180

S. P. Ghosh
C. T. Abraham

Application of Finite Geometry in File Organization
for Records with Multiple-Valued Attributes

Abstract: The schemes for organizing binary-valued records using finite geometries have been extended to the situation in which the
attributes of the records can take multiple values. Some new schemes for organizing records have been proposed which are based on
deleted finite geometries. These new schemes permit the organization of records into buckets in such a manner that, by solving certain
algebraic linear equations over a finite field, it is possible to determine the bucket in which records, pertaining to two given values of
two different attributes, are stored. Since the bucket identification required for the storage of record accession numbers is based on the
combination of attribute values, the file does not require any reorganization as new records are added. This is a definite advantage of
the proposed schemes over many key-address transformation procedures wherein the addition of new records may lead to either a
drastic revision of the file organization or significant reduction of retrieval effectiveness. The search time for the new schemes are very

small in comparison to other existing methods.

1. Introduction

The problem of storing large data files of formatted records
and retrieving a subset of records on the basis of some attri-
butes that constitute the records is a difficult task, and
much work has been done in this area. A summary of the
work has been given by Abraham, Ghosh and Ray-Chaud-
huri.! The problem becomes more difficult when the attri-
butes can take multiple values and the retrieval process in-
volves retrieving a subset of records on the basis of some
values from different attributes. The authors (and Ray-
Chaudhuri)! had given a solution to the problem based on
finite geometries when binary-valued attributes are con-
sidered; in the present paper some other properties of finite
geometries will be considered to solve the multiple-valued
problem. The technique of forming subsets of records and
identifying the subsets by algebraic equations, as discussed
previously! will also be used in this paper, but the subsets
will be formed in a different manner. The subsets will be
formed by using some special properties of combinatorial
configurations, which have been used in the past, to solve
some problems of constructions of statistical designs (Bose
and Nair?).

2. Balanced multiple-valued filing scheme

A large volume of data may be stored in different ways for
different purposes. In many situations each item of data
may be represented by an I[-vector, each component of
which is a number (an alphanumeric code) providing infor-
mation about one of a set of [attributes A4;, 4,, - -+ A;.
Each item in the file will also have an identifying number i,
different for different items. If »;; is the value for attributes

IBM JOURNAL - MARCH 1968

A; of the it® item, then we shall call a({) = (v, vi2, vat) the
attributes vector of the i** item. This identifying number i
together with the attribute vector a(i) constitutes the record
of the ith item. The set of all records constitutes the file. We
shall denote by M the number of records in this file.

A retrieval request or a query Q is a request to retrieve
from the file, the subset of all records for which a certain
subset of attributes possess certain specific values. A file
organization scheme consists of arranging the records ac-
cording to a scheme that will reduce the time needed for
searching records for a given class of queries. The problem
of file organization is fairly simple when queries relate to
only one attribute. In this case, the most frequently em-
ployed scheme is the method of “inverted” lists, where for
each attribute value a list of the identifying numbers of all
records possessing that specific attribute value is formed and
all queries involving several attributes are satisfied by com-
parison of the basic single-attribute value lists. However,
when the basic lists get very large, retrieval times become
correspondingly large. In addition, the starting address of
contiguous locations of the storage where each list is main-
tained has to be obtained by a “table look-up” operation.
As the number of attribute values becomes large, the table
becomes too big to be located in the internal memory of a
processor. Thus, the search of the table may become slow
for certain files. The idea of inverted lists has been extended
by many file-system implementers to include combinations
of values of different attributes. But the same criticism of
slow table look-up applies to these extended schemes.

The filing schemes we propose in this paper differ sig-

nificantly from previous methods by providing the capa-
bility to computationally determine the storage locations
of records or their identifying numbers, thus avoiding the
time-consuming table look-up. Whereas the present paper
discusses the retrieval problem relating to two attributes
only, the more general situation of multiple attributes had
been dealt with by the authors and Bose.”

