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Computer  Algorithm  for  Spectral  Factorization 
of Rational  Matrices 

Abstract: An algorithm is  derived  for the  numerical  spectral  factorization of  matrices  arising  in optimal filter  design. The  method 
uses a bilinear  transformation to convert  the  factorization  problem into a stable  nonlinear  difference  equation of the Riccati  type. 
The  computer  solution of several  examples is presented to illustrate  the  technique. 

1. Introduction 
In  the determination of optimal filters for  stationary ran- 
dom processes, the filter transfer function is  given as the 
solution of a Wiener-Hopf integral eq~ation."~  It has  long 
been recognized that Wiener's method of spectral  factori- 
zation is the most elegant means of solution of this equa- 
tion. Recently, several authors have considered the 
solution of multivariable filtering problems by this tech- 
n i q ~ e . ~ - " ~ ' ~ ~ ' ~  The chief computational stumbling block 
is the spectral  factorization of a rational matrix. 

Youla5 suggested a method based on his constructive 
proof that  the desired factorization does exist. One  trans- 
forms the given matrix into its  Smith canonical (diagonal) 
form by multiplying by elementary matrices, factors the 
diagonal polynomial elements, and then uses an ingenious 
but  intricate sequence of matrix  manipulations to  obtain 
the final result. Davis8 simplified the problem somewhat by 
showing that  the matrix to be factored could be reduced in 
steps to a constant  matrix by appropriately chosen transfor- 
mations. The product of these transformations is the de- 
sired factor.  As  in Youla's algorithm, however, one must 
factor a scalar polynomial and perform several matrix 
transformations. 

Recently, Riddle and Anderson" have suggested that  the 
difficult step is factoring the scalar polynomials and have 
pointed out  that, since the roots themselves are not needed, 
methods  for  obtaining  the  factors directly can be employed. 
They describe a technique in which one  obtains the coef- 
ficients of the desired factor  from a set of nonlinear alge- 
braic equations,  the iterative solution of which is said to be 
convergent. 

However, although  many techniques exist, all are similar 
in that  the matrix to be factored must be manipulated  in 

such a way that scalar polynomials may be extracted and 
factored. The decision problems inherent  in such manipula- 
tions (e.g., determination of linear dependence) make  such 
algorithms difficult to program for a digital computer. 

This  paper describes a straightforward  algorithm for 
spectral  factorization of matrices which avoids the diffi- 
culties described above. The matrix to be factored is con- 
verted directly into a nonlinear difference equation of the 
Riccati type, which converges to a stationary  solution. The 
desired factor is obtained easily from  the solution. In  the 
scalar case, the algorithm closely resembles the one pro- 
posed by Riddle and Anderson. 

Problem statement and formal solution 
The optimal (minimum mean square error) filter transfer 

function +(t) is the solution of the matrix Wiener-Hopf 
integral equation 

r(t - 7)+(T)d7 = + ( t >  , t > O ,  ( 1 . 1 )  

where r ( t )  is an r X r covariance matrix, +(f) a known col- 
umn vector, and+(t)  the desired solution. It will be assumed 
throughout that  the spectral density C(s), 

G(s) = jm r ( t ) e - s t d t ,  (1.2) 

is an r x r rational matrix with the following properties: 
A: 1) C(s) is real, i.e., G(s) = G(3); 

-m 

2) C(s) is para-Hermitian, i.e., CT( -s) = C(s); 
3) C(s) is of normal rank r (almost everywhere); 
4) G(&) is positive semidefinite for every finite w. 163 
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Then there exists an r X r matrix H(s) such that: 
B: 1) G(s) = HT(--s)H(s); (1.3) 

2) H(s) is real, i.e., ~ ( s )  = H(s); 
3) H(s) and lT"(s) are both rational and analytic in the 

right-half  plane,  i.e., all their poles and zeroes  lie in 
the left-hand plane. 

