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Computer Algorithm for Spectral Factorization

of Rational Matrices

Abstract: An algorithm is derived for the numerical spectral factorization of matrices arising in optimal filter design. The method
uses a bilinear transformation to convert the factorization problem into a stable nonlinear difference equation of the Riccati type.
The computer solution of several examples is presented to illustrate the technique.

I. Introduction

In the determination of optimal filters for stationary ran-
dom processes, the filter transfer function is given as the
solution of a Wiener-Hopf integral equation.~ It has long
been recognized that Wiener’s method of spectral factori-
zation is the most elegant means of solution of this equa-
tion. Recently, several authors have considered the
solution of multivariable filtering problems by this tech-
nique.*~11:1415 The chief computational stumbling block
is the spectral factorization of a rational matrix.

Youla® suggested a method based on his constructive
proof that the desired factorization does exist. One trans-
forms the given matrix into its Smith canonical (diagonal)
form by multiplying by elementary matrices, factors the
diagonal polynomial elements, and then uses an ingenious
but intricate sequence of matrix manipulations to obtain
the final result. Davis® simplified the problem somewhat by
showing that the matrix to be factored could be reduced in
steps to a constant matrix by appropriately chosen transfor-
mations. The product of these transformations is the de-
sired factor. As in Youla’s algorithm, however, one must
factor a scalar polynomial and perform several matrix
transformations.

Recently, Riddle and Anderson!! have suggested that the
difficult step is factoring the scalar polynomials and have
pointed out that, since the roots themselves are not needed,
methods for obtaining the factors directly can be employed.
They describe a technique in which one obtains the coef-
ficients of the desired factor from a set of nonlinear alge-
braic equations, the iterative solution of which is said to be
convergent.

However, although many techniques exist, all are similar
in that the matrix to be factored must be manipulated in

such a way that scalar polynomials may be extracted and
factored. The decision problems inherent in such manipula-
tions (e.g., determination of linear dependence) make such
algorithms difficult to program for a digital computer.

This paper describes a straightforward algorithm for
spectral factorization of matrices which avoids the diffi-
culties described above. The matrix to be factored is con-
verted directly into a nonlinear difference equation of the
Riccati type, which converges to a stationary solution. The
desired factor is obtained easily from the solution. In the
scalar case, the algorithm closely resembles the one pro-
posed by Riddle and Anderson.

® Problem statement and formal solution

The optimal (minimum mean square error) filter transfer
function ¢(¢) is the solution of the matrix Wiener-Hopf
integral equation

/: It — 7)¢@@)dr = 4(1), £>0, (1.1)

where T'(¢) is an r X r covariance matrix, {(z) a known col-
umn vector, and ¢(¢) the desired solution. It will be assumed
throughout that the spectral density G(s),

G(s) = /_m I'(t)e "'dt, (1.2)

is an r X r rational matrix with the following properties:
A: 1) G(s) is real, i.e., G(s) = G(3);

2) G(s) is para-Hermitian, i.e., GT(—~s) = G(s);

3) G(s) is of normal rank r (almost everywhere);

4) G(jw) is positive semidefinite for every finite w.
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Then there exists an » X r matrix H(s) such that:
B: 1) G(s) = HT(—s)H(s); 1.3)

2) H(s) is real, i.e., H(s) = H(s);

3) H(s) and H~Y(s) are both rational and analytic in the
right-half plane, i.e., all their poles and zeroes lie in
the left-hand plane.

Once H(s) has been found, the solution transfer function
is

B(s) = /:‘I)(t)e—”dt
H ' (s){[H" (=
where ¥ (s) =/0 Y(1)e " dt

If

)T ()} (1.4)

and { }. denotes that part of the partial fraction expan-
sion of [HT(—s)]7¥(s) due to the poles of ¥(s).

