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Abstract: The schemes for organizing  binary-valued  records  using  finite  geometries  have  been  extended to the  situation in which the 
attributes of the  records  can take multiple  values.  Some  new  schemes for  organizing  records  have been  proposed  which are based on 
deleted  finite  geometries.  These  new  schemes  permit the  organization  of  records into  buckets  in  such a manner that, by  solving certain 
algebraic  linear  equations  over a finite  field,  it  is  possible to determine  the  bucket  in  which  records,  pertaining to two  given  values of 
two  different attributes,  are  stored. Since the bucket  identification  required  for  the  storage of record  accession  numbers  is  based on the 
combination of attribute values, the file  does  not  require  any  reorganization  as  new  records are  added.  This is a definite  advantage  of 
the  proposed  schemes  over  many  key-address  transformation  procedures  wherein  the  addition  of  new  records  may  lead to either a 
drastic revision  of  the  file  organization or significant  reduction of retrieval  effectiveness. The  search  time  for the new  schemes are very 
small  in  comparison to other  existing  methods. 

1. Introduction 
The problem of storing large data files of formatted records 
and retrieving a subset of records on  the basis of some attri- 
butes that constitute the records is a difficult task,  and 
much  work  has been done  in  this area. A summary of the 
work  has been given by Abraham,  Ghosh  and Ray-Chaud- 
huri.’ The problem becomes more difficult when the attri- 
butes  can take multiple values and  the retrieval process in- 
volves retrieving a  subset of records on  the basis of some 
values from different attributes. The  authors (and  Ray- 
Chaudhuri)’ had given a solution to  the problem based on 
finite geometries when binary-valued attributes are con- 
sidered; in  the present paper some  other  properties of finite 
geometries will be considered to solve the multiple-valued 
problem. The technique of forming subsets of records and 
identifying the subsets by algebraic equations,  as discussed 
previously’  will also be used in this  paper, but  the subsets 
will be formed in a different manner. The subsets will be 
formed by using some special properties of combinatorial 
configurations, which have been used in  the past, to solve 
some problems of constructions of statistical designs (Bose 
and Nair2). 

2. Balanced multiple-valued  filing  scheme 
A large volume of data may be stored in different ways for 
different purposes. In many  situations  each  item of data 
may be represented by an 1-vector, each component of 
which is a  number (an alphanumeric code) providing infor- 
mation about  one of a set of 1 attributes A I ,  Az, . . - Ai. 
Each item  in the file  will also have an identifying number i, 
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A j  of the ith item,  then we shall call a(i) = (vil, vi2, vil) the 
attributes vector of the ith item. This identifying number i 
together with the  attribute vector a(i) constitutes the record 
of the ith item. The set of all records  constitutes the file. We 
shall  denote by M the  number of records  in  this file. 

A retrieval request or a  query Q is a request to retrieve 
from  the file, the subset of all records  for which a certain 
subset of attributes possess certain specific values. A file 
organization scheme consists of arranging the records ac- 
cording to a scheme that will reduce the time needed for 
searching records  for  a given class of queries. The problem 
of file organization is fairly simple when queries relate to 
only one attribute. In this case, the most frequently em- 
ployed scheme is the method of “inverted” lists, where for 
each attribute value a list of the identifying numbers of all 
records possessing that specific attribute value is formed and 
all queries involving several attributes are satisfied by com- 
parison of the basic single-attribute value lists. However, 
when the basic lists get very large, retrieval times become 
correspondingly large. In addition, the starting address of 
contiguous locations of the  storage where each list is main- 
tained has  to be  obtained by a  “table  look-up”  operation. 
As the number of attribute values becomes large, the  table 
becomes too big to be located in  the  internal memory of a 
processor. Thus, the search of the table may become slow 
for certain files. The idea of inverted lists has been extended 
by many file-system implementers to include combinations 
of values of different attributes. But the same criticism of 
slow table  look-up applies to these extended schemes. 