Once H(s) has been found, the solution transfer function 
is 

@(s) = [+(t)e-stdt 

= H - ' ( s ) {  [NT(")]-'\li(s)}+ (1.4) 

where *(s) = [4(t)e-"'dt 

and { I +  denotes that part of the partial fraction expan- 
sion of [HT( -s)]-'*(s) due to the poles of \k(s). 

H-'(s) may  be evaluated by (for example) Gauss reduc- 
tion, while the { } + term may be computed in the follow- 
ing way. Let 

zl(s), @(s) are matrix polynomials and u(s), 0 ( s )  are scalar 
polynomials. Then 

where A+(s)0( - s) f A-(s)u(s) = @( - s)Z(s) . 
Since A*(s), Z(s) are polynomial vectors, each element of 
A+(s) can be obtained by solving a (relatively  small)  set of 
simultaneous linear equations for the coefficients  of the 
polynomials. Note also that it is  never  necessary to compute 
the roots of a polynomial to obtain the optimum transfer 
function. 

Spectral  factorization 
The principal problem, then, is the factorization expressed 
by  (1.3). It is to this problem that the rest of the paper is de- 
voted. The rational matrix C(s) may  always  be  written 

where G(s), g(s) are respectively matrix and scalar poly- 
nomials. If both are factored into products of polynomials, 
1.e., 

and g ( s )  = h ( - s ) h ( s )  , 
where A(s), h(s) are polynomials  with their roots in the left- 
hand plane, then 

G ( s )  = A'(-s)a(s) (1.7) 

164 H ( s )  = B ( s ) / h ( s )  (1.8) 

is the desired factor of G(s). Thus there is no loss of gener- 
ality  in  discussing the spectral factorization of  polynomial 
matrices,  since any rational matrix may  be factored by 
applying  the algorithm separately to numerator and de- 
nominator. 

I I .  Factorization of polynomial  matrices 

be an r X r polynomial  matrix  with  properties  (Al-A4) of 
Section I. The problem  is to find an r X r polynomial 
matrix 

(m = n / 2 )  (2.2) 

with properties (Bl-B3). 
Since a digital computer is to be used  for the calculations, 

it is convenient to map the continuous variable s onto the 
discrete  variable z by the transformation pair 

s=- z -  1 
z +  1 '  

(2.3a) 

(2.3b) 

solve the resulting  discrete factorization problem, then map 
the solution back into the continuous plane. The algorithm 
for discrete factorization, of course,  may be  used  directly  if 
the original problem is filtering of discrete-time proces~es.~ 

The details of the mapping (2.3) are discussed  below. The 
discrete factorization algorithm is derived in the next 
section. Let mi denote the highest  power of s2 appearing in 
the ith diagonal element of G(s), i.e., 

2m i 

G i i ( s )  = giiksk 3 i = 1, 2, ..., r .  (2.4) 
k=O 

Then, by reason of the positive  semidefiniteness of G(s), the 
highest  power of s that may occur in the i, jth off-diagonal 
element  is mi + mj, that is, 

k=O 

Substituting (2.3b) into (2.5) and dividing by zmi,  one gets 

1 c&+) = ( I f m i  

1 x "- 
(1 + z-l)"j 
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Thus, the complete matrix may be written: 

r 

L ( 1  + z-1)-m7 

1 
.] (2.7) 

since C(s) is para-Hermitian. It can be verified that C(z) 
satisfies the conditions: 
C: 1) C(z) is real; 

2)  C(z)  is para-Hermitian, i.e.,  C(z) = CT(l/z); 
3)  C(z)  is  of normal rank r (almost everywhere); 
4) C(eie) is positive semidefinite for all 8 , 0  5 0 < 27r; 
5) The matrix (cijo) is positive definite, since 

Thus* C(z) has a factorization 

where 

m; 

,2.9) 

is of normal rank r and has  all its roots inside or on  the unit 
circle. 

