
A. D. McLean 

M. Yoshimine 

Computation of Molecular  Properties  and  Structure 

Abstract: A discussion  of  general-purpose  computer  programs  in  theoretical  chemistry is given,  followed  by a description of the  pro- 
cedures  adopted  in  one  such  program  written by the authors. Specific  details on the use  of the program for computing  molecular  wave 
functions and properties for closed-shell  linear  molecules are presented.  The  details of a method  for  computing the axial  components 
of the static  electric  polarizability  and  shielding factor tensors are given. A “Table of Linear  Molecule  Wave Functions” is  available, 
on request to the authors, as a supplement to the  paper.  This  tabulation  was  made  with the program  described  in  the  paper  and is 
the most  extensive  compilation of molecular  wave  functions  currently  available. 

Introduction 
The quantitative characteristics of any chemical process, 
with the exception of nuclear phenomena, can in principle 
be derived from  the masses and charges of the participating 
nuclei and electrons, using the laws of quantum mechanics 
and statistics. This is true at  least to  the accuracy currently 
achievable in experimental observation. Until  the advent 
of  the electronic computer,  the effective utilization of this 
powerful theory to provide information on molecular 
systems, ab initio, was impossible. The most significant 
computation of this  precomputer era was that of James 
and Coolidge on  the hydrogen molecule,l which gave a 
molecular dissociation energy 0.02 eV (161 cm-’) smaller 
than observed. This result was hailed by chemists as a con- 
vincing demonstration of the validity of quantum me- 
chanics to solve problems of molecular structure. Apart 
from this  triumph, and a limited number of less impressive 
results (but more difficult computations) on  other very 
small systems, the literature through  the mid 1950’s is 
essentially devoid of reliable quantitative predictions of 
molecular properties through  computation. The applica- 
tion of electronic computers to chemical problems  initiated 
a revolution, the preliminary effects of which are currently 
appearing. These include the semiquantitative prediction 
of properties of molecules and radicals not accessible to 
measurement, detailed analysis of the  nature of chemical 
bonding, and  the determination of energy surfaces for  the 
study of chemical reactions, all from ab initio computa- 
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While work in all these areas dates  back 30 or more 
years, ab initio computations  accurate  enough to provide 
reliable information belong to the age of the computer. 
Even so, nearly all  work so far completed on systems more 
complex than Hz, has  not reached the level of accuracy of 
the early calculation of James and Coolidge. However, 
on  the basis of work currently in progress, and  the projected 
speeds of future computers, we can confidently predict 
that work of comparable accuracy on many hundreds of 
molecular systems with up  to 20 electrons will be available 
by 1975. 

To date, the H2 molecule is still the most complex system 
on which a convincing demonstration of the validity of 
quantum-mechanical principles has been attempted in a 
molecular computation.  This  careful  work of Kolos, 
Roothaan  and Wolniewicz5s6 has extended the calculations 
of James and Coolidge to an accuracy such that,  as  the 
work  currently  stands, a discrepancy between theory  and 
experiment has been revealed. (The computed dissociation 
energy is approximately 3 cm-1 larger than  the observed, 
and exhaustive analysis indicates this to be outside the 
range of any  errors or corrections considered so far.6) The 
situation is potentially as  important  as  the difference be- 
tween theory and experiment in the hyperfine structure of 
atomic  spectra, due to the anomalous magnetic moment 
of the electron, which led to  important advances in  quan- 
tum electrodynamics.’ This is an excellent example of the 
importance of calculations of extremely high accuracy, 
even though they are (and will be) restricted to very simple 
systems. The explanation of this discrepancy for Hz will 
probably turn  out  to be  not particularly profound, al- 
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though it is certainly very puzzling. Both theoreticians and 
experimentalists are carefully analyzing their results in an 
attempt  to resolve it? This level  of accuracy is not necessary 
for carrying out quantitative calculations of most chemical 
data, where the original accuracy of the James and Coolidge 
calculation with two less significant figures in the computed 
energy is all that is reasonably desired. This is essentially 
the limit with which we are concerned in  the following 
discussion. 

Characteristics of automatic computer programs 
As can be seen by perusing the proceedings of confer- 

ences on molecular quantum real progress 
in  quantitative theoretical chemistry depends on general- 
purpose  computer programs, whose broad characteristics 
are as follows. 

The input is at  an elemental level, being essentially re- 
stricted to  the number of nuclei, their charges, and  the num- 
ber of electrons in the system under study. Currently ex- 
isting programs have not reached this minimum but this is 
primarily due  to restrictions in computer speed. For exam- 
ple, we currently specify the geometry of the nuclei and  the 
electronic configuration and state, because the computation 
for a single molecular geometry and  state of even a small 
molecule (having less than 20 electrons) runs  into many 
hours of computer time. 

The merhods are those of quantum mechanics at various 
levels of approximation and, again, the accuracy of the 
approximations that can be used  is a function of computer 
speed. Most effort to  date has been in the single-configura- 
tion, self-consistent field molecular orbital  approximation, 
based on  the assumption that this would form the best 
starting  point  for  more  accurate procedures which, except 
for two-electron systems, have been largely restricted to 
various  forms of configuration mixing. Great improve- 
ments in the levels  of approximation implemented can be 
expected in  the next few years. 

The output is the wave function and properties of the 
system under study, examples of which  will be given later. 

The program must have the characteristics of ease of use 
(simple input formats) and intelligibility of output,  both  at 
the  printed and display (visual) level, They must be versa- 
tile, in that they can automatically produce results which 
relate to a wide variety of applications. It must be empha- 
sized that  the scope of the programs, meaning the size of 
the systems that can be studied and  the accuracy attainable 
for a given  size, is restricted by the speed of the  central 
processor and the high-speed memory. (Secondarily it is 
restricted by the total configuration of various elements in 
the storage hierarchy and  the  data channels through which 
data  are transferred into high-speed memory, although we 
assume in these discussions that  the  total configuration is 
always adequate to  support  the central processor.) 

The  IBM 7094 (2 ,LLS access to high-speed core, 10-20 p s  

floating point  arithmetic  operations, 32K high-speed 
memory, data channels allowing overlap of data trans- 
mission with computation) is representative of the class of 
computers that were first able to adequately support pro- 
grams of the type described, in the sense that reasonably 
accurate data  can  be generated in  a  reasonable amount of 
time. The specific program to be described in  this  paper was 
in  fact written for this  computer. The point to be made is 
that  the minimal requirement of general programs in this 
field is close to  the most  capable  computers even currently 
available. To significantly extend the scope of these pro- 
grams requires order-of-magnitude increases in  computer 
speeds, which should be available in the early 1970’s. The 
reason for this requirement is that current techniques for 
small systems, which are  the best designed so far, involve 
an  amount of computation which increases as the  fourth 
or fifth power of the size of the basis set from which the 
wave function is constructed. Alternative methods which 
do  not have  this  catastrophic dependence of the  amount of 
computation on the size of the system under  study are  not 
efficient enough for small systems to have been imple- 
mented in general programs on  the computers available to 
date, even though  exploratory  programs  along these lines 
have been written. Order-of-magnitude increases in com- 
puter speed can  require modified algorithms in the imple- 
menting of existing techniques and can  open  up the POS- 

sibility of  new methods, and work in these directions is 
progressing in a number of laboratories. Factors  that would 
affect computing  algorithms are significant changes  in the 
ratio of the cycle time in the central processor to  the trans- 
mission rate of information from peripheral (tape, disk or 
drum) storage, or the degree of parallelism (amount of 
computation that can proceed simultaneously) in the cen- 
tral processing unit. 

Possibly the most useful development will be the use of 
archive storage (characterized by low cost and long access 
time) to  support a library of molecular wave functions and 
properties. A supervisory program would control  the gen- 
erating and editing of the library and would operate  con- 
tinuously, automatically  producing molecular wave func- 
tions and properties to increasing levels of accuracy and  in 
a systematic way, from  input  data  taken from the library 
itself. User intervention could provide input  data which 
override the automatic sequence, or could request display 
of information from  the library. Such programs could run 
continuously as a back-up job in a time-shared computing 
system. 

To evaluate the potential impact of more powerful com- 
puter  programs it is instructive to consider the comparison 
of computed results to measured ones. They are competitive 
at  the levels of ease of obtaining  the result, the accuracy of 
the result, and  the cost. They are complementary to  the ex- 
tent  that one  procedure  can obtain results inaccessible to 
the other. For example, the extremely high accuracy of 207 
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some experimental techniques, notably spectroscopic and 
molecular beam, will never be accessible to computation, 
whereas the detailed accurate  information on charge  den- 
sity routinely available from computations will probably 
continue to be inaccessible to measurement. Computation 
and measurement can also be complementary in taking 
some results from  both  to derive new information, as  for 
example in taking a measured susceptibility with a com- 
puted  quadrupole  moment to derive a rotational magnetic 
moment.  Another element of this discussion is the fact that 
a transient or unstable species is just  as amenable to com- 
putation  as a stable one. 

For some properties, computer  programs have already 
given significantly more  information than can  be  obtained 
experimentally. On more powerful computers the balance 
between computation and measurement will be  pushed 
significantly towards  computation.  Thus, we can  anticipate 
the existence of more powerful computer  programs that 
will create a demand  for the computers to  support them. It 
seems quite likely that these programs will prove to be the 
most important  tool  in  the investigation of molecular 
structures of the next decade. 

Methods used in this study 
Returning to  the current  situation, the purpose of this  pa- 
per is to describe in  some  detail the procedures which we 
have incorporated into a computer  program that  has been 
used to significantly advance the level  of computation on a 
number of molecular systems." The description is com- 
plete enough for  the reader to intelligently use the pro- 
gram, which is being distributed  by the  Quantum Chem- 
istry Program Exchange at  Indiana University. It  also in- 
cludes some procedures which we hope will be routinely 
incorporated into more  advanced  programs in  the future. 
While it falls far short of the ultimate  program  outlined 
above, which has  the computer behave as a molecular sys- 
tem with output immediately intelligible to a non-specialist 
user, it does  incorporate  some  features that will lie at  the 
heart of such a program. On  the basis of a small amount of 
input  data  it can  evaluate single-configuration, closed-shell 
ground state wave functions, and a limited number of ex- 
pectation values computed with these wave functions, for 
linear molecules. Intermediate results of a previous calcula- 
tion  can be called on in a subsequent one to minimize the 
amount of computation  in  the  latter.  Automatic optimiza- 
tion of various  parameters  in  the calculation can  be per- 
formed  without user intervention. Different phases of the 
computation are executed by program modules independ- 
ent of each other, apart from an interface of data.  The 
path of the computation  through the program modules is 
controlled  by a short supervisory program easily modified 
to expand the number of different types of computation 

single input flag.) 
The approximation used for wave functions which can 

be  computed with this  program is the self-consistent field 
matrix  Hartree-Fock procedure,12 which has been elegantly 
formulated by R00thaan.l~ Thus, the wave function of an 
electronic state of a molecular system is constructed, from 
a single configuration of molecular orbitals, as a linear 
combination of determinants which is an eigenfunction of 
the  total electron spin and one of its components, and also 
of the covering operations of the symmetry group of the 
nuclei. (For the closed-shell case, this is a single deter- 
minant.) These molecular orbitals are,  in  turn, expanded 
from basis functions, which in this  program are Slater-type 
functions having origins on  the different nuclei. (These 
functions are simple products of a polynomial and 
exp( - [ r ) ,  where r is measured from some nucleus and j- is 
the so-called orbital exponent of the function.) The ac- 
curacy of such wave functions falls far short of the James- 
Coolidge accuracy discussed earlier and is a severe short- 
coming. (For  the  total energy the  error is of the order 
1 to 2 eV per electron pair in  the molecule.) However, at 
this point in development, Hartree-Fock wave functions 
have been useful in many applications and we considered 
it worth while to significantly expand the range of such 
calculations. 

One extension of the method employed in  our computer 
programs is in the direction of configuration interaction. 
In particular, configuration interaction expansions in 
terms of natural orbitals14 look very promising and may 
be a practical way of achieving James-Coolidge type ac- 
curacy for small systems (less than 20 electrons), although 
the calculations will need a much faster computer than  the 
IBM 7090. If these more sophisticated wave functions are 
expanded in the space of a set of Slater basis functions, 
the  major sections of our current  program will still be 
fundamental to future programs. However, for larger 
systems the use of more complicated basis functions and 
more direct numerical integration procedures may prove 
more efficient.15 In fact, our current work at this laboratory 
is directed along such lines. 

The most significant feature of the computer  program 
discussed in this paper is its capacity, measured in  terms 
of the size  of the Slater function basis sets it can handle 
efficiently. Organizing the  computations required the handl- 
ing of long data lists (lo5 to lo7 entries) generated by the 
program and stored on magnetic tape. We were able to do 
this in a way which essentially completely overlapped 
computation  in the central processing unit with data flow 
between core and magnetic tape. In other words, we were 
able to effectively use the computer  as an infinite core 
machine. This can be  done only if the average amount of 
computation per word on  the  data coming to  or  from  tape 

which the program  can perform. (The path  through  the through  storage buffers in the core (typically assigned capa- 
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Table 1 Index to Table of Linear  Molecule  Wave Functions”. 

Molecule Set (a.u.) 
Basisb Accurac yc Infernuclear Seoarationsd 

- 
FH 
LiF 
LiF 

Be0  

BF 
BF 

co 
co 
CIH 
LiCl 
LiCl 

NaF 
NaF 

MgO 

M go 
A1F 
AIF 

Si0 
Si0 

PN 
PN 

NaCl 
NaCl 

KF 
KF 

CaO 

LiBr 

KC1 

NaBr 
RbF 

B A + P  

BA + P 
DZ + P 

B A +  P 

DZ + P 
BA + P 

D Z + P  
BA + P 

BA + P 
D Z +  P 
B A + P  

DZ + P 
B A + P  

DZ + P 

B A + P  

B A + P  
DZ + P 

D Z + P  
BA + P 

BA + P 
D Z + P  

DZ + P 
BA + P 

DZ + P 
B A +  P 

DZ + P 

DZ + P 

DZ + P 

DZ + P 
D Z +  P 

0.0005 

0.0005 
0.012 

0.0005 

0.010 
0.001 

0.011 
0.001 

0.001 
0.010 
0.003 

0.020 
0.005 

0.013 

0.002 
0.014 
0.003 

0.014 
0.003 

0.003 
0.013 

0.025 
0.009 

0.020 

(a.u.) Page 

1.7328 
2.85 

2.9877*; 3.2; 3.55 
2.45;  2.65; 2.7877; 2.8877; 

1.8;2.1;2.35;2.4377*; 

2.391 
2.5;2.75;3.1;3.8;5.5 

2.0;2.1;2.1925;2.391*; 
2.5775; 2.77; 2.9625 
2.132 
1.8;1.898;2.015;2.132*; 
2.249;2.366;2.483 
2.4087 
3.7228 
3.35;3.6;  3.66; 3.7228; 

4.55 
3.825*;3.91;4.0;4.1; 

3.779 
3:1;3,56;3.62883*; 

2.5;  3.0;  3.2; 3.3052*; 
3.779;4.35 

3.4;3.6;4.1;5.1 
3.3052 
3.45 
2.6;2.85;  3.05; 3.126*; 

2.854 
3.25; 3.45; 3.7 

2.304;2.5;2.604;2.75*; 

2.818 
2.854;3.104;3.404 

. .  

