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Abstract: Many  high-speed  printers now in the field and under  development  use a constantly  moving chain or train containing the 
characters  required  in the printing  process.  Generally  they skip to the next  line  whenever the  last  character on a given  line  is  printed. 
Since  individual  character  usage  varies  widely,  it may  be  possible to increase the printing speed by repeating  high-usage  characters 
more  frequently on the  chain than low  usage  ones. 

This  paper  presents an analytic  method of accurately  estimating  the  printing  speed of a chain  printer for any character  arrangement 
and describes a technique for determining  the  number  of  copies  each  character  should  have on the  chain so that the  printer will operate 
at or near  maximum  speed.  Using  these  methods,  significant  increases in printing  speeds  have  been  obtained for actual  applications. 

Introduction 
Many of the high-speed printers used as computer output 
devices employ a constantly moving “chain” containing the 
set of characters  required  in printing. For some of these 
chain printers, the chain itself may  accommodate several 
copies of each  character and  the character  arrangement 
may be arbitrary,  though generally it is not.  Printing speed 
for these printers depends both  on  the information to be 
printed and  the character  arrangement. Since most  printing 
applications use some characters  more  often than others it 
may be possible to increase the printing speed by repeating 
high usage characters on the chain more frequently than 
low usage ones. 

The purpose of this  paper is two  fold: (1) to present an 
analytic method of accurately estimating the printing speed 
of a chain  printer for any  character  arrangement on a chain, 
given the character usage statistics and (2) to show how to 
improve chain  character  arrangements through  the use of 
an iterative algorithm based on (1). 

The paper is divided into four principal parts. Part I 
consists of background  material on printers. The theory is 
developed for the analytic method of predicting printing 
speeds  in Part 11. Part I11 details the iterative algorithm  for 
improving character arrangements. The theory and algo- 
rithm have been implemented in a flexible computer  pro- 
gram which is available through  SHARE under SDA 3542. 
Part IV presents results based on this  program  in which 
significant increases in printing speed have been obtained 
for  actual applications (up to 2 6 x ) .  Calculated and  ob- 

130 served printing speeds are in  comfortable agreement. 

Part 1. Background 
The pertinent  features of a typical chain  printer  may  be 
seen in Fig. 1. In our analysis, we assume that  the printing 
operation is asynchronous. That is, after the recording 
medium (hereafter called paper) has been properly posi- 
tioned for printing, the chain  can  be in any  position relative 
to  the paper. The  actual character impressions on  the paper 
are produced as  the result of impacts between paper and 
chain  characters due to the action of “hammers.” 

It should be pointed  out that characters are  not printed 
in the  order in which they finally appear on  the paper but 
in the order  in which alignment occurs between chain 
characters and desired printing positions. Also, character 
spacing on  the chain is generally not  the same as  the print 
position spacing. This serves to reduce or eliminate the 
number of possible simultaneous hammer firings, but in no 
way affects our analysis. The chain is assumed to move at 
constant speed and to be composed of characters of equal 
width. The time  required  for a character on  the chain to 
advance one column will be taken  as our unit of time and 
is called a “scan.” 

The time  required to print a given character at a print 
position on  the paper is determined by how long it takes 
the print  chain to move so that a copy of the correct  charac- 
ter on  the chain is opposite to the print position. This time 
can vary  from  zero to the time it takes for  the chain to move 
a distance equal to the maximum spacing between the lead- 
ing edges of two successive copies of that character. Know- 
ing the character  arrangement on  the chain and  the initial 
position of the chain at  the beginning of a new line, one  can 
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Figure 1 Chain  printer elements. 

Figure 2 Relation between  time  required to print a  line  and  time 
for individual  characters to reach  print position. In the  example 
shown, the  letters AGE constitute  an  entire  printed  line.  Hence, 
line print  time = max (t l ,  t2, t 3 )  = t ~ .  

-Chain  motion _""" """. 
A B C D E F G H I  Chain - - - - - - - - - - - - - : 

easily determine the print time  for each character in a line. 
(See Fig. 2.) The time required to print the entire line  is the 
maximum of the print times of the individual characters on 
the line. 

In some printers, physical limitations demand that skip- 
ping to the next  line not  take place until some time interval 
To has elapsed. Thus, no matter how  quickly all characters 
are printed on a line, the effective print time cannot be less 

The usage of a character is  defined to be the expected 
number of times a character occurs  per  line. It is estimated 
from any sample printing job by simply counting all the 
occurrences of a given character and dividing by the number 
of lines. The expected  line  length  (expected number of 
characters per  line)  is estimated by summing the resulting 
averages, or more simply, its estimate  is the total number of 
characters printed divided by the number of lines  in the 
sample. 

In 1960 D. N. Freeman performed an unpublished 
analysis in which he estimated the printing  speed  of a chain 
with all characters repeated the same number of  times. 

than To. 

The authors of this paper  have not been able to find any 
published treatment of a general  method for arranging 
characters on a chain to improve printer speed. 