Under  the inverse transformation (2.3a) the i, jth element 
of the product 

becomes 

G ( s )  = H T ( - s ) H ( s )  (2.12) 

as desired. 

problem.) 
*(One can establish  this by adaptit~g Youla's proof'  for  the  continuous 

111. Factorization of discrete para-Hermitian matrices 
The aim of this section is to reduce the  factorization of the 
para-Hermitian polynomial matrix C(z) to  the solution of a 
set of nonlinear algebraic equations. An iterative method 
for the solution of these equations is proposed. In Section 
IV it will be shown that this iteration does, in fact, con- 
verge to  the desired solution. 

The following quantities are used throughout  this section 
and are collected here for ease of reference: 

Define : 

T 

M =  Ern; 
i= 1 

Q1z 

of dimension M X r,  

r 
1' 

CllO * 

$120 

Qzz . . .  
C1ro . ' CrrO 

of dimension r X Y, 

(3.7) 

of dimension m, X m i ,  

of dimension mi X 1, 

z 1 0  e . .  

A l l = [ :  : : 0 z r  ] 
(3.9) 

165 
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of dimension M X M , 

A l z - [ I  ' : o] 
of dimension M X r . 
It  is easily verified that 

C ( z )  = Qzz  + Q Z P ( z )  + P.(l)Qlz Z . (3.11) 

Theorem: 

Let C(z )  = Q22 + Q E P ( z )  + PT(1/z)Q12  (3.11) 

have a factorization 

e l 0  e - .  (3.10) 

. . .  . e ,  

C ( z )  = DT(, /Z)D(Z)  , (2.9) 

where D(z) is a polynomial in z-l with its roots inside or  on 
the unit circle. Then D(z) is expressible as 

a )  ~ ( z )  = wZ' + w, 'P(~)  (3.12) 

where W Z  is an r X r positive definite triangular matrix  and 
W1 is an M X r matrix. 

b) W I ,   W Z  are  obtained  from  the  equations 

wz w,' = X22 (3.13) 

W l  wz' = X12 , (3.14) 

where XIZ, XZZ, X11, Y satisfy 

XIZ = Q l z  + AlTlYA1z (3.15) 

Xzz = Q z z  + AT2 YAlz   (3 .16)  

Y = A: Y A l l -  XlZXz"XT,.  (3.17) 

Comment: Equations (3.15)-(3.17) are  the crucial set. Once 
XLz, X22 have been obtained it is relatively easy to compute 
W 1 ,   W z ,  especially since W Z  is triangular. 

Proof: 

a)  It is easily verified that any polynomial matrix  factor 
in z-l of normal rank r may be represented in the  form 

u ( z )  = uz' + U,'P(z) , (3.18) 

where UzT is nonsingular but not necessarily positive definite 
or triangular. Let W Z  be the positive definite triangular 
square root of U2UzT, i.e. W2WzT = U2UzT. Then U2 = 
WZ( WT1U2), so that the polynomial U(z) may be written 

U ( z )  = [w;'u2]'( wz' + w,'(u,T)-'uTP(z)) 

= [ K ' U 2 1 T {  wz'+ w:P(z>)  

166 = [ w z ' u 2 ] T D ( z )  . 
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Now two factorizations are unique only to within an 
arbitrary  orthogonal matrix, i.e., any two  factors Ul(z), 
UZ(Z) are related by Ul(z) = VUz(z), where Vis  an orthogo- 
nal matrix. Since [WT'UZ] is orthogonal, D(z) is also a 
factorization of C(z). 

b) Equation (2.9) may be expressed in  terms of W1 and 
W Z  as 

c ( z )  = wz w,' + P T ( l / z )  w1 w,' + wz W?P(Z) 

+ P T ( l / z )  Wl W T P ( Z )  . (3.19) 

x22 = wz wz'. (3.13) 

X12 = Wl wz'. (3.14) 