21268; 2.45;  2.568,2.67*; 
2.818;3.068;3.368 
4.4609 

4.6;4.75;5.0 
3.7;4.3;4.4609*;4.485; 

4.1035 
3.5;3.95;4.04;4.10348*; 
4.15;4.4;4.8 
2.9912;3.1412;3.2912; 

4.1412 
3.4412*;3.6412;3.8912; 

4.0655*;4.115;4.26; 
3.05;  3.55;  3.8;  3.93; 

4.4;  4.85;  5.6 
4.3;4.7;5.039*;5.29; 

4.728 
5.65 

4.3653 

2 
1 

3 

10 

20 
19 

21 
28 

35 
36 
37 

46 
47 

52 

60 
61 
62 

69 
70 

77 
78 

85 
86 

93 
94 

101 

108 

128 

138 
140 

Basisb Accuracy” Internuclear Seoarationsd 
Molecule Set 

- 

SrO 

HCN 
HCN 

FHF- 

coz 
coz 

NNO 
NNO 

OCN- 

FCN 
OCN- 

FCN 
sco 
ClCN 
SCN- 

CzHz 
CzHz 
LiCCH 
LiCCH 
FCCH 
FCCH 
CzNz 
CzNz 
ClCCH 
NCCCH 

DZ + P 

DZ + P 
BA + P 

DZ + P 

DZ + P 
BA + P 

D Z + P  
BA + P 

D Z + P  
B A + P  
D Z +  P 
B A + P  
D Z +  P 
DZ + P 
DZ + P 
DZ + P 
B A + P  

BA + P 
D Z +  P 

D Z +  P 
BA + P 
D Z + P  
B A +  P 
D Z + P  
D Z +  P 

(a.u.) 
~ 

0.007 
0.001 

0.020 

0.002 
0.021 

0.019’ 
0.007 

0.008 
0.021 

0.021 
0.008 
0.025 
0.025 
0.025 
0.006 
0.001 
0.014 

0.020 
0.006 

0.008 
0.020 
0.010 
0.025 
IO. 020 

( a m  j 

3.6283*; 3.78;4.1 
3.1;3.25;3.4;3.525; 

2.0143,2.1791 
1.81287,1.96119;2.00899, 
1.76507; 1.93430,2.1091*; 
1.9343,2.2491;2.0843, 

2.0143,2.1791;2.23221, 
2.1091;1.81287,2.38053; 

1.96119;2.0843,2.2491; 

2.38053;2.47026,2.14248 
2.00899,2.60325; 2.23221 

2.3;1.9,2.2;2.0,2.1; 
1.9,1.9;2.0,2.0;1.8, 

2.05,2.05;1.85,2.35; 

2.1,2.1*;1.9,2.4;2.0, 
1.95,2.25;2.05,2.15; 

2.3;2.1,2.2;2.15,2.15; 
2.15,2.25;2.2,2.2;1.75, 
2.75;1.875,2.625;2.0,2.5; 

2.1944,2.1944 
2.1,2.4;2.2,2.3 

2.0444,2. 0444; 2.1444, 
2.1444*;2.1944,2.1944; 
2.2944,2. 2944 
2.1273,2.2418 

2.01762;2.11633,1.81586; 
1.72311,2.20908;1.91457, 

1.91457,2.45453; 2.1273, 
2.2418*; 2.35148,2.01762; 

2.46598; 2.58663,2.21938 
2.10603,2.69998;2.34003, 

2.213,2.281 
2.213,2.281 
2.38109,2.20156 
2.38109,2.20156 
2.9442,2.2016 
2.95,2.3 

2.002,2.281,2.002 
3.0784,2.1978 

2.002,2.281,2.002 
3.55,2.2696,2.0088 
3.55,2.2696,2.0088 

2.417,2.2639,1.9899 
2.417,2.2639,1.9899 

2.186,2.608,2.186 
2.186,2.608,2.186 
3.084,2.2885,1.988 
2.1864,2.6116,2.2734, 
1.9975 

~ ~~ 
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142 

156 
157 

__ 

169 

190 
191 

196 
195 

206 
205 

207 
208 

210 
209 

21 1 
212 
213 
214 
215 
216 
217 
21 8 

222 
220 

223 

b Depending on the size of the basis set, it is labeled DZ + P or BA + P. [See M. Yoshimine and A. D. McLean, Intern. J .  Quantum Chem. (to  be published), 
8 The “Tables of Linear Molecule Wave Functions” is available on request to the  authors. 

Slater Symposium issue]. In  the  DZ + P sets there are two basis functions for each occupied atomic  orbital  in  the separated neutral atoms.  The BA + P sets con- 
tain  a  more  liberal number of atomic basis functions. Both contain  additional  functions to help represent polarization of the atoms  in a molecule. 

0 This column contains an estimate of the amount the total energy of the  tabulated functions is above the Hartree-Fock limit. 
d Adjacent internuclear separations (for molecules with more  than 3 atoms)  are given; different nuclear configurations are separated by a semicolon; the nucle- 

ar configuration at which the computed total energy  is  lowest  is  identified  with an asterisk. 

tween core and tape. The key to a well-organized computer 
program is to arrange the sequence of computation so that 
this is the case. Detailed  information on  the computer 
program used to accomplish this data handling is given in 
a User Manual  to the program.16 The large capacity of this 
computer  program has been important  in allowing easy 
evaluation of single-configuration molecular wave functions 
to some preset level of accuracy, relative to  the Hartree- 
Fock limit, with a minimum amount of comp~tation.’~ 

The following sections of this paper will outline the com- 
putational procedures, give precise description of program 

input blocks, and present examples of input decks to il- 
lustrate  the type of computations that can be made  and to 
provide examples around which subsequent discussion can 
be focused. Also included will be a description of some 
molecular properties which can be routinely computed  by 
the program. The program has been rigorously tested and 
used extensively by us. Final wave functions for a variety 
of systems obtained  after varying degrees of optimization, 
have been tabulated  in a set of “Tables of Linear Molecule 
Wave Functions,” which form a supplement to the  current 
paper.18 Table 1 contains the index to these Tables and is 



presented here both  to indicate specifically the contents 
and  to demonstrate the range of  systems on which  close to 
Hartree-Fock computations can be made. Compilations of 
molecular properties evaluated from  the wave functions 
contained in these Tables are being  made. Published results 
contain dissociation energies and dipole m0rnents.l' Still 
in preparation are complete tables of molecular quadrupole 
moments, magnetic susceptibilities and rotational mag- 
netic static electric polarizabilities,2°-21 nuclear 
electric quadrupole coupling constants, and nuclear 
electric dipole and quadrupole shielding factors. We would 
like to draw  attention to a particularly valuable source of 
computed data  on molecular energies and properties which 
includes many results not yet published. This is the com- 
prehensive tabulation of Krauss.21 

Program  organization and procedures 
The program McL-YOSH LINEAR MOLECULE  PRO- 
GRAM 1" can determine single-configuration, self-con- 
sistent field molecular orbital wave functions for closed- 
shell electronic states of linear molecular systems. It  can 
also determine a variety of expectation values of one-elec- 
tron operators with these wave functions. In the present 
section we  will proceed to define the wave function, outline 
the computational sequence, and give a discussion of the 
procedures used in the computations. 

The  total 2N-electron, closed-shell molecular wave func- 
tion, q, is an antisymmetrized product of N doubly occu- 
pied molecular orbitals, &, with electrons in any one 
orbital having opposed spin. Thus 

............................. 

............................. 

Pl.(2N)44(2N).  *4N.(2N)4NP(2N) (1) 

The molecular orbitals are  orthonormal, [dV&$i = & j ,  

and are expanded out of normalized Slater-type functions, 
xs, defined  by 

x d n ,  1, m, k ,  r> = t(2S;,>"+'/(2.>!1 rk 
112 n-1 

x exp ( - l p r k )  Y Z m ( e k ,  '$k) - ( 2 )  

The coordinates r k ,  Ok, are spherical polar coordi- 
nates defined  with respect to nucleus k as origin. For the 
linear systems under discussion here the z-axis (direction 
0 = 0) will be along the internuclear line in the direction 

210 of increasing k, which numbers the nuclei sequentially 

along the axis. The integer quantum numbers n, I, rn are 
subject to  the condition n > 1 2 [m[  2 0 and the  param- 
eter 12, is the orbital exponent in this p-th basis function. 
The functions Yzm(O, 4) are normalized complex spherical 
harmonics, 

where the Pllm' are the associated Legendre functions, 

P;" I 1  (x) = - 1 (1 - x ) 2 I m l l 2  

2 Zl! 

In the  program we have imposed the limits I, [ r n j  5 4; 
n t l < 9 ; 1 < k < 1 2 .  

Each molecular orbital  has  the symmetry of one of the 
irreducible representations of the symmetry group for the 
problem, and is expanded from functions of the same sym- 
metry type. Thus,  for molecules without an inversion cen- 
ter  the symmetry labels are u, a, 6, . . .  and the orbitals 
are expanded from Slater-type functions with Iml = 0,1,2, 

- - respectively. The symmetry of the closed shell elec- 
tronic configuration is l1;. For molecules  with an inversion 
center the symmetry labels are no, uu, rU, ag, 6,, 6,, * . ; the 
orbitals are expanded from linear combinations of Slater- 
type functions, x p  =k xpl, in which x?, and xp' are centered 
on symmetrically equivalent nuclei and have the same 
quantum numbers and orbital exponents. (The center atom 
in a system  with an  odd number of nuclei is its own equiva- 
lent nucleus, so that single Slater functions on this atom 
already have the correct symmetry.) In this case, the closed 
shellelectronic configuration has l P g  symmetry. The molec- 
ular orbitals are determined, in terms of the basis functions, 
by the self-consistent field procedure of R~othaan, '~ using 
a Hamiltonian, 4, in which the potential energy contains 
all Coulombic interactions. Thus, in atomic units, 

where i, j sum over electrons; k ,  1 sum over nuclei; 2 is a 
nuclear charge, r an interparticle distance, and the opera- 
tor V2 is the Laplacian. 

The computation breaks down into two main parts: 
(i) the evaluation of all matrix elements involving members 
of the basis set with the components of the Hamiltonian, 
and (ii) the use of these matrix elements in applying the 
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variational principle to determine the set of molecular 
orbitals which  minimizes the total energy of the system. 
The relative amounts of computation involved in each of 
these sections depends on the size of the basis set, but even 
for the largest sets (-50) which can practically be used 
with this program about 80% of the time is consumed pro- 
ducing matrix elements of the electron interaction opera- 
tor. In fact, the lack of computers adequate for evaluating 
these matrix elements has always been a bottleneck in 
molecular computations. The method in this computer 
program relies  heavily on numerical integration, and the 
primary consideration in organizing the sequence of com- 
putation is to set up all tables of data needed to complete 
the numerical integration in  an order which makes it  as 
efficient as possible. 

The elements of the electron interaction matrix have the 
form 

(P4'lrs) = / ~ T ~ ~ T Z X ~ ( ~ ) X P ( ~ ) X T ( ~ ) X . ( ~ ) / ~ ~ Z  

= / dT2UPI(2~X~(2)X' (2 )  ( 6 )  

UP,(2) = / ~ 1 x ~ ( 1 ) x q ( 1 ) / r 1 2  - (7) 

where 

Asterisks in Eqs. (6) and (7) denote complex conjugates. 
Equation (6) shows that, after integration over the coordi- 
nates of electron 1 has been completed, the integration 
over electron 2 involves an integrand which is the product 
of a potential Up,  and basis functions xT* and xs. The 
potential Up,  at any  point is that due to the charge distribu- 
tion xp*xq as indicated in Eq. (7). Elements of the one 
electron matrices have the same form as  Eq. (6) except 
that the potential Up,  is replaced by a one-electron opera- 
tor. For linear systems, integration over the axial coordi- 
nate, + (the angle between the plane containing an  ar- 
bitrary  point and the internuclear axis and a reference 
plane containing the internuclear axis), can be disposed of 
trivially in performing both electron 1 and electron 2 in- 
tegrations. In general, integration over the remaining two 
electron 2 coordinates in Eq. (6) is performed numerically. 
(Exceptions are  the one-center integrals in which basis 
functions indexed by p ,  q, r, s are  all defined relative to a 
common nucleus.) The basic decisions taken in deter- 
mining the structure of these programs were to (i) order the 
matrix elements (pqjrs) so that all nonzero elements for a 
common pq occur in a block and (ii) that basis functions 
be tabulated at quadrature points taken NPNT  at a time, 
where NPNT is computed (under program  control on 
the basis of current input data), so that the  tabulations 
for all basis functions at this number of points can fit in 
the core memory of the computer at the time the numerical 
integration is to be carried out. Tables of potentials will be 

constructed in  an order corresponding to  the order of the 
matrix elements, the potentials being evaluated NPNT 
points at a time, using the same ordering of points as for 
the basis function tabulations. Structuring the tables in 
this way allows efficient numerical integration, as will be 
demonstrated below. Implicit in this structure is the use 
of the same quadrature points for all integrals. For a par- 
ticular matrix element, contributions from many of the 
quadrature points may be negligible and the  computation 
time employed in performing the integrations can be  de- 
creased by taking advantage of this. 

For efficient computation different sections of the pro- 
gram  should  have essentially the entire core memory availa- 
ble. This has been implemented by constructing program 
modules which operate on data, available from  card  input 
or set up by previous modules, and  in  turn generate data 
to be made available as  printed  output or to be used by 
succeeding program modules. A short  control  program 
(= 200 words) resides permanently in core and directs the 
path of the  computation through the  program modules, 
calling them from a program tape for execution. This struc- 
ture facilitates extension to new types of molecular com- 
putation because the  control  program needs only simple 
changes to execute different paths of computation on  the 
basis of an input flag.  Since the  program modules do  not 
directly communicate but only operate on well-defined 
lists of data, new modules can be written by other users 
and be incorporated into  the program by making the 
appropriate change to the  control program. 

We will now outline the functions of the eleven pro- 
gram modules which are currently incorporated into the 
program. The reader should keep in mind the basic struc- 
ture required for efficient numerical integration, outlined 
earlier in this section. Supplementary information con- 
taining more details on implementation is available in 
Ref. 16. 

Module I contains the  control  program and a number of 
utility programs needed for the interrupt and recovery 
procedures incorporated into the program. The Module 1 
programs are brought into core for execution either by 
using a bootstrap program contained on a utility card which 
is read on-line to initiate computation (if the  program is 
used in a stand-alone manner), or by a user program call 
to a short subroutine, provided by us, which  saves the 
user computation at its current  status on a magnetic tape 
and then reads in the Module 1 subroutines. In this latter 
case, where the molecular program  is called as a sub- 
routine,  the  core is restored after execution of the molecu- 
lar  program is completed. 

Module 2 processes the  input  data which  defines the 
basis set, the quadrature parameters and  the matrix ele- 
ments to be computed. It then determines the  quadrature 
formula and tabulates the basis functions at the  points 
required by this formula. NPNT, the number of integration 21 1 
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points that can be processed at a time in the available core 
storage, is determined at this point since it defines the 
structure of all tables used in the numerical integration 
to be carried out in Module 7). If the current run  (as in- 
dicated by the value of an  input flag, RERUN) is a new one, 
then NPNT is made  equal to the integer part of C/(B  + 3) 
where Cis the number of core locations available in Module 
7 for  the basis function tabulations, and B is the number 
of basis functions. The additional 3 in  the denominator 
is used to allow augmenting of the basis set by up  to three 
functions in a subsequent run, without having to reset 
NPNT. This means that tables of potentials, structured 
according to NPNT, can be updated in Module 5 rather 
than recomputed in the subsequent run. If the current 
run is to process data updated  from that used in a previous 
run  from which the  input, wave function output, matrix 
elements over the basis set and potential tables were saved, 
the value of NPNT is reset to  that used in the previous run 
provided this is  possible. If not, it is set to a new value, 
according to the formula given above for a new run using 
a value of B equal to the current size of the basis set. 
Under these circumstances the potential tables will have 
to be recomputed in Module 5 rather than updated. 

More explicitly, the ordering of the basis function tabu- 
lation is: First basis function evaluated at the first NPNT 
integration points, second basis function evaluated at  the 
first NPNT points, . . ., last basis function evaluated at the 
first NPNT points. This is followed with similar tables for 
the second NPNT integration points, and so on until the 
integration points are exhausted. These tables are written 
onto magnetic tape. It should be apparent  from  the way 
NPNT is computed that with this structure all basis func- 
tion  tabulations  taken NPNT points at a time can be read 
into core in Module 7, where the increment to the accu- 
mulated values of the integrals over the basis functions 
due to contributions from  the  current NPNT points is 
made. 

Our approximation to the integrals given in Eq. (6) in- 
volves integrating two of the coordinates of electron 2 
numerically. The coordinates chosen are z, along the 
molecular axis, and p, perpendicular to it. The two-dimen- 
sional quadrature is the direct product of two one-dimen- 
sional formulas. The one-dimensional formulas are gener- 
ated by breaking up the range of the variable into segments 
and obtaining a quadrature formula for each segment as 
follows.22 Suppose that the range of a segment is (a, b), the 
variable denoted by z, and we wish to obtain a quadrature 
formula that has one-half of the points in the range (a, m), 
the remainder in the range (m, b). Then 
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where 

wi = Ui(b - a)(l - P2)/2(1 - ptiy (1 0) 

P = [(b + a) - 2mI/(b - a) (1 1) 

and ti, U; are points and weights for  integration in the 
range (- 1 , 1). We choose the Gauss-Legendre points  and 
weights. Equation (9) accomplishes the transformation 
from z to t in the desired way, and we have written the 
quadrature formula (8) in such a way that  the factor dz/dt 
which comes from transforming the integral has been in- 
corporated into the weight factor Wi. Inspection of Eq. 
(11) shows that -1 5 P 5 1 and  that when /3 takes on 
values 0, f 1, limiting forms must be taken. 