The filing schemes we propose in this paper differ  sig- 
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nificantly from previous methods by providing the  capa- 
bility to computationally determine the  storage locations 
of records or their identifying numbers, thus avoiding the 
time-consuming table  look-up.  Whereas  the present paper 
discusses the retrieval problem relating to two  attributes 
only, the  more general situation of multiple attributes had 
been dealt with  by the authors  and B o ~ e . ~  

In most computerized filing systems the  records are 
stored in some comparatively slow storage device. The 
starting  address of a segment of the  storage device where 
the record is stored  in  its entirety is called the accession 
number of the record. A set of addresses of a comparatively 
faster memory or storage device  is reserved for storing  the 
accession numbers. Let this set be S .  File organization 
schemes have two features. First,  there is a rule, the storage 
rule, which  defines the subset a(i) of the elements of S, where 
the accession number of the ith record is stored. Again, 
there is a retrieval rule for finding out  the elements of S ,  
where accession numbers of the records pertaining to any 
given query relating to any subset of different attribute 
values are stored. It is to be noted that hardware associative 
memories or content addressable memories are excluded 
from the present discussion. From  the foregoing it is evi- 
dent that redundant  storage of accession numbers is un- 
avoidable in such filing schemes unless extra addresses or 
locations are added to S to provide “chaining” of ad- 
dresses. Complete  avoidance of redundancy can be achieved 
only by very complex chaining rules, which make retrieval 
very  inefficient. A limited amount of chaining of a very 
simple nature will  be  used in the present procedure. Addi- 
tional  storage requirement due to redundancy and search 
time for balanced multiple-valued filing schemes will  be 
discussed in later sections of this paper. 

In this paper filing schemes will be defined for records con- 
taining I attributes and these attributes  can  take nl, n2, * * . , 
nl values respectively. A Balanced MultipIe-valued Filing 
Scheme (referred to here as BMFS) with parameters (k ,  nl, 
n2, . . . nl, b) is defined to be an arrangement of records 
with I attributes where the vector of the number of values 
these attributes  can  take is given  by (nl, n2, . . -, nl), in b 
groups (buckets), which are not necessarily mutually ex- 
clusive and which satisfies the following properties: 

(2.1) The number of records in a bucket will not be greater 
than the number of records in the whole file. 

(2.2) Records pertaining to any k (k 2 2) values of k differ- 
ent  attributes will appear  in one and only one bucket. 

(2.3) To every bucket there  corresponds  one or more sets 
of systems of linear algebraic equations over one or more 
finite fields. 

A balanced multiple-valued filing scheme with parameters 
(k ,  nl, n2, . . , nl, 6 )  is said to be of order k and is denoted 

The problem of construction of BMFSk can be consid- 
ered as a  combinatorial problem, in which n elements are 
arranged into a  number of sets such that when the n ele- 
ments are partitioned into I groups of sizes nl, n2, . ., nt 
then any k elements belonging to k different groups will 
always be contained  in a set, whereas no two (or more) ele- 
ments of the same group will be contained  in  any set. This 
combinational problem can be solved by using finite 
geometries when k = 2.* 

by BMFSk. 

3. Finite geometries 
Finite projective geometry PG(N, pn) and finite Euclidean 
geometry EG(N, p”) will  be  extensively used in  this  paper 
and they will be defined in  the following paragraphs. 

Projective geometry 
In a finite projective geometry PG(N, p”) of N dimension 
based on  Galois field GF(pn), where p is a prime integer, 
the points can be taken as ( N  + 1)-tuples x = ( x ~ ,  x1, a ,  

x ~ )  where x ~ ,  XI, . . e, XN are elements of GF(pn)  and  the 
( N  + 1)-tuple px = ( p x ~ ,  pxl,  . . , p x ~ )  is regarded as  the 
same point as x for any nonzero element p of GF(pn). By 
definition the (N + 1)-tuple (0, 0, . . , 0) is not regarded as 
a  point. (See Ref. 4.) 

A t-dimensional flat in PG(N, p“) is defined by the set of 
points which satisfy the following N - t  independent linear 
homogeneous equations. 

I’ 
where the a’s are  the elements of GF(pn).  Thus  the points 
which satisfy one linear homogeneous equation define an 
N - 1 flat in PG(N, pn) and a point  in PG(N, pn) satisfies N 
independent linear homogeneous equations. Hence a  point 
is called a 0-flat, a line a 1-flat, a plane a 2-flat and so on. 