Part II. Formulas 

General 
This part of the paper concerns the development of equa- 
tions for cases in which the chain configuration (arrange- 
ment of characters on the chain) is already specified. An 
analytical expression  is  given relating chain configuration, 
character usage, and  the per-line  expected printing time. 
This provides a means for comparing different chain con- 
figurations which  may  be proposed for the same printer 
application. 

The number of distinct characters appearing on the chain 
is denoted by n and the individual (distinct) characters are 
denoted by C1, . . , Cn. Stated differently, the chain con- 
tains one or more copies of each of the characters C1, - . . , 
C,. The number of copies of character C; is denoted by ri 
(i = 1 , * , n) and the relationship 

i=l 

is  assumed,  defining Q as the chain length expressed  in 
terms of the total number of character copies it contains. 
Thus, points on  the moving chain return to their original 
positions every Q units of time.  (Reference to Fig. 1 should 
make the notation clear.) 

Character copies 
The individual copies of character Ci are denoted by Cil, 
Ci2, , Ciri, the second subscript being  explained as fol- 
lows. Suppose any copy is chosen and denoted by C;I. If the 
chain is  moving and copy C;I is opposite a given print posi- 
tion on a line, the remaining copies  pass the same position 
in the order Cfz, C;3, . . a ,  Ciri. Of course, Ciri is  followed 
by  copy C;l as  the chain continues to move. 

These and related remarks in subsequent paragraphs 
apply for i = 1, . . . , n unless  specific contrary indications 
are made. 

Fig. 3 illustrates the way in which  several  copies  of the 
same character, C;, might be arranged on the chain. It also 
shows  how distances between  successive  copies are denoted. 
The distance  between the leading  edges of  successive  copies 
C;(m-l) and C;, is denoted by Qim. Thus, the indicated 
distance  between Cil and C;Z is Q;2; that between C ~ Z  and 
Ci3 is Q i 3 ;  etc.; that between Ciri and Cil is Q;I. This 
implies 

where Q is the chain length as previously  defined. 131 
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Figure 3 Definition of Q i j ,  the  distance  between  successive  copies 
of character Ci on a chain of length Q copies. In the example 
shown ri = 3 copies of Ci. 

Direct consequences 
Now  suppose Cij is known to have been used for  printing 
at a given position on a line; Cij must have been the first 
among  the copies of character Ci to reach the print position. 
Also, when printing of the line was initiated, the point posi- 
tion (Le., an appropriate  point associated with it) must have 
been located opposite a part of the chain immediately pre- 
ceding the leading edge of C i p  The eligible part of the chain 
for this is of length Q+ 

Thus, if Ci is to be printed at a given position, the  proba- 
bility that copy Cij will be used for the task is Qij /Q.  
Random chain  orientation, as previously assumed, implies 
this. 

The time required  for printing at a given position must 
be between 0 and Qij, inclusive, whenever copy Cij is used. 
This printing time is regarded as a random variable whose 
probability distribution is uniform on  the interval 0 to Qij. 
Thus, the conditional probability, that when Cij is used at 
a given position, the  print  time required does not exceed the 
value u (say), is u / Q i j  for 0 5 u 5 Qij .  

Cases involving negative values of u are meaningless in 
the present context and receive no mention in discussions 
hereafter; cases involving u >_ Q i j  will be treated  as they 
arise. 

Printed material 
Composition of printed  material is considered next. Ideally, 
assumptions attendant to this  matter  should be very real- 
istic. They must, at  the same time, be amenable to mathe- 
matical development. Simultaneous satisfaction of both re- 
quirements is virtually impossible. Hence, the  authors re- 
sort to assumptions which lead to reasonable approxima- 
tions. This highlights the importance of results given in 
Part IV which indicate a satisfactory agreement between 
theory and observed printer performance in widely different 
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Consider lines for which a maximum of M print positions 
may be used and suppose that, in printing, the number of 
print positions to be used on a line is regarded as a bi- 
nomially distributed random variable with parameters p 
and M. That is to say, if W represents the  number of char- 
acters printed on a line, 

P ( W =  W )  = C w p  q , (W = 0, - 0 . )  M ) ,  ( 1 )  M w M-w 

in which p ,  q > 0 and q = 1 - p .  
Further suppose that, if some character (unspecified) is 

to be printed at a given position, the probability that  the 
character will be Ci is  given  by vi (i = 1, . . . , n). The value 
of v i  is assumed to be positive, constant and independent 
of print position. 

If any position is to be left blank,  the printing time re- 
quired  there is zero. 

A final assumption is that printing time at any position is 
quite independent of what is to be printed at  other positions 
on the line and  the corresponding printing times there. 
(Conflicts between this  assumption and realities of printing 
are recognized. However, these conflicts appear to have 
very little adverse effect on final results  as  judged from  Part 
IV.) 