For P = 0, which corresponds to b + a = 2m, 

zi = [(b + a) + (b - a) ti1/2 

Wi = Ui(b - ~ ) / 2 .  (1 2) 

For p = 1, corresponding to infinite by 

zi = [m(l + ti) - 2ati]/(l - ti) 

Wi = 2Ui(m - a)/(l - ti)2, (1 3) 

while for P = - 1, corresponding to  infinite a, 

zi = [m(l - ti) + 2bt;]/(l + ti) 
wi = 2Ui(b - m)/(l + t i ) 2 .  (14) 

The selection of the segments and  the way the segments 
are divided for the purpose of mapping onto (- 1, 1) are 
performed internally by the  program unless  specified  by 
the user as  input  data. In practice, segments should be 
chosen in  the z-coordinate so that integration is performed 
up  to  and away from nuclei, to avoid loss of accuracy due 
to discontinuous derivatives of pertinent basis functions at 
the nuclei. The way in which segments are divided offers a 
simple way  of controlling the distribution of quadrature 
points in a way that sensibly  reflects the electron distribu- 
tion, and the mapping onto (-1,  1) enables use  of the 
powerful Gauss-Legendre quadrature formulas. 

In  the two-dimensional direct product formula the 
weight corresponding to the  point (z ip j )  will  be the  product 
W i  Wj where Wi and W j  are  the weight factors for the points 
indexed by i and j on segments in ranges of z and p. From 
Eq. (6) we note that  at each point in the numerical integra- 
tion  the values of two basis functions are multiplied to- 
gether. If the  square root of the weight associated with a 
given point is multiplied into the  tabulated values of all 
basis functions at  that point, this will  save  explicitly  mul- 
tiplying in the weight factor when carrying out the in- 



tegration. This is an  important saving, since putting  to- 
gether the already computed  component  parts of the in- 
tegrands of Eq. (6) and accumulating the results is the 
most  time consuming stage in the execution of the program. 

Also included in Module 2 is the programming for  auto- 
matic exponent optimization and for saving useful data  in 
binary form  on  output  tape A6 at  the end of the current 
run,  and reading it back  in, if required, on  the next run. 

If the  input  data have called for the computation of the 
electronic contribution to the electric field and electric 
field gradient at  the nuclei, then tables of derivatives of 
the basis functions evaluated at  the various nuclei are also 
computed here, since they are required by our method of 
computation of the required  matrix elements.23 

Module 3 produces tables of required two-center poten- 
tials (Eq. (7) for the case that p ,  q index basis functions 
defined with respect to different origins) in a  spheroidal 
coordinate system defined relative to  the two origins. These 
tables cannot be used directly in  Module 7 in performing 
the numerical integration since the points in a  spheroidal 
grid at which the potentials are computed are  not  the same 
as  the  integration  points of the previous module. The val- 
ues of the two-center potentials at  the required integration 
points will be  obtained by interpolation into  the tables pro- 
duced in  Module 3. Hence, the density of the spheroidal 
tabulation  must be adequate to give the required five- 
decimal-place accuracy on performing quadratic interpola- 
tion as discussed in the section on Module 5. 

The table  for a single two-center potential can contain 
up  to several thousand entries, and these are generated 
one at a time and written out  onto magnetic tape.  They 
must  be  ordered on the tape  in the way that they will be 
used subsequently. The ordering is that of the first charge 
distributions, xp*( l )xp( l )  of Eqs. (6) and (7), which will be 
discussed in detail in  the section on Module 4 and we defer 
the discussion of ordering until then. It is sufficient to note 
here that only those  potentials needed on  the current run 
are computed.  Thus, if the  current run uses data from a 
previous run automatically saved on magnetic tape unit 
A6 at  the end of that  run,  and  NPNT  has  not been reset 
because of augmentation of the basis set, then it will not 
be necessary to compute two-center potentials which are 
unchanged from  the previous run. 

The analysis used in deriving formulas to be performed 
for the two-center potential involves straightforward use 
of the  Neumann expansion of l / r l z  and a relationship be- 
tween the associated Legendre functions of the first and 
second kind.24  We will outline the analysis at a level suffi- 
cient to make  the  formulas intelligible, since the explicit use 
of two-center potentials is a departure  from the usual evalu- 
tion of two-center exchange integrals and  has  not previously 
been well documented. 

The coordinate system is illustrated in Fig. 1, and  the 
relationships between Cartesian, spherical polar and 

P 

Figure 1 Coordinate systems used in  discussion of two-center 
potential. 

spheroidal  coordinate systems are as follows. A point P 
having Cartesian  coordinates (x, y ,  zk) relative to center k 
and (x, y ,  zkt) relative to center k’, which is a distance 
Rkkl along the positive z-axis, has spheroidal  coordinates 
( E ,  794) where 

= (rk -k rk’)/Rkk’ 

7 = (rk - rk‘)/Rkk’ 

4 = tan “ ( y / x ) .  ( 1  6) 

This  same  point P has spherical polar  coordinates 
(rk, O k ,  4) relative to k,  and (rk*, ek‘, 4) relative to k’ 
where 4 is as  above and 

rk Rkkft + 7)/2 

cosek = (1 + En)/($ f 7) 
rkl = - d,/2 

cosek~ = (- 1 + t ~ t  - 7) . (17) 

The Cartesian  coordinates expressed in terms of the 
spheroidal are 

X = Rkkf[(E2 - 1)(1  - 72)]”2 COS 4/2 

y = Rkkt  [ (E2  - 1)(1  - 772)11/2 sin 4/2  

zk Rkk’(1 -k E7)/2 

Zk’ = 1 + t7)/2. ( 1  8) 

The two-center potential to be evaluated is 

NntNn’l‘  Jdrlrkl rk‘l exp ( - trkl  - t’rkl1) n-1 n’-l 

x Yt(ek141)  Y l d e k w d / r 1 2  
( n ~ l m l ; n ’ l ’ l m ’ l ; ~ ~ ’ ; l ~ l )  

= N n  1 Nn‘ 1‘ Ukk ( t z w ) e i M ’ a  . ( 1 9 )  

In Eq. (19) Nnl = [(2.()2n”+1/(2n)!]1’2, Nn‘t = 
[(2{’)2nf1/(2n’)!]1’2, and a subscript 1 refers to electron 1 
coordinates, 2 to electron 2, with the interelectronic distance 
d e n o t e d b y r 1 ~ . T h e f u n c t i o n U ~ ~ ~ ( ~ ~ z ~ m ~ ~ n ’ z ’ ~ m ’ ’ ~ ~ ~ ’ ~ ’ M 1 ) ( ~ ~ ~ z )  
eiJf+a is a function of the electron 2 coordinates, and when 213 
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multiplied by the factor Nn~Nnfl f  gives the value of the 
potential at points  in the space of electron 2 due to the 
charge  distribution of electron 1 .  In writing Eq. (19) we 
have  anticipated the result of carrying out  the integration 
over the coordinate 41 which yields the exp(iM42) de- 
pendence in  the potential where M = - m + m'. It should 
benoted  that  the functions Ukkf"lml;n'z'Im'';n';IMI)(C; Z W ) ,  

in which the subscripts and superscripts denote  parameters 
specifying the potential, are functions only of the absolute 
magnitudes Iml, Im'l, /MI. 

The first step in performing the integration of Eq. (19) 
is to substitute the expressions for  the spherical polar CO- 

ordinates in terms of spheroidal.  Thus 

e-tTkl-t'rk? = e-aEl-Bsr ( 2 0 )  

where a! = ({ + {')Rkk1/2 and = ({ - {')Rkk1/2, and 

x &:'[(E21 - 1 ) ( 1  - 731  
IMl/2ei(-m+m')q, 

( 2 1 )  