H™(s) may be evaluated by (for example) Gauss reduc-
tion, while the { } term may be computed in the follow-
ing way. Let

w() = 28 T = =

Z(s), ©(s) are matrix polynomials and o(s), O(s) are scalar
polynomials. Then

(H" (=) ¥ ()}, = {Qt_s)_z(_s)}

and [HT (— where

O(—s,0(s)
={A—<s> +A+(s>} _ AY()
o(=s) " o) J1 T oy

where AT($)O(—s) + A=(s)a(s) = O(—s5)2(s). 1.5)

Since A%(s), Z(s) are polynomial vectors, each element of
A*(s) can be obtained by solving a (relatively small) set of
simultaneous linear equations for the coefficients of the
polynomials. Note also that it is never necessary to compute
the roots of a polynomial to obtain the optimum transfer
function.

® Spectral factorization

The principal problem, then, is the factorization expressed
by (1.3). It is to this problem that the rest of the paper is de-
voted. The rational matrix G(s) may always be written

G(s)
g(s) ’
where G(s), g(s) are respectively matrix and scalar poly-
nomials. If both are factored into products of polynomials,
ie.,

G(s) = A" (—s)H(s) 1.7
and g(s) = h(—s)h(s),

where H(s), #(s) are polynomials with their roots in the left-
hand plane, then

H(s) = H(s)/h(s) (1.8)

G(s) = (1.6)
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is the desired factor of G(s). Thus there is no loss of gener-
ality in discussing the spectral factorization of polynomial
matrices, since any rational matrix may be factored by
applying the algorithm separately to numerator and de-
nominator,

I1. Factorization of polynomial matrices

Let G(s) = {k—io gi,-ksk} (2.1)

be an » X r polynomial matrix with properties (A1-A4) of
Section I. The problem is to find an r X r polynomial
matrix

H(s) = {é{; hijks"}

with properties (B1-B3).

Since a digital computer is to be used for the calculations,
it is convenient to map the continuous variable s onto the
discrete variable z by the transformation pair

(m = n/2) (2.2)

2= 13 (2.32)
1—=s
z—1

= 1 (2.3b)

solve the resulting discrete factorization problem, then map
the solution back into the continuous plane. The algorithm
for discrete factorization, of course, may be used directly if
the original problem is filtering of discrete-time processes.’

The details of the mapping (2.3) are discussed below. The
discrete factorization algorithm is derived in the next
section. Let m; denote the highest power of s? appearing in
the ith diagonal element of G(s), i.e.,

2m g

GH(S) = Zg‘iiksk y i= 19 23 M A (2'4)
k=0

Then, by reason of the positive semidefiniteness of G(s), the
highest power of s that may occur in the 7, j** off-diagonal
element is m; + m;, that is,

metmy

Gii(s) = E gwks . (2.5)

Substituting (2.3b) into (2.5) and dividing by z™, one gets

z—1 1
G”<z + 1> D

midmj
X { Z gijk(z - l)k(Z + l)mﬁmj_k(z)_mj}

1—__
Qe

1
Cinz — - (2.6
(1+z)’“{k—;‘n@ Y }(1+z ) 2o




Thus, the complete matrix may be written:

G<z — 1> _ U+ _ _|

z+ 1 : J
a4z
a+zH™ "
X C(z) .
L a1+ z—l)—"‘*J 2.7)
where the 7, j* element of C(z)
Cij(z) = k—ZJ .Cijkz_k = Cj,-(z_l (2.8)

since G(s) is para-Hermitian. It can be verified that C(z)
satisfies the conditions:
C: 1) C(2) is real;
2) C(z) is para-Hermitian, i.e., C(z) = CT(1/z2);
3) C(z) is of normal rank r (almost everywhere);
4) C(e'®) is positive semidefinite for all 6,0 < 6 < 2w;
5) The matrix {c;;} is positive definite, since

1 27 i
{cijo} = 2_1r-/;) Cle e)de .

Thus* C(z) has a factorization

Cc(z) = DT(—}>D(2) (2.9)
where
Dij(z) = mzs dijkz_k (2.10)

is of normal rank r and has all its roots inside or on the unit
circle.

