preparation are complete tables of molecular quadrupole
moments, magnetic susceptibilities and rotational mag-
netic moments,® static electric polarizabilities, 22! nuclear
electric quadrupole coupling constants, and nuclear
electric dipole and quadrupole shielding factors. We would
like to draw attention to a particularly valuable source of
computed data on molecular energies and properties which
includes many results not yet published. This is the com-
prehensive tabulation of Krauss.2!

Program organization and procedures

The program McL-YOSH LINEAR MOLECULE PRO-
GRAM 1! can determine single-configuration, self-con-
sistent field molecular orbital wave functions for closed-
shell electronic states of linear molecular systems. It can
also determine a variety of expectation values of one-elec-
tron operators with these wave functions. In the present
section we will proceed to define the wave function, outline
the computational sequence, and give a discussion of the
procedures used in the computations.

The total 2N-electron, closed-shell molecular wave func-
tion, ¥, is an antisymmetrized product of N doubly occu-
pied molecular orbitals, ¢,, with electrons in any one
orbital having opposed spin. Thus

@10(1)$15(1) dna(1)pnB(1)

$10()$:B(2) -+ na(2PnB(2)

T ) T S
= @

-----------------------------

.............................

$10(2N)$18(2N) - + - dnaZN)pnB2N)| (1)

The molecular orbitals are orthonormal, de¢i¢ ;= 0ij,
and are expanded out of normalized Slater-type functions,
Xp, defined by

xo(n, 1, my K, €)= [(26,)"/ (2n)1) 2
X exp (—re) Vim0 #) . (2)

The coordinates rx, 0x, ¢i are spherical polar coordi-
nates defined with respect to nucleus k as origin. For the
linear systems under discussion here the z-axis (direction
6 = 0) will be along the internuclear line in the direction
of increasing &, which numbers the nuclei sequentially
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along the axis. The integer quantum numbers #n, /, m are
subject to the condition n > [ > |m| > 0 and the param-
eter ¢, is the orbital exponent in this p-th basis function.
The functions Y;.(0, ¢) are normalized complex spherical
harmonics,

_[@+v ¢—|mh]”
Y (6, ¢) = l: 4 U+ |m])':|

X Plzm[ (cos 8)e™ - - -, (3)
where the P;'™! are the associated Legendre functions,

1

— ﬁ (1 . x2)}m|/2

Pl;'"](x
dl—v}-,ml . .
de—m;[(x—l)---- (4)

In the program we have imposed the limits /, |m| < 4;
n FI1<91<k<L12

Each molecular orbital has the symmetry of one of the
irreducible representations of the symmetry group for the
problem, and is expanded from functions of the same sym-
metry type. Thus, for molecules without an inversion cen-
ter the symmetry labels are o, 7, 8, - -+ and the orbitals
are expanded from Slater-type functions with |m| = 0,1, 2,

- respectively. The symmetry of the closed shell elec-
tronic configuration is 'Z. For molecules with an inversion
center the symmetry labels are o, ou, 7y, 74, 8y, 84, * + *; the
orbitals are expanded from linear combinations of Slater-
type functions, x, == x,’, in which x, and x,’ are centered
on symmetrically equivalent nuclei and have the same
quantum numbers and orbital exponents. (The center atom
in a system with an odd number of nuclei is its own equiva-
lent nucleus, so that single Slater functions on this atom
already have the correct symmetry.) In this case, the closed
shell electronic configuration has *=+, symmetry. The molec-
ular orbitals are determined, in terms of the basis functions,
by the self-consistent field procedure of Roothaan,'? using
a Hamiltonian, £, in which the potential energy contains
all Coulombic interactions. Thus, in atomic units,

$=-—g LVt I &

k<t Tkl iyt Vke

+3L (5)

3
i<y Fig

where i, j sum over electrons; k, [ sum over nuclei; Z is a
nuclear charge, r an interparticle distance, and the opera-
tor V2 is the Laplacian.

The computation breaks down into two main parts:
(i) the evaluation of all matrix elements involving members
of the basis set with the components of the Hamiltonian,
and (ii) the use of these matrix elements in applying the



variational principle to determine the set of molecular
orbitals which minimizes the total energy of the system.
The relative amounts of computation involved in each of
these sections depends on the size of the basis set, but even
for the largest sets (~50) which can practically be used
with this program about 80 % of the time is consumed pro-
ducing matrix elements of the electron interaction opera-
tor. In fact, the lack of computers adequate for evaluating
these matrix elements has always been a bottleneck in
molecular computations. The method in this computer
program relies heavily on numerical integration, and the
primary consideration in organizing the sequence of com-
putation is to set up all tables of data needed to complete
the numerical integration in an order which makes it as
efficient as possible.

The elements of the electron interaction matrix have the
form

(pglrs) = /dTIdT2X;(I)Xq(l)xt(z)Xs(z)/rﬂ

- [an U@ D) ®)
where
Up(@) = [ (Dxa(0) /. )

Asterisks in Egs. (6) and (7) denote complex conjugates.
Equation (6) shows that, after integration over the coordi-
nates of electron 1 has been completed, the integration
over electron 2 involves an integrand which is the product
of a potential U,, and basis functions x,* and x,. The
potential U,, at any point is that due to the charge distribu-
tion x,*x, as indicated in Eq. (7). Elements of the one
electron matrices have the same form as Eq. (6) except
that the potential U, is replaced by a one-electron opera-
tor. For linear systems, integration over the axial coordi-
nate, ¢ (the angle between the plane containing an ar-
bitrary point and the internuclear axis and a reference
plane containing the internuclear axis), can be disposed of
trivially in performing both electron 1 and electron 2 in-
tegrations. In general, integration over the remaining two
electron 2 coordinates in Eq. (6) is performed numerically.
(Exceptions are the one-center integrals in which basis
functions indexed by p, g, r, s are all defined relative to a
common nucleus.) The basic decisions taken in deter-
mining the structure of these programs were to (i) order the
matrix elements (pg|rs) so that all nonzero elements for a
common pg occur in a block and (ii) that basis functions
be tabulated at quadrature points taken NPNT at a time,
where NPNT is computed (under program control on
the basis of current input data), so that the tabulations
for all basis functions at this number of points can fit in
the core memory of the computer at the time the numerical
integration is to be carried out. Tables of potentials will be

constructed in an order corresponding to the order of the
matrix elements, the potentials being evaluated NPNT
points at a time, using the same ordering of points as for
the basis function tabulations. Structuring the tables in
this way allows efficient numerical integration, as will be
demonstrated below. Implicit in this structure is the use
of the same quadrature points for all integrals. For a par-
ticular matrix element, contributions from many of the
quadrature points may be negligible and the computation
time employed in performing the integrations can be de-
creased by taking advantage of this.

For efficient computation different sections of the pro-
gram should have essentially the entire core memory availa-
ble. This has been implemented by constructing program
modules which operate on data, available from card input
or set up by previous modules, and in turn generate data
to be made available as printed output or to be used by
succeeding program modules. A short control program
(=200 words) resides permanently in core and directs the
path of the computation through the program modules,
calling them from a program tape for execution. This struc-
ture facilitates extension to new types of molecular com-
putation because the control program needs only simple
changes to execute different paths of computation on the
basis of an input flag. Since the program modules do not
directly communicate but only operate on well-defined
lists of data, new modules can be written by other users
and be incorporated into the program by making the
appropriate change to the control program.

We will now outline the functions of the eleven pro-
gram modules which are currently incorporated into the
program. The reader should keep in mind the basic struc-
ture required for efficient numerical integration, outlined
earlier in this section. Supplementary information con-
taining more details on implementation is available in
Ref. 16.

Module 1 contains the control program and a number of
utility programs needed for the interrupt and recovery
procedures incorporated into the program. The Module 1
programs are brought into core for execution either by
using a bootstrap program contained on a utility card which
is read on-line to initiate computation (if the program is
used in a stand-alone manner), or by a user program call
to a short subroutine, provided by us, which saves the
user computation at its current status on a magnetic tape
and then reads in the Module 1 subroutines. In this latter
case, where the molecular program is called as a sub-
routine, the core is restored after execution of the molecu~
lar program is completed.

Module 2 processes the input data which defines the
basis set, the quadrature parameters and the matrix ele-
ments to be computed. It then determines the quadrature
formula and tabulates the basis functions at the points
required by this formula. NPNT, the number of integration
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points that can be processed at a time in the available core
storage, is determined at this point since it defines the
structure of all tables used in the numerical integration
to be carried out in Module 7). If the current run (as in-
dicated by the value of an input flag, RERUN) is a new one,
then NPNT is made equal to the integer part of C/(B + 3)
where C'is the number of core locations available in Module
7 for the basis function tabulations, and B is the number
of basis functions. The additional 3 in the denominator
is used to allow augmenting of the basis set by up to three
functions in a subsequent run, without having to reset
NPNT. This means that tables of potentials, structured
according to NPNT, can be updated in Module 5 rather
than recomputed in the subsequent run. If the current
run is to process data updated from that used in a previous
run from which the input, wave function output, matrix
elements over the basis set and potential tables were saved,
the value of NPNT is reset to that used in the previous run
provided this is possible. If not, it is set to a new value,
according to the formula given above for a new run using
a value of B equal to the current size of the basis set.
Under these circumstances the potential tables will have
to be recomputed in Module 5 rather than updated.

More explicitly, the ordering of the basis function tabu-
lation is: First basis function evaluated at the first NPNT
integration points, second basis function evaluated at the
first NPNT points, . . ., last basis function evaluated at the
ficst NPNT points. This is followed with similar tables for
the second NPNT integration points, and so on until the
integration points are exhausted. These tables are written
onto magnetic tape. It should be apparent from the way
NPNT is computed that with this structure all basis func-
tion tabulations taken NPNT points at a time can be read
into core in Module 7, where the increment to the accu-
mulated values of the integrals over the basis functions
due to contributions from the current NPNT points is
made.

Our approximation to the integrals given in Eq. (6) in-
volves integrating two of the coordinates of electron 2
numerically. The coordinates chosen are z, along the
molecular axis, and p, perpendicular to it. The two-dimen-
sional quadrature is the direct product of two one-dimen-
sional formulas. The one-dimensional formulas are gener-
ated by breaking up the range of the variable into segments
and obtaining a quadrature formula for each segment as
follows.?2 Suppose that the range of a segment is (a, b), the
variable denoted by z, and we wish to obtain a quadrature
formula that has one-half of the points in the range (a, m),
the remainder in the range (s, 5). Then

/.1 dig(t) = 22 Uig(t:)
z,-: Wif(zi) , (8)

[ @

A. D. McLEAN AND M. YOSHIMINE

where

1
Z¢=Eﬁ~|:—(b—a)+6(b+a)

(b—a)(1 — 62)]
+ g 9
W = Uib — a)1 — B9/2(1 — Bty (10)
B =1b+a— 2m/® — a 1)

and #;, U; are points and weights for integration in the
range (—1, 1). We choose the Gauss-Legendre points and
weights. Equation (9) accomplishes the transformation
from z to ¢ in the desired way, and we have written the
quadrature formula (8) in such a way that the factor dz/dt
which comes from transforming the integral has been in-
corporated into the weight factor W;. Inspection of Eq.
(11) shows that —1 < 8 < 1 and that when 3 takes on
values 0, -+ 1, limiting forms must be taken.
For 8 = 0, which corresponds to b 4 a = 2m,

zi=[(b+a)+ (b — a)t]/2
W; = Us(b — a)/2. 12
For 8 = 1, corresponding to infinite b,

z; = [m( + t) — 2at]/(1 — 1)

W; = 2U(m — a)/(1 — 1), (13)
while for 8 = —1, corresponding to infinite a,

zi = [mQ — £) + 26:1/(1 4 1)

W; = 2U(b — m)/(1 + 1.2 a4

The selection of the segments and the way the segments
are divided for the purpose of mapping onto (—1, 1) are
performed internally by the program unless specified by
the user as input data. In practice, segments should be
chosen in the z-coordinate so that integration is performed
up to and away from nuclei, to avoid loss of accuracy due
to discontinuous derivatives of pertinent basis functions at
the nuclei. The way in which segments are divided offers a
simple way of controlling the distribution of quadrature
points in a way that sensibly reflects the electron distribu-
tion, and the mapping onto (—1, 1) enables use of the
powerful Gauss-Legendre quadrature formulas.