In most computerized filing systems the records are
stored in some comparatively slow storage device. The
starting address of a segment of the storage device where
the record is stored in its entirety is called the accession
number of the record. A set of addresses of a comparatively
faster memory or storage device is reserved for storing the
accession numbers. Let this set be S. File organization
schemes have two features. First, there is a rule, the storage
rule, which defines the subset o(i) of the elements of S, where
the accession number of the it" record is stored. Again,
there is a retrieval rule for finding out the elements of S,
where accession numbers of the records pertaining to any
given query relating to any subset of different attribute
values are stored. It is to be noted that hardware associative
memories or content addressable memories are excluded
from the present discussion. From the foregoing it is evi-
dent that redundant storage of accession numbers is un-
avoidable in such filing schemes unless extra addresses or
locations are added to S to provide ‘“‘chaining” of ad-
dresses. Complete avoidance of redundancy can be achieved
only by very complex chaining rules, which make retrieval
very inefficient. A limited amount of chaining of a very
simple nature will be used in the present procedure. Addi-
tional storage requirement due to redundancy and search
time for balanced multiple-valued filing schemes will be
discussed in later sections of this paper.

In this paper filing schemes will be defined for records con-
taining / attributes and these attributes can take ny, ng, « - -,
n; values respectively. A Balanced Multiple-valued Filing
Scheme (referred to here as BMFS) with parameters (k, n,
nz, --- m, b) is defined to be an arrangement of records
with / attributes where the vector of the number of values
these attributes can take is given by (ny, ne, « - -, ny), in b
groups (buckets), which are not necessarily mutually ex-
clusive and which satisfies the following properties:

(2.1) The number of records in a bucket will not be greater
than the number of records in the whole file.

(2.2) Records pertaining to any k (k > 2) values of & differ-
ent attributes will appear in one and only one bucket.

(2.3) To every bucket there corresponds one or more sets
of systems of linear algebraic equations over one or more
finite fields.

A balanced multiple-valued filing scheme with parameters
(k, ny, ng, * - -, ny, b) is said to be of order k and is denoted
by BMFS;.

The problem of construction of BMFS,, can be consid-
ered as a combinatorial problem, in which n elements are
arranged into a number of sets such that when the n ele-
ments are partitioned into / groups of sizes ny, na, + -+, m
then any k elements belonging to k different groups will
always be contained in a set, whereas no two (or more) ele-
ments of the same group will be contained in any set. This
combinational problem can be solved by using finite
geometries when k = 2.*

3. Finite geometries
Finite projective geometry PG(N, p™) and finite Euclidean

geometry EG(V, p*) will be extensively used in this paper
and they will be defined in the following paragraphs.

® Projective geometry
In a finite projective geometry PG(N, p*) of N dimension
based on Galois field GF(p"), where p is a prime integer,
the points can be taken as (N + 1)-tuples x = (xp, x3, - * *,
xx) where xo, x1, -+ -, xy are elements of GF(p") and the
(N + D-tuple px = (pxo, px1, * -+, pxn) is regarded as the
same point as x for any nonzero element p of GF(p"). By
definition the (N + 1)-tuple (0, 0, - - -, 0) is not regarded as
a point. (See Ref. 4.)

A t-dimensional flat in PG(N, p») is defined by the set of
points which satisfy the following N — ¢ independent linear
homogeneous equations.

awexo + auxy + -+ - + aivxy = 0

azxo + asxy + -+ + awyxy = 0

av—wXo + av—nx1 + -+ + ay—wvxy = 0

where the a’s are the elements of GF(p"). Thus the points
which satisfy one linear homogeneous equation define an
N — 1 flat in PG(, p*) and a point in PG(N, p") satisfies N
independent linear homogeneous equations. Hence a point
is called a 0-flat, a line a 1-flat, a plane a 2-flat and so on.

Let ¢ (N, t, s) denote the number of t-flats in PG(¥,)
where

G I G B A V.
G =G =1 (s = 1)

¢(N7 1’ S) =

and s = p~.

* Even though this paper deals with files wherein all attributes can have only
the same number of values, combinatorial filing schemes had been developed
for the situation where attributes have unequal values. For detailed information
see Ref. (7).

181

ORGANIZING MULTIPLE-VALUED RECORDS

182

The ¢’s satisfy the following condition:

SN, 1,s) = d(N,N—1— 1,5
¢ (N, — 1, 5) = 1 (by definition).