Let r$ ( N ,  t, s) denote  the number of t-flats in PG(N, s) 
where 

and s = pn. 

the  same number of values,  combinatorial filing schemes  had been developed 
* Even  though this paper deals with files wherein all attributes can  have only 

for thesituation  whereattributes  have unequal values. For detailed  information 
see  Ref. (7). 181 
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The 9's satisfy the following condition: 

+(N, t , s )  = + ( N , N -  t - 1,s) 
+ (N,  - 1, s) = 1 (by definition). 

Euclidean geometry 
A point in  an N-dimensional finite Euclidean geometry 
EG(N, s) based on a GF(s) is defined to be an ordered N- 
tuple (XI, x%, . . -, XN), where xi e GF(s), i = 1,2, . . ., N. 
The N-tuple (0, 0, - a ,  0) is also a point of EG(N, s). 

The t-spaces (0 5 t 5 N - 1) of EG(N, s) are defined  by 
nonhomogeneous equations. The set of points which satisfy 
the following N - t independent linear equations from a 
t-space. 

The number of t-spaces in  hG(N, s) is equal to +(N, t ,  s) 

- +(N - 1,  t, s) = S~-~C#J(N - 1, t - 1, s). The other de- 
tails of PG(N, s) and EG(N, s) will not be discussed and 
may be  obtained from Carmichael; B ~ s e , ~  etc. 

4. Constructions of BMFSz using PG(N, s) and EG(N, s) 
THEOREM I. There exists a balanced multiple-valued filing 
scheme with parameters k = 2, nl = n2 = * * 1 = nl = s. 
I = sw" and b = sN"l {+(N - 1,0, s) - 1 ) .  

Proof: Consider a spread generated by lines (i.e., a set of 
disjoint lines which cover the geometry) in a EG(N, s) and 
delete it from  the  EG(N, s). In this deleted geometry the 
lines are identified with the buckets of BMFSZ. Each line of 
the spread  corresponds to  an  attribute of the records and 
the  points on a line of the spread  correspond to the different 
values the particular attribute can  take. For constructing 
the buckets of BMFSz the  points on  the lines of the deleted 
geometry are considered in  pairs and if a record contains 
the pair of values corresponding to any pair of points on 
the line, then that particular record is stored  in the bucket 
corresponding to that line. Duplication of records in a 
bucket is not permissible. 

The number of points on a line in EG(N, s) is s, hence 
nl = n2 . . . = nl = s. The number of lines in a spread of 
EG(N, s) = sN"l, hence I = sv-'. Thus  the number of lines 
in the deleted geometry = sN"l +(N - 1, 0, s) - sN--l, 
hence b = {+(N - 1,0 ,  s) - 1 ). 

In a EG(N, s) any two  points determine a line; hence any 
pair of points  can  appear on one and only one line. Thus, 
any  pair of points which appear on any given line of the 

182 spread will not  appear on any line of the deleted geometry. 

Further a pair of points belonging to two different lines of 
the spread will appear on one and only one line of the de- 
leted geometry. This establishes (2.2), with k = 2. Every 
line of EG(N, s) can be represented uniquely by a set of 
N - 1 independent linear equations over GF(s), hence 
(2.3) is satisfied. 

As no duplication of records in a bucket is permitted, 
(2.1)  is satisfied. This completes the proof. 

THEOREM 2. There exists a balanced multiple-valued filing 
scheme with parameters k = 2, nl = n2, * = nl = s, I = 
+ ( N - l , O , s ) a n d b =   { + ( N , l , s ) - + ( N - l , O , s ) } .  

Proof: Consider a PG(N, s). In general it is not possible to 
obtain a set of lines which will form a spread of PG(N, s), 
but  it is possible to obtain a set of lines which will form a 
partial  spread of PG(N, s). (A partial  spread of order k in 
PG(N, s) is defined to be a collection of k-flats which form 
a cover of the geometry and any  two or more of these k-flats 
intersect in  one and only one  (k - 1)-flat). Thus for con- 
struction of a BMFSz a partial  spread of order unity  has to 
be deleted from PG(N, s). Suppose  all the lines, which have 
one particular point in common, say the origin, are deleted 
from  PG(N, s). This deleted geometry will have { +(N, 0, s) 

- 1 ) points, (+(N,  1, s) - +(N - 1,0,  s)) lines. The lines 
of the deleted geometry will correspond to the buckets of 
BMFS2. The +(N - 1, 0, s) lines of the partial  spread will 
correspond to  the +(N - 1, 0, s) attributes of the records 
and the  points on any one of these lines, excluding the 
origin, will correspond to  the different values the attribute, 
corresponding to  the particular line, can  take. The records 
will  be assigned to  the buckets in the same manner as in the 
case of EG(N, s). 