In the two-dimensional direct product formula the
weight corresponding to the point (z;p;) will be the product
W ;W ; where W, and W ; are the weight factors for the points
indexed by i and j on segments in ranges of z and p. From
Eq. (6) we note that at each point in the numerical integra-
tion the values of two basis functions are multiplied to-
gether. If the square root of the weight associated with a
given point is multiplied into the tabulated values of all
basis functions at that point, this will save explicitly mul-
tiplying in the weight factor when carrying out the in-




tegration. This is an important saving, since putting to-
gether the already computed component parts of the in-
tegrands of Eq. (6) and accumulating the results is the
most time consuming stage in the execution of the program.

Also included in Module 2 is the programming for auto-
matic exponent optimization and for saving useful data in
binary form on output tape A6 at the end of the current
run, and reading it back in, if required, on the next run.

If the input data have called for the computation of the
electronic contribution to the electric field and electric
field gradient at the nuclei, then tables of derivatives of
the basis functions evaluated at the various nuclei are also
computed here, since they are required by our method of
computation of the required matrix elements.?®

Module 3 produces tables of required two-center poten-
tials (Eq. (7) for the case that p, ¢ index basis functions
defined with respect to different origins) in a spheroidal
coordinate system defined relative to the two origins. These
tables cannot be used directly in Module 7 in performing
the numerical integration since the points in a spheroidal
grid at which the potentials are computed are not the same
as the integration points of the previous module. The val-
ues of the two-center potentials at the required integration
points will be obtained by interpolation into the tables pro-
duced in Module 3. Hence, the density of the spheroidal
tabulation must be adequate to give the required five-
decimal-place accuracy on performing quadratic interpola-
tion as discussed in the section on Module 5.

The table for a single two-center potential can contain
up to several thousand entries, and these are generated
one at a time and written out onto magnetic tape. They
must be ordered on the tape in the way that they will be
used subsequently. The ordering is that of the first charge
distributions, x,*(1)x(1) of Egs. (6) and (7), which will be
discussed in detail in the section on Module 4 and we defer
the discussion of ordering until then. It is sufficient to note
here that only those potentials needed on the current run
are computed. Thus, if the current run uses data from a
previous run automatically saved on magnetic tape unit
A6 at the end of that run, and NPNT has not been reset
because of augmentation of the basis set, then it will not
be necessary to compute two-center potentials which are
unchanged from the previous run.

The analysis used in deriving formulas to be performed
for the two-center potential involves straightforward use
of the Neumann expansion of 1/r1; and a relationship be-
tween the associated Legendre functions of the first and
second kind.2* We will outline the analysis at a level suffi-
cient to make the formulas intelligible, since the explicit use
of two-center potentials is a departure from the usual evalu-
tion of two-center exchange integrals and has not previously
been well documented.

The coordinate system is illustrated in Fig. 1, and the
relationships between Cartesian, spherical polar and

X, k X 1%
O
3

Zrr
% Ry / X

Y Y

Figure 1 Coordinate systems used in discussion of two-center
potential.

spheroidal coordinate systems are as follows. A point P
having Cartesian coordinates (x, y, zi) relative to center k
and (x, y, zy’) relative to center k', which is a distance
Ry’ along the positive z-axis, has spheroidal coordinates

(¢, 1, ¢) where

£ = (re + r)/ R

1 = (rx — rv')/Ruw’

¢ = tan ~}(y/x). 16)

This same point P has spherical polar coordinates
(re, Or, ¢) relative to k, and (ry’, i, ¢) relative to k'
where ¢ is as above and

re = Ru(§ + n)/2
cosfx = (1 + &n)/(¢ + n)
re’ = Ru(E — n)/2
cosb’ = (—1 + &n)/(€ — ). an

i

The Cartesian coordinates expressed in terms of the
spheroidal are

x = Ruwl[(& — 1M1 — 9)1'* cos ¢/2

R [(8 — (1 — ¢)]'2 sin ¢/2

Ruw(1 + £n)/2

zv = Ru'(— 1 + &n)/2. (18)

The two-center potential to be evaluated is

Il

y

[

Zk

—1 21
NuiNu/y /drlr’il ren exp (—ma — E'ren)

X Y3 (Ond1) Y (6x11) /112
- nan'l’Ulgz’HMIm Vil te s imhy (£2n2)eiM¢, . (19)
In Eq. (19 Nu = [QO™/2m)N"2 Ny =
[(2¢7)*7+1/(2n")1112, and a subscript 1 refers to electron 1
coordinates, 2 to electron 2, with the interelectronic distance
denoted by rys. The function Uy #H1mlin" 1 lm’ 5 1M D (gm0
e*M¢: js a function of the electron 2 coordinates, and when
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multiplied by the factor NN,/ gives the value of the
potential at points in the space of electron 2 due to the
charge distribution of electron 1. In writing Eq. (19) we
have anticipated the result of carrying out the integration
over the coordinate ¢; which yields the exp(iM¢.) de-
pendence in the potential where M = —m -+ m’. It should
benoted that the functions Uy iImlin’ 1im 15" I D( gy,
in which the subscripts and superscripts denote parameters
specifying the potential, are functions only of the absolute
magnitudes |m/|, |m’|, |M].

The first step in performing the integration of Eq. (19)
is to substitute the expressions for the spherical polar co-
ordinates in terms of spheroidal. Thus

’
— T
P A a6

— e—a&—ﬂm (20)

where a = ( + )DRw//2and 8 = (¢ — {Rw'/2, and
dnri it Y 10 (00361) Y (071601)
' DAl L
— (Rkk,/z)n+n—2 Z Ew(ir;_lm;nl m i 1MI)
(i+=pw Ml 5=

gl — D 7 )]‘M'” femimde - (a1)

where in Eq. (21) the indicated numerical coefficients
wg;(milmbin’ U 1m" 11D depend only on the quantum numbers
of the basis functions and are straightforwardly derivable
by expanding the left-hand expression. Our computer
programs perform the laborious algebraic manipulations
involved in making the above expansion. Detailed analysis
shows that the summation on (i -+ ) is in steps of 2 (in-
dicated by the prime) from a starting value of either 0 or 1
depending on whether D'¥! = p 4+’ —2 41+ 1 —
2| M| is even or odd. Now substitute into Eq. (19) dry =
(Riw/8)EL — n])dEidnider and the Neumann expansion of
1 / Fi19.

1 w QL+ D (L — M) |?
re Rkk = »==c - 2 l:(L -+ |M|)‘]
X PP (e 0P (55) PR (n)
X P ()™M @) (22)

In Eq. (22) £« and & are respectively the lesser and greater
of &, & and the functions P}M!, QM1 are associated
Legendre functions of the first and second kinds.?® The
P!MI for argument x in the range —1 < x < 1arethe usual
functions defined in Eq. (4). For argument x in the range
1 < x < oo we simply replace (1 — x%)'M /2 in Eq. (4) by

(x2 — 1)'M12, The Q!M! for argument x in the range
1 < x < oo are given by
0" (x) = (& — DM@ /ax")Qu(x), where

010 =5 /_1 duPy(u)/(L — u) .
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Making the above substitutions and carrying out the
integration over the ¢, coordinate, we have

Hmlin U 1m’l; ¢ | e
R D)

<Rkk> / [ an 3 CEED

x [(L - lMl)!] e

(L+ M)
X P ()02 (&) P () P! (ma)
DIMite i
X ’ Z w(i?;'+ll|m|;n'+lllm|;[M|)

(i+j)—p<D'M h =
gnll& — 1A — 41", (23)

In writing Eq. (23) it will be noted that the (£ — #?) =

(Rix’/2)riri has been absorbed into the polynomial

arising from the basis function product, with appropriate

adjustment of superscripts and summation limits.
Defining the auxiliary functions

pME(g) — %%_4—_ IZB: -/_1 (1 — o)

X P () (24)

and

(nl|m|;n’l'!m'|;§’§"; 57455
) (£)

plMl e i ,
- ’ Z gr}+1llml;n +17 15 |31y
(i p=polMly 5o
i, 1ML
X &b " (—B) (25)

and substituting into Eq. (23) yields

wllmlin Ulm’lee% 0y
Uk’ (52")2)

Ry (Sl L— 1M u
) et

[ 2 (52) / d (" —

% PLM| (E)w(n”ml,n Ulm’lsgr ,lMIL)<£)

+ PM(8) fs T EE -1

)|M|/2e—aE

) 1Ml /2e—aE

X QILMI (E)w(n”ml;n'lllm'hg‘{';|M|L) (C):l . (26)

Equation (26) is already in form suitable for use nu-
merically and, in fact, was so used in a previous computer
program.?® However, in the current program we have car-
ried the analysis further as will be described below. The
auxiliary functions b34(3) are the spherical Bessel functions,
and the two-zero indices can be raised by use of recurrence
relations which do not lose accuracy. The spherical Bessel
functions themselves can be computed extremely rapidly
and accurately using a continued fraction expansion for the
ratios between successive / values for a given argument.?




Continuing with the analysis,*® we note that for an ar-
bitrary function f(x)

/ de f()0" (x)

= | @/ P ) P )

= [ axtet /i) 3 | wrs0)P2G)
which when integrated by parts together with use of

lMl( ) |M|( ) — MI( ) P[LMl(x)

B (—1)“"'“ (L + | M])!
T oGP—1) (L= M

yields
ol () / e/ Ge) P ()

+ P (&) / de () 0" (x)

= (o1 I Al e

x [ a1/ = (A @)°

x [ a0,

Use of the result in Eq. (26) leads to

H vl |; ’;|M|
U}Ez}lm!nl mlite )(£2n2)

=<B§L'>n+n’L; (2L + 1) P lMl(m) IM](Sz)

X /‘E a1/ (¢ — 1) (P ()Y

X/zdy(f— 1)

X PM(y). (27)

Equation (27) is also in a form suitable for numerical
use, and one version of the current program employs it.
The double integral is evaluated numerically for values of
£, in the range 1 to « by operating on tabulated values of
the integrands, in the same range, using a quadrature for-
mula of the Simpson rule type. However, it is possible to
carry the analysis further?® and derive an expression for the
inner f? dy integration in terms of the auxiliary functions

1M|/2€—ayw(nllml;n'l'lm'[;;‘i"; |M[L) (y)

z—1
E,(a,x) = / dui'e™“*h
0

which can be simply evaluated. The reduction of the inner
integral to these auxiliary functions is accomplished by use

of?s
IMl Imle (L+ ]M[)'
(L— ML+ M|+ 1)(y— 1)
% {1 + 1M+ 1) 2

[(Z — [M)(L — [M] - 1)(L+ [M] + 1)]

(L + M| + 2)] (y— l>2 }
X [.2(M| + 1) (M| + 2)] 2 -

and transforming the polynomial in y,
@ lm b’ m/ 158" 1IM1L)(3) jnto a polynomial in (y — 1).
The advantages of making use of the analytic expression
for the inner integral are improved accuracy, and the pos-
sibility of doing the outer f ?2 dx integration with a more
powerful quadrature formula. A second version of the cur-
rent program incorporates this analysis.

The actual quantity tabulated by the computer program
is

(l[ |; 1 '|; ';|M|
Ny N,y Ufghmim Eim st ) (2, 1)

X EM1E — 1)@ — o)) (28)

and the tabulation is made at equal spacing in %, in the
range —1 < 9, < 1 and rin the range 0 < 7 < 1 where

L=I12—-b+ G —Dl/r. (29)

In Eq. (29), b is an adjustable parameter (specified as input
data) which is a scale factor controlling the mapping of £,
onto ¢. Selection of the best value of b gives the highest
possible accuracy in the numerical integration. The factor
(&2 — 1)@ —9?)] M2 in the denominator of the tabulated
quantity (28) is introduced to provide a suitable function
for interpolation. That it is necessary can be seen by con-
sidering the behaviour of U{t!mbinVlm/1ist"s 1M 1(£y near
£ = 1 for odd values of |M|, where the square root of
(&2 — 1) arising from P'I{” I(&,) controls the behaviour of the
function. Since the polynomial expansion in powers of &,
of this square root in the neighborhood of £, = 1 is slowly
convergent it is not amenable to interpolation.

Module 4 generates a list which indexes the matrix ele-
ments, and contains information on how they are to be
computed or whether they are available from a previous
run. The list contains one positive entry for each one-
electron operator in the one-electron matrix elements, and
for each electron 1 charge distribution (see Eq. 6) in the
two-electron matrix elements. These positive entries contain
either the code for a one-electron operator or the indices of
the basis functions contributing to an electron 1 charge
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Table 2 Ordering of charge distributions by symmetry.