® Euclidean geometry

A point in an N-dimensional finite Euclidean geometry
EG(N, s5) based on a GF(s) is defined to be an ordered N-
tuple (x1, xq, - - -, xx), where x; e GF(s),i = 1,2, - -+, N.
The N-tuple (0, O, - - -, 0) is also a point of EG(Y, s).

The t-spaces (0 < ¢t < N — 1) of EG(¥, s) are defined by
nonhomogeneous equations. The set of points which satisfy
the following N — ¢ independent linear equations from a
t-space.

app + anuxy + aexs 4 - -
az + anxi + axxs + - -

+ awvxy =0

+ awxy =0

an-w0 + an—ax1 + ay—exs + -4 ay_inxy = 0

The number of z-spaces in EG(N, s) is equal to ¢(V, ¢, s)
— o(N — 1,1,5) = sV '¢(N — 1, — 1, 5). The other de-
tails of PG(N, s) and EG(, s) will not be discussed and
may be obtained from Carmichael,* Bose,? etc.

4. Constructions of BMFS: using PG(N, s) and EG(N, s)
THEOREM 1. There exists a balanced multiple-valued filing
scheme with parameters k = 2,ny = ng = - -+
I =s¥Tland b = s¥1 {¢(N — 1,0,5) — 1}.

= np = s.

Proof: Consider a spread generated by lines (i.e., a set of
disjoint lines which cover the geometry) in a EG(V, s) and
delete it from the EG(N, s). In this deleted geometry the
lines are identified with the buckets of BMFS,. Each line of
the spread corresponds to an attribute of the records and
the points on a line of the spread correspond to the different
values the particular attribute can take. For constructing
the buckets of BMFS, the points on the lines of the deleted
geometry are considered in pairs and if a record contains
the pair of values corresponding to any pair of points on
the line, then that particular record is stored in the bucket
corresponding to that line. Duplication of records in a
bucket is not permissible.

The number of points on a line in EG(Y, s) is s, hence
ny = ng -+ - = n; = 5. The number of lines in a spread of
EG(N, 5) = s¥ 1, hence [= s¥*. Thus the number of lines
in the deleted geometry = sV 1 (N — 1, 0, 5) — s¥N 1,
hence b = sV {¢(N — 1,0,5) — 1}.

In a EG(Y, s) any two points determine a line; hence any
pair of points can appear on one and only one line. Thus,
any pair of points which appear on any given line of the
spread will not appear on any line of the deleted geometry.

S. P. GHOSH AND C. T. ABRAHAM

Further a pair of points belonging to two different lines of
the spread will appear on one and only one line of the de-
leted geometry. This establishes (2.2), with k¥ = 2. Every
line of EG(N, s) can be represented uniquely by a set of
N — 1 independent linear equations over GF(s), hence
(2.3) is satisfied.

As no duplication of records in a bucket is permitted,
(2.1) is satisfied. This completes the proof.

THEOREM 2. There exists a balanced multiple-valued filing
scheme with parametersk = 2,ny = ns, -+ = n = 5,1 =
QS(N - l,O,S)andb = {d’(Ns 19 S) - ¢(N - la O>s)}'

Proof: Consider a PG(N, s). In general it is not possible to
obtain a set of lines which will form a spread of PG(¥, s),
but it is possible to obtain a set of lines which will form a
partial spread of PG(, s). (A partial spread of order £ in
PG(N, s) is defined to be a collection of k-flats which form
a cover of the geometry and any two or more of these k-flats
intersect in one and only one (k — 1)-flat). Thus for con-
struction of a BMFS. a partial spread of order unity has to
be deleted from PG(W, s). Suppose all the lines, which have
one particular point in common, say the origin, are deleted
from PG(N, s). This deleted geometry will have {¢(V, 0, s5)
— 1} points, {$(N, 1,5) — &N — 1,0, 5)} lines. The lines
of the deleted geometry will correspond to the buckets of
BMFS,. The ¢(N — 1, 0, s) lines of the partial spread will
correspond to the ¢(N — 1, 0, 5) attributes of the records
and the points on any one of these lines, excluding the
origin, will correspond to the different values the attribute,
corresponding to the particular line, can take. The records
will be assigned to the buckets in the same manner as in the
case of EG(W, s).