The remainder of the proof is similar to  that of Theorem 
1 and hence will be  omitted. 
Remark 1. BMFSz can be constructed even when ni's are 
not equal. Only restriction needed is that s should be so 
chosen that s 2 max (nl, n2, . . . , n l } .  

Remark 2. BMFS2 can also be constructed with I =+ 
or I .i. +(N - 1, 0, s). In such situations an I' can be chosen 
such that I' > I and I' = sv"l or 1' = +(N - 1, 0, s) for 
some N and s, and  the same  method may be applied. 
Remark 3. BMFS2 will involve large amounts of duplica- 
tion of records but a considerable saving in  storage space 
can be achieved by storing the  actual  data  in some fixed 
location and storing only the accession number of records 
in the buckets. 
Remark 4.  Details of storing  records have been discussed 
in a previous paper by the  authors  and Ray-Chaudhuri' 
and will not be discussed in  this  paper. 
Remark 5. A BMFSz uses a deleted finite geometry; hence 
the number of buckets is  less than  that in a balanced filing 
scheme of order 2 (BFS2) (Ref. 1) based on a finite geome- 
try having same  number of points. 
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Example 1. As an illustration, a data base which has 
three attributes, where each  attribute can take  three  different 
values  will  be considered. Suppose that the ith attribute can 
take  the values vil, vi2,   v i3 ,  i = 1,2,3. The BMFS2 for these 
data can be constructed using a EG(2, 3). The lines of this 
geometry are given by: 

x1 = C, x2 = c, x1 + x2 = c,  and 2 x 1  t x 2  = c, 

where c = 0,1,2. 

The points of this geometry are pairs, and for simplicity 
of representation they shall be written without separation 
commas between the coordinates, i.e., the point (XI, x 2 )  

shall be written as ~ 1 x 2 .  Out of the 12 lines of the geometry 
we shall delete the lines corresponding to x 1  = 0, x 1  = 1, 
and x1 = 2, which form a spread of the geometry. The 
points on  the different lines of the deleted geometry are 
given  by: 

(00,10, 20), (01,11,21),  (02,12,22), (00, 12,21), 
(01, 10,22)) (02, 11, 20), (00, 11, 22),  (01, 12, 20), 
(02, 10, 21) 

The points of EG(2, 3) will correspond to the different 
values the  attributes  can  take, as follows: 

00 = V11, 01 = V12, 02 = v13, 10 = v21, 11 = v229 

12 = V23, 20 = v31, 21 = v32, 22 = v33.  

The buckets will be constructed by storing in them the 
accession numbers (without any duplication in the  same 
bucket) of the records which have the following pairs of 
values : 

Bucket No. 1 (v11vz1,  v11v31, V21v31) (001 ) 
Bucket No. 2 ( ~ 1 2 ~ 2 2 ,  V12v32,  V22v32) (101) 
Bucket No. 3 (v13v23,  v13v33,  v23v33) (201) 
Bucket No. 4 (vl lv23,   vl lv32,   v23v32)  (01 1) 

Bucket No. 6 (v13v22,  v13v31,  v22v31) (21 1) 
Bucket No. 7 ( ~ 1 1 ~ 2 2 ,   v l l v 3 3 ,  v22v33) (021) 
Bucket No. 8 (v12v23,  v12v31,  v23v31) (121) 
Bucket No. 9 (v13v21,  v13v32,  v21v32) (221) 

Identification No. 

Bucket NO. 5 ( ~ 1 2 ~ 2 1 ,   ~ 1 2 ~ 3 3 ,   ~ 2 1 ~ 3 3 )  (111) 

The identification number attached to each bucket is the 
triplet of the coefficients  of the equation [Xo + XIXI + XZXZ 
= 0 XicGF(3)] of the line corresponding to the bucket. 
Within each bucket the accession numbers of the records 
will be subdivided into subsets, called subbuckets, corre- 
sponding to each pair of values. In  order to avoid duplica- 
tion of accession numbers in the bucket, the subbuckets 
will  be made non-overlapping by using a chaining technique6 
for common accession numbers. The subbuckets may be 
identified by concatenating the codes of the  pair of values 
they represent. 