First Charge
Distribution® |M|

Second Charge
Distribution®®

go 0 oo
o 1 T
b 2 T
0 oo, T
da 2 w80
o 3 o
1 wo*, 8
88 4 86
0 oo, mm,00
bo 3 sv*,¢0
o 4 80* o
2 ¥ S0t o1
o 5 ¢d
1 wo*,dn%,pd
2o 6 1]
0 00, 7T,00,0h
yo 4 35*,p*,ya
yw 5 ¢5*’77r
3 dr*, 0,y
8 6 D, vd
2 wr* d0*,pr¥,v0
Yo 7 ¥o
1 77*’6‘"—*3¢5*77¢
Ty 8 vY
0 00, TT,80,00,7Y
s |m| values of 0, 1,2, 3 ... are denoted ¢, 7, 8, ¢, - . .

b An asterisk denotes a second charge distribution which need be combined
with the designated first charge distribution for configuration mixing calcula-
tions only.

distribution, whose potential will be needed in order to
evaluate the electron repulsion matrix elements. Each posi-
tive entry is followed by a number (at least one) of negative
entries that contain indices specifying the basis functions
contributing to a charge distribution. The total number of
matrix elements is the number of negative entries, and the
full specifications of a matrix element are given by a nega-
tive entry and the positive entry preceding it in the list.
Since the code for an operator or potential (positive entry)
appears only once, it is clear that all matrix elements that
are to be computed with that operator or potential are
specified by the negative entries immediately following it.
This structure is chosen since it simply allows tabulations
of operators and potentials, made in the same order as the
positive entries, to be used sequentially and with no re-
dundancy.

The matrix elements are in the order of overlap, kinetic
energy, nuclear attraction, electron repulsion, followed by
blocks of one-electron matrix elements corresponding to
one-electron operators which are either selected by input
data or, if this is not the case, are automatically generated
by the program.

Within blocks of a given type, entries are ordered with
respect to the symmetry of the charge distributions involved
in the matrix elements, and within each symmetry are
ordered according to the indexing of the basis functions. In
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the case of C,, (no inversion center), we have taken full
advantage of symmetry simply by breaking the list down
according to the symmetry classifications of the charge
distributions derived from basis function products. The
redundancy which would still remain in this list for D
symmetry has been removed by making additional tests
within each symmetry classification. The removal of any
redundancy due to the molecular symmetry is important
for efficiency, and essential for the algorithms we have used
in constructing supermatrices (Modules 8, 10) to be valid.

The symmetry of a charge distribution is specified by the
values of |m| and |m’| from the two basis functions in-
volved, and the value of |M| = | —m + m’|. In the case of
the one-electron matrix elements the | M| dependence of the
operator must be the same as the | M| dependence of the
charge distribution, while for the two-electron matrix ele-
ments the | M| values of the two-charge distributions must
be the same. Otherwise, the integral is identically zero.
Table 2 lists all possible second charge distributions that
give nonzero matrix elements when combined with a given
first charge distribution. Entries marked with an asterisk
are those which do not need to be computed in obtaining a
single-configuration molecular orbital wave function. They
are needed for calculations involving configuration mixing
and the program was designed to compute them even
though in its current state it does not allow configuration
mixing calculations. Whether they are computed or not is
determined by an input flag, IRFLG, defined in the input
data specifications. The order of the symmetry classifica-
tions of the two-electron matrix elements generated by the
program is simply derived from Table 2 by taking each
first charge distribution with the second distributions in the
order in which they appear in the Table.

For a given symmetry classification there are many ways
to order the nonredundant matrix elements. Qur choice,
which is strongly dependent on the structure of the IBM
7090 computer word, is not of general interest and will not
be given in detail here.®

Each entry in the list is tagged with control information
necessary for the successful execution of later modules, and
to provide efficient computation.

Positive entries are tagged according to which of the
following categories describes the operator or potential
they specify:

(i) Not to be tabulated numerically, since no matrix ele-

ment involving it will be computed numerically.

(ii) Same tabulation used as on previous run, since no
change in the basis functions involved.

(iii) To replace a tabulation generated in previous run, be-
cause of a change in the basis functions involved.

(iv) An added tabulation to those generated in a previous
run because of insertion of a basis function into the
basis set.




Negative entries are tagged according to which, with the
preceding positive entry, of the following categories de-
scribes the specified matrix element:

(i) Not computed numerically, and involves a basis func-

tion changed from the previous run.

(ii)) Not computed numerically, and involves a basis func-
tion inserted into the basis set of the previous run.

(iii) Computed numerically, and involves a basis function
changed from the previous run.

(iv) Computed numerically, and involves a basis function
inserted into the basis set of the previous run.

(v) Same as in previous run, in which it was computed
numerically.

(vi) Same as in previous run, in which it was not computed
numerically.

It will be recalled that the information retained from the
previous run included the tabulations of potentials at the
points required for numerical integration, and the matrix
elements. Consideration of the categories listed above will
show that all information for the updating of the potential
tabulations and matrix element list is listed. We note that
logically, an operator in a one-electron matrix element is
treated in the same way as the potential in a two-electron
matrix element. Also, that a run which does not call on
previously generated potential tabulations and matrix ele-
ments is logically treated as one in which all basis functions
are inserted into a previous basis set of zero occupancy,
i.e. all operators, potentials and matrix elements are tagged
as inserted in terms of the above categories. Runs which
cannot call on previously generated potential tabulations
are those in which NPNT (see Module 2) was reset because
of augmentation of the basis set. Runs which cannot call on
previously generated potential tables or matrix elements
are new runs, or runs which involve different quadrature
points for numerical integration. This latter case is realized,
for example, on changing the internuclear configuration
without any change in the basis set, other than the change
of origin,

In Module 5 tabulations of operators and potentials will
be made in the order of the positive entries, for NPNT
points at a time, the tables being obtained according to the
control information encoded in the positive entries as de-
scribed above. With reference to Module 3, the ordering of
the two-center potential tabulations in spheroidal coordi-
nates is the ordering of the two-center potentials in the
positive entries of the Module 4 list which are tagged as
containing a changed or inserted basis function.

The entries in the list which indexes the matrix elements
over the basis functions are written out onto magnetic tape,
250 at a time. They will later be used sequentially and read
in through a double buffer (500 words of core storage) so
that entries occupying the first buffer can be processed
while the second is being filled and vice versa. Thus, the

list can be processed efficiently using only 500 core locations
even though the total length of the list can typically be of
order 105,

Module 5 constructs tables of operators and potentials
at the integration points selected in Module 2. As for the
basis function tabulations of Module 2, the points are taken
NPNT at a time. For each NPNT points the operators and
potentials that need be tabulated, as determined by the
information in the positive entries of Module 4, are written
out onto magnetic tape. The precise ordering of the records
on magnetic tape is: First operator or potential (whose
tabulation is needed) at first NPNT points, second operator
or potential at first NPNT points, third, etc., until we have
exhausted the positive entries in the Module 4 list. This is
followed by similar tabulations for the next NPNT points,
and so on until all points are exhausted. The tabulations
can be, (i) a copy of a tabulation from the previous run, (ii)
a new two-center potential obtained at the current NPNT
points by interpolation into the table produced in Module
3, (iii) a new one-center potential computed from scratch
in the current module, (iv) an operator whose tabulation
will be made from scratch in this module.

It is of interest at this point to consider the amount of
data being processed in the setting up of these tabulations.
The Module 4 index list is being read in through a 500-word
double buffer, once for each NPNT points. The potential
tabulation from the previous run is being read in through a
2(NPNT)-word double buffer., The two-center potential
tables produced in Module 3 are being read in through a
~10,000-word double buffer, once for each NPNT points.
The potential tabulations being produced are written out
through a 2(NPNT)-word double buffer. For typical runs
involving ~40 basis functions the Module 4 list contains
~2 X 10° entries, the other lists ~2 X 10% entries.
Synchronization of the data transmission is implemented
through two powerful I-O subroutines which facilitate
optimum use of the data channels on the computer.?' These
subroutines are the key to the success of the current pro-
gram. The use of double buffered data transmission (as
described at the end of the section on Module 4) is an ex-
tremely simple way of overlapping data transmission with
computation. In fact, in the current program, essentially
the only stage where it can be I-O bound, is in this Module
when a long string of potential tabulations is being copied
from the old list to the new, uninterrupted by entries that
must be recomputed because of a change or insertion in
the previous basis set.

The analysis of the one-center potential involving Slater
functions is well documented in the literature, and need not
be repeated here. In particular, the analysis given by Wahl,
Cade and Roothaan®® is essentially identical to the one
incorporated into the present program.

Module 6 generates the list of values of matrix elements
in its final form, except that entries corresponding to all
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matrix elements to be computed numerically in the current
run (as encoded in the Module 4 index list) will be set equal
to zero. All other matrix elements will either be copied from
the corresponding list produced in a previous run, or will
be computed by special subroutines in this Module. The
types of matrix elements computed specially are (i) all one-
center integrals, (ii) one-electron, two-center overlap,
kinetic energy and nuclear attraction integrals. These in-
clude the largest matrix elements and are required to more
significant figures than the remainder. This is made possible
by the use of analytical procedures which to a large extent
follow our analysis of the one- and two-center potentials.
The matrix elements to be computed numerically will be
accumulated, into the appropriate entries set to zero in this
Module, by the programs in Module 7 which will complete
the evaluation of matrix elements.

In the execution of this Module, the data lists being
transmitted into core are the index list of Module 4 and the
matrix element list from the previous run. The outgoing
data list is the new matrix element list. All lists are trans-
mitted through double buffers.

The key formulas for the matrix elements computed in
this module are listed below. x(nlmk{) is used to denote a
Slater function and center (Eq. (2)), and different Slater
functions are denoted by using combinations of bars and
primes.

(i) One-center overlap integral.

/drx(nlmkg‘)*x'(n'l'm’kg‘/)
1
Lt :0)
¢+
with N,;N,’ as defined following Eq. (19), and 6 denoting

a Kronecker delta.
(ii) One-center, two-electron integral.

= 0110 _mim’ 0Nt NV
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§+¢ ’
where p(l + I') = 0 if the sum is even, =1 otherwise. The
218 upper limit of the sum is the smaller of the two quantities
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in parentheses and the index L advances in steps of 2. [M|
=|-m+wm|,N=n+n —1,N=n+7# —1,and
the remaining quantities used in Eq. (31) are defined below.

C = 0 _mpm'—mrm’ 05 Op(14 1'4741,0

X FF'FF/[(¢ + §’)N+2(? + 7%

(zg_)n+1/2 Im])
" o™ [(“ DT m 1>']

and similar expressions for F/, F, F’.
Ayl are the expansion coefficients in

P!l'"l (cos 8) P!['",I (cos 6)

(D’

= > QL+ DAy PE
L=p(i+1)+M|

(cos ) (32)

with a similar expansion defining A1151.
The functions B in Eq. (31) are defined by

Bpg(x) = Z (p-:;c‘k)'x
k=0
The result contained in Eq. (31) follows from routine use
of the Laplace expansion of 1/r;, and the orthogonality of
the spherical harmonics.
(iii) Two-center overlap integral.

/drlx(nlmkg‘) * (WU m'k')

’ 1 0
=5 , anNn,l’ <|Rkk'|>n+n + =
= O—mtm™,0

2 2 (i+31=p0"

7
(n+ll|m|;ni+1l’|m'|;0)
X 2wl

i=0
(] . 1 .
X /1 dgg'e ™" /_ dm'e™. (33)

The notation of Eq. (33) is that developed in the dis-
cussion of the two-center potential in Module 3. We note
that the 5 integration of Eq. (33) is, apart from a factor 1/2,
the function 5%(— ) as defined in the two-center potential.
The £ integration gives A4 (), where Af(e) = e~*/a and
ada) = id;—i(a) + e~%, which can be used to recur up
on index i without loss of accuracy.

The remaining integrals are all simply related to the
above three, with the exception of the two-center nuclear
attraction integrals involving a one-center charge distribu-
tion on center k and an operator 1/r;.3% These latter
integrals drop out the analysis of the one-center potential,
since they are in fact the value of the potential at £’ due
to the charge distribution.

We have included these formulas, since they closely re-
flect the way in which they are programmed. In particular,
our result for the two-center overlap integral using the




functions 5%°(—p) is of note, since the same subroutines
developed for the two-center potential are used.

Module 7 completes the evaluation of the matrix elements
by carrying out the numerical integration, for all matrix
elements so tagged in the Module 4 index list, and accumu-
lating the result into the corresponding entries in the matrix
element list set up in Module 6. The integration is carried
out NPNT points at a time. It will be recalled that the value
of NPNT was chosen so that all tabulated basis functions,
which because of the matrix element ordering are needed
nonsequentially, could reside in core storage in Module 7.
Operator and potential tabulations, produced in Module 5,
are used sequentially, and can, therefore, be read through
a double buffer of dimension 2(NPNT) with the potential
table in one buffer being used while the other is read in.