where in Eq. (21) the indicated numerical coefficients 
~~~(~~I~l;~'~'I~'I;I~~I)dependonlyonthequantumnumbers 
of the basis functions and  are straightforwardly derivable 
by expanding the left-hand expression. Our  computer 
programs  perform the laborious algebraic manipulations 
involved in making the above expansion. Detailed analysis 
shows that  the summation on (i + j )  is in steps of 2 (in- 
dicated by the prime) from a starting value of either 0 or 1 
depending on whether D I I = n + n ' - 2 + 1 + 1 ' -  
21M1 is even or odd. Now  substitute into Eq. (19) = 
( R i k ! / S ) ( C ; i  - &&dq&l and  the  Neumann expansion of 
1 / m .  

X PiM! ( td  QLM' (E>) PiM! (71) 

x ( r 2 ) e i M ( + l - + % )  ( 2 2 )  

In  Eq. (22) ,$'< and l, are respectively the lesser and greater 
of (1, t2 and  the functions PZ", QZ" are associated 
Legendre functions of the first and second kinds.25 The 
PLnf I for  argument x in the range - 1 5 x 5 1 are  the usual 
functions defined in Eq. (4). For argument x in  the range 
1 5 x < cc we simply replace ( 1  - x2)Ihf in  Eq. (4) by 
(x2 - l ) l M 1 ' z .  The Qff"' for argument x in  the range 
1 5 x < 00 are given by 

QiMF"'(x) = (x2  - l ) l M l / 2 ( d M / d x M ) Q L ( x )  , where 
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Making the above  substitutions and carrying out  the 
integration over the 41 coordinate, we have 

Ukk' ~nzl~l ;n 'z ' lm' l ;~~' ; lMl)  
(E21121 

x t:r![(E; - 1 )   ( 1  - r1)l . (23) 
2 1MIh 

In writing Eq. (23) it will be noted that  the (t2 - $) = 
(Rkk'/2)2rkrk' has been absorbed into  the polynomial 
arising from  the basis function  product, with appropriate 
adjustment of superscripts and summation limits. 

Defining the auxiliary functions 

x (- p )  ( 2 5 )  

and substituting into Eq. (23) yields 
U ~ ~ l m l ; n ' z ' l m ' l ; t t ' ; l M l )  

( E P d  

Equation (26) is already  in form suitable for use nu- 
merically and, in  fact, was so used in a previous computer 
program.26 However, in  the current  program we have  car- 
ried the analysis further  as will be described below. The 
auxiliary functions booz@) are  the spherical Bessel functions, 
and  the two-zero indices can be raised by use of recurrence 
relations which do  not lose accuracy. The spherical Bessel 
functions themselves can be  computed extremely rapidly 
and accurately using a continued  fraction expansion for  the 
ratios between successive I values for a given argument?' 



Continuing with the we note  that  for  an  ar- 
bitrary  functionf(x) 

which when integrated by parts together with use of 

PiM1 ( X )  QL ( X )  - QP:"' ( X )  PL ( X )  
d IMI d IMI 

yields 

Use of the result in Eq. (26) leads to 

( n ~ l m 1 ; n ' ~ ' l m l ; f r ' ;  IMI) 
U k k  ( E z d  

X [ d x [ l / ( x 2  - ~ ) ( P L " ( X ) ) ~ ]  

x P P 1 ( Y )  . (27) 

Equation (27) is also in a form suitable for numerical 
use, and  one version of the current  program employs it. 
The double integral is evaluated numerically for values of 
t2 in  the range 1 to 00 by operating on tabulated values of 
the integrands, in the same range, using a quadrature for- 
mula of the Simpson rule type. However, it is possible to 
carry the analysis further29 and derive an expression for  the 
inner s4 dy integration  in terms of the auxiliary functions 

&(CY, x )  = 
duune-a(u+l) 

which can be simply evaluated. The reduction of the inner 
integral to these auxiliary functions is accomplished by use 
0P5 

and transforming  the polynomial in y ,  

The advantages of making use of the analytic expression 
for  the  inner integral are improved accuracy, and  the pos- 
sibility of doing  the  outer dx integration with a more 
powerful quadrature formula. A second version of the  cur- 
rent  program  incorporates  this analysis. 

The actual  quantity  tabulated by the  computer  program 
is 

W(nzlnzl ;n 'z ' lnz ' l ; rr l ;  l ~ l ~ ) ( y ) ,  into a polynomial in ( y  - 1 ) .  

N n  ZNnflr  U k k  
cnflml;n'z'lm'l;rr'; I M I )  

(€2, 112) 

x t l M 1 / [ ( E 2  - 1 ) ( 1  - 9 > I  2 IMllZ 
(28) 

and  the tabulation is made at equal spacing in 72 in  the 
range -1 5 q2 5 1 and t in the range 0 5 t < 1 where 

In Eq. (29), b is an adjustable parameter (specified as input 
data) which is a scale factor controlling the mapping of t2 
onto t .  Selection of the best value of b gives the highest 
possible accuracy in  the numerical integration. The factor 
[ ( E 2  - 1 ) ( 1  -q2)] in  the denominator of the tabulated 
quantity (28) is introduced to provide a suitable  function 
for interpolation. That  it is necessary can  be seen by con- 

g2 = 1 for  odd values of 1M1, where the  square  root of 
(ti - 1 )  arising from PLM ' ( E 2 )  controls the behaviour of the 
function. Since the polynomial expansion in powers of t2 
of this square  root in  the  neighborhood of l2 = 1 is slowly 
convergent it is not amenable to interpolation. 

Module 4 generates a list which indexes the matrix ele- 
ments, and contains  information on how they are  to be 
computed or whether they are available from a previous 
run.  The list contains one positive entry for each one- 
electron operator in  the one-electron matrix elements, and 
for each electron 1 charge distribution (see Eq. 6) in  the 
two-electron matrix elements. These positive entries  contain 
either the code for a one-electron operator or  the indices of 
the basis functions  contributing to  an electron 1 charge 

sidering the behaviour of U~; t z lml ;n ' l ' lm' l ;br ' ;  ' M I ( €  2) near 
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Table 2 Ordering of charge  distributions by  symmetry. 

First Charge Second Charge 
Distribution" I MI Disfributionarb 

uu 0 (Tu 
TU 1 T U  

Ta 2 x7r 
0 UU,T7r 

6U 2 TT,6U 

6x 3 6a 

66 4 66 
1 7rd,6a 

0 UU,TT,66 

4u 3 6lr*,+U 

4T 4 66*& 

46 5 48 

44 6 44 

YO 4 66*,47r*,YU 
Ya 5 48*,YT 

3 6T*,4U*,YiT 
76 6 #*,+ 

2 TT*,6U*,4T*,Y6 
74 7 Y 4  

1 ?rU*,67r*,48*,Y4 
YY 8 YY 

0 00,TT,66,44,YY 

2 TT*,6U*,4lr 

1 TU*,6lr*,46 

0 UU,7rT,88,44 

8 I r n l  values of 0, 1, 2, 3 . . . are denoted c, T ,  6, 4, . . . 
b An asterisk denotes a second charge distribution which need be combined 

with the designated first charge distribution for configuration mixing calcula- 
tions only. 

distribution, whose potential will be needed in  order to 
evaluate the electron repulsion matrix elements. Each posi- 
tive entry is followed by a number (at least one) of negative 
entries that contain indices specifying the basis functions 
contributing to a charge  distribution. The  total number of 
matrix elements is the number of negative entries, and  the 
full specifications of a matrix element are given by a nega- 
tive entry and the positive entry preceding it  in  the list. 
Since the code  for an operator or potential (positive entry) 
appears only once, it is clear that all matrix elements that 
are  to be  computed with that operator or potential are 
specified by the negative entries immediately following it. 
This  structure is chosen since it simply allows tabulations 
of operators and potentials, made  in the same order as the 
positive entries, to be used sequentially and with no re- 
dundancy. 

The matrix elements are in the order of overlap, kinetic 
energy, nuclear attraction, electron repulsion, followed by 
blocks of one-electron matrix elements corresponding to 
one-electron operators which are either selected by input 
data  or, if this is not  the case, are automatically generated 
by the program. 

Within blocks of a given type, entries are ordered with 
respect to the symmetry of the charge distributions involved 
in the matrix elements, and within each symmetry are 

21 6 ordered according to  the indexing of the basis functions. In 

the case of C,, (no inversion center), we have taken full 
advantage of symmetry simply by breaking the list down 
according to the symmetry classifications of the charge 
distributions derived from basis function  products. The 
redundancy which would still remain in this list for D , h  

symmetry has been removed by making additional tests 
within each symmetry classification. The removal of any 
redundancy due to  the molecular symmetry is important 
for efficiency, and essential for the algorithms we have used 
in constructing supermatrices (Modules 8, 10) to be valid. 

The symmetry of a charge distribution is specified by  the 
values of Iml and lm'l from  the two basis functions  in- 
volved, and the value of I MI = I "m + m' I. In  the case of 
the one-electron matrix elements the I MI dependence of the 
operator must be the same as the IM[ dependence of the 
charge distribution, while for the two-electron matrix ele- 
ments the I MI values of the two-charge distributions must 
be the same. Otherwise, the integral is identically zero. 
Table 2 lists all possible second charge distributions that 
give nonzero matrix elements when combined with a given 
first charge distribution. Entries marked with an asterisk 
are those which do  not need to be  computed in obtaining a 
single-configuration molecular orbital wave function. They 
are needed for calculations involving configuration mixing 
and  the program was designed to compute  them even 
though  in  its  current  state it does not allow configuration 
mixing calculations. Whether they are computed or  not is 
determined by an  input flag, IRFLG, defined in  the input 
data specifications. The order of the symmetry classifica- 
tions of the two-electron matrix elements generated by the 
program is simply derived from Table 2 by taking each 
first charge  distribution with the second distributions  in  the 
order in which they appear in the  Table. 

For a given symmetry classification there are many ways 
to order the nonredundant matrix elements. Our choice, 
which is strongly dependent on  the structure of the IBM 
7090 computer  word, is not of general interest and will not 
be given in detail here.30 

Each  entry in  the list is tagged with control  information 
necessary for  the successful execution of later modules, and 
to provide efficient computation. 

Positive entries are tagged according to which of the 
following categories describes the operator or potential 
they specify: 

(i) Not  to be  tabulated numerically, since no matrix ele- 
ment involving it will be computed numerically. 

(ii) Same  tabulation used as on previous run, since no 
change in  the basis functions involved. 

(iii) To replace a tabulation generated in previous run, be- 
cause of a change in  the basis functions involved. 

(iv) An added  tabulation to those generated in a previous 
run because of insertion of a basis function into the 
basis set. 
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Negative entries are tagged according to which, with the list can be processed efficiently using only 500 core  locations 
preceding positive entry, of the following categories de- even though the  total length of the list can typically be of 
scribes the specified matrix element : order lo5. 

(i) Not computed numerically, and involves a basis func- 
tion changed from  the previous run. 

(ii) Not computed numerically, and involves a basis func- 
tion inserted into  the basis set of the previous run. 

(iii) Computed numerically, and involves a basis function 
changed from  the previous run. 

(iv) Computed numerically, and involves a basis function 
inserted into  the basis set of the previous run. 

(v) Same as in previous run,  in which it was computed 
numerically. 

(vi) Same as in previous run, in which it was not computed 
numerically. 

It will be recalled that  the information  retained  from  the 
previous run included the tabulations of potentials at  the 
points required for numerical integration, and the matrix 
elements. Consideration of the categories listed above will 
show that all information for the updating of the potential 
tabulations and matrix element list is listed. We note that 
logically, an operator  in a one-electron matrix element is 
treated in the  same way as the potential in a two-electron 
matrix element. Also, that a run which does not call on 
previously generated potential  tabulations and matrix ele- 
ments is logically treated as one in which all basis functions 
are inserted into a previous basis set of zero occupancy, 
i.e. all operators, potentials and matrix elements are tagged 
as inserted in  terms of the  above categories. Runs which 
cannot call on previously generated potential  tabulations 
are those  in which NPNT (see Module 2) was reset because 
of augmentation of the basis set. Runs which cannot call on 
previously generated potential tables or matrix elements 
are new runs, or runs which involve different quadrature 
points for numerical integration.  This  latter case is realized, 
for example, on changing the  internuclear configuration 
without  any change in  the basis set, other than  the change 
of origin. 

In Module 5 tabulations of operators and potentials will 
be made in the order of the positive entries, for NPNT 
points at a time, the tables being obtained according to the 
control information encoded in  the positive entries as de- 
scribed above. With reference to Module 3, the ordering of 
the two-center potential  tabulations in spheroidal  coordi- 
nates is the ordering of the two-center potentials in the 
positive entries of the Module 4 list which are tagged as 
containing a changed or inserted basis function. 

The entries in  the list which indexes the matrix elements 
over the basis functions are written out  onto magnetic tape, 
250 at a time. They will later  be used sequentially and read 
in through a double buffer (500 words of core  storage) so 
that entries occupying the first buffer can be processed 
while the second is being filled and vice versa. Thus, the 

Module 5 constructs tables of operators and potentials 
at the integration  points selected in Module 2.  As for the 
basis function  tabulations of Module 2, the points are  taken 
NPNT  at a time. For each NPNT points the operators and 
potentials that need be  tabulated, as determined by the 
information in  the positive entries of Module 4, are written 
out  onto magnetic tape. The precise ordering of the  records 
on magnetic tape is: First operator or potential (whose 
tabulation is needed) at first NPNT points, second operator 
or potential at first NPNT points,  third, etc., until we have 
exhausted the positive entries in  the  Module 4 list. This is 
followed by similar tabulations for the next NPNT points, 
and so on until all  points are exhausted. The tabulations 
can be, (i) a copy of a tabulation from the previous run, (ii) 
a new two-center potential  obtained at  the current NPNT 
points by interpolation into  the table  produced in Module 
3, (iii) a new one-center potential  computed from scratch 
in the  current module, (iv) an operator whose tabulation 
will be  made from scratch in this module. 

It is of interest at this  point to consider the  amount of 
data being processed in  the setting up of these tabulations. 
The Module 4 index list is being read in through a 500-word 
double buffer, once for each NPNT points. The potential 
tabulation from  the previous run is being read  in through a 
2(NPNT)-word double buffer. The two-center potential 
tables produced in Module 3 are being read in through a 
-10,000-word double buffer, once for  each NPNT points. 
The potential  tabulations being produced are written out 
through a 2(NPNT)-word double buffer. For typical runs 
involving -40 basis functions the  Module 4 list contains 
-2 X lo5 entries, the other lists -2 X lo6 entries. 
Synchronization of the  data transmission is implemented 
through  two powerful 1-0 subroutines which facilitate 
optimum use of the data channels on  the  comp~ter.~' These 
subroutines are  the key to  the success of the current  pro- 
gram. The use of double buffered data transmission (as 
described at  the  end of the section on Module 4) is an ex- 
tremely simple way of overlapping data transmission with 
computation. In fact, in the current  program, essentially 
the only stage where it can  be 1-0 bound, is in this  Module 
when a long  string of potential  tabulations is being copied 
from  the old list to the new, uninterrupted by entries that 
must  be recomputed because of a change or insertion in 
the previous basis set. 

The analysis of the one-center potential involving Slater 
functions is well documented in the literature, and need not 
be  repeated here. In particular, the analysis given by Wahl, 
Cade  and R ~ o t h a a n ~ ~  is essentially identical to  the one 
incorporated into  the present program. 

Module 6 generates the list of values of matrix elements 
in its final form, except that entries corresponding to all 217 

COMPUTING MOLECULAR WAVE FUNCTIONS 



218 

matrix elements to be computed numerically in the current 
run (as encoded in the Module 4 index list) will be set equal 
to zero. All other matrix elements will either be copied from 
the corresponding list produced in a previous run, or will 
be computed by special subroutines in this Module. The 
types of matrix elements computed specially are (i) all one- 
center integrals, (ii) one-electron, two-center overlap, 
kinetic energy and nuclear attraction integrals. These in- 
clude the largest matrix elements and are required to more 
significant figures than the remainder. This is made possible 
by the use of analytical procedures which to a large extent 
follow our analysis of the one- and two-center potentials. 
The matrix elements to be computed numerically will  be 
accumulated, into the appropriate entries set to zero in this 
Module, by the programs in Module 7 which  will complete 
the evaluation of matrix elements. 

In the execution of this Module, the data lists being 
transmitted into core are the index list of Module 4 and the 
matrix element list from  the previous run. The outgoing 
data list is the new matrix element list. All lists are trans- 
mitted through double buffers. 

The key formulas for the matrix elements computed in 
this module are listed below. x(nlmk{) is used to denote a 
Slater function and center (Eq. (2)), and different Slater 
functions are denoted by using combinations of bars and 
primes. 