Under the inverse transformation (2.3a) the i, j** element
of the product

"(1 +H™
Dyz) T
| (142

becomes

H;j(s) = —,1,,‘ 21 dip(1 — ) (1 + )™, (2.11)
277 k=0

Thus, from (2.7), (2.9), and (2.11),

G(s) = H' (—s)H(s) (2.12)

as desired.

*(One can establish this by adapting Youla’s proof® for the continuous
problem.)

11l. Factorization of discrete para-Hermitian matrices
The aim of this section is to reduce the factorization of the
para-Hermitian polynomial matrix C(z) to the solution of a
set of nonlinear algebraic equations. An iterative method
for the solution of these equations is proposed. In Section
1V it will be shown that this iteration does, in fact, con-
verge to the desired solution.

The following quantities are used throughout this section
and are collected here for ease of reference:

Define:
M= 3 m, (3.1)
=1
T _
Cij = [Cijmjcijmj~1 ceecipl, (3.2)
pi (@)= [z = 1,2, -0 1, (3.3)
pi(z) O e -0 (3.4)
0 p:(z) - - - O
P'(x) =" . T ;
0 0 : * : pr(z)

of dimension M X r,

€1 € *+ * ° Cn (3-5)
Ci2

Q12 =
L C1r Crr

of dimension M X r,

_6110 : . . CITO] (3-6)

C120

Qa2 = | . oL J
L.C170 * ¢ ‘ Crro

of dimension r X r,

o1o9 - - -0 (3.7

0

0 (3.8)

of dimension m; X 1,

Z; 0 - - -0 (3.9)
0 Zs .
A = .
0 . e - Z, 165
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of dimension M X M ,

e 0 - - - 0 (3.10)
0 €2 .

A =1 .
0 . . . . e

of dimension M X r.
1t is easily verified that

C(z) = O + QIT;P(Z) + PT<%>Q12 . (3.11)
Theorem:

Let C(z) = Qu2 + 0LP() + PT(1/2)Q1e (3.11)
have a factorization
C(z) = D" (:/2)D(2) , (2.9)

where D(z) is a polynomial in z—! with its roots inside or on
the unit circle. Then D(z) is expressible as

a)  D(z) = Wi+ WiP(Z) (3.12)

where Wais an r X r positive definite triangular matrix and
W, is an M X r matrix.

b) Wi, W, are obtained from the equations
WaW; = X (3.13)
WiW; = Xu, (3.14)

where X1z, Xs2, X11, Y satisfy

X2 = Q12 + AlTl Y Ars (3.15)
Xoo = Qo2 + A1z Y Ais (3.16)
Y = AnYAu — XuXa Xis . (3.17)

Comment: Equations (3.15)—(3.17) are the crucial set. Once
X112, X202 have been obtained it is relatively easy to compute
W1, W, especially since W is triangular.

Proof:

a) It is easily verified that any polynomial matrix factor
in z7! of normal rank » may be represented in the form

Uz) = Us + UTP(2), (3.18)

where UsT is nonsingular but not necessarily positive definite
or triangular. Let W, be the positive definite triangular
square root of UsUlT, i.e. WoW,T = UsU,T. Then U, =
Wo(W3Us), so that the polynomial U(z) may be written

UGz) = [Wa' U]"{ Wi + wi(U3) ™ Ul P(z)}
= [W' U] { w3 + WiP()}

= (W' 0" D() .
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Now two factorizations are unique only to within an
arbitrary orthogonal matrix, i.e., any two factors Ui(z),
Us(z) are related by Uiy(z) = V' Us(z), where V is an orthogo-
nal matrix. Since [W5'U,] is orthogonal, D(z) is also a
tactorization of C(z2).

b) Equation (2.9) may be expressed in terms of W, and
W as

Cz) = waWi + PT( /) Wiws + WaWwi P(z)

+ P (/) wiwiP(z). (3.19)
Define
Xoo = WoWi . (3.13)
Xi2 = WiW; . (3.14)

Since W)W T = (W W) (WWT)~1 (WaW1T), Eq. (3.19)
may be written
C(z) = Xa + P"(1/2) X1z + Xi2P(2)