The data flow for the first NPNT points is as follows. The
basis function tabulations are read into core in their en-
tirety. Input data lists read in through double buffers are:
the index list of Module 4 (necessary to determine which
integrals are computed numerically and which basis func-
tions are involved), the potential tabulations of Module 5
which were set up for the same ordering of points as the
basis functions and the same ordering of potentials as in
the index list, and the matrix element list produced in
Module 6 into which the numerically evaluated integrals
will be accumulated. The output data list is a matrix element
list identical in structure to the input list, but with the
accumulation due to the current NPNT points included in
the entries corresponding to numerically evaluated matrix
elements. For the next NPNT points, the basis function
tabulations are read into core, the Module 4 index list is
read again, the reading of the potential tabulations (which
now correspond to the current NPNT points) is continued,
and the input matrix element list is the output list from the
previous NPNT points and vice versa. This procedure is
continued until all integration points are exhausted.

In the case that matrix elements of the operators z/rj
and (3zi — r})/r} are being computed, the entries in the
basis function tables are modified to remove the singulari-
ties in the integrands. The details of this have been reported
elsewhere.33

Module 7 completes the evaluation of the matrix ele-
ments, and the remaining Modules determine a single con-
figuration self-consistent molecular orbital wave function
for the system. This is done in two stages. First, the matrix
elements over the basis set are combined into a supermatrix,
defined in the following discussion. For C,,, symmetry this
is done in Module 8, and for D, in Module 10. Secondly,
the supermatrix is contracted in constructing the Fock
matrix used in the iterative solution of a pseudoeigenvalue
problem which yields the self-consistent molecular orbitals.
For C,,, symmetry this is done in Module 9, and for D in
Module 11. The theory of these procedures has been ex-
pounded at length'®3+% and we will not repeat it here;

rather, we will restrict the discussion to computational
procedures which have not previously been reported.

Modules 8 and 10 construct the one-electron kinetic
energy and nuclear attraction matrices and the two-electron
supermatrix, required for the determination of molecular
orbitals, for C,, and D, symmetry, respectively.

First, it is of interest to outline what is involved. The
elements in the list of matrix elements over the basis func-
tions, which were ordered in a way required for their
efficient computation, are to be combined with certain co-
efficients and placed into positions in a supermatrix ac-
cording to an indexing scheme unrelated to the indexing of
the matrix elements over the basis functions. In other words,
supermatrix elements are linear combinations of more or
less random entries in the list of matrix elements over the
basis functions. Since, for typical cases, both supermatrix
and matrix elements over the basis functions can have > 10°
entries and only ~20,000 words of storage are available to
accomplish the transformation, it is clear that some thought
has to go into making the process efficient.

Either of two approaches can be made. The first approach
would be to read in blocks of the input list (matrix elements
over the basis set) as large as possible at a time, and have
the output list (supermatrix) written out from a double
buffer of modest (~500) size. Elements of the output list
would be determined sequentially by picking up the com-
ponents currently available in the input list resident in core.
After going through the entire output list, the next section
of the input list would be read in and the process repeated.
For this approach a directory of the input list which would
make it easy to pick up a required matrix element is neces-
sary. The ordering of the matrix elements chosen in Module
4 is not particularly well chosen with respect to computing
the position of a specific entry, which is why we chose to
implement the second approach described below. In regard
to execution time the two approaches would be comparable.

The second approach is to have the input list read
through a modest sized (~500) double buffer and to have
the largest possible block of core assigned to the output list
(supermatrix). Elements of the input list are processed
sequentially, each one being placed with the appropriate
factor into as many places as it is required in the section of
supermatrix currently resident in core. After the entire
input list has been read through, the current supermatrix
block will have been completed and the process can be re-
peated for the next supermatrix block. In this procedure the
computation of the location of a specific supermatrix ele-
ment is extremely simple, but care is required because it
only works for a nonredundant list of matrix elements over
the basis functions. The program is structured according to
symmetry classifications, so that in running through the
input list we only run through that section which, by sym-
metry, can make a contribution to the block of the super-
matrix currently resident in core. The actual details of the
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algorithm used for placing a given matrix element over the
basis functions are nontrivial and we will present the results
for the case of C,,, symmetry. The procedures for construct-
ing the D supermatrix are significantly more complicated
but not essentially different and we will present no further
discussion of this case here. It will be noted that in the C,
case, the maximum number of supermatrix elements to
which a given matrix element over the basis functions can
contribute is 3, while in the D, case it is 48. For this
reason, the computer program in Module 8 is I-O bound,
i.e., the total execution time is the time required to read the
matrix element list in its core as many times as there are
blocks of supermatrix, while the Module 10 program is
very much compute bound, i.e., the amount of arithmetic
to be performed on each entry in the matrix element list is
considerably in excess of the average time required to read
it in from tape.

The elements in the supermatrix PBapg, urs for closed shell
molecules are defined by?®

$)\pq,ure = Squ,m - %@)\pq,u” (34)

where
S“qu,urs = (dkdn)_l ZB /sza(l)x’fuﬁ(Z)
X (r12)_1Xq)\a(I)Xsnﬂ(Z)dTldT2; and (35)

*Qkpq.urs =

(d)\du)_l Z % [/X;)\a(l)xtnﬂ(z) (}‘12)_1

a,f8

X X'ruﬁ(l )Xq)\a (2)d7'1dT2

£ [0 () s ra s ). )

In Egs. (34) to (36) p, q, r, s index symmetrized basis
functions A, u, index irreducible representations of the point
group, and ¢, 8 index the subspecies in an irreducible repre-
sentation. d», d, are the degeneracies of the A, u irreducible
representations respectively. Asterisks denote complex
conjugates and 1, 2 label the two electrons. In the case of
C,., symmetry our basis functions are already symmetrized
(have C,, symmetry) and the symmetry index is the axial
quantum number ||

The program of Module 8 stores the supermatrix,
Brpa.urs, i triangular form with row index Apg and column
index urs. Ordering of these indices is to increasing values
of M=|ml|), and for a given value of \, p > g; similarly for
urs, Thus, the rows and columns are in the order 011 021
022031032033 --- 111121 122131132133 - - - . The ele-
ments stored for A\ = p have pg 2> s, i.e., the lower triangle
of the full supermatrix is stored. This is the same ordering
described in detail in Ref. 34. Thus, the elements in the
supermatrix in reading order would start out with indices
011011 021011 021021 022011 022021 022022 - - - .
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The entries in the list of matrix elements over the basis
set, to be placed into appropriate positions in the super-
matrix are

(palrs)r = [xERE@) () xaD) e Dedradis . (37)

These matrix elements will be labelled by an additional
superscript M. or M- depending on whether the axial
dependence in the charge distributions pg, rs of Eq. (37) is
|lm| — |m'}| or |m| + |m’| respectively. If all four m values
represented in Eq. (37) are nonzero, M« 5% M- ; otherwise
they are equal. The subscript I in Eq. (37) is used to desig-
nate that the quantity is an entry in the matrix elements over
the basis set. If we denote the element Py, urs in the super-
matrix by (pq|rs)s, then for the case of C,,, symmetry, Eqs.
(34) to (36) can be rewritten as

(palrs)s = (palrs)f'< — % (prlgs)t'< — % (pslan)1'<
~ 1 (prlas)I™> — % (pslar)T™>. (38)

Equation (38) yields the correct result when M. = M.
as well as for the more general case. The algorithm for
placing a member of a nonredundant list of matrix elements
over basis functions into the supermatrix satisfying Eq. (38)
is given below.

1. The triangular sections of the supermatrix correspond-
ing to A = p are constructed from matrix elements over
basis functions which all have the same |m| value, i.e.,
symmetry classification (A\X|AN). These are placed into the
supermatrix in the following ways:
a)p=gq=randforg=r=zs

— i (pqlrS)?;>—> (pqlrs)s
2 (palrs)1 <— (pglrs)s
b) p = gand/or r = s but not including 1(a) above.

— % (palrs)t™> — (prlas)s
(palrs)1'< — (pglrs)s
— % (palrs)r'< — (prlas)s
Note that in computing the supermatrix address of
(prigs)s it may be necessary to transpose ¢ and s to con-
form with the triangular indexing convention.

¢) p = rand/org = s but not including 1(a) above

1 (palrs)i™> — (palrs)s
1 (palrs)1> — (prlas)s
2 (pqlrs)¥< > (pg|rs)s
b

(palrs)T'<— (prlas)s
d) ¢ = r but not including case 1(a) above

(palrs)i™ — (palrs)s
(palrs)t™ — (pslar)s
(pa|rs)i'<— (pglrs)s
(palrs)i*<— (pslar)s

Bl oojg il oo
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(palrs)t> — (prlas)s
(palrs)7> — (pslar)s
(palrs)T'< — (pg|rs)s
— 3 (palrs)I'<— (prlas)s
— % (palrs)?'<— (pslar)s
2. The rectangular sections of the supermatrix correspond-
ing to A > u are contributed to by matrix elements over the
basis functions of symmetry classifications (A\|up) and
(Aul ). These are placed as follows:
a) Matrix element symmetry classification is (AN uu).

o=t Qo

(pg|rs)r — (pa|rs)s

b) Matrix element symmetry classification is (A Ap) and
p =rand/orq = s.

-1 (pqlrS);rZ> — (prlgs)s
— 1 (palrs)r <— (prlgs)s
¢) Matrix element symmetry classification is (\u|\y) for
all cases not covered by 2(b) above.

— % (palr9)t™ — (prlas)s
— 1 (pg|rs)7'< > (prlas)s

We should emphasize that in the case that M. = M- all
steps listed under 1 and 2 above must be executed. Thus,
for example, in case 1(a) if A = 0 the procedure would
simplify to % (pg|rs)r — (pg|rs)s. In placing an integral,
care must be taken to cover the possible reordering of the
second index pair to compute the proper address in the
supermatrix.

Modules 9 and 11 construct self-consistent field-molecu-
lar orbitals for a closed-shell single configuration wave
function. Excellent discussions of the theory and computa-
tional procedures are available elsewhere!®-3* and need not
be recapitulated here. In fact, our programs for these
modules were adapted from the atomic self-consistent field
program of Roothaan and Bagus®, whose cooperation in
making their program available is gratefully acknowledged.

These modules also produce the expectation values of
the list of one-electron operators supplied as input data or,
in the event that none was supplied, the expectation values
of a standard set of operators. The standard set comprises
those necessary for determining the dipole and quadrupole
moments of the system.

In writing this program we chose to make it completely
independent of the system monitor, This was done partly
to ensure that the program would work on any stand-alone
IBM 7094 without any trouble, thereby avoiding the dis-
tribution problems which plague most large-scale pro-
grams. In addition, on the IBM 7094 it is possible to use
the basic input, output and IO subroutines from the sys-
tem programs within the framework of one’s own control
program with ease, and we considered this to be simpler

and more efficient than working within the framework of
the system monitor. This approach will no longer be satis-
factory for the current generation of computers if one
wishes the program to work in a computer partitioned to
work simultaneously on independent programs.

Input specifications and examples

Details of the input data to the program McL-YOSH
LINEAR MOLECULE PROGRAM 1 will be given in this
section, along with some examples. This will serve the func-
tion of demonstrating the simplicity and flexibility of the
input data, and the level of control that the user has in
specifying program parameters. It will also be complete
enough to guide potential users of the program in the
preparation of input data. Additional details are included
beyond what has appeared in the User’s Manual.'®

The execution time for any run is a function of the size
of the basis set and is essentially proportional to the num-
ber of matrix elements and the number of quadrature
points for numerical integration, at least for typical runs
with this program. A typical time per matrix element av-
eraged over the entire computation is in the range 50 to
100 milliseconds. Thus, computation of a wave function
for a molecule with no inversion center using a basis of
21 ¢ and 9 = functions with 1240 quadrature points takes
approximately 3500 seconds, while if 26 o and 14 = basis
functions and a 1024-point quadrature formula are used
the execution time increases to approximately 11,000 sec-
onds. A repeat calculation in which one basis function is
added or changed, takes approximately 25 percent of the
time to carry out the calculation from scratch.

The format used in presenting the input blocks is that
punched into cards constituting the input data decks.-%
Each card contains three types of information, punched
into the location field {columns 2 to 7), the operation field
(columns 8 to 10) and the data field (columns 12 to 72). The
location field, if present, gives the name of the current input
block and symbolically identifies the address into which the
data commences loading. If not present, the data load
consecutive to the data on the previous card. The operation
field specifies the conversion mode for the storing of the
data. The three entries used in the operation field are:

BCI The data field begins (anywhere in columns 12 to
16) with either a comma or with a count digit N
(N =0,1, ---9) followed by a comma. The data
words begin immediately following the comma. If
N is present, N'words (each of six BCD characters)
will be set into storage; if N is absent, 10 such words
will be set. (N = Ois interpreted as N = 1.)