The remainder of the proof is similar to that of Theorem
1 and hence will be omitted.
Remark 1. BMFS, can be constructed even when n;’s are
not equal. Only restriction needed is that s should be so
chosen that s > max {ny, ns, - - -, m}.
Remark 2. BMFS; can also be constructed with / =+ sV—1
or !/ == ¢(N — 1,0, s). In such situations an !’ can be chosen
suchthat // > /and !’ = sV lor I’ = ¢(N — 1,0, s) for
some N and s, and the same method may be applied.
Remark 3. BMFS; will involve large amounts of duplica-
tion of records but a considerable saving in storage space
can be achieved by storing the actual data in some fixed
location and storing only the accession number of records
in the buckets.
Remark 4. Details of storing records have been discussed
in a previous paper by the authors and Ray-Chaudhuri!
and will not be discussed in this paper.
Remark 5. A BMFS; uses a deleted finite geometry; hence
the number of buckets is less than that in a balanced filing
scheme of order 2 (BFS.) (Ref. 1) based on a finite geome-
try having same number of points.

Example 1. As an illustration, a data base which has
three attributes, where each attribute can take three different
values will be considered. Suppose that the i** attribute can
take the values v;1, vi2, Vi3, = 1,2, 3. The BMFS, for these
data can be constructed using a EG(2, 3). The lines of this
geometry are given by:

X1 =¢Xs =¢x1+ x2 =¢, and 2x1+ x2 = ¢,
where ¢ =0,1,2.

The points of this geometry are pairs, and for simplicity
of representation they shall be written without separation
commas between the coordinates, i.e., the point (x1, x2)
shall be written as xixs. Out of the 12 lines of the geometry
we shall delete the lines corresponding to x; = 0, x; = 1,
and x; = 2, which form a spread of the geometry. The
points on the different lines of the deleted geometry are
given by:

(00, 10, 20), (01, 11, 21), (02, 12, 22), (00, 12, 21),
(01, 10, 22), (02, 11, 20), (00, 11, 22), (01, 12, 20),
02, 10, 21)

The points of EG(2, 3) will correspond to the different
values the attributes can take, as follows:

00 = vy, 01 = vy9, 02 = Vi3, 10 = vy, 11 = Va9,
12 Va3, 20 = Va1, 21 = V39, 22 = y33.

The buckets will be constructed by storing in them the
accession numbers (without any duplication in the same
bucket) of the records which have the following pairs of
values:

Identification No.

Bucket No. 1 (vuvar, viivsy, vavar) (001)
Bucket No. 2 (v1avas, V1avsa, Veavae) (101)
Bucket No. 3 (v1svas, V13Vas, V23Vs3) (201)
Bucket No. 4 (vuvas, v11vaz, v2svse) (011)
Bucket No. 5 (viavay, Vievas, va1vas) (111)
Bucket No. 6 (v13va9, V13v31, Vaavar) (211)
Bucket No. 7 (v11vasz, V11Vas, VesVss) 021)
Bucket No. 8 (vigves, vizval, V23va1) (121
Bucket No. 9 (v13va1, Visvsa, Veivas) (221)

The identification number attached to each bucket is the
triplet of the coefficients of the equation [Ao -+ Ax1 4 Aexe
= 0 MeGF(3)] of the line corresponding to the bucket.
Within each bucket the accession numbers of the records
will be subdivided into subsets, called subbuckets, corre-
sponding to each pair of values. In order to avoid duplica-
tion of accession numbers in the bucket, the subbuckets
will be made non-overlapping by using a chaining technique®
for common accession numbers. The subbuckets may be
identified by concatenating the codes of the pair of values
they represent.

Thus the arrangement of the accession numbers will ap-
pear as follows:

Bucket Subbucket Accession
Identification Identification Number
Number Number of the Records
001 0010
0020
1020
101 0111
0121
1121
201 0212
0222
1222
221 0210
0221
1021

Thus the accession number of a record which has the
values vy; and vs, will be stored in the subbucket 0020
within the bucket 001. If this record also has the value vy
then its accession number will be entitled to be stored in the
subbuckets 0010 and 1020 within the same bucket; but in
order to avoid duplication of accession numbers within the
same bucket, the accession number of this record will
actually be stored in only one of these three subbuckets and
the other subbuckets will be chained to it. However, if a
record has the values vy, va1 and vz2 then the accession
number of this record will be stored in the subbucket 0010
of the bucket 001, and in the subbucket 1021 of the bucket
221, and thus introduce duplication. This can be avoided
only by using chaining techniques between buckets but it
would increase the search time and hence will not be used.