Thus  the arrangement of the accession numbers will ap- 
pear as follows: 

Bucket 
IdentiJication 

Number 
001 

"_" 
101 

201 

22 1 

Subbucket Accession 
IdentiJication Number 

Number of' the Records 
0010 
0020 
1020 

""_ ""_ 
0111 
0121 
1121 

-"" "_" 
0212 
0222 
1222 

""- ""_ 

""_ ""_ 
0210 
0221 
1021 

Thus  the accession number of a record which has the 
values v11 and Val, will  be stored in the subbucket 0020 
within the bucket 001. If this record also has the value v21 

then its accession number will  be entitled to be stored in the 
subbuckets 0010 and 1020 within the same bucket;  but in 
order to avoid duplication of  accession numbers within the 
same bucket, the accession number of this record will 
actually be stored in only one of these three subbuckets and 
the  other subbuckets will  be chained to it. However, if a 
record has the values v11, v21 and v32 then the accession 
number of this record will  be stored in the subbucket 0010 
of the bucket 001, and  in the subbucket 1021 of the bucket 
221, and  thus introduce duplication. This can be avoided 
only by using chaining techniques between buckets but it 
would increase the search time and hence will not be used. 

Suppose a query was posed as "All records which have 
v13 and v23 are to be retrieved." Then and v23 will first be 
converted into the points of the geometry by a table  lookup. 
These points are 02 and 12. Next the line in EG(2, 3) which 
contains the points (0,2) and (1,2) has to be determined by 
solving the  equation X. 4- Xlxl + X 2 x 2  = 0, in GF(3). On 
substituting these points in the  equation, we get X1 = 0, 
X ~ = X 2 = + X ~ + X ~ x ~ = O o r 1 + x ~ = O o r x 2 =  - 1 =  
2. Thus the bucket corresponding to the line x 2  = 2 con- 
tains the required records. The identification number of the 
bucket is 201 and, within this bucket, the subbuckets have 
to be searched. The records pertaining to the values v13 and 
v23 are to be retrieved, hence the identification number of 
the required subbucket will be 1222 and this search can be 183 
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done by matching the subbucket identification numbers. 
The subbucket 1222 will contain the accession numbers of 
the records which have both v13 and vZ3. 

Suppose the query were as follows: "All the records which 
have v11 and v12 are  to be retrieved." Then the bucket corre- 
sponding to the line which contains the points (0, 0) and 
(0 , l )  would be the required bucket. It is easy to see that  the 
line x1 = 0, contains these two  points, but there is no 
bucket corresponding to this line. Thus this BMFS2 will 
not be able to answer queries when two values of the same 
attribute  are involved. 
Remark 6. In order to simplify the scheme, it would be 
better if an ordering is introduced between the values of the 
attributes, say(vl1, V I , ,  v13) > ( V Z I ,  v22, v23) > ( V 3 1 ,  V 3 2 ,  v33), 

and whenever a query is made  on a  combination of values 
then  the value with higher rank will occupy the first posi- 
tion, i.e., v13v22 will be used instead of vZ2v13, and so on. 

Retrieval  time in BMFSz 
Suppose that 

TI = time needed to solve the algebraic equation to de- 

TZ = time needed for matching the bucket identification 
number 

T3 = time needed for matching the subbucket identifica- 
tion number 

T4 = time needed for tracing subbucket chaining, if re- 
quired 

t = time needed in locating any bucket or subbucket 
address; e will depend on  the specific storage de- 
vice used. Thus  for a random access storage t will 
be the seek time plus the read time. 

7 = time needed for matching one machine word with 
another. 

termine the bucket 

Since the bucket and subbucket identification numbers 
can be ordered, it is easy to see that  the  total retrieval Tis 
given by 