Define 

Since W1WlT = (W1WzT)  (WzWZT)-'  (WzWIT), Eq. (3.19) 
may be written 

c ( z )  = xzz + P T ( l / z ) X 1 z  + XT2P(Z) 

+ PT(l / z )X1zxGlXT2P(z)  . 
Let Y satisfy (3.17) and substitute into the  last  term.  One 
gets 

c ( z )  = X22 + P T ( l / z )  X12 

+ X:zP(z) - P T ( l / z )   Y P ( z )  

+ P T ( l / z ) A 1 l   Y A l l P ( Z )  . (3.20) 

P ( z )  = Z"[AllP(Z) + A121 . (3.21) 

P T ( l / z )   Y P ( z )  = P T ( l / z )  A; Y A I l P ( Z )  

Now it is easily shown that 

Using this  property,  the  term 

+ P T ( l / z )  A; YAlZ 

+ AT2YAl2. (3.22) 

+ AT2 YAT1 P ( z )  

Substituting (3.22) into (3.20) and collecting terms,  one sees 
that 

c ( z )  = [X22 - AT2YAlLl 

+ P T ( l / Z ) [ X 1 2  - ATlYAlZI 

+ [X12 - A11YAIZITP(Z) . (3.23) 

Since (3.11) and (3.23) must be identical for all z, 

Xzz = Q z 2  + AT2 Y A l z  (3.16) 

X12 = e12 + A:YA12  (3.15) 

This completes the set of equations required. 

iteration 

XlZ\k + 1 )  

To solve (3.15)-(3.17), it is natural to investigate the 

= Q l z  + A ;  Y(k)Alz  X l z ( 0 )  = Q l z  (3.24) 



Xzz(k + 1)  
= Q22 + AT2 Y ( k )  Alz  Xzz(0) = Qzz (3.25) 

X l l ( k  + 1) 
= + ALY(k)Al1   X11(0 )  = 0 (3.26) 

Y ( k )  
= X l l ( k )  - xlZ(k)z;( l (k)XlTZ.  (3.27) 

This difference equation is the discrete matrix Riccati equa- 
tion that would have been obtained had one solved the 
transformed discrete filtering problem as a Kalman filtering 
problem.12 It is demonstrated in Section IV that the Riccati 
equation converges to the desired solution. 

IV. Convergence of the  algorithm 
In the previous section the discrete matrix Riccati equation 
was derived as a purely algebraic algorithm for spectral 
factorization of discrete para-Hermitian matrices. In this 
section it will  be shown (under  the minor restriction that  no 
roots lie exactly on the unit circle) that the algorithm con- 
verges; moreover, the convergence is monotonic, i.e., the 
difference between two successive matrix iterates is positive 
semidefinite. 

It is advantageous to introduce some new notation  at 
this point. Define the ( M  f r) X ( M  + r )  matrices 

A r2] (4.1) 

x1 1 x1 2 

x= [ 
Q = [  QT, 

XT, x22 

0 Q12 

Qzz 

and the r X ( M  f r)  matrices 

BT = [0 11 (4.4) 

K = ( B ~ x B ) - ~  B ~ X A  (4.5) 

= ( Z . X T , ,  Z ) A .  (4.6) 

Using these symbols Eqs. (3.24) - (3.27) may be com- 
pactly written 

X ( k  + 1) = Q + [ A  - B K ( k ) I T X ( k ) [ A  - B K ( k ) ]  
(4.7) 

X ( 0 )  = Q .  