Suppose a query was posed as ““All records which have
v13 and vy; are to be retrieved.” Then v13 and ves will first be
converted into the points of the geometry by a table lookup.
These points are 02 and 12. Next the line in EG(2, 3) which
contains the points (0, 2) and (1, 2) has to be determined by
solving the equation Ay + Awx; + A2xz = 0, in GF(3). On
substituting these points in the equation, we get \; = 0,
Ao =)\2=>)\0+)\QX2= Oorl +)C2= Qorx, = —1 =
2. Thus the bucket corresponding to the line x, = 2 con-
tains the required records. The identification number of the
bucket is 201 and, within this bucket, the subbuckets have
to be searched. The records pertaining to the values vy3 and
vas are to be retrieved, hence the identification number of
the required subbucket will be 1222 and this search can be

ORGANIZING MULTIPLE-VALUED RECORDS

184

done by matching the subbucket identification numbers.
The subbucket 1222 will contain the accession numbers of
the records which have both v;3 and vas3.

Suppose the query were as follows: ““All the records which

have vy; and vy are to be retrieved.” Then the bucket corre-
sponding to the line which contains the points (0, 0) and
(0, 1) would be the required bucket. It is easy to see that the
line x4 = 0, contains these two points, but there is no
bucket corresponding to this line. Thus this BMFS, will
not be able to answer queries when two values of the same
attribute are involved.
Remark 6. In order to simplify the scheme, it would be
better if an ordering is introduced between the values of the
attributes, say (v11, V12, V1) > (V21, V22, V23) > (Va1, Va2, Vaa),
and whenever a query is made on a combination of values
then the value with higher rank will occupy the first posi-
tion, i.e., v13vq2 Will be used instead of vasvy3, and so on.

® Retrieval time in BMFS,
Suppose that

T1 = time needed to solve the algebraic equation to de-
termine the bucket

Ty = time needed for matching the bucket identification
number

T3 = time needed for matching the subbucket identifica-
tion number

T4 = time needed for tracing subbucket chaining, if re-
quired
¢ = time needed in locating any bucket or subbucket

address; e will depend on the specific storage de-
vice used. Thus for a random access storage e will
be the seek time plus the read time.

7 = time needed for matching one machine word with
another.

Since the bucket and subbucket identification numbers
can be ordered, it is easy to see that the total retrieval T is
given by

TL<Ti+ T,

[(N — 1) logy s + log:
X {¢(N—1,0,s) — 1}]e

+ 7 loge ; for EG(N, s)

[logz {¢(N, 1, 5) — ¢(N — 1,0, 5)}]e
+ r logs 5 _iz_ 1 for PG(N, s) (4.1)

& Comparison with “inverted’ lists scheme
Under the assumption that the file is uniformly distributed
with M = cs! records, where ¢ is an integer constant, we

S. P. GHOSH AND C. T. ABRAHAM

shall derive the expression for retrieval time using an in-
verted lists scheme consisting of lists of accession numbers
of records on the basis of single attribute values. The num-
ber of such lists = s/. The number of accession numbers
per list is ¢s™'. In order to retrieve for a query based on
two different attribute values, a table look-up followed by
comparison of items on two lists must be performed. As-
suming that the table is in the internal storage or core
memory, the table look-up time is insignificant if some
coding scheme is employed and content addressability is
accomplished. For most practical situations, the table may
be external. If 7 denotes the time needed for comparing two
numbers or attribute values by the processor, then the
table look up will require at least 27 logs (Is) units of time,
assuming there is ample storage for internal sorting. The
time needed to locate the two lists in the external storage
will be 2¢ log, (Is), where e is the time needed for locating a
specific address of the external storage. The comparison of
the two lists, each containing cs'~! ordered items, will be
very time consuming when cs'~! is too large to permit in-
ternal sorting. The minimum time required for the com-
parison of the two lists is Tes'™! log, es'1. However, this
would imply the availability of 2¢s'! internal storage loca-
tions. If sufficient storage is not available more time will be
required, since the matching will have to be done on seg-
ments of the lists and in stages.