+ PT(1/2) X12 Xz X12P(2) .
Let Y satisfy (3.17) and substitute into the last term. One
gets
C(z) = Xoo + P"(1/2) Xy5

+ Xi2P(z) — P"(1/2) YP(2)

+ P'(1/2) A YA P(2) . (3.20)
Now it is easily shown that
P(z) = 7' [AnP() + Ai]. (3.21)

Using this property, the term

P'(1/2) YP(z) = PT(1/2) A1, Y Ay, P(2)
4+ PT(1/2) A}, Y Ay,
+ ALY AL P(2)
+ ALY A, (3.22)
Substituting (3.22) into (3.20) and collecting terms, one sees
that
C(z) = [Xa2 — A2 Y 41)]
+ PT(1/2)[ X1z — AL Y A1)
+ [X12 — A11YA12]TP(Z) . (3.23)
Since (3.11) and (3.23) must be identical for all z,

X2z = Qa2 + Ai2Y A (3.16)
Xiz2 = Qua + ALY Ana (3.15)

This completes the set of equations required.
To solve (3.15)-(3.17), it is natural to investigate the
iteration

Xlz\k + 1}

= Qi + ALY (k) A1s X12(0) = Q12 (3.24)




Xa(k + 1)

= Qg + Al Y(k) Ara X22(0) = Q20 (3.25)
X (k + 1)

= 4+ ALY(k)An Xu(0) =0 (3.26)
Y{k)

= Xu(k) — Xua(k) X2_21(k)X1T2 . (3.27)

This difference equation is the discrete matrix Riccati equa-
tion that would have been obtained had one solved the
transformed discrete filtering problem as a Kalman filtering
problem.!? It is demonstrated in Section IV that the Riccati
equation converges to the desired solution.

IV. Convergence of the algorithm
In the previous section the discrete matrix Riccati equation
was derived as a purely algebraic algorithm for spectral
factorization of discrete para-Hermitian matrices. In this
section it will be shown (under the minor restriction that no
roots lie exactly on the unit circle) that the algorithm con-
verges; moreover, the convergence is monotonic, i.e., the
difference between two successive matrix iterates is positive
semidefinite.

It is advantageous to introduce some new notation at
this point. Define the (M + r) X (M -+ r) matrices

4, A | (4.1)
A=
Lo 0o
X Xz | (4.2)
X =
L X1 Xzz
K Qs | (4.3)
Q=
_QIT; Q22 =
and the r X (M - r) matrices
B"=[0 1] (4.4)
K= (B"xB)y'B"x4 (4.5)
= (Xz Xi2, DA (4.6)

Using these symbols Egs. (3.24) — (3.27) may be com-
pactly written

X(k+1) = Q0+ [4— BKK)]"X(k)[4 — BK(K)]

(4.7)
X(0) = Q.
Let X* denote the steady-state solution matrix of (4.7),
X*=0+4+ (4 — BK*)"Xx*(4 — BK*), (4.8)
which may also be written
kK
0 0

where

Y* = — 3 (4h) wiwl (41) (4.10)
=0
from (3.13)-(3.17).
The chief result necessary to prove monotonic conver-
gence is given in the following theorem paraphrased from
one proven by Nishimura.'s

Theorem (Nishimura):
Let Xi(k), Xo(k) be any two solutions of the difference
equation

Xk + 1)

=0+ [4— BKK)"X(k)[4 — BK(K)] (4.11)
K(k)

= [B"X(k)B]"'B"X(k) A . (4.12)

Define E(k) é X1(k) — Xo(k) and assume E(0) is positive
semidefinite. Then
a) E(k + 1) = [4 — BK:(K)]"

X {E(k) — E(k)B[B" X(k) B] "' B"E(k)}

X [4 — BK,(k)]

b) The expression E(k) — E(k)B(BT Xy(k)B)*BTE(k) is
positive semidefinite.

¢) Hence, E(k) is positive semidefinite for all k.

The following lemma is also necessary.

Lemma: The nonzero eigenvalues of the matrix (4 — BK*)

coincide with the nonzero roots of the polynomial matrix

factor

D(z) = Wi + WTP(z)in (3.12) .