I 

< + 

I 
Comparison with  "inverted" lists scheme 

Under  the  assumption that  the file  is uniformly distributed 
184 with M = csz records, where c is an integer constant, we 

shall derive the expression for retrieval time using an in- 
verted lists scheme consisting of lists of accession numbers 
of records on  the basis of single attribute values. The num- 
ber of such lists = sl. The number of accession numbers 
per list is C S ~ - ~ .  In order to retrieve for  a  query based on 
two different attribute values, a table  look-up followed by 
comparison of items on two lists must be performed. As- 
suming that  the table is in the internal  storage or core 
memory, the  table  look-up time is insignificant if some 
coding scheme is employed and content addressability is 
accomplished. For most practical situations, the table may 
be external. If 7 denotes the  time needed for  comparing two 
numbers or  attribute values by the processor, then  the 
table  look up will require at least 27 log, (Is) units of time, 
assuming there is ample  storage  for  internal  sorting. The 
time needed to locate  the  two lists in the external  storage 
will be 2t logz (Is), where t is the time needed for locating a 
specific address of the  external  storage. The comparison of 
the two lists, each containing csZ-l ordered items, will be 
very time consuming when csz"l is too large to permit in- 
ternal sorting. The minimum time required for the com- 
parison of the  two lists is T C S ~ - ~  log, csZ-'. However, this 
would imply the availability of 2csZ-' internal  storage loca- 
tions. If sufficient storage is not available more time will  be 
required, since the matching will have to be done on seg- 
ments of the lists and in stages. 

Thus,  the total retrieval time, T', satisfies the following 
inequality 

T' 2. 2(7 + E )  log, ( I S )  + TCS'-' log, CS'-' . (4.la) 

On simplification (4.1)  will  give 

T TI + T, + ( E  + 1)(N - 1) logzs + 27 log s - 7 for EG 
N TI + T4 + E ~ ( N  - 1) log I . (4.lb) + 27 log s - 7 for PG 

When an EG is used, 1 = slV--l. In this case 

T' = 2(7 + E)N log, s + ~ c s ( ~ ~ " l - ' )  log { C S ( ~ * " ~ - ~ )  1 
'v 2(T + €)N lo& S + 7 C S ( S N " I - 1 )  log C 

+ 7 C s ( 8 N - 1 -  1) (SN-l - 1 ) log s . (4.1~) 

A  comparison of (4.1~) with (4.lb) clearly demonstrates  the 
advantage of BMFSz over the inverted lists scheme. 

Repetition of records in BMFSz 
When EG(N, s) or PG(N, s) is used to construct BMFSz 
then the number of values that any  attribute  can  take is s. 
If we assume that all these values are equally likely for 
every attribute,  then we get a uniform distribution of 
records with respect to the values. An exact expression for 
repetition of records in a file with uniform distribution of 
records is  given  below. 

The  total number of records for an uniformly distributed 
file  will be M = csz, where c is an integer constant. Suppose 
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each line has m-values; then these m-values belong to m- 
different attributes.  Suppose  the different values corre- 
sponding to different points on a line are given  by 

A .  = u .  A .  = u .  . . .  A i m = i u m ,  
21 a 1 3  a2 a 2 7  9 

where Aii j = 1, 2, . * ', m are m-attributes. A record  has I 
values corresponding to  the 1 different attributes. A record 
will not be stored  in  the bucket if its A i j  # vii  for all j = 1, 
2, . . ., m or A i j  # vijfor m - 1 ofj's; j = 1, 2, * .  ., m. 

Each  attribute can take only s values, hence the number 
records which will not be stored  in this bucket is equal to 

= c s l  (2+)m-1(s 
+ '," - 1)  

Hence the  total number of records  in the bucket 

= cs I -cs'(s) ( ) - 1 *--l s + m - 1  

Thus the total number of records in the filing scheme 

X number of buckets. 

L x ( + ( N  - 1, 0, S )  - 1 )  for EC(N,  S) 

Thus the redundancy factor is 

X {p(N - 1,  0, s) - 1 )  for EG(N, s ) .  

In  the example discussed previously the redundancy 
factor is 2 + 1/3. 

Comparison with "inverted" lists 
For a uniformly distributed file, the redundancy  factor for 
the  method of inverted lists is easily seen to be 1. In  the 
specific example, this will reduce to a  redundancy  factor of 
3 for inverted lists against a  redundancy  factor of 2Q for 
BMFS2. However, depending on the parameters N ,  m and 
s, it is possible that BMFSz may have more  redundancy 
than  the inverted lists scheme. 