(i) One-center overlap integral. 

/ d q (  nlmkr)*x‘(  n‘l’mlk{’) 

with NnlNnrzt as defined following Eq. (19), and 6 denoting 
a Kronecker delta. 

(ii) One-center, two-electron integral. 

x { (t + r’) 
( N  - L ) ! ( R  + L + l ) !  

( r  + r’ + r + r’) x Bi+L+l.N-L r + t’ 
+ (W - L ) ! ( N  + L + l ) !  

(r + 
x BN+L+l.E-iL (I + t’ + r + r)}  (31) 

r + f‘ 9 

where p(1 + 1’) = 0 if the  sum is  even, = 1 otherwise. The 
upper limit of the sum is the smaller of the two quantities 
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in parentheses and the index L advances in steps of 2. [MI 
= I “m + m ’ [ ,  N = n + n’ - 1, R = n + ri‘ - 1, and 
the remaining quantities used in Eq. (31) are defined  below. 

and similar expressions for F’, E, E’. 
A L I M I  are  the expansion coefficients in 

(cos e) P?” (cos e)  

with a similar expansion defining A L I . ~ ~ .  
The functions B in Eq. (31) are defined  by 

The result contained in Eq. (31) follows from routine use 
of the Laplace expansion of l/r12 and the orthogonality of 
the spherical harmonics. 

(iii) Two-center overlap integral. 

/ d r l x (  nlmk{)*X’( n’l’m’k‘{’) 

(33)  

The notation of Eq. (33) is that developed in  the dis- 
cussion of the two-center potential in Module 3. We note 
that the 9 integration of Eq. (33) is, apart  from a factor 1/2, 
the function bgo( - 0) as defined in the two-center potential. 
The integration gives Ai(a), where Ao(cr) = e-”/a! and 
crAi(cr) = iAi-l(cr) + e-“, which can be used to recur up 
on index i without loss of accuracy. 

The remaining integrals are all simply related to the 
above three, with the exception of the two-center nuclear 
attraction integrals involving a one-center charge distribu- 
tion on center k and an operator l/rkf.32 These latter 
integrals drop  out the analysis of the one-center potential, 
since they are in fact the value of the potential at k’ due 
to the charge distribution. 

We have included these formulas, since they closely re- 
flect the way in which they are programmed. In particular, 
our result for  the two-center overlap integral using the 



functions by( -0) is of note, since the same  subroutines 
developed for  the two-center potential are used. 

Module 7 completes the evaluation of the  matrix elements 
by carrying out  the numerical integration, for all matrix 
elements so tagged in the Module 4 index list, and accumu- 
lating the result into  the corresponding entries in  the matrix 
element list set up in  Module 6. The integration is carried 
out  NPNT points at a time. It will be recalled that  the value 
of NPNT was chosen so that all tabulated basis functions, 
which because of the matrix element ordering are needed 
nonsequentially, could reside in core  storage in Module 7. 
Operator  and potential  tabulations,  produced  in  Module 5, 
are used sequentially, and can, therefore, be  read  through 
a double buffer  of dimension 2(NPNT) with the potential 
table  in  one buffer being used while the  other is read  in. 

The  data flow for the first NPNT points is as follows. The 
basis function  tabulations are  read  into core in their en- 
tirety. Input  data lists read in through double buffers are: 
the index list of Module 4 (necessary to determine which 
integrals are computed numerically and which basis func- 
tions are involved), the potential  tabulations of Module 5 
which were set up for the same ordering of points  as the 
basis functions and  the same ordering of potentials as  in 
the index list, and  the matrix element list produced  in 
Module 6 into which the numerically evaluated integrals 
will be accumulated. The  output  data list is a matrix element 
list identical in  structure to  the  input list, but with the 
accumulation due  to  the current NPNT points included in 
the entries  corresponding to numerically evaluated matrix 
elements. For  the next NPNT points,  the basis function 
tabulations are  read  into core, the Module 4 index list is 
read again, the reading of the  potential  tabulations (which 
now correspond to  the current NPNT points) is continued, 
and  the  input matrix element list is the  output list from  the 
previous NPNT points and vice versa. This  procedure is 
continued  until  all  integration  points are exhausted. 

In  the case that matrix elements of the  operators zk/ri  
and (3z; - r.f)/rL are being computed, the entries in  the 
basis function tables are modified to remove the singulari- 
ties in the integrands. The details of this have been reported 
elsewhere.33 

Module 7 completes the evaluation of the matrix ele- 
ments, and  the remaining Modules determine a single con- 
figuration self-consistent molecular orbital wave function 
for  the system. This is done in  two stages. First, the matrix 
elements over the basis set are combined into a supermatrix, 
defined in  the following discussion. For C,, symmetry this 
is done  in Module 8, and for D,h in Module 10. Secondly, 
the supermatrix is contracted  in  constructing the Fock 
matrix used in the iterative solution of a pseudoeigenvalue 
problem which yields the self-consistent molecular orbitals. 
For C,, symmetry this is done  in  Module 9, and for D,h in 
Module 11. The theory of these procedures has been ex- 
pounded at  length13s34-37 and we will not repeat it  here; 

rather, we will restrict the discussion to computational 
procedures which have not previously been reported. 

Modules 8 and IO construct the one-electron kinetic 
energy and nuclear attraction matrices and  the two-electron 
supermatrix,  required for  the determination of molecular 
orbitals, for c,, and D,h symmetry, respectively. 

First, it is of interest to outline  what is involved. The 
elements in  the list of matrix elements over the basis func- 
tions, which were ordered in a way required for their 
efficient computation,  are  to be combined with certain co- 
efficients and placed into positions in a supermatrix ac- 
cording to  an indexing scheme unrelated to  the indexing of 
the matrix elements over the basis functions. In other words, 
supermatrix elements are linear combinations of more or 
less random entries in the list of matrix elements over the 
basis functions. Since, for typical cases, both supermatrix 
and matrix elements over the basis functions  can have > lo5 
entries and only "20,000 words of storage are available to 
accomplish the  transformation, it is clear that some thought 
has  to  go  into making the process efficient. 

Either of two approaches  can be made. The first approach 
would be to read in blocks of the  input list (matrix elements 
over the basis set) as large as possible at a time, and have 
the output list (supermatrix) written out from a  double 
buffer of modest ( 4 5 0 0 )  size. Elements of the output list 
would be determined sequentially by picking up  the com- 
ponents currently available in the input list resident in core. 
After going through  the  entire output list, the next section 
of the  input list would be read  in and the process repeated. 
For this approach a directory of the  input list which would 
make it easy to pick up a required matrix element is neces- 
sary. The ordering of the matrix elements chosen in Module 
4 is not particularly well chosen with respect to computing 
the position of a specific entry, which is why we chose to  
implement the second approach described below. In regard 
to execution time the  two  approaches would be comparable. 

The second approach is to have the input list read 
through a modest sized (-500) double buffer and to have 
the largest possible block of core assigned to  the  output list 
(supermatrix). Elements of the input list are processed 
sequentially, each one being placed with the  appropriate 
factor into as many places as it is required in the section of 
supermatrix currently resident in core. After  the entire 
input list has been read  through,  the  current  supermatrix 
block will have been completed and  the process can be re- 
peated for  the next supermatrix block. In this  procedure the 
computation of the location of a specific supermatrix ele- 
ment is extremely simple, but care is required because it 
only works for a nonredundant list of matrix elements over 
the basis functions. The program is structured  according to 
symmetry classifications, so that in  running through  the 
input list we only run through that section which, by sym- 
metry, can make a contribution to the block of the super- 
matrix currently resident in core. The  actual details of the 
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algorithm used for placing a given matrix element over the 
basis functions are nontrivial and we  will present the results 
for the case of C, , symmetry. The procedures for construct- 
ing  the D , h  supermatrix are significantly more complicated 
but  not essentially different and we  will present no further 
discussion of this case here. It will  be noted that in the C,, 
case, the maximum number of supermatrix elements to 
which a given matrix element over the basis functions can 
contribute is 3, while in the D,h case it is 48. For this 
reason, the computer program in Module 8 is 1-0 bound, 
Le., the total execution time is the time required to read the 
matrix element list in its core  as many times as there are 
blocks of supermatrix, while the Module 10 program is 
very much compute  bound, i.e., the amount of arithmetic 
to be performed on each entry in the matrix element list is 
considerably in excess  of the average time required to read 
it in from  tape. 

The elements in  the supermatrix ( p ~ ~ ~ , ~ ~ ~  for closed shell 
molecules are defined by36 

Phpn.pra = 3 h p q , p r s  - +$xpn,prs (34) 
where 

S h p q , p r e  P = (dhd,)" lx:ha(l)x~p0(2) 
a9B 

X ( r 1 ~ ) - ~ ~ ~ ~ ~ ( 1 ) ~ , ~ ~ ( 2 ) d f ~ d 7 2 ,  and (35) 

&pg,pre  = (did#)-1 a.0 [/X:*o(l)X~#B(2) (r12l-l 

x Xrpj3(l)Xqha(2)d71d72 

+ /dha(1)x%,3(2) (r1z)-1~.r~(1)~q~a(2)dfld7z]. (36) 

In Eqs. (34) to (36) p ,  q, r, s index symmetrized basis 
functions X, p, index irreducible representations of the point 
group, and a, p index the subspecies in an irreducible repre- 
sentation. d ~ ,  d, are  the degeneracies  of the X, p irreducible 
representations respectively. Asterisks denote complex 
conjugates and 1, 2 label the two electrons. In  the case of 
C,, symmetry our basis functions are already symmetrized 
(have C,, symmetry) and the symmetry index is the axial 
quantum number Iml. 

The program of Module 8 stores the supermatrix, 
!$~pq,,,rs, in triangular form with row index Xpq and column 
index prs. Ordering of these indices is to increasing values 
of X( = I r n l ) ,  and for a given value of X, p >_ q ;  similarly for 
prs. Thus, the rows and columns are  in the  order 011  021 
022 031 032 033 . . 111 121  122 131 132 133 . . . .The ele- 
ments stored  for X = p have pq  >_ rs, i.e., the lower triangle 
of the full supermatrix is stored. This is the same ordering 
described in detail in Ref. 34. Thus, the elements in the 
supermatrix in reading order would start  out with indices 
011011  021011  021021  022011  022021  022022 . * f . 

The entries in the list of matrix elements over the basis 
set, to be placed into appropriate positions in  the super- 
matrix are 

(pqlrs)r = Jx:(1)x:(2)(rll)-lxq(l)xs(2)dfldf~ . (37) 

These matrix elements will  be labelled by an additional 
superscript M< or M> depending on whether the axial 
dependence in the charge distributions pq,  rs of Eq. (37) is 
I I r n l  - Jm'/ I or I r n l  + lm'l respectively. If all four rn values 
represented in  Eq. (37) are nonzero, M< f M>; otherwise 
they are equal. The subscript Z in Eq. (37) is used to desig- 
nate that the  quantity is an entry in  the matrix elements over 
the basis set. If we denote  the element 'pipq, prs in  the super- 
matrix by (pqlrs)s, then  for  the case of C,, symmetry, Eqs. 
(34) to (36) can be rewritten as 

(pq[rs)s = (pq(rs)F< - Q (prlqs)rM< - Q (ps[qr)rM< 

- Q (pr[qs)F> - Q ( p s [ q r ) F .  (38) 

Equation (38) yields the correct result when M< = M> 
as well as for the more general case. The algorithm for 
placing a member of a nonredundant list of matrix elements 
over basis functions into the supermatrix satisfying Eq. (38) 
is  given  below. 
1. The triangular sections of the supermatrix correspond- 
ing to X = p are constructed from matrix elements over 
basis functions which all have the same ( r n (  value,  i.e., 
symmetry classification (XXlXX). These are placed into  the 
supermatrix in  the following ways: 

a) p = q = rand/orq = r = s 

- a (pqIrs)lM>-+ h 1 r s ) s  
: ( P 4 l r s ) F  -+ (ml rs )s  

- Q (pq[rs )Y> -+ (prIqs)s 
(PqIrsF<-+  (P4lrs)s 

- Q (P41rs)l" -+ (prlqs)s 

b) p = q and/or r = s but  not including l(a) above. 

Note  that  in computing the supermatrix address of 
(priqs)s it may be necessary to transpose q and s to con- 
form with the  triangular indexing convention. 

c) p = r and/or q = s but not including l(a) above 

- + (PqIrs)r" -+ (pqIrs)s 
- t (pqlrs)? -+ (prIqs)s 

P (pqIrs)F<-+ (mIrs)s 
- t (mIrs)F< -+ (prIqs)s 

d) q = r but not including case l(a) above 

- Q (PqIrs)l"+  (mIrs)s 
- t (wIrs)r"-+ (PsIqp.)s 
i (Pqlrs)F< -+ (p41rs)s 

- t ( P q I r s ) F - +  (pslqr)s 
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e ) p # q # r # s  

- Q (PqIrs)F> 3 (prlqs)s 
- Q (mIrs)rM>+ (pslqr)s 

(mIrs)F<-+  (PqIrs)s 
- 6 (PqIrs)rM<--t (prIqs)s 
- i (PqIrs)rM<+ (psIqr)s 

2. The rectangular sections of the supermatrix correspond- 
ing to X > p are  contributed to by matrix elements over the 
basis functions of symmetry classifications (XXIpp) and 
(XpIXp). These are placed as follows: 

a) Matrix element symmetry classification is (XXlpp). 

(pqlrs)r + (pqlrs)s 
b) Matrix element symmetry classification is (Xp[ Xp) and 

p = r and/or q = s. 

- i (pqlrs)? + (prlqs)s 
- t (PqIrs)lM< -+ (prlqs)s 

c) Matrix element symmetry classification is (Xpl Xp) for 
all cases not covered by  2(b) above. 

- Q (mIrs)F> -+ (prlqs)s 
- i (Pqlrs)r<-+ (prlqs)s 

We should emphasize that in the case that M< = M> all 
steps listed under 1 and 2 above must be executed. Thus, 
for example, in case l(a) if X = 0 the procedure would 
simplify to 4 (pq[rs)r --j (pq1rs)s. In placing an integral, 
care must be taken to cover the possible reordering of the 
second index pair to compute the proper address in  the 
supermatrix. 

Modules 9 and 11 construct self-consistent field-molecu- 
lar orbitals for a closed-shell single configuration wave 
function. Excellent discussions of the theory and computa- 
tional procedures are available e l s e ~ h e r e ' ~ . ~ ~  and need not 
be recapitulated here. In fact, our programs for these 
modules were adapted  from  the  atomic self-consistent field 
program of Roothaan  and B a g ~ s ~ ~ ,  whose cooperation in 
making their program available is gratefully acknowledged. 

These modules also produce the expectation values  of 
the list of one-electron operators supplied as  input data  or, 
in the event that none was supplied, the expectation values 
of a standard set of operators. The standard set comprises 
those necessary for determining the dipole and quadrupole 
moments of the system. 

In writing this program we chose to make it completely 
independent of the system monitor. This was done partly 
to ensure that the program would work on any  stand-alone 
IBM 7094 without any trouble, thereby avoiding the dis- 
tribution problems which plague most large-scale pro- 
grams. In addition, on  the IBM 7094 it is possible to use 
the basic input, output  and  IO subroutines from the sys- 
tem programs within the framework of one's  own control 
program with ease, and we considered this to be simpler 

and more efficient than working within the framework of 
the system monitor. This approach will no longer be satis- 
factory for the current generation of computers if one 
wishes the program to work in a computer partitioned to 
work simultaneously on independent programs. 

Input  specifications  and  examples 
Details of the input  data  to the  program McL-YOSH 
LINEAR  MOLECULE  PROGRAM 1 will  be  given in this 
section, along with some examples. This will serve the func- 
tion of demonstrating the simplicity and flexibility of the 
input data, and the level of control that the user has in 
specifying program parameters. It will also be complete 
enough to guide potential users of the  program in  the 
preparation of input  data. Additional details are included 
beyond what has appeared in the User's  Manual.16 

The execution time for any  run is a function of the size 
of the basis set and is essentially proportional to the  num- 
ber of matrix elements and  the number of quadrature 
points for numerical integration, at least for typical runs 
with this program. A typical time per matrix element av- 
eraged over the entire  computation  is in  the range 50 to 
100 milliseconds. Thus,  computation of a wave function 
for a molecule with no inversion center using a basis of 
21 u and 9 T functions with  1240 quadrature points  takes 
approximately 3500 seconds, while if  26 u and  14 a basis 
functions and a 1024-point quadrature formula are used 
the execution time increases to approximately 11,000 sec- 
onds. A repeat calculation in which one basis function is 
added or changed, takes approximately 25 percent of the 
time to carry out  the calculation from scratch. 

The format used in presenting the  input blocks is that 
punched into cards constituting the  input  data decks."J8 
Each card contains three types of information, punched 
into the location field (columns 2 to 7), the operation field 
(columns 8 to 10) and the data field (columns 12 to 72). The 
location field, if present, gives the name of the  current input 
block and symbolically identifies the address into which the 
data commences loading. If not present, the  data  load 
consecutive to the data  on the previous card. The operation 
field  specifies the conversion mode  for  the  storing of the 
data. The three entries used in the  operation field are: 

BCI The data field  begins (anywhere in columns 12  to 
16) with either a comma or with a count digit N 
( N  = 0, 1, . . -9) followed by a comma. The  data 
words begin immediately following the comma. If 