Proof: From (4.5), K* = [L7, 114, 4.14)

where

LY = (wi)(wl). (4.15)
Using (4.14), (4.1) and (4.4), the matrix 4 - BK* be-

comes

An Aie
A— BK* =
—IF4,, —1'4,,

The eigenvalues are obtained from
det[\I — (4 — BK*)]

)\I - Au _A12
= det =0,
LT Ay N + LT 4y

which may be manipulated into
N det NI — Ay] det [((W7)7Y]

X det [W; + Wi (I — AN 7N 4y,] = 0.
(4.16)
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Now the eigenvalues of 4;; are all zero, and the expression
(I— 4NN "4, = PO

arises from (3.21). Thus, the nonzero eigenvalues of 4 —
BK* are obtained from the equation

det [Wi + wiP(\)] = 0. QE.D.

Now, applying Nishimura’s theorem, let X;(k) be the
solution of Eq. (4.7), and Xa(k) = X*, the steady-state
solution (4.8). Then

E(0) = X:1(0) — X:(0)

ofore(

is positive semidefinite from (4.10). Hence, E(k) is positive
semidefinite for all k. Since the bracket expression in (4.13)
is positive semidefinite,

It

E(k +1) < (4 — BK*)TE(k)(4 — BK*). (4.17)
Thus

E(k) < [(4 — BK**]TE(0)[(4 — BK*)"]
for all k . (4.18)

Now, under the slight restriction that the roots of D(z)
and thus also the eigenvalues of (4 — BK¥) are strictly
within the unit circle, inequality (4.18) implies that E(k)
approaches 0 as k increases.

When one or more of the roots of D(z) is on the unit
circle, (4.18) gives no information. This circumstance oc-
curs when the original polynomial matrix G(s) is not strictly
positive definite for all finite w. Although convergence has
not been proven for this case, in test cases the error de-
creases as 1/k. In many instances the troublesome roots
may be isolated (and convergence accelerated) by a pre-
liminary factorization. See, e.g., sample problem 2).

To establish monotonicity, let

Xuk) = X(k)
Xok) = Xtk +1).

Then

i

E(0) = x(0) — x(1)

Q—[Q—I—AT(Y(O) 0) A}
0 0

_ AT[Q12Q2_21Q172' O}A
0 0

is positive semidefinite. Thus X(k) — X(k - 1) is positive
semidefinite by Nishimura’s Theorem.
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SPECTRAL FACTORIZATION PROGRAM

INPUT- MATRIX Gt5S)

11 0+1250000E 03 -0.0000000E-38 =-0,1000000€ 01 -0.0000000E-38 ~0.0000000E-38
12 0.1000000E 03 -0.0000000€-38 =-0.,0000000E-38 -0,0000000€-28 -~0+000000CE-38
22 0.1250000E 03 -0.0000000E-38 -0,2600000E 02 -0.0000000E-38 041000000E 01

TRANSFORMED MATRIX C(2Z)

11 0,2520000E 03 0.1240000E 03 0.0000000E-38
12 0.3000000€ 03 0,3000000€ 03 0.1000000€ 03
21 0.3000000E 03 0.1000000E 03 0,0000000E-38
22 0.8080000E 03 04456000QE 03 04]000000E 03

1TERATION CORVERGED TO WITHIN 04100E-04 IN 45 STEPS, SOLUTION IS

11 0.1463389E 03 041240000€ ©3 0.,000Q000€-38
12 0.1182662E 03 0,1000000E 03 0,0000000E-38
21 041182662E 03 0,2162904E 03 0+1000000€ 03
22 0.2912749€ 03 043336053€ 03 0+1000000E 03

THE MATRIX FACTOR D(2Z) 1§

11 0.1001595E 02 0.8326423E 01 -0,0000000£~38
12 0.0000000E-38 0.8070806E 01 0.,5930245E 01
21 0.6929618E 01 0.5859337€ 01 0.0000000E~38
22 041706678E 02 0.1954706E 02 0.5859337€ 01