Use of two-stage organization  method to reduce  search 

When all the possible values of all the attributes are taken 
as the points of one finite geometry, the number of buckets 
can be  very large and  the search time will also be  very large 
according to (4.1). This can be reduced to a great extent by 
using first one finite geometry to locate the attributes and 
then  another finite geometry, with as many points as the 
total number of possible values the specified attributes  can 
take. The buckets and subbuckets corresponding to  the 
finite geometry used to locate the attributes will  be called 
the first-stage buckets and subbuckets, respectively. The 
buckets and subbuckets corresponding to the finite geome- 
tries used to locate the values will  be  called second-stage 
buckets and subbuckets, respectively. It is obvious that  the 
totality of first-stage buckets and  the second-stage bucket 
(of any  one geometry only) will be much less than the total 
number of buckets that would arise if all the possible values 
of all attributes were  used as points of one geometry. Thus 
the average search time for  the two-stage bucketing organi- 
zation would be much less than  the search time  for BMFS2. 
The first-stage buckets will  be constructed using a BFSz 
(Ref. l), where I = sv or I = sv + sN--l + . . . + s + 1 
according as EG(N, s) or PG(N, s) is used. The subbuckets 
of this BFSz will not contain  the accession number of any 
record but will contain the prefix of a  location that will con- 
tain the second-stage buckets and subbuckets correspond- 
ing to this first-stage subbucket. It will also contain  the 
parameters for calculating the suffix  of location of the 
second-stage buckets, i.e., N i ,  and si, such that nii  = ni + 
EG(Nij, s i j )  or PG(Nij, s i J )  is to be used. Thus if the query 
involves the values v i k  and v i m .  then using these values in the 
appropriate geometry with pa-ameters Nij and sij, the 
suffix of the location of the second-stage bucket can be 
calculated. Then, concatenating the prefix and suffix part of 
the second-stage bucket, the exact location of the required 
second-stage bucket is determined. Within  this second- 
stage bucket the  appropriate second-stage subbucket will 
be determined by matching the identification numbers 
against  the query. The second-stage subbucket will contain 
the accession numbers of the records which have the  ap- 
propriate values of the attributes. 

It is obvious that the second-stage subbuckets will have 
provision for queries on combination of values like vik  and 

time in BMFS2. 

n .  - - s.. 'v' ' L 3  L J  or n,i = +(AJii, 0, siJ, depending on whether 
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vjm, where i = j .  If the file organization scheme does  not 
need such provision, then these second-stage subbuckets 
may be deleted, thus providing a true BMFS2. Sometimes 
queries of the  this type may be of practical importance  but 
if all second-stage subbuckets corresponding to any  pair 
vikvjm with i = j are retained, then  it will introduce too 
much duplication. This can, however, be avoided by follow- 
ing some predetermined rule. One such rule may be sug- 
gested as follows: Suppose a query is made on two values 
of the ith attribute,  then to determine the first-stage bucket 
and subbucket a dummy attribute, say (i + l)th may be 
introduced. (For the P h  attribute  the lst attribute can  be 
introduced as a dummy.) Within the second stage bucket 
corresponding to the ith andjth attribute  retain  all  the  sub- 
buckets corresponding to vikvjm with i # j if j # i + 1. If 
j = i + 1 ,  then retain all  the subbuckets corresponding to 
VikVjm where i =i= j and also  the second-stage subbuckets 
corresponding to v;kvim but not the second-stage subbuckets 
corresponding to vjkvjm except when , j  = 1. 

Remark on the general solution 
The problem of constructing BMFSk for k > 2 using com- 
binatorial algebra or finite geometry has not been yet 
solved. It appears that more powerful mathematical tools 
have to be developed before this problem can be solved for 
any value of k.  

5. Numerical example of storage and search on 
IBM 2311 disk storage  using  System 360 
Assume we have 17 attributes, and each  attribute can  take 
17 different values, and  that there are 58,824 records, each 
of which consists of 17 values belonging to the 17 different 
attributes. These records are  stored on  an IBM  2311 disk 
store with 203 tracks  on each disk and 3625 bytes on each 
track. Each record will have an accession number attached 
to it, which is 16 bits or 2 bytes long. Assume each value of 
the attribute takes approximately 4 bytes and a record with 
its accession number will take about 70 bytes of storage. 
Thus there will be about 50 records per track and  the total 
number of tracks needed will be about 1154.* 

Assume a BMFS2 is constructed with parameters I = 17, 
s = 17, b = 289 using an EG(2,17) for storing and retriev- 
ing the accession numbers of these 58,824 records. The 
number of subbuckets within a bucket will  be 136. 