N is present, N words (each  of  six BCD characters) 
will  be set into storage; if Nis absent, 10 such words 
will  be set. ( N  = 0 is interpreted as N = 1.) 

OCT  The  data words consist of  signed or unsigned octal 
integers separated by commas. The first of these 
begins anywhere within columns 12  to 16, and the 
last is signalled by a following blank column. 221 
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DEC Data words are separated by commas; the first of 
these begins anywhere within columns 12 to 16, and 
the  last one is signalled by a following blank col- 
umn. Each word can  be any  one of (1) a signed or 
unsigned decimal integer (no decimal point); such 
an integer is stored as a binary integer, but may 
have an absolute value no greater than 235 - 1 ; any 
exceeding this value will be left unstored,  as will all 
subsequent data  on  the same card; (2) signed or un- 
signed decimal numbers written with a decimal 
point, and optionally followed by a power of 10 
scaling factor. Such a number is converted to a 
binary floating point  word, which may not exceed 
the approximate  range to The entries 
1.234E-1, 0.1234, 0.01234El would all  be  con- 
verted to the same floating point  number, for 
example. 

The key input flag determining the nature of the  current 
computation is RERUN. The meaning of this flag will be 
described first and,  for each value that  it can  take  on, a 
listing of the remaining mandatory  and optional input  data 
blocks will be given. These remaining data blocks will then 
be described in  an order which corresponds to  the type of 
input. The program  reads the  data in  two sections, one in 
Module 2 before the integral  computation and  the other in 
Module 8 or 10 before the construction of the supermatrix. 
The first data essentially contain  the nuclear geometry, the 
basis set and a list of one-electron  operators, while the 
second essentially contain the atomic  numbers of the nuclei, 
the electron configuration and SCF trial vectors. The  two 
sections of input  are separated by a blank card as  can  be 
seen in  the examples of Tables 3-6 which can  be used to 
illustrate and clarify the following descriptions. The di- 
mension, given in  the description of each input block, is the 
maximum number of memory  locations assigned to the 
designated block and is, therefore, a limitation on the pro- 
gram. The dimensions chosen essentially place no limitation 
on calculations practicable (from the  point of view  of 
execution time) on the  IBM 7094. Actual  information to 
be punched into  input cards is shown boxed. 

RERUN Dimension 1. Required input  on all runs. 

c__I RERUN DEC X 

X is an integer 0 5 X 5 7 and its possible values have 
the following meanings. 

X = 0 denotes a new run, using no information from 
previous runs. The wave function and one-electron expecta- 
tion values called for by the  input  data will be  computed. 
Intermediate results (matrix elements over the Slater basis, 
and potentials of charge  distributions arising from products 
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tion and  input  data  that generated it  are stored  in a file on 
tape unit A6  at  the completion of the run. 

Mandatory  input blocks are TITLE, SERNO, RERUN, RKK, 

NSF, TSF, ATMNO, NCOB, NZCOE. Optional input blocks are 

SCFCW. Input blocks not explicitly listed above are  not 
allowed. Examples are given in  Tables 3 and 4. 
X = 1 computes a wave function and expectation values 

using a basis set which is changed from  that used for a 
previous computation in a way  specified  by the  input deck. 
The  output tape, A6, from  the previous computation is re- 
mounted and becomes an  input tape for this run. Use of 
this  type of run can  lead to considerable saving of time 
since, for most cases, no significant time consuming compu- 
tation which was also needed for  the previous run is re- 
peated. At  the completion of the  run, a file on  the A6 output 
tape is written (over the previous one unless a new tape 
was mounted) which, for future  runs, is the  same  as would 
have been generated in a RERUN = 0 computation with the 
current basis set. This  tape  can, therefore, be used as an 
input tape on future computations with RERUN > 0. 

Mandatory  input blocks are TITLE, SERNO, RERUN. Op- 
tional input blocks are CSF, ASF, OEOP, CODEW, SFOPT, 

CWOPT, ATMNO, NCOB, NZCOE, SCFCW. Input blocks not 
explicitly listed are  not allowed. 

SYM, IRFLG, ZINTP, RINTP, OEOP, CODEW, SFOPT, CWOPT, 

Examples are given in Tables 3 and 4. 
X = 2 is the same as X = 1 except that additional 

integrals between Slater  functions, not needed for a single 
configuration SCF calculation, will be  computed if this  was 
not  the case previously. Details of this are given in the dis- 
cussion of Module 4 in a previous section of the  paper. 
X = 3 is used to recompute a wave function with the 

same basis set  as a previous run whose output  tape is re- 
mounted on either tape drive AS or A6. Such runs  may be 
necessary in case that  the convergence level reached in a 
previous computation was unsatisfactory. At completion 
of the  run  an A6 output  tape is generated which, for future 
runs, is the same  as would have been generated in a RERUN 

= 0 computation with the current basis set. The result of a 
RERUN = 3 computation could also be achieved, with 
longer execution time, by a RERUN = 1 with no  ASF or 
CSF input blocks. This  latter  procedure is more satisfactory 
if one-electron expectation values are required, since the 
OEOP input block is not allowed if RERUN = 3. 

Mandatory  input blocks are TITLE, SERNO, RERUN. Op- 
tional input blocks are NZCOE, SCFCW, CODEW. All input 
blocks not explicitly listed are  not allowed. 
X = 4 is used to compute expectation values of one- 

electron operators with a previously computed wave func- 
tion available as  an  input tape on either tape drive A5 or 
A6 (see CODEW input block). Such runs will be necessary in 
case that matrix elements of the operators, which are com- 
puted by numerical integration, are needed to higher accu- 
racy than is obtainable with the integration grids used for 



Table 3 Input data decks for  generating CzHz (DZ + P) wave 
function.” 

Table 5 Input data decks for computing  expectation  values  of 
one-electron  operators  with FCN (BA + P) wave function. 

TITLE  BCI , C2H2 DZ BASIS SET 
SERNO  DEC 1661 

RKK  DEC 4,2.002,2.281,2.002 
SYM DEC 1 

NSF DEC 9,3 

RERUN DEC n 

TSF DEC 1,0,1,n.97493,1,n,~,t.20~9,2,1,1,1.7~3~8,~,0,2,~.2309 
DEC 1,0,2,7.96897,2,0,2,1.16782,2,0,2,1.82031,2,1,2,1.25572 
DEC 2,1,2,2.72625,2,1,1,0.7901,2,1,2,1.25572,2,1,2,2.72625 

RINTP  DEC -1.16 
ZINTP  DEC -1,16,8,8,8,8,8,8,16 
OEOP OCT 21,401000,401101,401104,401102,401103,401202,401203 

OCT 403202.403203.404102.404103.404202.404203 
OCT 412001~4120~;412002~412003 

(Blank card) 
ATMNO DEC 1.0.6.n,6.0,1.n 
NCOB DEC 3,2,1 
NZCOE DEC 0,1,4,1.,0,2,7,1.,0,3,1,-.3,0,3,2,.7,0,3,8,-,3,1,1,4,1. 

DEC 1,2,2,.5,1,2,7,.4,2,1,2,1. 

TITLE BCI , C2H2 DZ + 3D BASIS SET 
SERNO  DEC 1661 
RERUN  DEC 1 

(Blank card) 

ASF DEC 0,3,3,2,1,1.65,n,9,3,2,1,1.9917j,1,1,3,2,1,2.31n71 
DEC 1,3,3,2,2,2.13462 

TITLE BCI , C2H2 DZ + P BASIS SET 
SERNO  DEC 1661 

(2 bkdnk cards) 

RERUN DEC  1 
ASF DEC 0,11,4,3,2,1.86851,1,5,4,3,2,2.14558 

(2 blank cards) 

a The C,H,  (DZ + P) wave function generated by the third of these input 
decks is on page 212 of the “Tables of Linear Molecule Wave Functions,” 
which supplements this paper. (Ref. 18.) 

Table 4 Input  data decks for  generating HCN (DZ + P) wave 
function.” 

TITLE BCI , HCN  DZ BASIS SET 
SERNO  DEC 167 

RKK  DEC 3,2.0143,2.1791 
RERUN DEC n 

NSF  DEC 15,s 
TSF  DEC 1,0,1,0.97155,1,0,1,1.23206,2,1,1,1.37568,1,0,2,5.2309 

DEC 1,0,2,7.9G8~7,2,0,2,1.16782,2,0,2,1.82031,2,1,2,1.25572 
DEC 2.1.2.2.7262~.1.0.3.6.11863.1.0.3.3.93843.2.0.3.1.39327 
DEC 2;0;3~2.22157~2;1~3~1.50585,2;1~3;3.26741;2,’1,’1,’0.79006 
DEC 2,1,2,1.25572,2,1,2,2.72625,2,1,3,1.50585,2,1,3,3.26741 

ZINTP DEC -1,16,8,8,8,8,16 
RINTP DEC -1,16 

ATMNO 
NCOB 
NZCOE 

TITLE 

RERUN 
SERNO 

ASF 

TITLE 

RERUN 
SERNO 

ASF 

SERNO 
TITLE 

RERUN 
RKK 

DEC  1.0,6.0,7.0 
DEC 5,l 

DEC 0,3,12,.3,0,3,13,.76,0,4,1,.4,0,4,7,.8,0,4,~,-.8 
DEC 0,1,10,.8,0,1,11,.2,0,2,4,.84,0,2,5,.16,0,3,l0,-.28 

DEC 0,5,13,.7,0,5,14,.7,1,1,2,.3,1,1,4,.7,1,1,5,.2 

BCI , HCN  DZ + 3D BASIS SET 
DEC 167 
DEC 1 

DEC 1,1,3,2,1,2.2,1,3,3,2,2,2.27222,1,5,3,2,3,2.18731 

BCI , HCN DZ + P BASIS SET 
DEC 167 
DEC I 
DEC 0,11,4,3,2,1.69214,0,18,4,3,3,~,2.7,1,~,4,3,2,2.24432 
DEC 1,8,4,3,3,2.53488 

BCI , HCN DZ + P BASIS SET, CHANGE  GEOMETRY 
DEC 167 
DEC 5 
DEC 3,2.2143,2.3791 

(Blank card) 

(Blank card) 

DEC 0,3,3,2,1,1.7,0,9,3.2,2,2.27993,0,1j,3,2,3,2.nn3~7 

(2 blank cards) 

(2 blank card>) 

(2  blank cards) 

decks is on page 156 of the “Tables of Linear Molecule Wave Functions” 
8 The HCN (DZ + P) wave function generated by the third of these input 

which supplements this paper. (Ref. 18.) 

TITLE 
SERNO 
RERUN 

CODEW 
RKK 

OEOP 

TITLE 

RERUN 
SERNO 

RKK 
RINTP 
ZINTP 
OEOP 

BCI , FCN BA + P WAVE FUNCTION  RERUN 4-1 
DEC 9670 
DEC 4 

BCI , FCN BA + I’ WAVE FUNCTION  RERUN 4-2 
(2 blank cards) 

DEC 9670 

the wave function Computation. Computation of the elec- 
tronic  component of the electric field and electric field 
gradient at  the nuclei must be done with RERUN = 4 or 
RERUN = 7 since the required  matrix elements cannot be 
evaluated on any  other type of run. 

Mandatory  input blocks are TITLE, SERNO, RERUN, RKK, 

OEOP. Optional input blocks are ZINTP, RINTP, CODEW. All 
blocks not explicitly listed are  not allowed. 

Examples are given in Table 5. 
X = 5 is used to compute a wave function and expecta- 

tion values with the same basis set as used in a previous 
run,  but with a different quadrature formula. The  quadra- 
ture formula  can be for  the same or for different nuclear 
geometry. This is the standard type of run  for generating 
points on a potential surface with a basis set generated for 
a previous point. The  output tape generated on A6 for  the 
previous point is input  to  the RERUN = 5 run  and must  be 
mounted on A6. 

Mandatory  input blocks are TITLE, SERNO, RERUN, RKK. 

Optional input blocks are ZINTP, RINTP, OEOP, SFOPT, 

CWOPT, ATMNO, NCOB, NZCOE, SCFCW,  CODEW. Input blocks 
not explicitly listed are  not allowed. 
X = 6 is used as a preliminary run to a RERUN = 7, and 

is only allowed for a run of C,, symmetry. It operates in 
exactly the same way as a RERUN = 3 except that  it termi- 
nates  after the construction of the C,, supermatrix in 
Module 8. 

Mandatory  input blocks are TITLE, SERNO, RERUN. No 
other input is allowed. .An example is given in Table 6.  
X = 7 is designed for the calculation of the axial com- 

ponents of the molecular polarizability tensor. It is re- 
stricted to C,, symmetry and must follow immediately 
after a run which computes the two-electron supermatrix. 
This could be a RERUN := 0,1,2,3,5,6.  (To do calculations 
on molecules of D , h  symmetry, the  run must  be  set up  as if 
the molecule had the lower C,, symmetry.) The  run is set 
up  as if there were two additional nuclei symmetrically 
placed with respect to  the center of mass on  the molecular 223 
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Table 6 Input data decks for  calculating  molecular  polarizabili- 
ties and nuclear  electric  shielding factors with HCN (BA+P) 
wave  function. 

TITLE 

SERNO 
RERUN 

TITLE 

SERNO 
RERUN 
RKK 
RINTP 
ZINTP 

OEOP 

ATMNO 
POLCH 

SCFCW 

BCI , HCN  BA+P WAVE FUNCTION POLARIZABILITY 
CALCULATION 
DEC 1610 
DEC 6 

BCI , HCN  BA+P WAVE FUNCTION POLARIZABILITY 

DEC 1610 
CALCULATION 

DEC 7 

DEC -1,32 
DEC 5,16.93116,2.0143,2.1791,1X.X1544 

OCT 6.10.111771711111.0 

(2 blank cards) 

DEC “6.‘0,32,0,16.93116,15.93116 
DEC 32,16.93116,18.94546,17.93831 
DEC 32.18.94546.21.12456.20.03501 
DEC 32,’21.12456;50.0,22.12456,8,40.0 

DEC 46.0 
OCT 317717177171 

OCT 22,1000,0,2101,2102,2103,2104,2105,403102,403202,404202 
OCT 413~1,413002,413~3,413004,414~1,414~2,414~3,414~4 

DEC 0,1.0,6.,7.,0 
DEC 1,3.06884,0,0 

(blank card) 

DEC 0,2.,0,-2.,2.,2.,-2.,-2.,-2.,2.,2.,-2. 
DEC 30,0,0,0,0,0,0.5E-1,0,0,1.OE-5 

(blank card) 

nuclei. A series of molecular wave functions will be calcu- 
lated for different charges placed at the positions of these 
false nuclei, and  the polarizabilities are computed from 
them  as described later  in  this paper. 

Mandatory  input blocks are TITLE, SERNO, RERUN, RKK, 

ZINTP, OEDP, ATMNO, POLCH. Optional  input blocks RINTP, 

CODEW, SCFCW, NZCOE. All input blocks not explicitly listed 
above are  not allowed. 

TITLE Dimension = 10. Required input  on all runs. 

TITLE BCI , ANY  TITLE  TO  APPEAR ON 
EACH  OUTPUT  PAGE 3 column 72. 

This card enables simple identification of each run by 
heading  each output page with a title provided by the user 
of the program. 
SERNO Dimension = 1.  Required input  on all runs. 

SERNO  DEC X 

X is the serial number of the current sequence of runs. 
Any run  in which RERUN Z 0, which takes  information 
from a tape, A5 or A6 (see CODEW), written at  the  end of a 
previous run, must  have the same SERNO entry as the previ- 
ous run.  The SERNO entry  in the  input deck is always checked 
against that saved from the previous run,  and if they do  

224 not match the program halts  on  an alarm. 

SYM Dimension = 1. Required input  for D,h sym- 
metry. 

i______i SYM  DEC X 

X = 0 denotes C,, symmetry 
x = 1 denotes Dmh symmetry 

If  this input card is not present SYM is automatically  set to 
zero. The  format of input blocks NSF, TSF, ASF, CSF, NZCOE 

depends on  the value of SYM. 

SYM = 1 is not allowed for RERUN = 6, 7. 
IRFLG Dimension = 1. 

m IRFLG  DEC X 

X = 0 implies that  the index list generated in  Module 4 
will contain only matrix elements needed for single-con- 
figuration calculations. 
X = 1 implies that  the index list will contain all possible 
matrix elements over the basis set. 

IRFLG is set  internally to zero; hence this card is needed 

The following input blocks NSF, TSF, CSF, ASF are used to 

NSF Dimension = 5. Required input if RERUN = 0. 

only if the internally set value is to be overwritten. 

specify the basis set. 

1 NSF DEC ns, n,, ns, no, ny 

The entries of the NSF input block are automatically set 
to zero by the program, and will be overwritten by the 
entries punched into  the  input card. 

For C,,, the  entries are  the number of basis functions of 
the indicated symmetry type. 

For D,h, the entries are  the number of nonredundant 
basis functions of the indicated symmetry type, i.e., basis 
functions on nuclei which are equivalent to one previously 
counted are  not included. 

TSF Dimension 300. Required input if RERUN = 0. 

TSF DEC (n, 1, k, {),, 

Each basis function is defined by four entries n, 1, k,  {, 
as  in  Eq. (2). Basis functions are ordered to increasing I r n l  
values, i.e. all u before all ?r before all 6, etc. The position 
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in which they appear  in  this  table is the index of the basis 
function. For C,,, an entry into this input block is made 
for each basis function. For D , h ,  we include only entries 
corresponding to  the nonequivalent nuclei, i.e., the ones 
counted in NSF. (This truncated  table is expanded internally 
to include all basis functions.) 

The maximum  number of basis functions is 75. In  the 
case of D , h  this applies to the  expanded table. 

CSF Dimension = 92. Optional input if RERUN = 1,2. z CSF  DEC (Imi, P, n, 1, k ,  i-) 

This input block allows the changing of basis functions. 
Each changed basis function is  specified  by  six entries. The 
first two, 1 r n 1  and p ,  specify the index of the basis function 
to be changed, namely the p-th  function in  the block of 
symmetry type specified by Im]. The new parameters of 
this basis function are given by the remaining four entries, 

For both C,, and D,h the indexing refers to  that  in  the 

The ordering of entries  in CSF must be to increasing [ m\  , 

The maximum number of changed functions  in a run is 

ASF Dimension 92. Optional input if RERUN = 1 ,  2. 

n, 1, k ,  i-. 

input block TSF. 

and  for a given (ml value to increasing p. 

15. 

z ASF DEC (AIml ,  P, n, 1, k ,  l> 

This input block allows the adding of basis functions. 
Each added basis function is specified by six entries. The 
first two, l r n l  and p ,  specify the basis function in the previ- 
ous basis set relative to which an insertion is to be made. 
- jml means insert before the  p-th basis function in  the 
block of symmetry Im 1 ; + Im I means insert after. A special 
case is  when a symmetry was previously unoccupied. This is 
indicated by setting p = -0 for  the basis function which 
populates a previously unoccupied symmetry. If  more than 
one added  function has  the same f 1 1 1 2 1 ,  p value then the 
functions are added in  the order  in which they appear  in 
this input block. The parameters of the  added basis function 
are given by the remaining four entries n, I ,  k ,  {. 

For  both C,, and D,h the indexing refers to that  in  the 
input block TSF, which will be augmented by the program. 
At the completion of this run TSF will look  as if the  run  had 
been made from scratch, and a subsequent addition  must 
be made relative to  the indexing of TSF at  the end of this 
run.  Tables 3 and 4 give examples. 

The ordering of entries in ASF must  be to increasing Im I ; 
for a given I r n I  negative entries appear before positive; for 
a given f I r n l  entries are in  the order of increasing p .  

The maximum number of added functions in a run is 15. 
SFOPT Dimension == 60. Optional input  on any run ex- 
cept RERUN = 3, 4, 6,  7. 

___1 SFOPT  DEC ( ] m i ,  p ,  inc) 

This input block specifies the basis functions which are 
to be optimized with respect to their  orbital exponent. Each 
basis function to be optimized is designated by three  entries 
in which the first two, Iml and p (integers), identify the 
basis function and  the third, inc (floating point), is the 
increment by which the orbital exponent is changed in per- 
forming the optimization. 

If this input deck is present in a RERUN = 1, 2 deck in 