OCT The data words consist of signed or unsigned octal
integers separated by commas. The first of these
begins anywhere within columns 12 to 16, and the
last is signalled by a following blank column.

221

COMPUTING MOLECULAR WAVE FUNCTIONS




222

DEC Data words are separated by commas; the first of
these begins anywhere within columns 12 to 16, and
the last one is signalled by a following blank col-
umn. Each word can be any one of (1) a signed or
unsigned decimal integer (no decimal point); such
an integer is stored as a binary integer, but may
have an absolute value no greater than 2% — 1; any
exceeding this value will be left unstored, as will all
subsequent data on the same card; (2) signed or un-
signed decimal numbers written with a decimal
point, and optionally followed by a power of 10
scaling factor. Such a number is converted to a
binary floating point word, which may not exceed
the approximate range 10~ to 10%, The entries
1.234E—1, 0.1234, 0.01234E1 would all be con-
verted to the same floating point number, for
example.

The key input flag determining the nature of the current
computation is RERUN. The meaning of this flag will be
described first and, for each value that it can take on, a
listing of the remaining mandatory and optional input data
blocks will be given. These remaining data blocks will then
be described in an order which corresponds to the type of
input. The program reads the data in two sections, one in
Module 2 before the integral computation and the other in
Module 8 or 10 before the construction of the supermatrix.
The first data essentially contain the nuclear geometry, the
basis set and a list of one-electron operators, while the
second essentially contain the atomic numbers of the nuclei,
the electron configuration and scF trial vectors. The two
sections of input are separated by a blank card as can be
seen in the examples of Tables 3-6 which can be used to
illustrate and clarify the following descriptions. The di-
mension, given in the description of each input block, is the
maximum number of memory locations assigned to the
designated block and is, therefore, a limitation on the pro-
gram. The dimensions chosen essentially place no limitation
on calculations practicable (from the point of view of
execution time) on the IBM 7094, Actual information to
be punched into input cards is shown boxed.

RERUN Dimension 1. Required input on all runs.

RERUN DEC X

Xis an integer 0 < X < 7 and its possible values have
the following meanings.

X = 0 denotes a new run, using no information from
previous runs. The wave function and one-electron expecta-
tion values called for by the input data will be computed.
Intermediate results (matrix elements over the Slater basis,
and potentials of charge distributions arising from products
of Slater functions) together with the computed wave func-
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tion and input data that generated it are stored in a file on
tape unit A6 at the completion of the run,

Mandatory input blocks are TITLE, SERNO, RERUN, RKK,
NSF, TSF, ATMNO, NCOB, NZCOE. Optional input blocks are
SYM, IRFLG, ZINTP, RINTP, OEOP, CODEW, SFOPT, CWOPT,
scrcw. Input blocks not explicitly listed above are not
allowed. Examples are given in Tables 3 and 4.

X = 1 computes a wave function and expectation values
using a basis set which is changed from that used for a
previous computation in a way specified by the input deck.
The output tape, A6, from the previous computation is re-
mounted and becomes an input tape for this run. Use of
this type of run can lead to considerable saving of time
since, for most cases, no significant time consuming compu-
tation which was also needed for the previous run is re-
peated. At the completion of the run, a file on the A6 output
tape is written (over the previous one unless a new tape
was mounted) which, for future runs, is the same as would
have been generated in a RERUN = 0 computation with the
current basis set. This tape can, therefore, be used as an
input tape on future computations with RERUN > 0.

Mandatory input blocks are TITLE, SERNO, RERUN, Op-
tional input blocks are CSF, ASF, OEOP, CODEW, SFOPT,
CWOPT, ATMNO, NCOB, NZCOE, SCFCW. Input blocks not
explicitly listed are not allowed.

Examples are given in Tables 3 and 4.

X = 2 is the same as X = 1 except that additional
integrals between Slater functions, not needed for a single
configuration SCF calculation, will be computed if this was
not the case previously. Details of this are given in the dis-
cussion of Module 4 in a previous section of the paper.

X = 3is used to recompute a wave function with the
same basis set as a previous run whose output tape is re-
mounted on either tape drive A5 or A6. Such runs may be
necessary in case that the convergence level reached in a
previous computation was unsatisfactory. At completion
of the run an A6 output tape is generated which, for future
runs, is the same as would have been generated in a RERUN
= 0 computation with the current basis set. The result of a
RERUN = 3 computation could also be achieved, with
longer execution time, by a RERUN = 1 with no AsF or
csF input blocks. This latter procedure is more satisfactory
if one-electron expectation values are required, since the
OEOP input block is not allowed if RERUN = 3.

Mandatory input blocks are TITLE, SERNO, RERUN. Op-
tional input blocks are NzcoE, scFcw, copew, All input
blocks not explicitly listed are not allowed.

X = 4 is used to compute expectation values of one-
electron operators with a previously computed wave func-
tion available as an input tape on either tape drive A5 or
A6 (see copew input block). Such runs will be necessary in
case that matrix elements of the operators, which are com-
puted by numerical integration, are needed to higher accu-
racy than is obtainable with the integration grids used for




Table 3 Input data decks for generating C.H, (DZ + P) wave
function.»

Table 5 Input data decks for computing expectation values of
one-electron operators with FCN (BA + P) wave function.

TITLE BCT, C2H2 DZ BASIS SET
SERNO DEC 1661

RERUN DEC 0

SYM DEC 1

RKK DEC  4,2.002,2.281,2.002

NSF DEC 9,3

TSF DEC  1,0,1,0.97493,1,0,1,1.2029,2,1,1,1.72338,1,0,2,5.2309
DEC  1,0,2,7.96897,2,0,2,1.16782,2,0,2,1.82031,2,1,2,1.25572
DEC  2,1,2,2.72625,2,1,1,0.7901,2,1,2,1.25572,2,1,2,2. 72625

RINTP DEC —116
ZINTP DEC  —1,16,8,8,8,8,8,8,16
QEOP OCT  21,401000,401101,401104,401102,401103,401202,401203
OCT  403202,403203,404102,404103,404202,404203
OCT  412001,412004,412002,412003
(Blank card)
ATMNO DEC 1.0,6.0,6.0,1.0
NCOB DEC 32,1
NZCOE DEC 0,1,4,1.,0,2,7.1.,0,3,1,--.3,0,3,2,.7,0,3,8,— .3,1,1,4,1.
DEC 1,2,2,.5,1,2,7,.4,2,1,2,1.
(Blank card)
TITLE BCT, C2H2 DZ + 3D BASIS SET
SERNO DEC 1661
RERUN DEC 1
ASF DEC  0,3,3,2,1,1.65,0,9,3,2,1,1.99175,1,1,3,2,1,2. 31071
DEC  1,3,3,2,2,2.13462
(2 blank cards)
TITLE BCI , C2H2 DZ + P BASIS SET
SERNO DEC 1661
RERUN DEC 1
ASF DEC 0,11,4,3,2,1.86851,1,5,4,3,2,2.14558
(2 blank cards)

a The C,H, (DZ 4- P) wave function generated by the third of these input
decks is on page 212 of the “Tables of Linear Molecule Wave Functions,”
which supplements this paper. (Ref. 18.)

Table 4 Input data decks for generating HCN (DZ 4 P) wave
function.»

TITLE BCI , HCN DZ BASIS SET
SERNO DEC
RERUN DEC 0
RKK DEC 3,2.0143,2.1791
NSF DEC 15,5
TSF DEC  1,0,1,0.97155,1,0,1,1.23206,2,1,1,1.37568,1,0,2,5.2309
DEC 1,0,2,7.96897,2,0,2,1.16782,2,0,2,1.82031,2,1,2,1.25572
DEC 2,1,2,2.72625,1,0,3,6.11863,1,0,3,3.93843,2,0,3,1.39327
DEC  2,0,3,2.22157,2,1,3,1.50585,2,1,3,3,26741,2,1,1,0.79006
DEC  2,1,2,1.25572,2,1,2,2.72625,2,1,3,1 .50585,2,1,3,3. 26741
RINTP DEC —1,16
ZINTP DEC —1,16,8,8,8,8,16
(Blank card)
ATMNO DEC 1.0,6.0,7.0
NCOB DEC 51
NZCOE DEC 0,1,10,.8,0,1,11,.2,0,2,4,.84,0,2,5,.16,0,3,10,— .28
DEC  03,12,.3,0,3,13,.76,0,4,1,.4,0,4,7,.8,0,4,8,— .8
DEC 0,5,13,.7,0,5,14,.7,1,1,2,.3,1,1,4,.7,1,1,5,.2
(Blank card)
TITLE BCI , HCN DZ + 3D BASIS SET
SERNO DEC 167
RERUN DEC 1
ASF DEC  0,3,3,2,1,1.7,0,9,3,2,2,2,27993,0,15,3,2,3,2.00387
DEC 1,1,3,2,1,2.2,1,3,3,2,2,2,27222,1,5,3,2,3,2.18731
(2 blank cards)
TITLE BCI, HCN DZ + P BASIS SET
SERNO DEC 167
RERUN DEC 1
ASF DEC  0,11,4,3,2,1.69214,0,18,4,3,3,2,2.7,1,5,4,3,2,2.24432
DEC 1,8,4,3,3,2.53488
(2 blank cards)
TITLE BCT, HCN DZ + P BASIS SET, CHANGE GEOMETRY
SERNO DEC 167
RERUN DEC 5
RKK DEC  3,2.2143,2.3791
(2 blank cards)

s The HCN (DZ -+ P) wave function generated by the third of these input
decks is on page 156 of the “Tables of Linear Molecule Wave Functions”
which supplements this paper. (Ref. 18.)

TITLE BCI, FCN BA + P WAVE FUNCTION RERUN 41

SERNO DEC 9670

RERUN DEC 4

RKK DEC 3,2.38109,2.20156

CODEW DEC 0,0,0,0,0,0,88

OEOP OCT 14,401000,401101,401102,401103,401202,403102,403202

OCT 404102,404202,412001,412002,412003

(2 blank cards)

TITLE BCI, FCN BA + P WAVE FUNCTION RERUN 4-2

SERNO DEC 9670

RERUN DEC 4

RKK DEC 3,2.38109,2.20156

RINTP DEC —1,28

ZINTP DEC —1,28,14,14,14,14,28

OEOP OCT  7,401000,413001,413002,413003,414001,414002,414003
(2 blank cards)

the wave function computation, Computation of the elec-
tronic component of the electric field and electric field
gradient at the nuclei must be done with RERUN = 4 or
RERUN = 7 since the required matrix elements cannot be
evaluated on any other type of run.

Mandatory input blocks are TITLE, SERNO, RERUN, RKK,
oEoP. Optional input blocks are ZINTP, RINTP, CODEW. All
blocks not explicitly listed are not allowed.

Examples are given in Table 5.

X = 5is used to compute a wave function and expecta-
tion values with the same basis set as used in a previous
run, but with a different quadrature formula. The quadra-
ture formula can be for the same or for different nuclear
geometry. This is the standard type of run for generating
points on a potential surface with a basis set generated for
a previous point. The output tape generated on A6 for the
previous point is input to the RERUN = 5 run and must be
mounted on A6.

Mandatory input blocks are TITLE, SERNO, RERUN, RKK.
Optional input blocks are ZINTP, RINTP, OEOP, SFOPT,
CWOPT, ATMNO, NCOB, NZCOE, SCFCW, CODEW. Input blocks
not explicitly listed are not allowed.

X = 61is used as a preliminary run to a RERUN = 7, and
is only allowed for a run of C,, symmetry, It operates in
exactly the same way as a RERUN = 3 except that it termi-
nates after the construction of the C,, supermatrix in
Module 8.

Mandatory input blocks are TITLE, SERNO, RERUN. No
other input is allowed. An example is given in Table 6.

X = 7 is designed for the calculation of the axial com-
ponents of the molecular polarizability tensor. It is re-
stricted to C,, symmetry and must follow immediately
after a run which computes the two-electron supermatrix.
This could be a RerUN = 0, 1, 2, 3, 5, 6. (To do calculations
on molecules of D, ; symmetry, the run must be set up as if
the molecule had the lower C,, symmetry.) The run is set
up as if there were two additional nuclei symmetrically
placed with respect to the center of mass on the molecular
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Table 6 Input data decks for calculating molecular polarizabili-
ties and nuclear electric shielding factors with HCN (BA+P)
wave function.