Let X* denote  the steady-state solution matrix of (4.7), 

X* = Q + ( A  - B K * ) T X * ( A  - BK*)  , (4.8) 

which may also be written 

Lo 0 1  

(4.9) 

where 

y *  z - (4.10) 
j=O 

from (3.13)-(3.17). 
The chief result necessary to prove monotonic conver- 

gence  is  given in  the following theorem paraphrased  from 
one proven by Nishimura.13 

Theorem (Nishimura): 
Let XI@), X,&) be any two solutions of the difference 
equation 

X ( k  4- 1) 

K ( k )  
= Q + [ A  - B K ( k ) I T X ( k ) [ A  - B K ( k ) ]  (4.11) 

= [ B T X ( k ) B ] - l B T X ( k ) A .  (4.12) 

Define E(k) XI&) - X&) and assume E(0) is positive 
semidefinite. Then 

a )  ~ ( k  + I )  = [ A  - ~ ~ 2 ( k ) ] ~  

X { E(k)  - E ( k )  B I B T X 1 ( k ) B ] " B T E ( k ) )  

x [ A  - BK2(k)l  

b) The expression E@) - E(k)B(BTX1(k)B)"BTE(k) is 

c) Hence, E(k) is positive semidefinite for all k.  
The following lemma is also necessary. 

positive semidefinite. 

Lemma: The nonzero eigenvalues of the matrix ( A  - BK*) 
coincide with the nonzero roots of the polynomial matrix 
factor 

D ( z )  = W,' + WTP(z)  in  (3.12). 

Proof: From (4.5), K* = [LT, Z]A, (4.14) 
where 

LT = ( WZ')"( Wl') . (4.15) 

Using (4.14),  (4.1) and (4.4), the matrix A - BK* be- 
comes 

A -  B K * =  FA" - L ~ A , ,   - L ~ A , ,  A 1 2  1. 
The eigenvalues are obtained from 

det [X Z - ( A  - B K * ) ]  

[ 
X I -  A11 - A n  

= det I= 0 ,  
L ~ A ~ ~  x z  + L ~ A ~ ~  

which may be manipulated into 

X' det [X Z - A111 det [ ( Wz')-l]  

X det [ W,' + W r (  Z - A I I X - ~ ) - ' X " A ~ ~ ]  = 0 .  
(4.16) 167 
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Now the eigenvalues of A11 are all zero, and the expression 

( I  - AllX-1)-1X-’A12 = P(X) 

arises from (3.21). Thus, the nonzero eigenvalues of A - 
BK* are obtained from the equation 

det [ W,’ + W:’P(h)]  = 0 .  Q.E.D. 

Now, applying Nishimura’s theorem, let Xl(k) be the 
solution of Eq. (4.7), and X&) = X*, the steady-state 
solution (4.8). Then 

E(0)  = XI(0) - Xz(0) 

is positive semidefinite from (4.10). Hence, E(k) is positive 
semidefinite for  all k .  Since the bracket expression in (4.13) 
is positive semidefinite, 

E(k + 1)  5 ( A  - B K * ) T E ( k ) ( A  - B K * ) .  (4.17) 

Thus 

E(k)  5 [ ( A  - B K * ) ” l E ( 0 ) [ ( A  - B K * p ]  
for  all k . (4.18) 

Now, under the slight restriction that  the  roots of D(z) 
and  thus also the eigenvalues of ( A  - BK*) are strictly 
within the unit circle, inequality (4.18) implies that E(k) 
approaches 0 as k increases. 

When one  or  more of the  roots of D(z) is on the unit 
circle, (4.18) gives no information.  This circumstance oc- 
curs when the original polynomial matrix G(s) is not strictly 
positive definite for all finite w .  Although convergence has 
not been proven for this case, in  test cases the  error de- 
creases as l / k .  In many instances the troublesome roots 
may be isolated (and convergence accelerated) by a pre- 
liminary factorization. See, e.g., sample  problem 2). 

To establish monotonicity, let 

Then 

1 
is positive semidefinite. Thus X(k) - X(k + 1) is positive 

168 semidefinite by Nishimura’s Theorem. 
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The computer output is shown in Fig. 1. 
The desired factor becomes 

9.171186  3.500263 - 2.9651222 
+ .8447636s  -.5351402s2 

H(s) = 

6.394477  10.61829 + 5.603720s 
+ ,5351404s  f.8447634~' 

2) Let5 

2 
- S  "s 

G(s) = [ s 2 -  s2 O l  -s~21. 