which there are added  Slater functions specified in  the  input 
block ASF, then the value of p in this input deck must be the 
serial number after the added functions have been  inserted 
into TSF, as described in ASF. 

If more than one  Slater  function is specified in this  input, 
then one-dimensional optimizations are done with respect 
to  the orbital  exponents  in the order in which they appear 
in the input block SFOPT. The procedure  for a single optimi- 
zation is as follows. The initial  orbital exponent is changed 
in steps of inc until  three energies span a minimum. Assum- 
ing a functional relationship between energy and orbital 
exponent, specified by a code word in the input block 
CWOPT, the value of the exponent  corresponding to mini- 
mum energy is computed. A computation is done for this 
value of the exponent, and then  the  procedure is repeated 
for the next basis function specified in SFOPT. 

The optimization  procedure  for a given exponent is 
terminated  under  any of the following conditions: 

1.  Five  computations are done and a minimum has  not yet 
been spanned. The lowest energy computation of the five 
will be selected, { reset to  the value appropriate  to  that 
computation;  and optimization with respect to the next 
Slater function listed in SFOPT is commenced. 

2. The first run attempted,  in optimizing an exponent, fails. 
The computation, including all optimization not yet 
attempted, is terminated. 

3. A run, subsequent to the first, in optimizing an exponent 
fails. The exponent is reset to the value which gave the 
lowest energy in the previous successful runs performed 
in optimizing this  exponent and  that computation re- 
peated. Optimization with respect to  the next basis 
function listed in SFOPT is then commenced. 

4. After three successful runs for a given exponent, energy 
differences between runs  are computed. If these differ- 
ences are less than a threshhold, AEz, described in  the 
input block CWOPT, then the same procedure is followed 
as  in (3) above. 225 
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The maximum number of functions that  can be listed in 
this input block is 20. 

CWOPT Dimension = 5. Optional  input on any  run 
containing the SFOFT input block. 

CWOPT DEC Curve type, Ecst, AE1, Conl, AE2 

This  input block contains the code word for  the func- 
tional relation between E and 1 assumed in the optimization 
circuit, and  the criteria to be used to establish whether a 
particular run failed or  not,  for purposes of optimization. 

The entries in CWOPT are set as follows. If explicitly  given 
in the  input block above then  the value  given is used. If not, 
then either the last value used (in case that RERUN # 0) or 
a standard value (in case that RERUN = 0)  is set for the 
parameter. 
Curve type = 0 Assumed relation between 1 and E is 

E = A + B{ + C12 where A, B, C are 
constants determined by the program. 

Curve type = 1 Assumed relation between 1 and E is E 
= A + B[ + C/{ where A ,  By C are 
constants determined by the program. 

Eest Estimated total energy for  the  state be- 
ing computed. It is  used in combination 
with the next entry AE1 to determine 
whether the current computation  has 
produced an acceptable result (i.e., has 
not converged on different state). If Eest 
= 0 this test is bypassed. 

the  run is successful. Otherwise unsuc- 
cessful. The test is not applied if E,,, = 

0. 
Con1 If the convergence threshhold achieved 

in the SCF computation  (and available as 
output from  the SCF program) is less than 
Conl,  then  the run is successful. If Conl 
is zero, then this test is made against a 
standard of 0.0001. 

AE2 After three successful runs with a given 
exponent, the differences  between the 
one with lowest energy and the  others 
are computed. If they are <AEz, then 
we recompute the energy and wave func- 
tion for the case that yielded the lowest 
energy, and go on  to the next Slater 
function to be optimized. If AEz = 0, 
then this test is made against a  standard 
value of 0.00005. 

The next three input blocks RKK, ZINTP and RINTP 

specify the nuclear geometry and the quadrature formula 
to be used. 

AE1 If IEcurrent computation - Eestl < AE1 then 

RKK. Dimension 12. Required input for RERUN = 0,4, 
5, 7. 

RKK  DEC N ,  Rlz, R23, . . . RN-IN 

N = Number of nuclei (integer). In the case of RERUN = 7 
it is the number of nuclei in the molecule +2 corre- 
sponding to the positions where point charges will  be 
introduced for polarizability and shielding calcula- 
tions. 

RE, Rz3 are  the internuclear distances (floating point) 
between adjacent nuclei, counting left to right. If 
RERUN = 7, positions 1 and N are located at distances 
f R  relative to the center of mass of the molecular 
nuclei  which is given in input block POLCH. 

For D-J, molecules all nuclei are  counted in N,  and 
all adjacent internuclear distances are entered. The 
maximum value of N is 12. 

ZINTP Dimension = 60. Required input for RERUN = 

0,4,5,7 if automatic setting by program is not 
satisfactory (see format  2 below). Not allowed 
on other runs. 

There are three acceptable input  formats  for ZINTP, 

Format 1. First word of block > 0. 
distinguished by the first word in the block. 

ZINTP  DEC N (n, a, b , m )  

Following the discussion of Module 2 in a previous 
section of the paper, N (integer) is  the number of segments 
into which the z integration is broken. Each segment is 
specified by four entries. The first, n (integer), is the number 
of quadrature points for  the segment. The next three, a, b 
and m (floating point numbers), have the meaning indi- 
cated in the  Module  2 discussion. (If one of the limits is 
infinite it is punched into  an input  card with an  OCT rather 
than  a DEC format: OCT 777777777777 codes - a, 
while OCT 377777777777 codes + 00 .) Values  of n are re- 
stricted to  2,4,6, 8,10, 12,14,16,20,24,28,  32,40,48, 64. 

The first nucleus (or left hand position of a perturbing 
charge for RERUN = 7) corresponds to z = 0. Format 1 
should always be used for RERUN = 7 (see Table 6)  since 
the other  two  formats are unsatisfactory. Format 1 is the 
most flexible  of the three, giving the user great flexibility in 
setting up the  quadrature points. 

Format 2 is elected in RERUN = 0,4,5 if there is no  input 
card present, or if the first word on the  input  card is zero. In 
this case input will be set up internally as if format 1 had 
been used. The segments will be automatically chosen by 
the program. The first segment has n = 20, a = - CQ , b 
= O,m = -1.Oandthelasthasn = 20,a = RN,b = a, 
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m = RN + 1.0 where RN is the value of z at  the rightmost 
nucleus. For distances less than 3.0, each adjacent inter- 
nuclear separation is broken up  into two equal segments 
each having n = 10, the first segment has m positioned 0.4 
of the segment length from a and the second segment has 
m positioned 0.4 of the segment length from 6. For distances 
greater than or  equal to 3.0, each adjacent internuclear 
separation is broken into three segments, each with n = 10, 
the first and third covering distances of 1.0 from the two 
nuclei with m values positioned 0.4 from each nucleus. The 
remaining segment covers the rest of the internuclear 
separation with m positioned in the center. The program 
generates the segments in order of increasing z, i.e., from 
left to right across the range - 00 to 00. 

This method of  selecting segments partially reflects our 
experience and is designed to provide a conservative quad- 
rature formula for molecules containing first row atoms. 

Format 3. First word of block is - 1. 

1 ZINTP  DEC - 1, n1, n2, n3, . . 

Format 3 produces the same result as  format 2 except 
that the number of points for each segment is explicitly 
given  by the entries after the first in the above input block. 
Thus, the segments are those selected in format 2, in order 
of increasing z, with the number of points for each segment 
given  by nl, nz, n3 . . * .  

It must be noted that for a large number of nuclei, the 
dimension of ZINTP can be  overflowed if format 2 or 3 is 
selected. If this is the case, format 1 must be used in a way 
that does not use more  than 60 words. 

RINTP Dimension 60. Required input for RERUN = 0, 
4,547 if automatic setting by program is not 
satisfactory (see format 2 below). As with 
ZINTP there are three acceptable formats for 
the  input block RINTP. 

Format I .  First word of block > 0. 

P RINTP DEC N (n, a, b, m) 

The entries in this input block have the same meaning as 
for ZINTP, except that  the integration variable p is being 
covered rather than z. 

Format 2. Same meaning as  in ZINTP. A single segment 
will be generated with n = 20, a = 0, b = 00 , m = 1.0. 

Format 3. First word of block is - 1. 

RINTP  DEC -1, nl 

Same meaning as  in ZINTP. The single segment auto- 

OEOP Dimension = 21. Optional  input on all runs ex- 
matically selected is spanned with nl points. 

cept RERUN = 3,6 where it is not allowed. 

OEOP OCT N, OPI, Op,, Ops, . . * OPN 

This input block defines the one-electron operators 
whose matrix elements will  be computed. N (octal integer) 
is the number of operators, and Opl, OPZ * - (octal inte- 
gers) are code words defining the  operators,  one per opera- 
tor. These code words are right-adjusted integers with the 
format  MFOONKK. M specifies the axial dependence, 
exp  MI$), of the  operator and F specifies the manner of 
computation. F = 0 specifies that the special circuits of 
Module 6 are used (restricted to kinetic energy, overlap and 
nuclear attraction) and F = 4 specifies that the numerical 
integration circuits will  be used (except for one-center 
matrix elements of operators z/r3 and (39 - r2)/r5 which 
are computed analytically.) The values of the remaining 
integers in MFOONKK can be read  from  the following 
list. 
Operator 00 N KK 
Kinetic Energy 00 - - 
r; 01 n k 
(l/rdn  02 n k 

z; 03 n k 
p; exp  (im4) 04 n k 

G k '  05 n kk' 
( l / < k k t ) n  06 n kk' 

17;k' 07 n kk' 
( l / ? ) k k ' ) n  10 n kk' 
sin2 ek/ rk 1 1  - k 
cos2 e,/r, 12 - k 

zk/ri 1 3  - k 
(32; - r;>/r: 14 - k 

The operators z / r3  and ( 3 2  - r2)/r5 can be requested 

For a given run the OEOP block is set as follows. 
only if RERUN = 4, 7.. 

RERUN = 3,6. OEOP input is not allowed. 
RERUN = 7. OEOP input deck must  appear and must contain 

the codes :for overlap, kinetic energy, nuclear 
attraction  for  all nuclei, including positions of 
perturbing charges, z,  zz and p defined  with re- 
spect to the left-hand molecular nucleus (k = 2) 
in exactly this order (see Table 6.) Additional 
operators  can be in  any order. 

RERUN = 0, 1, 2,4, 5. If no OEOP input  card is in the deck 
a list is generated internally. This list contains 
operators sufficient to compute the dipole and 227 
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quadrupole moments of the molecule and is 
OEOP OCT 4,  401000,  403101,  403201,  401201. 
If the OEOP input  cards  are in the  input deck, then 
matrix elements of the specified operators are 
computed. 

CODEW. Dimension 20. Optional  input  on all runs. 

CODEW DEC LMAX,  TH2CP,  NXI,  NETA 
DEC b, ITRSH,  FILE 

Only the first seven entries in this input block are defined. 
The first six  specify miscellaneous program  parameters 
which would only be set from  input  data under exceptional 
circumstances. Normally, they would be set internally to 
standard values; this will  be the case if the input block is 
not present or the entry in the input block is zero. For all 
practical purposes they can be disregarded; details are 
contained in Ref. 16. The seventh entry in this input block, 
FILE, specifies the position of binary data saved from a 
previous run which is to be used as input on the  current 
run. 

FILE = 0 must be used for RERUN = 1, 2 and indicates 
that the binary input is in the first file  of the  tape  on A6. 
FILE = N can be used if RERUN = 3,5,6 and indicates that 
the required binary input  data is contained in file N on  tape 
unit A5. 

The remaining input blocks, if present, follow a blank 
card in the input deck, and are  read in Module 8 or 10 de- 
pending on whether SYM = 0 or l .  

ATMNO Dimension 12. Required input for RERUN = 

0, 7 

Zl,Zz, + . (floating point)  are  the nuclear charges on  the 
centers defined in RKK. In the case of RERUN = 7, where the 
first and last centers are the positions of perturbing charges, 
the corresponding entries in ATMNO must be entered as zero. 

NCOB. Dimension 10. Required input on RERUN = 0. 

NS1, NS2, (integers) are  the number of  filled molecu- 
lar orbitals of symmetry number 1, 2, . - . For C,, sym- 
metry the symmetries are  in the  order u, r, 6,4, y. For Dmh 
they are  in the  order ufl, a,, ru, rg, 6,,  6,, &,  &, Y ~ ,  yU. 

NZCOE Dimension 2500. Required input for RERUN 

= 0. 

NZCOE DEC (s, i, p ,  c)  

228 

This  input block specifies the trial vectors used to initiate 
the SCF computation. In  an actual run trial vectors are taken 
from the  input deck if this input block is present, otherwise 
are taken  from  the output vectors of a previous run which 
were automatically saved at the end of that  run. (In  the 
case of an unsuccessful previous run,  the  trial vectors for 
that  run were saved and these will be used on  the current 
run if no NZCOE block is present in the input deck.) 

In  the  input block NZCOE each nonzero coefficient in the 
trial vectors is specified by four entries. s (integer) identifies 
the symmetry of the molecular orbital. For C,, symmetry, 
s = 0, 1, 2, 3, 4 denotes u, R, 6, 4, y, while for D,h sym- 
metry s = 0, 1, 2, 3, 4 . . denotes ufl, u,, r,, rfl . . . )the 
same ordering discussed in NCOB). i (integer) identifies the 
molecular orbital (i = 1 for  the first of any symmetry). p 
(integer) identifies the symmetrized basis function which is i. 

contributing to the molecular orbital with  coefficient c 
(floating point). For C,, symmetry the symmetrized basis 
functions are the basis functions themselves, and  the value 
of s, p in this input block identifies the basis function in TSF 

of the same p value with s = Iml . For D , h  symmetry it is 
necessary to construct a table of symmetrized basis func- 
tions by making the  appropriate linear combinations from 
TSF, in the order of appearance in TSF, for each of the D , h  

symmetry classifications. p then indexes entries in this 
symmetrized list. The example of Table 3 should serve to 
make this clear. 

POLCH Dimension 81. Required  input  for RERUN = 7 
not permitted on other runs. 

I POLCH DEC NP, CM, O.,  O.,  (O., Q, O., - Q,  Q, Q, 
-Q, -Q,  -Q, Q, Q, -e> 

This input block serves to define the perturbing charges 
which are  introduced in order to perform the polarizability 
calculations described in the  last section of the paper. NP 
(integer) is the number of pairs of entries following CM 
(floating point) which is the distance of the center of mass 
of the nuclei from  the  left-hand molecular nucleus. (The 
previous input RKK, ZINTP, has set up a system of two false 
nuclei symmetrically placed with respect to  CM. Alterna- 
tively CM need not be the center of mass, but can be chosen 
as  any desired expansion point relative to which the polariz- 
abilities will  be  defined. Either way, the false nuclei set up 
by RKK and ZINTP must be symmetrically placed relative to 
CM.) The pairs of entries following CM are  the values of 
the charges that  are placed on the false nuclei. For each 
pair an  SCF calculation will  be performed. The first pair of 
O., 0. calls for  the  normal  unperturbed SCF result. The re- 
maining pairs are  in groups of  six as indicated, correspond- 
ing to the six different perturbing fields for which SCF 
calculations will be done. 
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SCFCW Dimension 10. Optional input  for  any  run. 

SCFCW  DEC SITMX, BIAS1, BIAS2, JITMX, 
NISVD, SCTHl, SCTH2, JCTH,  DGATH,  DGSTH 

This input block is a set of parameters which  defines 
convergence criteria and extrapolation  information  for the 
SCF computation, and convergence criteria for the diago- 
nalization  subroutines, 

The value of a parameter listed in this input block is set 
in  the  same way as entries in CODEW and CWOPT. If  the 
entry is not +0, then the entry is used as  the  current pa- 
rameter value. If it is = O  then take  the last value of the 
parameter used (if RERUN # 0) or a standard value (if 

SITMX 
RERUN = 0). 

BIASl 

BIAS2 

JITMX 

NISVD 

I SCTHl 

Maximum number of SCF iterations which will 
be  performed before jumping  out of SCF pro- 
gram (integer). Standard = 50. 
The number of iterations before an extrapola- 
tion  (on the last  three to produce the next set of 
trial vectors) is equal to BIASl + 2. BIASl is 
only used to set the number of iterations before 
extrapolation if the level  of SCF convergence is 
worse than  SCTHl.  Standard value of BIASl 
is 1. 
The number of iterations before extrapolation, 
after convergence of the density matrices, is 
better than SCTH1. Standard value is 3. 
This is a signed integer. If negative, it takes unit 
vectors as trial vectors for each entry into  the 
Jacobi diagonalization. If positive, it uses the 
output vectors of the previous diagonalization. 
The absolute value is the  maximum  number of 
iterations allowed in  the diagonalization  pro- 
gram. 

For near-degenerate eigenvectors a positive 
entry  should be used, otherwise the near-de- 
generate vectors may flip from  one iteration to 
the next, making convergence impossible. 
Standard value is 1000. 
This is a signed integer. If negative (but not - O), 
single-vector diagonalization will be bypassed. 
If positive the maximum  number of iterations 
in  the single-vector diagonalization before loos- 
ening the convergence threshhold (see DGATH, 
DGSTH writeups) will be set equal to NISVD. 
Standard value is  20. 
See BIAS1, BIAS2 above. The purpose of this 
threshhold is to allow extrapolation to be used 
more heavily at  the  start of a SCF  computation 
than  in its  later stages. Our observation is that 
extrapolation is helpful in preventing diver- 

gence at an early stage, but  can hinder con- 