TITLE BCI, HCN BA+P WAVE FUNCTION POLARIZABILITY
CALCULATION
SERNO DEC 1670
RERUN DEC 6
(2 blank cards)
TITLE BCI, HCN BA+P WAVE FUNCTION POLARIZABILITY
CALCULATION
SERNO DEC 1670
RERUN DEC 7
RKK DEC  5,16.93116,2.0143,2.1791,18.87544
RINTP DEC —~1,32
ZINTP OCT  6,10,777777777777,0
DEC  —6.0,32,0,16.93116,15.93116
DEC  32,16.93116,18.94546,17.93831
DEC  32,18.94546,21.12456,20.03501
DEC  32,21.12456,50.0,22.12456,8,40.0
OCT 377777777171
DEC 46.0
QEOP OCT 22,1000,0,2101,2102,2103,2104,2105,403102,403202,404202
OCT  413001,413002,413003,413004,414001,414002,414003,414004
(blank card)
ATMNO DEC 0,1.0,6.,7.,0
POLCH DEC 7,3.06884,0,0
DEC 0,2.,0,—2.,2.,2,,—2.,—2.,—~2.,2,,2,,~2,
SCFCW  DEC 30,0,0,0,0,0,0,5E~7,0,0,1.0E—5
(blank card)

nuclei. A series of molecular wave functions will be calcu-
lated for different charges placed at the positions of these
false nuclei, and the polarizabilities are computed from
them as described later in this paper.

Mandatory input blocks are TITLE, SERNO, RERUN, RKK,
ZINTP, OEOP, ATMNO, POLCH. Optional input blocks RINTP,
CODEW, SCFCW, NZCOE. All input blocks not explicitly listed
above are not allowed.

TITLE Dimension = 10. Required input on all runs.

TITLE BCI , ANY TITLE TO APPEAR ON
EACH OUTPUT PAGE — column 72.

This card enables simple identification of each run by
heading each output page with a title provided by the user
of the program.

SERNO Dimension = 1, Required input on all runs.

SERNO DEC X

X is the serial number of the current sequence of runs.
Any run in which RERUN 5% 0, which takes information
from a tape, A5 or A6 (see CODEW), written at the end of a
previous run, must have the same SErRNO entry as the previ-
ous run. The sErRNo entry in the input deck is always checked
against that saved from the previous run, and if they do
not match the program halts on an alarm.
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SYM Dimension = 1. Required input for D, ; sym-
metry.

SYM DEC X

X = 0 denotes C,, symmetry
X = 1 denotes D; symmetry

If this input card is not present sym is automatically set to
zero. The format of input blocks NsF, TSF, ASF, CSF, NZCOE
depends on the value of sym.
syM = 1 is not allowed for RERUN = 6, 7.

IRFLG Dimension = 1.

IRFLG DEC X

X = 0 implies that the index list generated in Module 4
will contain only matrix elements needed for single-con-
figuration calculations.
X = 1 implies that the index list will contain all possible
matrix elements over the basis set.

IRFLG is set internally to zero; hence this card is needed
only if the internally set value is to be overwritten.

The following input blocks NSF, TSF, CSF, ASF are used to
specify the basis set.

NSF Dimension = 5. Required input if RERUN = 0.

NSF DEC n,, nx, 15, 2g, 1y

The entries of the NsF input block are automatically set
to zero by the program, and will be overwritten by the
entries punched into the input card.

For C,,, the entries are the number of basis functions of
the indicated symmetry type.

For D, the entries are the number of nonredundant
basis functions of the indicated symmetry type, i.e., basis
functions on nuclei which are equivalent to one previously
counted are not included.

TSF Dimension 300. Required input if RERUN = 0.

TSF DEC (n, Lk, {)s

(n, L, k, $)s

Each basis function is defined by four entries n, [, k, {,
as in Eq. (2). Basis functions are ordered to increasing |m|
values, i.e. all ¢ before all 7 before all 8, etc. The position




in which they appear in this table is the index of the basis
function. For C,, an entry into this input block is made
for each basis function. For D, ;, we include only entries
corresponding to the nonequivalent nuclei, i.e., the ones
counted in NsF. (This truncated table is expanded internally
to include all basis functions.)

The maximum number of basis functions is 75. In the
case of D, this applies to the expanded table.

CSF Dimension = 92. Optional input if RERUN = 1, 2.

CSF DEC (jm|,p,n, Lk, {)

This input block allows the changing of basis functions.
Each changed basis function is specified by six entries. The
first two, |m| and p, specify the index of the basis function
to be changed, namely the p-th function in the block of
symmetry type specified by |m|. The new parameters of
this basis function are given by the remaining four entries,
n Lk, ¢

For both C,, and D, the indexing refers to that in the
input block TsF.

The ordering of entries in csF must be to increasing |m!,
and for a given |m| value to increasing p.

The maximum number of changed functions in a run is
15.

ASF Dimension 92. Optional input if RERUN = 1, 2.

ASF DEC (£|m|,p,n Lk, )

This input block allows the adding of basis functions.
Each added basis function is specified by six entries. The
first two, |m| and p, specify the basis function in the previ-
ous basis set relative to which an insertion is to be made.
— |m| means insert before the p-th basis function in the
block of symmetry |m]; + |m| means insert after. A special
case is when a symmetry was previously unoccupied. This is
indicated by setting p = —0 for the basis function which
populates a previously unoccupied symmetry. If more than
one added function has the same = |m/|, p value then the
functions are added in the order in which they appear in
this input block. The parameters of the added basis function
are given by the remaining four entries n, [, k, ¢.

For both C,,, and D, the indexing refers to that in the
input block TsF, which will be augmented by the program,
At the completion of this run TsF will look as if the run had
been made from scratch, and a subsequent addition must
be made relative to the indexing of TsF at the end of this
run. Tables 3 and 4 give examples.

The ordering of entries in AsF must be to increasing |m|;
for a given |m| negative entries appear before positive; for
a given :t]m[ entries are in the order of increasing p.

The maximum number of added functions in a run is 15.
SFOPT Dimension = 60. Optional input on any run ex-
cept RERUN = 3,4, 6, 7.

SFOPT DEC (|m|, p, inc)

This input block specifies the basis functions which are
to be optimized with respect to their orbital exponent. Each
basis function to be optimized is designated by three entries
in which the first two, |m| and p (integers), identify the
basis function and the third, inc (floating point), is the
increment by which the orbital exponent is changed in per-
forming the optimization.

If this input deck is present in a RERUN = 1, 2 deck in
which there are added Slater functions specified in the input
block asF, then the value of p in this input deck must be the
serial number after the added functions have been inserted
into TSF, as described in ASF.

If more than one Slater function is specified in this input,
then one-dimensional optimizations are done with respect
to the orbital exponents in the order in which they appear
in the input block sFopT. The procedure for a single optimi-
zation is as follows. The initial orbital exponent is changed
in steps of inc until three energies span a minimum. Assum-
ing a functional relationship between energy and orbital
exponent, specified by a code word in the input block
CcwoPT, the value of the exponent corresponding to mini-
mum energy is computed. A computation is done for this
value of the exponent, and then the procedure is repeated
for the next basis function specified in sFopT.

The optimization procedure for a given exponent is
terminated under any of the following conditions:

1. Five computations are done and a minimum has not yet
been spanned. The lowest energy computation of the five
will be selected, ¢ reset to the value appropriate to that
computation; and optimization with respect to the next
Slater function listed in SFOPT is commenced.

2. The first run attempted, in optimizing an exponent, fails.
The computation, including all optimization not yet
attempted, is terminated.

3. A run, subsequent to the first, in optimizing an exponent
fails. The exponent is reset to the value which gave the
lowest energy in the previous successful runs performed
in optimizing this exponent and that computation re-
peated. Optimization with respect to the next basis
function listed in sFopT is then commenced.

4, After three successful runs for a given exponent, energy
differences between runs are computed. If these differ-
ences are less than a threshhold, AE., described in the
input block cwopT, then the same procedure is followed
as in (3) above.
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The maximum number of functions that can be listed in
this input block is 20.
CWOPT Dimension = 5. Optional input on any run
containing the srFopT input block.

CWOPT DEC Curve type, Eqst, AE;, Cony, AE,

This input block contains the code word for the func-
tional relation between E and ¢ assumed in the optimization
circuit, and the criteria to be used to establish whether a
particular run failed or not, for purposes of optimization.

The entries in cCWOPT are set as follows. If explicitly given
in the input block above then the value given is used. If not,
then either the last value used (in case that RERUN # 0) or
a standard value (in case that RERUN = 0) is set for the
parameter.

Curve type = 0 Assumed relation between ¢ and E is
E = A+ Bt + C¢?where 4, B, C are
constants determined by the program,

Curve type = 1 Assumed relation between ¢ and E is E
= A+ B{ + C/¢ where 4, B, C are
constants determined by the program.

E. Estimated total energy for the state be-
ing computed. It is used in combination
with the next entry AE; to determine
whether the current computation has
produced an acceptable result (i.e., has
not converged on different state). If E.;
= 0 this test is bypassed.

AEI If ]Ecurrent computation — est‘ < AEI then
the run is successful. Otherwise unsuc-
cessful. The test is not applied if E.sy =
0.

Con; If the convergence threshhold achieved
in the scF computation (and available as
output from the scr program) is less than
Con,, then the run is successful. If Con;
is zero, then this test is made against a
standard of 0.0001.

AE, After three successful runs with a given
exponent, the differences between the
one with lowest energy and the others
are computed. If they are <AEFE,, then
we recompute the energy and wave func-
tion for the case that yielded the lowest
energy, and go on to the next Slater
function to be optimized. If AE;, = 0,
then this test is made against a standard
value of 0.00005.

The next three input blocks RKK, zINTP and RINTP
specify the nuclear geometry and the quadrature formula
to be used.

A. D. MCLEAN AND M. YOSHIMINE

RKK. Dimension 12. Required input for RERUN = 0, 4,
517

RKK DEC N, Rys, Rss, -+ Ry_1y

N = Number of nuclei (integer). In the case of RERUN = 7
it is the number of nuclei in the molecule +2 corre-
sponding to the positions where point charges will be
introduced for polarizability and shielding calcula-
tions.

Ry, Ry - -+ are the internuclear distances (floating point)
between adjacent nuclei, counting left to right. If
RERUN = 7, positions 1 and N are located at distances
=R relative to the center of mass of the molecular
nuclei which is given in input block PoLcH.

For D, molecules all nuclei are counted in N, and
all adjacent internuclear distances are entered. The
maximum value of N is 12,

ZINTP Dimension = 60. Required input for RERUN =
0, 4, 5, 7 if automatic setting by program is not
satisfactory (see format 2 below). Not allowed
on other runs.

There are three acceptable input formats for ZINTP,

distinguished by the first word in the block.

Format 1. First word of block > 0.

ZINTP DEC N (n,a, b, m)

Following the discussion of Module 2 in a previous
section of the paper, N (integer) is the number of segments
into which the z integration is broken. Each segment is
specified by four entries. The first, # (integer), is the number
of quadrature points for the segment. The next three, a, b
and m (floating point numbers), have the meaning indi-
cated in the Module 2 discussion. (If one of the limits is
infinite it is punched into an input card with an OCT rather
than a DEC format: OCT 777777777777 codes — <,
while OCT 377777777777 codes 4+ «.) Values of # are re-
stricted t0 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 64.

The first nucleus (or left hand position of a perturbing
charge for RERUN = 7) corresponds to z = 0. Format 1
should always be used for RerUN = 7 (see Table 6) since
the other two formats are unsatisfactory. Format 1 is the
most flexible of the three, giving the user great flexibility in
setting up the quadrature points.

Format 2 is elected in RERUN = 0, 4, 5 if there is no input
card present, or if the first word on the input card is zero. In
this case input will be set up internally as if format 1 had
been used. The segments will be automatically chosen by
the program. The first segment has n = 20,4 = —w, b
= 0,m = —1.0and thelasthasn = 20,a = Ry,b = =,




m = Ry -+ 1.0 where Ry is the value of z at the rightmost
nucleus. For distances less than 3.0, each adjacent inter-
nuclear separation is broken up into two equal segments
each having n = 10, the first segment has m positioned 0.4
of the segment length from a and the second segment has
m positioned 0.4 of the segment length from 5. For distances
greater than or equal to 3.0, each adjacent internuclear
separation is broken into three segments, each with n = 10,
the first and third covering distances of 1.0 from the two
nuclei with m values positioned 0.4 from each nucleus. The
remaining segment covers the rest of the internuclear
separation with m positioned in the center. The program
generates the segments in order of increasing z, i.e., from
left to right across the range — « to «,

This method of selecting segments partially reflects our
experience and is designed to provide a conservative quad-
rature formula for molecules containing first row atoms.