0 s/ 2 "s 

This matrix is positive semidefinite only at  the origin; 
hence, applied to this form the algorithm would converge 
very  slowly. However, the roots at  the origin can obviously 
be factored out by writing 

G(s) = 

0 "s 

Then it is only necessary to factor the matrix 

rl 1 0 1  

G(s) = 1 io 2 - s2 

- .5 

-SI 
1 

1 1  

1 3  
1 2  

2 2  
2 3  . 
3 3  

0.10000OOE 0 1  
0.1000000E 0 1  
O.COOOO0OE-38 
0 .2000000E  01  

-0.5000UOOE 00  
0.1000000E 01 

0.0000U00E-38 
0.0000000E-38 

-0.0000000E-38 
0.0000000E-38 

-0.000000dE-38 
0.0000000E-38 

-0.0000000E-38 

-0.0000000E-38 
-0.0030000E-38 

-0.100000UE 0 1  
-0.0000000E-38 
-0.0000000E-38 

1PbNSFORE.iED M A l i l l X  C I Z I  

1 1  
1 2  

2 1  
1 3  

2 2  
2 3  
3 1  

3 3  
3 2  

O.lOOOOO0E 0 1  
0.1000060E 0 1  
U.UOUO000E-38 
0.lOOO000E 0 1  

-O.50000OOE 0 0  
0.60000OOE 0 1  

-0.5000000E  00 
0.0000000E-38 

0.lOOOOOOE 01 

U . 0 0 0 0 0 0 O t - 3 8  
O.lOOOOOUE 01 
0.0000000E-38 
0.00000OOE-38 
0.IOOOOOOE 0 1  
0.0000000E-38 

-0.5000000E 00 
0.0000OOOE-38 

0.0000000E-38 

ITERATION CONVERGED TO W I T H I N  0.100E-05 I N  4 STEPS. SOLUTION I S  

1 1  
1 2  
1 3  
2 1  
2 2  
2 3  
3 1  
3 2  
3 3  

0.1000000E 0 1  
0.1000000E 0 1  
0.0000000E-38 
0.lOOOOOOE 0 1  

-0.50000OOE 00 
0.9132051E 0 1  

-0+5000000E  00  
0.0000000E-38 

O.lO00000E 01 

0.0000000E-38 
0.00000OOE-38 
0.0000000E-38 
U.lOOOOO0E 0 1  

-0.5000000E 00 
0.100O000E  01 

0.000000OE-38 
0.0000000E-38 
0.0000UOOE-38 

THE MATRIX FACTOR D I Z I  I S  

1 1  
1 2  

2 1  
1 3  

2 2  
2 3  
3 1  
3 2  
3 3  

0.8814124E  00 
0.0000000E-38 
0.0000000E-38 
0.4123475E 00 
0.2111085E 0 1  
0.0000000E-38 
0.0000000E-38 

-0.5000000E 00 
0.1000000E 0 1  

-0.0000000E-38 
0.9C4b950E 0 0  

-0.0o00000E-38 
0.0000000E-38 
0.3542bObE 0 0  
0.0000000E-38 
0.0000000E-38 

-0.5000000E 00 
0.0000000E-38 

SOLIITION OF FACTORIZATION  PROlLEM 
G I s 1  = H T l - 5 1 * H I S l .  H I S 1  I S  

1 1  
1 2  
1 3  
2 1  
2 2  
2 3  
3 1  
3 2  
3 3  

0.88LI124E 00 
0.4123L15E 00  
0.0000000E-38 
0.L123415E 00 
0.1235613E  01  
0.0000OOOE-38 

-0.5000000E 00 
0.0000000E-38 

0.1000000E 0 1  

-3.4723'115E  00 
0.0000000E-38 

0.300000OE-38 
0.00UOOOCE-38 
0 . 8 8 1 r l 2 4 E  00 
0.0000000E-38 