Assuming that  the records are uniformly distributed 
from formula (4.3), the redundancy factor is obtained as 76. 
Hence on an average there will  be about 4.5 million accession 
numbers. For simplicity we shall assume that the number of 
accession numbers per bucket will  be the  same (= 4.5 X 
106/289 = 15,570). It was pointed out in Remark 4, Section 

bits, so that a record will be 20 bytes in 1ength.h this case 58,824 records can 
*If the attribute values are coded, then each attribute value will need only 9 

be stored in 330 tracks. Since the  table of codes is small (289 codes), it  can be 
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4, that there will  be repetition of accession numbers only be- 
tween buckets but not within buckets. Under  the uniform 
distribution assumption it may be further assumed that the 
number of records pertaining to  any query will  be the same, 
namely, 58,824 + 289 = 204. As pointed out  in Example 
1 ,  the subbuckets will  be further divided into subgroups  and 
the subgroups will  be chained. The number of chains needed 
in any bucket will depend on the data. A subbucket identi- 
fication number  or a chain identification or  an accession 
number can  take  at most 1 byte, hence the number of sub- 
buckets per track will  be 3625/(115 + 2) = 31. There are 
136 subbuckets within a bucket; thus a bucket can be stored 
on 5 tracks, leaving more than 222 bytes for a bucket up- 
dating. The  total number of buckets is 289 and their storage 
will need 289 X 5 = 1445 tracks. 

In a 231 1 disk store the seek time ranges between 80 and 
to 145 milliseconds.  We shall take the average seek time to 
be about 10" second. The  rotation time will  be 25 milli- 
second and the track jump time will  be 30 millisecond. The 
reading of a subbucket will  be about 0.5 rotation time 
= 12.5 milliseconds. 

In EG(2,17) the lines of the type x 1  = cy where c eGF(17) 
will  be taken  as  the  attributes, and the points on any one of 
these lines will  be taken as  the permissible values for  the 
attribute corresponding to the line. These lines will be de- 
leted from the geometry. The remaining lines of the deleted 
geometry can be represented by a x 1  + x2 = 6, where a, b, 
E GF(17). Suppose a query includes finding the records 
which have the values of the  attributes corresponding to 
the points (u1, VI) and (UZ ,  VZ), then a = --(VI - vz)/(ul - 
u2) and b = a u l  + vl. These calculations have to be per- 
formed in the field of integers mod (17). The time needed 
for such calculations on Model 30 of the IBM/360 System 
is about 1.8 milliseconds. The time needed to position the 
reading of disk storage will be 10" seconds. While the read- 
ing head of the disk storage is being set, another  table con- 
taining the subbucket headings of the particular bucket and 
their positions on the  track will be read into the memory of 
the computer from a tape unit. This will take  about 25 
milliseconds, but  the processing will be done in parallel 
with the bucket seeking, and  thus it will not  add  to the 
retrieval time. Once in core, this  table  look-up will take 
only a few microseconds and hence will not enter into our 
calculations. Positioning the reading head to  the beginning 
of the subbucket and reading the accession numbers will 
involve a track jump  and  on  an average half-rotation time. 
This will take 30 + 12.50 = 42.5 milliseconds. 

On  an average the records pertaining to any pair of values 
will  be chained to 136/76 = 2 subbuckets. Thus  the maxi- 
mum time needed for reading the accession numbers for a 
query will involve 1 more setting of the reading head, and 
1 more  half-rotation  (on the average), and will be 112.5 
milliseconds. Starting  from solution of the  equation to read- 
ing the accession numbers will take 256.8 milliseconds. The 



primary file search will involve retrieving the required 204 
records, whose accession numbers are given, from  the 
58,824 records. On  an average, retrieving each record will 
involve one seek time and one  reading time, which is equal 
to 112.5 milliseconds. Hence the time to retrieve the 204 
records will be 22,950 milliseconds. Thus  the  total time 
needed from start of the query to retrieving the records will 
take 23.207 seconds. Sometimes it is possible to do  the 
search for  the accession numbers and  the primary file 
search  in parallel; in that case the  total search time reduces 
to 23.09 seconds. If there are  more records per subbucket 
then, by using either cylinder mode or a surface mode 
search, saving in search time  can be achieved. 
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