Format 3. First word of block is —1.

ZINTP DEC _1, ny, N2, 03, *

Format 3 produces the same result as format 2 except
that the number of points for each segment is explicitly
given by the entries after the first in the above input block.
Thus, the segments are those selected in format 2, in order
of increasing z, with the number of points for each segment
given by ny, ne, n3 - -

It must be noted that for a large number of nuclei, the
dimension of zINTP can be overflowed if format 2 or 3 is
selected. If this is the case, format 1 must be used in a way
that does not use more than 60 words.

RINTP Dimension 60. Required input for RERUN = 0,
4, 5, 7 if automatic setting by program is not
satisfactory (see format 2 below). As with
ZINTP there are three acceptable formats for
the input block RINTP.

Format 1. First word of block > 0.

RINTP DEC N (n,a,b,m)

The entries in this input block have the same meaning as
for ziNTp, except that the integration variable p is being
covered rather than z.

Format 2. Same meaning as in ZINTP, A single segment
will be generated with n = 20,a = 0,5 = oo, m = 1.0.

Format 3. First word of block is —1.

RINTP DEC —1,m

Same meaning as in zINTP. The single segment auto-
matically selected is spanned with #; points.
OEOP Dimension = 21. Optional input on all runs ex-
cept RERUN = 3, 6 where it is not allowed.

OEOP OCT N, Op,, Ops, Ops, - -+ Opy

This input block defines the one-electron operators
whose matrix elements will be computed. N (octal integer)
is the number of operators, and Op;, Op: - - - (octal inte-
gers) are code words defining the operators, one per opera-
tor. These code words are right-adjusted integers with the
format MFOONKK. M specifies the axial dependence,
exp (iM¢), of the operator and F specifies the manner of
computation. F = 0 specifies that the special circuits of
Module 6 are used (restricted to kinetic energy, overlap and
nuclear attraction) and F = 4 specifies that the numerical
integration circuits will be used (except for one-center
matrix elements of operators z/r® and (3z* — r2)/r® which
are computed analytically.) The values of the remaining
integers in MFOONKK can be read from the following
list.

Operator 00 N KK
Kinetic Energy 00 — -
rr 01 n k
(1/r)" 02 n k
z 03 n k
or exp (ime) 04 n k
B’ 05 n ki’
(l/ckk’)n 06 n kK
k' 07 n kK’
(/)" 10 n kk'
sin” 6/ 1w 11 — k
cos” 0/ 12 — k
z/rs 13 — k

3z — r)/re

The operators z/r® and (3z2 — r?)/r® can be requested

only if RERUN = 4, 7.

For a given run the oeop block is set as follows.

RERUN = 3, 6. OEOP input is not allowed.

RERUN = 7, OEOP input deck must appear and must contain
the codes for overlap, kinetic energy, nuclear
attraction for all nuclei, including positions of
perturbing charges, z, z2 and p defined with re-
spect to the left-hand molecular nucleus (k = 2)
in exactly this order (see Table 6.) Additional
operators can be in any order.

RERUN = 0, 1, 2, 4, 5. If no oeop input card is in the deck
a list is generated internally. This list contains
operators sufficient to compute the dipole and

14 — k
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quadrupole moments of the molecule and is
oeop OCT 4, 401000, 403101, 403201, 401201,
If the oeoP input cards are in the input deck, then
matrix elements of the specified operators are
computed.

CODEW. Dimension 20. Optional input on all runs.

CODEW DEC LMAX, TH2CP, NXI, NETA
DEC b, ITRSH, FILE

Only the first seven entries in this input block are defined.
The first six specify miscellaneous program parameters
which would only be set from input data under exceptional
circumstances. Normally, they would be set internally to
standard values; this will be the case if the input block is
not present or the entry in the input block is zero. For all
practical purposes they can be disregarded; details are
contained in Ref. 16. The seventh entry in this input block,
FILE, specifies the position of binary data saved from a
previous run which is to be used as input on the current
run.

FILE = 0 must be used for RERUN = 1, 2 and indicates
that the binary input is in the first file of the tape on A6.
FILE = N can be used if RERUN = 3, 5, 6 and indicates that
the required binary input data is contained in file N on tape
unit AS.

The remaining input blocks, if present, follow a blank
card in the input deck, and are read in Module 8 or 10 de-
pending on whether sym = 0 or 1.

ATMNO Dimension 12. Required input for RERUN =

0,7

ATMNO DEC Z,,Z,, ---

Zy, Zs, -+ « - (floating point) are the nuclear charges on the
centers defined in RKK. In the case of RERUN = 7, where the
first and last centers are the positions of perturbing charges,
the corresponding entries in ATMNO must be entered as zero.

NCOB. Dimension 10. Required input on RERUN = 0.

NCOB DEC NSy, NSy, NS3, -« -

NS, NSs, - - - (integers) are the number of filled molecu-
lar orbitals of symmetry number 1, 2, ---. For C,, sym-
metry the symmetries are in the order o, m, 8, ¢, v. For D3,
they are in the order o, 0w, Tu, 5, 055 Ous Pus Dy Vg Yu

NZCOE Dimension 2500. Required input for RERUN

= 0.

NZCOE DEC (s,i,p,c)
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This input block specifies the trial vectors used to initiate
the scF computation. In an actual run trial vectors are taken
from the input deck if this input block is present, otherwise
are taken from the output vectors of a previous run which
were automatically saved at the end of that run. (In the
case of an unsuccessful previous run, the trial vectors for
that run were saved and these will be used on the current
run if no Nzcok block is present in the input deck.)

In the input block NzCoE each nonzero coefficient in the
trial vectors is specified by four entries. s (integer) identifies
the symmetry of the molecular orbital. For C,, symmetry,
s = 0,1, 2, 3, 4 denotes o, =, 9, ¢, v, while for D, sym-
metry s = 0,1, 2,3,4 --- denotes o, 0y, my, 7, - - - Jthe
same ordering discussed in Ncog). i (integer) identifies the
molecular orbital (¢ = 1 for the first of any symmetry). p
(integer) identifies the symmetrized basis function which is -
contributing to the molecular orbital with coefficient ¢
(floating point). For C,, symmetry the symmetrized basis
functions are the basis functions themselves, and the value
of s, p in this input block identifies the basis function in TSF
of the same p value with s = |m|. For D, symmetry it is
necessary to construct a table of symmetrized basis func-
tions by making the appropriate linear combinations from
TSF, in the order of appearance in TsF, for each of the D
symmetry classifications. p then indexes entries in this
symmetrized list. The example of Table 3 should serve to
make this clear.

POLCH Dimension 81. Required input for RERUN = 7
not permitted on other runs.

POLCH DEC NP,CM,0.,0.,(0., Q,0.,—0Q,0,0,
_Q, _Q’ _Q’ Q9 Q; _Q)

This input block serves to define the perturbing charges
which are introduced in order to perform the polarizability
calculations described in the last section of the paper. NP
(integer) is the number of pairs of entries following CM
(floating point) which is the distance of the center of mass
of the nuclei from the left-hand molecular nucleus. (The
previous input RKK, ZINTP, has set up a system of two false
nuclei symmetrically placed with respect to CM. Alterna-
tively CM need not be the center of mass, but can be chosen
as any desired expansion point relative to which the polariz-
abilities will be defined. Either way, the false nuclei set up
by rkK and zINTP must be symmetrically placed relative to
CM.) The pairs of entries following CM are the values of
the charges that are placed on the false nuclei. For each
pair an SCF calculation will be performed. The first pair of
0., 0. calls for the normal unperturbed SCF result. The re-
maining pairs are in groups of six as indicated, correspond-
ing to the six different perturbing fields for which SCF
calculations will be done.




SCFCW Dimension 10. Optional input for any run.

SCFCW DEC SITMX, BIAS1, BIAS2, JITMX,
NISVD, SCTH1, SCTH2, JCTH, DGATH, DGSTH

This input block is a set of parameters which defines
convergence criteria and extrapolation information for the
SCF computation, and convergence criteria for the diago-
nalization subroutines.

The value of a parameter listed in this input block is set
in the same way as entries in copew and cwopT. If the
entry is not -0, then the entry is used as the current pa-
rameter value. If it is =0 then take the last value of the
parameter used (if RERUN % 0) or a standard value (f
RERUN = ().

SITMX  Maximum number of SCF iterations which will
be performed before jumping out of SCF pro-
gram (integer). Standard = 50.

The number of iterations before an extrapola-
tion (on the last three to produce the next set of
trial vectors) is equal to BIAS1 - 2. BIASI is
only used to set the number of iterations before
extrapolation if the level of SCF convergence is
worse than SCTHI1. Standard value of BIAS1
is 1.

The number of iterations before extrapolation,
after convergence of the density matrices, is
better than SCTHI1. Standard value is 3.

This is a signed integer. If negative, it takes unit
vectors as trial vectors for each entry into the
Jacobi diagonalization. If positive, it uses the
output vectors of the previous diagonalization.
The absolute value is the maximum number of
iterations allowed in the diagonalization pro-
gram.

For near-degenerate eigenvectors a positive
entry should be used, otherwise the near-de-
generate vectors may flip from one iteration to
the next, making convergence impossible.
Standard value is 1000.

This is a signed integer. If negative (but not —0),
single-vector diagonalization will be bypassed.
If positive the maximum number of iterations
in the single-vector diagonalization before loos-
ening the convergence threshhold (see DGATH,
DGSTH writeups) will be set equal to NISVD.,
Standard value is 20.

See BIAS1, BIAS2 above. The purpose of this
threshhold is to allow extrapolation to be used
more heavily at the start of a SCF computation
than in its later stages. Our observation is that
extrapolation is helpful in preventing diver-

BIAS1

BIAS2

JITMX

NISVD

SCTH1

SCTH2

JCTH

DGATH

DGSTH

gence at an early stage, but can hinder con-
vergence at a later stage. Standard is 10—,
This is the convergence threshhold for the SCF
procedure. These convergence threshholds
SCTHI1 and SCTH2 on the SCF procedure are
used in tests on the density matrix. Comparison
of the vectors obtained in the last two iterations
(standard printed output) will show how this
convergence level is reflected in vector con-
vergence. Standard for SCTH2 is 1078,
Convergence threshhold for Jacobi diagonaliza-
tion. If the single-vector diagonalization is also
used, we can think of the Jacobi as being used
to provide input vectors for the single-vector
routine. Standard is 1073,

Final threshhold for single-vector diagonaliza-
tion. If convergence to better than this thresh-
hold cannot be obtained, the program jumps
out on an alarm exit. Standard value is 1074,
Initial convergence threshhold for single vector
diagonalization. If after NISVD iterations con-
vergence to better than a threshhold, initially
set equal to DGSTH, is not obtained, the con-
vergence threshhold for a single-vector diago-
nalization is loosened by a factor of 2. This
loosening is repeated until either conver-
gence is achieved, or the current threshhold is
>DGATH which will cause an alarm exit,
Standard value is 10—¢,

Molecular properties

A good example of the range of molecular properties which
can routinely be computed with this linear molecule com-
puter program is given in a recent publication on HF and
HCL* and discussion of some of these properties is cov-
ered in our previous work.17~2! In this section of the paper
we will restrict our discussion to molecular polarizabilities
and nuclear electric shielding factors since the methods we
use for computing these properties have not previously
been described in detail.

Static electric polarizabilities and shielding factors are
properties of an electronic charge distribution, in an atom
or molecule, which are determined by its distortion under
the action of an external electric field. We proceed to define
these quantities for the case of an atom or linear molecule
in an axially symmetric external field whose axis coincides
with the molecular axis.

An external electric field, in the region of interaction
with an atomic or molecular system, can be defined by the
numerical values of the field potential and its Cartesian
derivatives at some point in the system. (These are the
coefficients in a Taylor expansion of the field potential
around this point.) These numerical values can be treated

as parameters, in terms of which effects due to the inter- 229
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action of the atom or molecule, with the external field, can
be expanded. For axially symmetric systems in which the
point at which these field parameters are evaluated is chosen
on the symmetry axis (z-axis), the number of independent
field parameters reduces to the values of ¢, ¢/ 9z, 9°¢/dz2,
9*¢/9z%, - - -, determined at that point. The potential, ¢,
can be eliminated from this list in discussing induction
effects due to electronic distortion in a system of fixed
nuclei, since there can be no distortion in an external field
of constant potential. The above derivatives are the values
of the electric field and its derivatives at the expansion
point; F, = —3¢/0z, Fl, = —3¢/92, Fz,, = — 3%¢/ 328,
- - -. For the axial systems under study, we drop the sub-
scripts which denote the differentiation variables and list
the field parameters as ¢, F, F/, F", - - -,

® Molecular polarizabilities

We now discuss the energy of interaction of the electronic
charge distribution with the external field. If E® is the total
electronic energy in the field of the fixed nuclei of the mole-
cule, and EW js the total electronic energy in the field of the
fixed nuclei plus the external field, then the interaction
energy E) — E® can be expanded as a power series in the
field parameters,!