0.0000000E-38 
0.00000OOE-38 
O.0000000E-38 

PRODUCT H T I - S 1 * H 1 S l  I S  

1 I 0.1000000E 0 1  -0.0000030E-38 -0.000000UE-38 
1 2 0.1000000E 0 1  -0.OO00000E-38 -0.00000OOE-38 
1 3 0.0000000E-38 -0.0000000E-38 -0.0000000E-38 
2 2 0.2000000E 0 1  -0.0000000E-38 -0.100000OE 0 1  
2 3 -O.5000000E 0 0  -0.0000000E-38 -0.0000000E-38 
3 3 O.lOOO0OOE 0 1  -0.0000UOOE-38 -0.0000000E-38 

Figure 2 Computer  output for sample  problem 2. 

Figure 3 Computer  output for sample  problem 3. 
SPECTRAL FACTORlZAllON PROGRAM 

lNPU1 MATRIX GI51 

The computer output is shown in Fig. 2. The factoriza- -0.0000000E-38  -0.0000000E-38 - 0 . 0 0 0 0 0 0 0 E ~ 3 8  -0.0000000E-38 O.lOOOOOOE 

1 1 0.30000OOE 0 1  -0.0000000E-38  -0.1000000E 01 -0.0000000E-38 -0.000000UE-38 
-0.000OOOOE-38 -0.OU00000E-38 -0.0000000E-38 -0.0000000E-38 

-0.00000OOE-38 -0.0000000E-38 -0.0000000E-38 -0.000UOOOE-38 

-0.0000000E-38 -0.OQOOOOOE-38 -0.0000000E-38 O.lOOOOO0E 0 1  
2  2 0.2000COOE 0 1  -0.0000010E-38  -0.00000UOE-38  -0.0000000E-38  -0.0000000E-38 tion of C(s) is then 

r.8814124 .4723475 - .4723475s 

H ( s )  = .4723475  1.235673 + .8814124s 

l o  - .5  

0 

0 

1 .o 

.[: 
s o 0  

1 0  

o s  

8814124s  .4723474 - .4723474~ 

,4723475s  1.235673 + .8814124s 

0 - .5 I. 

TRANSFORMED MATRIX ClZI 

1 1 0.8000000E 01 0.2000000E 0 1  0.0000000E-38 0.0000000E-38 0.OOOOOOOE-38 

2 1 -0.300000OE 0 1  0.lUOOOOOE 0 1  0.0OCOOOOE-38 0.0000000E-38 0.0000OOOE-38 
1 2 -0.3000000E 0 1  0.2000000E  01  0.2000000E 01 -0.300000OE 0 1  0.1000000E 01  

2 2  0.2100000E 03 0.5600000E  02 0.8'100OOOE 0 2  0.80U000OE 0 1  0.3000000E 01  

ITERATION CONVERGED TO WITHIN 0.100E-01 I N  25 STEPS. SOLUIION I S  

1 1 0 .7637588E O I  0 . 7 0 0 O O O O F  01 0.0000000E-38 0.0000000E-38  0.0000000E-38 . .  ~ . . . . . . . 

2 1 -0.3505811E 0 1  0.2047091E 00 0.2819858E  01  -0.33128b6E 01 0.1000000E  01 
1 2 -0.3505871E 0 1  0.lOOOOOOE 0 1  O;COO0000~-38 0.0000000E-38 0.0000000E-38 

2 2 0.1550bOlE 03 0.3550250E 02   0 .805583 lE   02  0.11b6927E 0 1  0.3000000E 01 

THE MATRIX FACTOR D l 2 1  IS 

1 2 0.0000000E-38 0.31131911E 0 0  0 .111098 lE   01   -0 .11615L IE   01  0.393652OE 00 
1 1 0.2112623E 01 0.7456289E 0 0  0.0000U00E-38  0.0000000E-38 0.OOOOOOOE-38 