50LUTION OF FACTORIZATION PROBLEM
G(S) = HT{=S)%H{S)s HIS) IS

11 0,9171186E 01 0.8547636E 00 0,0000000E-38
12 0.3500263€ 01 ~0.29651226€ 0! =-0.5351402E 00
21 046394477€ 01 0,5351404E 00 0.0000000€-38
22 0.1061829E 02 0,5603720€ 01 0.8447634E 00

PRODUCY HT(~S)#H{S) 1S
11 0,1250000E 03 0,0000000€-38 =-0,31000001E 01 =-0,0000000g~38 0,0000000E-38

12 0.1000000E 03 0.0000000E-38 0,1788139E~06 -0.1862645E-07 0.000C000E~38
2 2 0.1250000E 03 0.0000000E-38 -0,26000008 02 -0,0000000€-38 0+1000000E N

Figure 1 Computer output for sample problem 1.

V. Sample problems

To implement the factorization described in Sections I[ and
III, a ForRTRAN program package has been written. It is
designed to factor polynomial matrices of dimension 6 X 6
or less, with order not exceeding 20 for each polynomial ele-
ment, The total package requires approximately 10,000
words of storage on the IBM 7094. A complete source list-
ing may be obtained by contacting the author.

The use of this program is illustrated in the following
sample problems. The lines under the heading mNpUT
MATRIX G(S) contain the polynomial coefficients of the
upper right-half of the matrix to be factored, arranged in
ascending powers of s. The next entries, headed TRANs-
FORMED MATRIX C(Z), contain the coefficients of C(z), be-
ginning with z° and arranged in ascending powers of (z71).
Coefficients of powers of z are redundant and not listed.
The next line gives convergence information: whether the
error criterion was met, and how many iterations were per-
formed. Immediately following, solution information is
written. Next, the discrete factor D(z) is printed, labled THE
MATRIX FACTOR IXZ) 1s. Again, the coefficients are ar-
ranged in ascending powers of (z71). The left-hand plane
factor of G(s) is written as SOLUTION OF FACTORIZATION
PROBLEM . . . H(S) 1s. The coefficients are in ascending
powers of s. Finally, the accuracy is checked by multiplying
the factors together. The product is printed out for com-
parison with G(s).

1) Consider the factorization of the polynomial matrix?

2
G(s) = [125 P 100 :l
100 125 — 26s* + '




The computer output is shown in Fig. 1.
The desired factor becomes

9.171186 3.500263 — 2.965122s
+ .8447636s —.53514025°

H(s) = .
6.394477 10.61829 4 5.603720s
+ .5351404s +.8447634s

2) Let?

2
—s — 0

G(s) =|s 2 -5 —s/2 1.

2

0 s/2 —s

This matrix is positive semidefinite only at the origin;
hence, applied to this form the algorithm would converge
very slowly. However, the roots at the origin can obviously
be factored out by writing

0
0 0 —s 0 —-.5 1

G(s) =11
0 —.5 1
The computer output is shown in Fig. 2. The factoriza-
tion of G(s) is then
.8814124  .4723475 — .4723475s 0
H(s) = .4723475 1.235673 - .8814124s 0
0 —.5 1.0

.8814124s  .4723474 — .4723474s O
.4723475s 1.235673 + .8814124s 0O

0 —.5 s.

Il

SPECTRAL FACTORIZATION PROGRAM

INPUT MATRIX G(S)

1 0.1000000E 01 0.0000000E-38 ~0.,0000000E~38
2 0.1000000€ 01 0,0000000E-38 ~0.0000000E~38
3 0.C000000E-38 0.0000000£~38 -0,0000000E~38
2 0,2000000€ 01 =~0.,0000000E-38 -0,1000000E 01}
3 -0.5000000€ 00 -0.0000000€-38 -0.0000000E-38
3 0.1000000€ 01 0,0000000£-38 -0.,0000000E-38

[FENE VRO

TRANSFORMED MATRIX C(2)