Thus, the total retrieval time, 7', satisfies the following
inequality

T > 2(r + ¢ loge (Is) + 7est!logy est~t. (4.1a)
On simplification (4.1) will give

T~T,4+ T, + (e + 1IYN — 1) logss
+ 2rlog s — 7 for EG
~T,+ Ty + (N — 1) log . (4.1b)
~+ 27 log s — 7 for PG

When an EG is used, / = sV L. In this case

T’ = 2+ + N log; s + res® =D log {cs(sl\’—l_l)}
>~ 2t + ¢)Nlogs s + resGV =D log ¢
+ res@ T (81 — 1) log s . (4.1c)

A comparison of (4.1c) with (4.1b) clearly demonstrates the
advantage of BMFS; over the inverted lists scheme.

® Repetition of records in BMFS,
When EG(W, s5) or PG(Y, s5) is used to construct BMFS,
then the number of values that any attribute can take is s.
If we assume that all these values are equally likely for
every attribute, then we get a uniform distribution of
records with respect to the values. An exact expression for
repetition of records in a file with uniform distribution of
records is given below.

The total number of records for an uniformly distributed
file will be M = ¢s’, where c is an integer constant. Suppose

each line has m-values; then these m-values belong to m-
different attributes. Suppose the different values corre-
sponding to different points on a line are given by

Ay = viy, Ay = U4y, =+, Agyy = iUnm,

where A4; ; j=1,2, -+ -, mare m-attributes. A record has/
values corresponding to the / different attributes. A record
will not be stored in the bucket if its 4;; 7 v; forallj = 1,
2, ---,mor Ay; # vy form — 1 of ’s;j=1,2, -+, m.
Each attribute can take only s values, hence the number
records which will not be stored in this bucket is equal to

els — D" ™™ 4 em(s — 1)

1<s— 1>m‘1<s+ m— l>
=c¢s { — —_—
s s

Hence the total number of records in the bucket

! ;<s — 1>m_1<s + m — 1>
=cs — cs
s s
{ m—1
1) <s—1> <s+m—l>}
= cs \1 —
K s J
Thus the total number of records in the filing scheme
- () (=)
s s
X number of buckets.

=[uh () ()

X {¢(N,1,5) — ¢{(N — 1,0, s)} for PG(N, s)

o = () ()

X {¢(N —1,0,5) — 1} for EG(N, 5) .

Thus the redundancy factor is

fi- (57 (=)

X {¢(N, 1,5) — ¢(N — 1,0, 5}} for PG(N, s)

i (4.3)
- ())

X {@(N —1,0,s) — 1} for EG(N, s) .

In the example discussed previously the redundancy
factor is 2 4 1/3.

® Comparison with “inverted” lists

For a uniformly distributed file, the redundancy factor for
the method of inverted lists is easily seen to be /. In the
specific example, this will reduce to a redundancy factor of
3 for inverted lists against a redundancy factor of 25 for
BMFS,. However, depending on the parameters N, m and
s, it is possible that BMFS, may have more redundancy
than the inverted lists scheme.

® Use of two-stage organization method to reduce search

time in BMFS,.
When all the possible values of all the attributes are taken
as the points of one finite geometry, the number of buckets
can be very large and the search time will also be very large
according to (4.1). This can be reduced to a great extent by
using first one finite geometry to locate the attributes and
then another finite geometry, with as many points as the
total number of possible values the specified attributes can
take. The buckets and subbuckets corresponding to the
finite geometry used to locate the attributes will be called
the first-stage buckets and subbuckets, respectively. The
buckets and subbuckets corresponding to the finite geome-
tries used to locate the values will be called second-stage
buckets and subbuckets, respectively. It is obvious that the
totality of first-stage buckets and the second-stage bucket
(of any one geometry only) will be much less than the total
number of buckets that would arise if all the possible values
of all attributes were used as points of one geometry. Thus
the average search time for the two-stage bucketing organi-
zation would be much less than the search time for BMFS,.
The first-stage buckets will be constructed using a BFS:
(Ref. 1), where l = sV orl = sV 4 sV 14 oo + 541
according as EG(N, s) or PG(, s) is used. The subbuckets
of this BFS, will not contain the accession number of any
record but will contain the prefix of a location that will con-
tain the second-stage buckets and subbuckets correspond-
ing to this first-stage subbucket. It will also contain the
parameters for calculating the suffix of location of the
second-stage buckets, i.e., N;; and s;, such that n;; = n; -+
n; = sV or n;; = (N5, 0, s¢,), depending on whether
EG(N:j, i) or PG(NV;;, 5:,) is to be used. Thus if the query
involves the values v, and v ;,, then using these values in the
appropriate geometry with pa-ameters N;; and s;; the
suffix of the location of the second-stage bucket can be
calculated. Then, concatenating the prefix and suffix part of
the second-stage bucket, the exact location of the required
second-stage bucket is determined. Within this second-
stage bucket the appropriate second-stage subbucket will
be determined by matching the identification numbers
against the query. The second-stage subbucket will contain
the accession numbers of the records which have the ap-
propriate values of the attributes. o