2 1 -0.2815437E 00 0.803063 iE-01 0.0OOOCOOE-38 0.00000OOE-38 O.OOOOOOU€-38 
2  2  Oa1245231E 02 0 .285101 lE 01 O.b&b9345E 01  0 .5155498E 00 0.2409191E 00 

1 1 0.112912bE 01 0.9834969E 0 0  0.0000000E-38 0.0000000E-38 0.0000000E-38 
1 2 0.8215482E-01 0.9320208E-01 -0.6625388E-01 -0.29ri028lE 00  0.1809251E 00  
2 1 -0.100618lE 00 -0.1809251E 00 0.00000UOE-38 0.0000OOOE-38 0.0000000E-38 
2 2 0.1611825E 0 1  0.333128PE 0 1  0 . 3 9 5 1 2 9 i E   0 1  0.2768507E 0 1  0.9834969E 00  

1 1 0 . 3 0 0 o o o o ~  0 1  O . ~ O O O O O O E - ~ ~   - O . ~ O O O O O O E  0 1  -o.0000000E-38 - ~ . O O O O O O O E - ~ ~  
O.UO00000E-38 0.OOOOOOUE-38 -0.0000000E-38 0.000OQOOE-38 

0.000OUOOE-38 o . o o ~ o ~ o ~ E - ~ ~  - O . U O O O ~ O O E - ~ ~  ~.0oOOoOOE-38 
1 2 -0 .OOOOOOOE-38 -0.3125290E-08 0.1&50581E-08 -0.3725290E-08 0.1000000E  01 

2 2 0.2OOOOOOE D l  0.000000OE-38 -0.2980232E-Ob -0r59604bLE-07 -0. lb39128E-06 
-0.0O00000i-3B -0.,LB,,00F-Qh - O . 0 0 0 D O o O E - 3 8  0.9999999E  00 169 
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The answer obtained  from Youla’s exact solution by or- 
thogonal  transformation is 

.8814124165s  .472347490 (1  - S) 

.47234749Os  1.2356730345 O l  0 
+ .8814124165s I H ( s )  = 

t o  - .5 s .  1 
Thus, the greatest error in the  factor is  less than 10”. 

3) Suppose 

The computer output is shown in Fig. 3, and 

H ( s )  = 

1.729126  .08215482 + .09320208s 
f . 9 8 3 4 9 6 9 ~   - . 0 6 6 2 5 3 8 8 s 2  

- .2900281s3 
+ .1809251s4 

- . l o 0 6 1 8 7  1.411825 + 3.337289s 
- . 1 8 0 9 2 5 1 ~  + 3.951294: + 2 . 7 6 8 4 0 7 ~ ~  

+ .9834969s4 

The  total execution time for these three examples was 1.8 
seconds on  the IBM 7094. 

VI. Conclusion 
An iterative algorithm for  the spectral factorization of poly- 
nomial matrices has been derived and its convergence in 
regular cases established. The iteration is applied to a 
discrete-time polynomial obtained from the original con- 
tinuous problem by a bilinear transformation. The result is 
then  mapped  back into  the continuous  domain. 

The matrix recursive equation was obtained from a 
purely algebraic condition between a matrix polynomial 
and its factors. However, the  equation turns  out  to be a 
special case of the Riccati difference equation employed in 
Kalman filtering.12r14 Thus, known results on the Riccati 
equation were  used to establish convergence of the algo- 
rithm. 

The method seems to be superior to other techniques for 
factorization, both for the matrix and scalar case. One 
reason for this is that the roots of the polynomial, which 

are redundant  information  for  the  solution of the Wiener- 
Hopf  equation, are never calculated. The factors are ob- 
tained directly. Thus, the algorithm produces only what is 
needed to solve the problem. 
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