11 0.10060000E 01  U,0000000E~38
12 0.1000000E 01  U.1000000E 01
13  0,0000000E-38  0,0000000E-38
21 0.1000000E 01  ©0,0000000€-38
2 2 0.6000000E 01  0,1000000€ 01
2 3 -0.5000000E 00  0.,0000000E-38
3 1 0.0000000E-38  0,0000000E-38
3 2 -0,5000000€ 0C -0.5000000E .0C
33 041000000E 01 0.0000000E~38
ITERATION CONVERGED TO WITHIN 0.100E-05 IN 4 STEPSe SOLUTION IS
11 0.1000000E 01 040000000E~38
12 0.1000000E 01  0,0000000£-38
13 0.,0000000E-38  0,0000000€-38
21 041000000 Ol  0.1000000€ 01
2 2  0.4732051E O1  0.1000000E 01
2 3 -045000000E 00 =0.5000000€ 00
3 1  0,0000000€-38  0,0000C00E-38
3 2 -0.5000000E 00  0,0000000£-38
3 3 0.1000000€ 03  0,0000000E-38

THE MATRIX FACTOR D{2} IS

11 0.8B14124E 00 —0.0000000E~38
12 0,0000000E-38 0.9446950E 00
13 000000E-38 ~0,0000000€-38
21 +4723475E 00 0,0000000€-38
22 0.2117085E 01 0.3542606E 00
23 0.0000000£-28 0,0000000£-38
31 0+000C000E-38 0,0000000E-38
3 2 -0.5000000E 00 =~0.5000000E CO
313 0,1000000E O 0+0000000E-38
SOLUTION OF FACTORIZATION PROBLEM
G15) = HT{~5}#H(S)s H(S) IS

+8814124E 00 0.,0000000E~38
«4723475E 00 =0,4723675E 00
0.000000C0E-38
0.000000CE-38
0.88l4124E 00
0.0000000£-38
0,0000000E-38
~045000000E 00 0.0000000E-38
3 0.1000000E 01 0,0000000E~38

0
Q

1
2
3
1
2
3
1
2

W W RN R

PRODUCT HT{-S1#H(S) IS

1 0,1000000E 01 =0.0000CJ0E-38 -0.0000000E-38
2 0,1000000E 01 -0.000000CE-38 -0,0000000£-38
3 0.,0000000€-38 =-0.0000000E-38 -0.0000000€-38
2 0.2000000€ 01 =-0.0000000E-38 -0.1000000E 01
3 ~-0.,5000000E 00 ~0.0000000g-38 -0.0000000E-38
3 0.1000000€ 01 -0.0000000£-38 -0.0000000E-38

W N e

Figure 2 Computer output for sample problem 2.

Figure 3 Computer output for sample problem 3.

SPECTRAL FACTORIZATION PROGRAM

INPUT MATRIX GI{S)

11 043000000€ 01 -0.0000000E-38 -0.,1000000€ 01 =-0.0000000£-38 ~0.,0000000E-38
-0.0000000E~38 -~0.0000000£-38 ~0,0000C00€-38 ~-0,0000000E~-38

1 2 ~0,0000000£-38 ~0.0000000E-38 =0.0000000€~38 -0.,0000000E-38 0+1000000E 01
-0+0000000E-38 -0.0000000£-38 -0,0000000E~38 -0,0000000E-38

22 0,2000C00E 01 -~0.0000000E-38 ~0.000000CE-38 -0.0000000E~38 =-0.0000000E-38
~0,0000000E-38 =-0.0000000E~28 ~0,0000000E~38 0.,1000000€ 01

TRANSFORMED MATRIX C(2}

11 0.8000000€ 01 042000000E 01 0.0000000E-38 0.0000000E-38 0.0000000E-38
1 2 -0.300000CE 01 0.2000000E 01 0.2000000E 01 ~C,3000000€ 01 041000000E 01
2 1 -0,3000000€ 01 041000000€ 01 0,00C0000£-38 0.0000000E~38 0.0000000E-38
22 042100000E 03 045600000€ 02 048400000E 02 0.8000000€ 01 0+3000000E ol
TTERATION CONVERGED TO WITHIN 0.100E-07 IN 25 STEPS. SOLUTION IS