It is obvious that the second-stage subbuckets will have
provision for queries on combination of values like v, and

185

ORGANIZING MULTIPLE-VALUED RECORDS

186

vim, Where i = j. If the file organization scheme does not
need such provision, then these second-stage subbuckets
may be deleted, thus providing a true BMFS;. Sometimes
queries of the this type may be of practical importance but
if all second-stage subbuckets corresponding to any pair
ViVim With i = j are retained, then it will introduce too
much duplication. This can, however, be avoided by follow-
ing some predetermined rule. One such rule may be sug-
gested as follows: Suppose a query is made on two values
of the it attribute, then to determine the first-stage bucket
and subbucket a dummy attribute, say (¢ + 1)*" may be
introduced. (For the /™ attribute the 1% attribute can be
introduced as a dummy.) Within the second stage bucket
corresponding to the i** and j** attribute retain all the sub-
buckets corresponding to vy, with i &= jif j 4= i + 1. If
j = i+ 1, then retain all the subbuckets corresponding to
vav;m Where { &= j and also the second-stage subbuckets
corresponding to v, but not the second-stage subbuckets
corresponding to v gV j,, except when j = /.

® Remark on the general solution

The problem of constructing BMFS, for k > 2 using com-
binatorial algebra or finite geometry has not been yet
solved. It appears that more powerful mathematical tools
have to be developed before this problem can be solved for
any value of k.

5. Numerical example of storage and search on
IBM 2311 disk storage using System 360
Assume we have 17 attributes, and each attribute can take
17 different values, and that there are 58,824 records, each
of which consists of 17 values belonging to the 17 different
attributes. These records are stored on an IBM 2311 disk
store with 203 tracks on each disk and 3625 bytes on each
track. Fach record will have an accession number attached
to it, which is 16 bits or 2 bytes long. Assume each value of
the attribute takes approximately 4 bytes and a record with
its accession number will take about 70 bytes of storage.
Thus there will be about 50 records per track and the total
number of tracks needed will be about 1154.%

Assume a BMFS, is constructed with parameters / = 17,
s = 17, b = 289 using an EG(2, 17) for storing and retriev-
ing the accession numbers of these 58,824 records. The
number of subbuckets within a bucket will be 136.

Assuming that the records are uniformly distributed
from formula (4.3), the redundancy factor is obtained as 76.
Hence on an average there will be about 4.5 million accession
numbers. For simplicity we shall assume that the number of
accession numbers per bucket will be the same (= 4.5 X
108/289 = 15,570). It was pointed out in Remark 4, Section

*If the attribute values are coded, then each attribute value will need only 9
bits, so that a record will be 20 bytes in length.In this case 58,824 records can
be stored in 330 tracks. Since the table of codes is small (289 codes), it can be
maintained in core storage.

S. P. GHOSH AND C, T. ABRAHAM

4, that there will be repetition of accession numbers only be-
tween buckets but not within buckets. Under the uniform
distribution assumption it may be further assumed that the
number of records pertaining to any query will be the same,
namely, 58,824 <+ 289 = 204. As pointed out in Example
1, the subbuckets will be further divided into subgroups and
the subgroups will be chained. The number of chains needed
in any bucket will depend on the data. A subbucket identi-
fication number or a chain identification or an accession
number can take at most 1 byte, hence the number of sub-
buckets per track will be 3625/(115 4 2) = 31. There are
136 subbuckets within a bucket; thus a bucket can be stored
on 5 tracks, leaving more than 222 bytes for a bucket up-
dating. The total number of buckets is 289 and their storage
will need 289 X 5 = 1445 tracks.