EY — EY = 4¢ — uF — 12917' — 169F" — %‘@F”’
- %an — ; AFF’ iCF'Z
- % EFF" — 166F“ — iBFzF'
“2—14'YF4—"'- (39)

The linear terms in the field parameters in Eq. (39) are
the energies of interaction of the permanent electric multi-
pole moments of the electronic charge distribution with the
external field, and the higher order terms are contributions
to the energy of induction caused by the external field in-
ducing a change in the charge distribution. Terms involving
¢ do not appear in the induction energy, which exists only
because of the distortion of the electronic cloud. The co-
efficients of the field parameters in Eq. (39) are components
of the electric multipole moment and polarizability tensors
for the system and will be identified below. The numerical
factors occur naturally in the detailed treatment of the
interaction of an arbitrary charge distribution with an
arbitrary external field, which has been given elsewhere.2!
In Eq. (39) we have written only the lead terms in an infinite
expansion. Use of the expansion in a truncated form de-
pends on convergence, which in practice remains rapid
until the external field comes within an order of magnitude
of fields present internally in the molecule. For atomic or
molecular systems it is usual to make the expansion (Eq.
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(39)) in terms of the field parameters ¢, F, F/, F", - - - evalu-
ated at the center of mass of the system, It is apparent that,
in general, choice of a different expansion point (and there-
fore different field parameters, even though the external
field is the same) will lead to different coefficients in the
expansion. The transformation of multipole moments and
polarizabilities under change of the expansion point has
been considered in detail elsewhere,?! where the quantities
q, o, B, v are shown to be invariant under the transforma-
tion. Individually identifying the coefficients of Eq. (39),
we have that g is the total electronic charge, u = p.is the z
component of the permanent electronic dipole moment,
O = O, is the zz component of the permanent electronic
quadrupole moment, & = ., is the zzz component of the
permanent electronic octopole moment, and ® = &,,,, the
designated component of the permanent electronic hexa-
decapole moment. a, A4, C, E, 3, B,y -+ -, are components
of the static electric polarizability tensors of the electron
distribution. « = ¢, is a component of the dipole polariza-
bility; A = A,.., is a component of the polarizability tensor
which measures the contribution to the interaction energy
due to a nonzero value of FF’ (or equivalently, the contri-
bution to the induced dipole moment for nonzero F, and
to the induced quadrupole moment for nonzero F'); C =
3/2 C.,.. is equal to 3/2 times the zz:zz component of the
fourth-rank field gradient quadrupole polarizability tensor;
E = E,... is a component of another fourth-rank tensor
which gives the contribution to the induced octopole
moment in the presence of anonzero F. 8 = B;.andy =

Y.z are components of tensors which describe the non-
linear behavior of the induced dipole moment in the pres-
ence of a nonzero F, and B = B,,.,, has been called (in the
case of atoms)*® a uniform-field quadrupole polarizability.

For linear molecules with an inversion center (D, sym-
metry) the quantities g, @, 4 and 8 are identically zero if
the expansion point for evaluating the external field pa-
rameters is the inversion center. For atomic systems, u, O,
Q, ®, A, and B are identically zero if the expansion point is
the atomic nucleus.

The induced electric multipole moments in the charge
distribution can also be expanded as a power series in the
field components. The results from the general theory?! are
that the multipole moments of the electronic charge distri-
bution, in the field of the nuclei plus the external field,
which we represent by @ = p?, 00 = 6D, Q" = Q)
DN = &Y, ---,are given by

u” =+ aF + % AF + % EF" + } BF°

+ 1 BFF +3yF 4 - (40)
0¥ =0+ AF+ CF + 3 BF + --- (41)
Q" = Q4 EF+ .- (42)
S ST (43)




In Eq. (40) to (43) the expansions are given explicitly
through terms corresponding to those given in Eq. (39).
The coefficients of the field components are the same
polarizabilities introduced in Eq. (39).

Our method of computation, implemented as RERUN = 7
described in the previous section, is to directly compute self-
consistent field-molecular orbital wave functions in the
presence of different electric fields and to calculate the
corresponding dipole and quadrupole moments. These are
then substituted into truncated forms of Egs. (40) to (43)
to obtain sets of linear equations which are solved for the
polarizabilities. Specifically, wave functions and dipole mo-
ments are computed for six different fields which arise from
point charges placed symmetrically with respect to the ex-
pansion point relative to which the polarizabilities are de-
fined. The charges are placed on the molecular axis at
distances — R, R relative to the expansion point. The
pairs of charges giving rise to the six fields are (1) 0, C (2)
0,-003) Q2,04 —0,—006)—0,26) 0, —Q.If
the corresponding dipole moments are denoted m; — ms
and quadrupole moments T3 — 7%, then substitution into
Egs. (40), (41) truncated to include all terms explicitly
written in Egs. (40), (41) except the term containing the
polarizability E yields

0 0 ,1.0 o
mTkT e g T A TP TP
_1 ¢
6’YR6
0 g 1.0 o
m=pt+a=5 +45+58 =5+ B>
R R 2" R R
1.0
+67R6
M3=M—2A%
m4=u+2A}%3
) Q¢ _4_ ¢
ms; = W 2aR2+26R4 3’YR6
0 o 4 0
me=/~t+2a?+25;4—§7;; (44)
and
0 g 1. ¢
T1=9—AP—2C‘1€§+§BP
0 0 , 1.0
T2=9+AF+2C-R—3+§BEZ

n=e+4c%
R
2
T5=e—2A%+2B%
R R
2
T6=e—|—2A%+ZB -1%. (45)

The unique solutions of Egs. (44) yielding the axial
polarizability components are

u =% (my+ ms)
a% =§(m2—m1)—-:1;,(m4-—m3)
1
_E\mﬁ'—fm5/
A% =%(m4—m3)
ﬂ% =—%(m4+m3)+%(ms—|—m5)
B% =%(m2—|—m1)——z(m4+m3)
—%(ms‘l'mé)
2 ) 4L =)
’YRG 2 ‘1 P 4 —.Mmg

1
+ E (me —_ m5) . (46)

Equations (45) contain only four polarizabilities to be
determined and are therefore overdetermined. The pro-
gram computes O, A, C, B from the first, second, fifth, and
sixth of Eqgs. (45) whose solution is

0=32%2(Th+ 1) —§(Te+ Ts)

A%:ﬁ(n—n)
Qo _ . 1 —
CR3 =i (h—=T)— 3% (Ts Ts)
0
BP=_%(T2+T1)+%(T6+T5) (47)

and computes a second value for ®, C from the third and
fourth of Egs. (45) according to

©

i

3(Ts + Ty

c%:%(n—n). (48)
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The agreement between the two values of 6, C obtained
from Egs. (47), (48) and between the values of 4, B ob-
tained from Eqgs. (46), (47) can be used to check the accu-
racy of the computation and the validity of the truncation.

% Nuclear electric shielding factors

It appears that no general theory of nuclear electric
shielding in molecules is available. However, the results for
axially symmetric systems can be written down from simple
considerations which we now outline. The change in the
electric field at a nucleus due to the electrons, caused by the
external field, is expanded in a power series in the external
field parameters F, F’, F”, - - -. We note that the potential
of the external field, ¢, is missing from the parameter list
because there is no effect on the field at the nuclei due to the
electrons in an external field of constant potential. Also, for
any nucleus, the expansion will be in the external field pa-
rameters evaluated at that nucleus. Suppose that the z com-
ponent of the electric field and its derivatives with respect
to the z coordinate, at a nucleus in a linear molecule, due
to the electronic motions in the presence of an external field
are FH, F1¥0, Fr, - .. In the absence of the external field
the same quantities will be F'}, F'{®, F/® ... The ex-
ternal field is parametrized by its axial field components F,
F', F”, -- . evaluated at the nucleus under consideration.
Then, the differences (F) — FO), (F/{? — F'™), (F/}¥
— F1), - .. which are the changes in the electronic con-
tribution to the electric field at the nucleus because of the
external field, can be expanded as a power series in the field
parameters, as shown in the following equations:

) 0 d d) 2 d) 3 d)
FO) — FQ = —v{%F — 4{"F — y{"F — 4O F

— YPFF — y{3F" — 40 F”

— Y9 FF — ... (49)
Fi) — FY = —y"F = 4" F — v{F — +{'F

— YPFF — ¥ F" — vi¥ F”

— WBFF — - (50)

FiP — Fi® = —y"F = 4F — 4{'F — v F'
—YOFF — yinF’ — v F*
—yiy FF' -, (s1)

and similar equations for higher derivatives of the field due
to the electrons. In Eqgs. (49 to 51) we have introduced a
notation adequate to cover the axially symmetric case. The
7’s are all known as shielding factors. The superscript (d),
(q), (0), - -+, denotes dipole, quadrupole, octopole, - - -,
and the subscript denotes the powers of the external field
components in the current term. If one integer appears in
the subscript this is the power of F; if two integers appear
then they give, in reading order, the power of F’ and F; if
three, then they are the powers of F”/, F/, F; and so on. Of
course, in a general theory, for arbitrary symmetry, these
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would be components in shielding factor tensors and a con-
siderably more complex notation would be required. The
quantity {® is normally called the dipole shielding factor,
denoted in Dalgarno’s review by (3... The quantity vV is,
in atomic calculations, known as the uniform field quadru-
pole shielding factor,*® while v{? is known as the field
gradient quadrupole shielding factor. This latter, v{2, is
the «,, of Sternheimer.%

A comment on two possible independent ways of com-
puting the Sternheimer shielding factor, v, may be enlight-
ening. Consider the interaction between an externally pro-
duced field gradient with a nucleus having a nonzero electric
quadrupole moment. One method of computing the inter-
action would be to calculate the distortion of the electronic
cloud of the molecule due to the nuclear electric quadru-
pole, thereby evaluating the induced quadrupole moment
in the electronic cloud due to the nuclear quadrupole. The
interaction of the external field with both the nuclear and
nuclear induced quadrupole moments is then evaluated.
This is the Sternheimer procedure. An alternative method
would calculate the distortion of the electronic cloud due
to the external field. The change in the field gradient at the
nucleus due to this distortion will then be evaluated, and
the required interaction is that between the nuclear quad-
rupole moment and the modified field gradient. Thus, in the
first procedure the interaction is computed as an unper-
turbed field gradient interacting with a perturbed quadru-
pole moment, while in the second it is computed as a per-
turbed field gradient interacting with an unperturbed quad-
rupole moment. The equivalence of the two procedures has
been proved by Das and Bersohn.*?

As described above, the interaction of the external field
with the distortion in the electronic cloud due to a nuclear
quadrupole yields the quadrupole shielding factor v{¢. The
interaction of the external field with the distortion in the
electronic cloud due to the external field itself is, of course,
an entirely different effect already discussed in terms of
polarizabilities.

Calculations of shielding factors with the computer pro-
gram described in this paper are done using the second of
the above two procedures. For the same configurations of
external charges described in the polarizability calculations,
the field gradients at each of the nuclei are computed.
When compared with the values of the field gradients at the
nuclei with no external field, we have enough information
to solve sets of linear equations truncated from Egs. (49) to
(51) to obtain values of shielding factors. The program as it
currently stands simply computes the field gradients, and
the processing of these to obtain the shielding factors is still
in progress. We note that Egs. (49) to (51) are infinite ex-
pansions and, as with the polarizabilities, their utility de-
pends on rapid convergence which will be the case for ex-
ternal fields at least an order of magnitude less than those
present internally in molecules.




From the point of view of assessing the accuracy of com-
puted wave functions, polarizabilities and shielding factors
offer a severe test because of their sensitivity to the wave
function. Polarizabilities are determined largely by the
valence shells of the molecule and are therefore sensitive to
the wave function far from the nuclei, where they are often
seriously deficient. This is especially so if inadequate basis
sets have been used and arises primarily because the limited
basis functions are used to best represent the inner part of
the wave function, which is most important in minimizing
the total energy. Shielding factors are especially sensitive to
changes in the wave function in the neighborhood of the
nuclei, and therefore complement the polarizabilities in
checking the adequacy of a basis set. A basis set large
enough to stabilize the computed values of these properties
is larger than that needed to stabilize the total energy. In
reporting calculations of these properties it is important to
establish the sensitivity of the results to changes in the basis
set.
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