11 0.7437588E 01 0,2000000E 01 0,0000000E-38 0.0000000E-38 0.0000000€-38
1 2 -0.3505871E 01 0,1000000E 01 0.C000000E-38 0.,0000000E~38 0+0000000E-38
2 1 -0.3505871E 01 042047091E 00 002819858E 01 =0,3312866E 01 0+1000000E 01
22 041550601E 03 043550250E 02 0.8055831E 02 0.7166927E 01 043000000E 01

THE MATRIX FACTOR O(Z} IS

1 0+2712623E 01 0.7456289E 00 0.0000000E~38 0.0000000E~38 0+0000000E-38
2 0.0000000E-38 0.3713794€ 00 041710987E 01 ~0.1161541E 01 0.3936520E 00
1 =~0.2815437€ 0C 0.8030637E-01 0.0000C00E-38 0.,0000000€-38 040000000E~38
2 041245231E 02 0.2851077€ 01 046469345E Ol 0.5755498E 00 042409191E Q0

NN

SOLUTION OF FACTORIZATION PROBLEM
GUS) = HT(-S)*H(S5). H(5) IS

1 0+1729126E 01 0.9834969E 00 0,0000000E-38 0.0000000E=-38 0+0000000E-38
2 0.8215682E-01 0.9320208E~01 =0.6625388E-01 =~0,2900281E 00 0+1809251E 00
1 =0.1006187€ 00 -0.1809251E QO 0+0000000E-38 0.0000000E-38 0+0000000E-38
2 001411825€ 01 0.3337289E 01 0e3951294E 01 0.2768407€ 01 Ce9834969E 00

NS

PRODUCT HT(-S)*#H(S) IS

11 0.3000000€ 02 0,0000000E-38 -0.1000000€ 01 ~-0.0000000E-38 -0.0000000£-38
040000000E-38 0.000C00CE-38 -0.,0000000E~38 040000000€-38

1 2 =-0.0000000£-38 =-0,3725290E~08 0.7450581€-08 =-0.3725290E-08 0.1000000E 01
0400000C0E=-38 0.00000C0E-38 —0.,0000000E-38 0.0000000E-38

22 0.2000000E C1 Co0000000E-38 =-0+2980232E-06 -045960454E-07 =041639128E-06
=-040000000E-38 -0,2682209E-06 =~0,0000000E-38 0.9999999E 00
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The answer obtained from Youla’s exact solution by or-
thogonal transformation is

.8814124165s  .472347490 (1 — 5) 01
H(s) — | 4723474905 1.2356730345 0
5= 1+ .88141241655
0 —.5 s

Thus, the greatest error in the factor is less than 107",

3) Suppose

3— 5 st
G(s) =

st 2-I—s8

The computer output is shown in Fig. 3, and

[1.729126 .08215482 + .09320208s ]|
+.98349695 —.06625388s"
— .29002815"
+ .1809251s"

H(s) = —.1006187 1.411825 + 3.337289s

—.1809251s + 3.9512945
+ 2.768407s°

B + .98349695" |

The total execution time for these three examples was 1.8
seconds on the IBM 7094.

VL. Conclusion

An iterative algorithm for the spectral factorization of poly-
nomial matrices has been derived and its convergence in
regular cases established. The iteration is applied to a
discrete-time polynomial obtained from the original con-
tinuous problem by a bilinear transformation. The result is
then mapped back into the continuous domain.

The matrix recursive equation was obtained from a
purely algebraic condition between a matrix polynomial
and its factors. However, the equation turns out to be a
special case of the Riccati difference equation employed in
Kalman filtering.?-'* Thus, known results on the Riccati
equation were used to establish convergence of the algo-
rithm,

The method seems to be superior to other techniques for
factorization, both for the matrix and scalar case. One
reason for this is that the roots of the polynomial, which

W. G. TUEL, JR.

are redundant information for the solution of the Wiener-
Hopf equation, are never calculated. The factors are ob-
tained directly. Thus, the algorithm produces only what is
needed to solve the problem.
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