In a 2311 disk store the seek time ranges between 80 and
to 145 milliseconds. We shall take the average seek time to
be about 107! second. The rotation time will be 25 milli-
second and the track jump time will be 30 millisecond. The
reading of a subbucket will be about 0.5 rotation time
=12.5 milliseconds.

In EG(2, 17) the lines of the type x; = ¢, where ¢ e GF(17)
will be taken as the attributes, and the points on any one of
these lines will be taken as the permissible values for the
attribute corresponding to the line. These lines will be de-
leted from the geometry. The remaining lines of the deleted
geometry can be represented by ax; + xe = b, where a, b,
e GF(17). Suppose a query includes finding the records
which have the values of the attributes corresponding to
the points (w1, v1) and (2, vs), thena = —(v1 — v9)/(tn —
us) and b = amy + v,. These calculations have to be per-
formed in the field of integers mod (17). The time needed
for such calculations on Model 30 of the IBM /360 System
is about 1.8 milliseconds. The time needed to position the
reading of disk storage will be 107! seconds. While the read-
ing head of the disk storage is being set, another table con-
taining the subbucket headings of the particular bucket and
their positions on the track will be read into the memory of
the computer from a tape unit. This will take about 25
milliseconds, but the processing will be done in parallel
with the bucket seeking, and thus it will not add to the
retrieval time. Once in core, this table look-up will take
only a few microseconds and hence will not enter into our
calculations. Positioning the reading head to the beginning
of the subbucket and reading the accession numbers will
involve a track jump and on an average half-rotation time.
This will take 30 4+ 12.50 = 42.5 milliseconds.

On an average the records pertaining to any pair of values
will be chained to 136,/76 = 2 subbuckets. Thus the maxi-
mum time needed for reading the accession numbers for a
query will involve 1 more setting of the reading head, and
1 more half-rotation (on the average), and will be 112.5
milliseconds. Starting from solution of the equation to read-
ing the accession numbers will take 256.8 milliseconds. The

primary file search will involve retrieving the required 204
records, whose accession numbers are given, from the
58,824 records. On an average, retrieving each record will
involve one seek time and one reading time, which is equal
to 112.5 milliseconds. Hence the time to retrieve the 204
records will be 22,950 milliseconds. Thus the total time
needed from start of the query to retrieving the records will
take 23.207 seconds. Sometimes it is possible to do the
search for the accession numbers and the primary file
search in parallel; in that case the total search time reduces
to 23.09 seconds. If there are more records per subbucket
then, by using either cylinder mode or a surface mode
search, saving in search time can be achieved.

Acknowledgment
The authors wish to thank Dr. M. E. Senko for his valuable

discussions during the preparation of this paper.

References

1. C.T. Abraham, S. P. Ghosh and D. K. Ray-Chaudhuri, “File
Organization Schemes based on Finite Geometries.,” IBM
Report RC-1459 (1965).

2. R. C. Bose and K. R. Nair, “Partially Balanced Incomplete
Block Designs.” Sankhya 4, 337-372 (1939).

3. R. C. Bose, “On the Construction of Balanced Incomplete
Block Designs.” Annals of Engenics 9, 353-399 (1939).

4. R. D. Carmichael, Introduction to the Theory of Groups of
Finite Order, Ginn and Co., Boston, Mass., 1937.

5. L. R. Johnson, “An Indirect Chaining Method for Addressing
on Secondary Keys.” Comm. ACM 4, No. 5, 218-222 (1961).

6. W. Buchholz, “File Organization and Addressing,” IBM
Systems Journal 2, 86-111 (1963).

7. C.T. Abraham, R. C. Bose and S. P. Ghosh, “File Organiza-
tion of records with unequal valued attributes for multi-
attribute queries” Formatted File Organization Techniques;
Final Report, Contract AF 30 (602)-4088, Thomas J. Watson
Research Center IBM Corporation, pp. 107-124 (1967).

Received June 7, 1967

187

ORGANIZING MULTIPLE-VALUED RECORDS