vergence at a later stage. Standard is 10". 

SCTH2  This is the convergence threshhold for  the  SCF 
procedure. These convergence threshholds 
SCTHl  and  SCTH2  on  the  SCF procedure are 
used in tests on  the density matrix.  Comparison 
of the vectors obtained  in the last two iterations 
(standard  printed  output) will show  how  this 
convergence level is reflected in vector con- 
vergence. Standard  for  SCTH2 is lo-*. 

JCTH Convergence threshhold for Jacobi diagonaliza- 
tion. If the single-vector diagonalization is also 
used, we can  think of the  Jacobi as being used 
to provide input vectors for the single-vector 
routine. Standard  is 

DGATH  Final threshhold for single-vector diagonaliza- 
tion. If convergence to better than this  thresh- 
hold  cannot be  obtained, the program jumps 
out  on  an  alarm exit. Standard value is 

DGSTH Initial convergence threshhold  for single vector 
diagonalization. If  after NISVD iterations  con- 
vergence to better than a threshhold, initially 
set equal to  DGSTH, is not obtained, the con- 
vergence threshhold for a single-vector diago- 
nalization is loosened by a factor of 2. This 
loosening is repeated until either conver- 
gence is achieved, or the current  threshhold is 
>DGATH which will cause an  alarm exit. 
Standard value is 

Molecular properties 
A good example of the  range of molecular properties which 
can routinely be computed with this linear molecule com- 
puter  program is given in a recent publication on HF and 
HCl,39 and discussion of some of these properties is cov- 
ered  in our previous In this section of the paper 
we  will restrict our discussion to molecular polarizabilities 
and nuclear electric shielding factors since the methods we 
use for  computing these properties have not previously 
been described in detail. 

Static electric polarizabilities and shielding factors are 
properties of an electronic charge distribution, in  an  atom 
or molecule, which are determined by its  distortion  under 
the action of an external electric field. We proceed to define 
these quantities for  the case of an  atom  or linear molecule 
in  an axially symmetric external field whose axis coincides 
with the molecular axis. 

An external electric field, in  the region of interaction 
with an atomic or molecular system, can be defined by the 
numerical values of the field potential and its  Cartesian 
derivatives at some point  in  the system. (These are  the 
coefficients in a Taylor  expansion of the field potential 
around this point.) These numerical values can be treated 
as parameters, in terms of which effects due to the  inter- 229 
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action of the atom or molecule,  with the external field, can 
be  expanded. For axially  symmetric  systems in which the 
point at which  these  field parameters are evaluated  is  chosen 
on the symmetry  axis  (z-axis), the number of independent 
field parameters  reduces to the values of 4, d+/dz, d24/dz2, 
d34/dz3, ., determined at that point. The potential, 4, 
can be  eliminated  from this list in discussing induction 
effects due to electronic distortion in a system of  fixed 
nuclei,  since there can  be no distortion in an external field 
of constant potential. The above  derivatives are the values 
of the electric field and its derivatives at the expansion 
point; F, = - &p/az, F:, = -a24/az2, F,,, = -a34/az3, - - e .  For the axial  systems  under  study, we drop the sub- 
scripts which denote the differentiation  variables and list 
the field parameters as 4, F, F', F", e .  

Molecular  polarizabilities 
We  now  discuss the energy of interaction of the electronic 

charge distribution with the external field. If E(O) is  the total 
electronic  energy in the field  of the fixed  nuclei  of the  mole- 
cule, and E( / )  is the total electronic  energy in the field  of the 
fixed  nuclei  plus the external  field, then the interaction 
energy E ( f )  - E(O) can  be  expanded as a power  series in the 
field  parameters:' 

E ( f )  - E(0) - - q4 - p F  - - 1 OF' - - 1 QF" - - 1 @F'" 
2 6 24 

- - 1 2 1  a~ - - AFF' - - cp2 1 
2  2  4 

1 1 1 
6 6 4 

1 4  

24 

- - EFF" - - p~~ - - B F ~ F '  

- -yF  - ... (39) 

The linear  terms  in the field parameters  in  Eq. (39) are 
the energies of interaction of the permanent  electric  multi- 
pole  moments of the electronic  charge distribution with the 
external field, and the higher order terms are contributions 
to the energy of induction  caused by the external field in- 
ducing a change  in the charge distribution. Terms  involving 
4 do not appear in the induction  energy, which  exists  only 
because of the distortion of the electronic  cloud. The co- 
efficients  of the field parameters in Eq. (39) are components 
of the electric  multipole  moment and polarizability  tensors 
for the system and will be  identified below. The numerical 
factors occur  naturally in the detailed treatment of the 
interaction of an arbitrary charge distribution with an 
arbitrary external  field, which has been  given  elsewhere.2I 
In Eq. (39) we have  written  only the lead  terms  in an infinite 
expansion.  Use of the expansion in a truncated form  de- 
pends on convergence,  which in practice  remains rapid 
until the external field  comes  within an order of magnitude 
of fields  present  internally in the molecule. For atomic or 
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(39)) in terms of the field  parameters 4, F, F', F", * * * evalu- 
ated at the center of mass of the system. It is apparent that, 
in  general,  choice of a different expansion point (and  there- 
fore  different  field  parameters,  even though the external 
field  is the same) will lead to different  coefficients  in the 
expansion. The transformation of multipole  moments and 
polarizabilities  under  change of the expansion point has 
been considered in detail e1sewhere:l  where the quantities 
q, a, p, y are shown to be invariant under the transforma- 
tion.  Individually  identifying the coefficients  of Eq. (39), 
we have that q is the total electronic  charge, p = p, is the z 
component of the permanent  electronic  dipole  moment, 
0 = 0, is the zz component of the permanent  electronic 
quadrupole moment, 0 = 0,,, is the zzz component of the 
permanent  electronic  octopole  moment, and @ = L ,  the 
designated  component of the permanent  electronic  hexa- 
decapole  moment. a, A,  Cy E, p, By y . , are components 
of the static electric  polarizability  tensors of the electron 
distribution. a = a,, is a component of the dipole  polariza- 
bility; A = is a component of the polarizability  tensor 
which  measures the contribution to the interaction  energy 
due to a nonzero  value of FF' (or equivalently, the contri- 
bution to the induced  dipole  moment  for  nonzero F, and 
to the induced quadrupole moment for nonzero F'); C = 
3/2 C,,:, is equal to 3/2 times the zz:zz component of the 
fourth-rank field gradient quadrupole polarizability tensor; 
E = E,:,, is a component of another fourth-rank tensor 
which  gives the contribution to the induced  octopole 
moment  in the presence of a nonzero F. /3 = /3z,, and y = 
yzzzl are components of tensors which  describe the non- 
linear  behavior of the induced  dipole  moment in the pres- 
ence of a nonzero F, and B = B,,:, has been  called  (in the 
case of atoms)40 a uniform-field quadrupole polarizability. 

For linear molecules  with an inversion  center ( D , h  sym- 
metry) the quantities p, 0, A and p are identically  zero  if 
the expansion point for evaluating the external field pa- 
rameters  is the inversion  center. For atomic  systems, p, 8, 
0, @, A, and p are identically  zero if the expansion point is 
the atomic  nucleus. 

The induced  electric  multipole  moments in the charge 
distribution can also be  expanded as a power  series in the 
field components. The results from the general  theoryz1 are 
that the multipole  moments of the electronic  charge  distri- 
bution, in the field  of the nuclei  plus the external field, 
which  we represent by p(f )  = 0(f) = e!{), = 0%, 
W )  = @:{:,, . . ., are given  by 

pL(f) = + a~ + 3 AF' + Q EF" + 3 p~~ 

+ 4 BFF' -!- 3 y F 3  + . * (40) 

dn = e + A F  + CF' + 3 B F ~  + . . (41 1 
Q,'/' = 0 + EF Jr . . . (42) 

@"'= a +  . . .  . (43) 



In Eq. (40) to (43) the expansions are given explicitly 
through  terms corresponding to those given in  Eq. (39). 
The coefficients  of the field components are  the same 
polarizabilities introduced  in Eq. (39). 

Our method of computation, implemented as RERUN = 7 
described in the previous section, is to directly compute self- 
consistent field-molecular orbital wave functions in  the 
presence of different electric fields and  to calculate the 
corresponding dipole and quadrupole moments. These are 
then  substituted into truncated forms of Eqs. (40) to (43) 
to obtain sets of linear  equations which are solved for  the 
polarizabilities. Specifically,  wave functions and dipole mo- 
ments are computed for six different fields which arise from 
point charges placed symmetrically with respect to  the ex- 
pansion point relative to which the polarizabilities are de- 
fined. The charges are placed on  the molecular axis at 
distances - R ,   + R  relative to  the expansion  point. The 
pairs of charges giving rise to  the six  fields are (1) 0, Q (2)  
0, - Q ( 3 )  Q, Q (4) - Q, - Q ( 5 )  - Q, Q (6) Q, - Q. If 
the corresponding dipole moments are denoted ml - m6 
and quadrupole  moments T I  - To, then  substitution into 
Eqs. (40), (41) truncated  to include all terms explicitly 
written in Eqs. (40), (41) except the term  containing the 

T4 = 8 + 4 C -  Q 
R3 

T5 = 0 - 2 A  - $- 2 B  - Q Q2 

R2  R4 

Q Q2 

R2  R4 
Ts = 8 + 2 A  - $- 2 B  -. ( 4 5 )  

The unique  solutions of Eqs. (44) yielding the axial 
polarizability components are 

P = (m4 + m3) 

Q 2  1 
R2 3 3 

a - = - (mz - ml) - - (m4 - m3) 

1 
1 2  (me "-m5J 

m4 - m3> 

" 

A -  Q 1  = - (  
R 3  

p -  Q2 = - - (  1 1 
R4 4 

m4 + m d  + 4 (m6 + m5> 

polarizability E yields 

r n l = p - a ~ - A ~ + - - p , + B y  Q  Q 1 Q2 Q2 

R R 2 R  R 

1 Q3 
- - Y  7 

6 R  

m z = p + a - + A - + - p - + B -  Q Q 1 Q2 Q2 

R2 R3 2 R4 R5 

1 Q3 + , r  5 
R 

Q m s = p - " A -  
R3 

m4 = p + 2 A  -3 
R 
Q 

Q Q2 4 Q3 

R2 R4 3 R6 

R2 R4 3 R6 

m 5 = p - 2 a -   + 2 p -   - - y -  

m 6 = p + 2 a - + 2 p - " r -  Q Q2 4 Q3 

and 

T l = O - A - - 2 C - + - B -  Q Q 1 Q2 
R2 R3 2 R4 

Q 1 Q2 

R2  R3 2 R4 

Q 
R3 

T 2 = 8 + A - + 2 C " + - B -  Q 

T3 = 8 - 4C -- 

1 + 2 (m6 - m5).  (46) 

Equations (45) contain only four polarizabilities to be 
determined and  are therefore overdetermined. The pro- 
gram computes 0, A ,  C, B from  the first, second, fifth, and 
sixth of Eqs. (45) whose solution is 

and computes a second value for 0, C from  the  third  and 
fourth of Eqs. (45) according to 

0 = 3 (T4 f T3) 

C -  = i ( T 4 -  T 3 ) .  Q 
R3 

(48)  231 
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The agreement between the two values of 8, C obtained 
from Eqs. (47),  (48) and between the values of A ,  B ob- 
tained from Eqs. (46), (47) can be used to check the accu- 
racy of the  computation and the validity of the  truncation. 

Nuclear electric shielding factors 
It appears that  no general theory of nuclear electric 

shielding in molecules is available. However, the results for 
axially symmetric systems can be written down from simple 
considerations which  we now outline. The change in the 
electric field at a nucleus due to the electrons, caused by the 
external field,  is expanded in a power series in the external 
field parameters F, F’, F”, . . e. We note that the potential 
of the external field, 4, is missing from  the parameter list 
because there is no effect on  the field at the nuclei due to the 
electrons in an external field of constant potential. Also, for 
any nucleus, the expansion will be in the external field pa- 
rameters evaluated at  that nucleus. Suppose that the z com- 
ponent of the electric field and its derivatives with respect 
to the z coordinate, at a nucleus in a linear molecule, due 
to the electronic motions in the presence of an external field 
are F ( f )  e l ,  FI‘f), e l  F ” ( f ) ,  e l  . . . In the absence of the external field 
the same quantities will  be F2) ,   F$@,   F$o) ,  . 0 .  The ex- 
ternal field is parametrized by its axial field components F, 
F‘, F“, . evaluated at the nucleus under consideration. 
Then, the differences (FL{) - F‘O)), e l  (FI(j) e l  - F’(O)), e l  (FIrLf) e l  

- FL:(O)), . . - , which are  the changes in the electronic con- 
tribution to the electric field at the nucleus because of the 
external field, can be expanded as a power series in the field 
parameters, as shown in the following equations: 

FLf’ - FL!) = --yid)F - yid’F2 - yid’F3 - y!!) F’ 

- yll FF‘ - y l ! i ~ ~ ~  - T & ! ) F ’ ~  (d) 

(d) 2 t - 7 1 2  F F - (49) 
FL$f) - F’(O) e l  = -71 (n) F - yF’F2  - y19’F3 - y g  F’ 

- yll FF’ - &FII - (4) 

- . - & ? F ~ F ‘  - . . . (50)  

F”( f )  - FL:(o) = 
e l  -y1 F - y2 F - y $ ) F 3  - y E ) F t  (0) (0) 2 

- $;) F F ~  - ,.,,:$, F” - yg) FI2 

F ~ F ’ .  . . , (51) 

and similar equations for higher derivatives of the field due 
to the electrons. In Eqs. (49 to 51) we have introduced a 
notation  adequate to cover the axially symmetric case. The 
y’s are  all  known as shielding factors. The superscript (d), 
(q), (o), , denotes dipole, quadrupole, octopole, 9 . ., 
and the subscript denotes the powers of the external field 
components in the  current term. If one integer appears in 
the subscript this is the power of F ;  if two integers appear 
then they give, in reading order,  the power  of F’ and F ;  if 
three, then they are the powers of F”, F’, F ;  and so on. Of 
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would be components in shielding factor tensors and a con- 
siderably more complex notation would be required. The 
quantity yld) is normally called the dipole shielding factor, 
denoted in Dalgarno’s review(41)  by ,&. The quantity yp) is, 
in atomic calculations, known as the uniform field quadru- 
pole shielding factor,4O while y# is known as the field 
gradient quadrupole shielding factor. This latter, y{$, is 
the ym of Sterr~heimer.~~ 

A comment on two possible independent ways  of com- 
puting the Sternheimer shielding factor, y-, may be enlight- 
ening. Consider the  interaction between an externally pro- 
duced field gradient with a nucleus having a nonzero electric 
quadrupole moment. One  method of computing the inter- 
action would be to calculate the distortion of the electronic 
cloud of the molecule due to the nuclear electric quadru- 
pole, thereby evaluating the induced quadrupole moment 
in the electronic cloud due to the nuclear quadrupole. The 
interaction of the external field  with both  the nuclear and 
nuclear induced quadrupole moments is then evaluated. 
This is the Sternheimer procedure. An alternative method 
would calculate the  distortion of the electronic cloud due 
to the external field. The change in the field gradient at the 
nucleus due to this  distortion will then be evaluated, and 
the required interaction is that between the nuclear quad- 
rupole moment and the modified field gradient. Thus, in the 
first procedure the interaction is computed as  an unper- 
turbed field gradient interacting with a perturbed  quadru- 
pole moment, while in the second it is computed as a per- 
turbed field gradient interacting with an unperturbed quad- 
rupole moment. The equivalence of the two procedures has 
been proved by Das  and B e r ~ o h n . ~ ~  

As described above, the  interaction of the external field 
with the  distortion in  the electronic cloud due to a nuclear 
quadrupole yields the  quadrupole shielding factor y;$. The 
interaction of the external field with the  distortion in  the 
electronic cloud due to the external field  itself is, of course, 
an entirely different effect already discussed in terms of 
polarizabilities. 

Calculations of shielding factors with the computer pro- 
gram described in this paper are done using the second of 
the above two procedures. For the same configurations of 
external charges described in the polarizability calculations, 
the field gradients at each of the nuclei are computed. 
When compared with the values of the field gradients at  the 
nuclei with no external field, we have enough information 
to solve sets of linear equations  truncated from Eqs. (49) to 
(51) to obtain values of shielding factors. The program  as  it 
currently stands simply computes the field gradients, and 
the processing of these to obtain  the shielding factors is still 
in progress. We note that Eqs. (49) to (51) are infinite ex- 
pansions and,  as with the polarizabilities, their utility de- 
pends on rapid convergence which  will be the case for ex- 
ternal fields at least an order of magnitude less than those 
present internally in molecules. 



From  the  point of view of assessing the  accuracy  of  com- 
puted  wave  functions,  polarizabilities  and  shielding  factors 
offer a severe test  because of their  sensitivity to   the wave 
function.  Polarizabilities  are  determined  largely  by the 
valence  shells of the  molecule  and  are  therefore sensitive to  
the  wave  function  far  from  the nuclei, where  they are often 
seriously deficient. This is  especially so if inadequate  basis 
sets  have  been  used  and  arises  primarily  because  the  limited 
basis functions are used to best represent the inner  part  of 
the  wave  function,  which is most  important  in  minimizing 
the  total energy. Shielding  factors are especially sensitive to 
changes  in  the  wave  function  in  the  neighborhood  of  the 
nuclei, and  therefore  complement  the  polarizabilities  in 
checking  the  adequacy  of a basis set. A basis set large 
enough  to  stabilize  the  computed  values  of  these  properties 
is larger  than  that  needed to stabilize  the  total energy. In 
reporting  calculations  of  these  properties  it is important to 
establish  the sensitivity of  the  results t o  changes  in  the  basis 
set. 
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