Usage statistics and parameters 
Character usage statistics provide a base for estimating 
some  parameters defined above. The average number of 
occurrences of characters C1, . +, C,  per line can be calcu- 
lated  from a sample as indicated in Part I. Those averages 
are denoted in Part I11 by el, . -, e, respectively and we 
can define 

n 

E = C e i .  

Then E estimates the product Mp which is the expected 
number of characters printed on a line. The value of p is 
estimated by Z/M and is the probability that any  randomly 
chosen print  position on a line will be used in printing (i.e., 
that the position will not be blank). 

Similarly ei/e is an estimate of vi (i = 1, . . . , n). A later 
section treats  the case in which M and p vary in such a way 
that  the product M p  tends to a constant X. In  that case the 
ei values are estimates of the corresponding values X i  = 
Xvi (i = 1, . . . , n) as defined in  the referenced section. 

Theory development, however, is based upon the assump- 
tion  that all parameter values are known in advance. 

Printing time U for a line 
Consider the printing time at a given position when the 
character to be printed is not  known in advance, i.e., when 
the extent of prior knowledge is that  the position will not be 
blank. If the time required is to exceed u, only copies whose 
Qij values are not less than u can be used. Summation over 
all i and j values satisfying that requirement is denoted by 

i=l 
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Thus  for non-negative values of u, 
* 

is the probability that the time required to print at a given 
position exceeds u, given that some character will be 
printed there. 

It is clear that, if printing time for  an entire line contain- 
ing W characters is not  to exceed u, the printing time at 
every one of the W occupied print positions must  not ex- 
ceed u. Thus, the joint probability that W = w and print 
time for  the line does  not exceed u is 

and  the case u = 0 is trivial. 
The symbol U is adopted to represent the time to print a 

line, its cumulative probability distribution being denoted 
by F(u). Thus, for positive values of u, 

P ( U  5 u )  = F ( u )  
M 

= C C W P 9  
M w M-w 

w=o 

x ( 1  - &)IW 
= [ I -  Z*PV*( l  a , 3  - & ) I M .  (4) 

Evaluation is somewhat easier to manage if terms in  the 
summation are collected into  groups so that character 
copies represented in  each group have identical Qi values. 
Thus, if there are k distinct Q i i  values, we can relabel them 
Q I ,  . + . , Qk with the agreement that Ql > Q z  > - 1 > 
Qk. (The special case, k = 1 ,  is discussed later.) 

This permits evaluation of F(u) between 0 and Qk, be- 
tween Qk and Qk-l ,  etc. Specifically, (for r = l ,  . . . , k )  

F ( u )  

l o  
in which 

, elsewhere , (5) 

and  the summation indicated by xi,j(m) is taken over all 
copies (of all characters) for which the associated Q i j  values 
are equal to Qm. 

It is relevant to  note  that 

a relationship which is used to simplify results in subse- 
quent  paragraphs. 

Minimum time TO specijied 
It was pointed out in Part I that physical limitations may 
restrict skipping from one line to the next. With each line, 
a specified minimum time To must elapse before the next 
line is begun. The effective print  time in such printers  can- 
not be less than TO no matter how quickly all  characters on 
a line are printed. In  that context, the effective time to print 
a line is designated by T and, hereafter, it is assumed that 
0 I To < Q I .  

Preceding developments permit the assertion that 

where F(t) as defined by Eq. ( 5 )  is a function of k and  the Qi 

values. 

Elementary  properties of T 
Some new parameters are introduced for convenience. Let 

Y r  = 1 - C p m ,  
m=l 

7 

m=l i , j ( m )  

C n  

in which r+) is the number of copies of character Ci having 
Q i j  values in excess  of Qm+l. Then 

P ( T  I t> 

1' 
io , otherwise . (9) 

, t 2 Q l  

= (LILT + y r ) " ,  Q r + 1  I t < Q r  and t 2 7'0 

Derivatives of P(T 5 t )  with respect to t are discontinuous 
at one or more  points  in the interval t 2 0. Taking due 
care of that situation,  the  function 

f ( t )  
f F (  To) , t = T g  

= M,u,(tl*, + yr)"' , Q r + l  I t < Q r  and t > TO 1. , elsewhere , ( 1 0 )  
for r = 1, . . . , k is adopted  in the role of a probability 
density function for T (though use of the phrase "density 
function" may stimulate  minor objection on  the  part of 
some readers). 133 
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Moments of T can be expressed with the help of functions 
defined by 

for Qj+l > To and s 2 1 , the symbol F j  indicating P(T 2 
Qj). In simpler notation, Fj = F(Qj) and  the sth moment 
of Tis written 

E ( T s )  = TiF + t”(t)dt + y h j ( S )  , ( 1 2 )  
j =  1 

in which F = F(To), K indicates the subscript on  the largest 
Qm value which does not exceed To, and  the summation 
indicated by vanishes in  the case K 2 2. 

The expected value of T (i.e., the expected effective time 
to print a line) is E(T) while the variance of Tis E(T2) - 
[E(T)I2. Specifically, 

To F E ( T )  =-+- M 
M + 1   M + 1  

T: F E (  T2)  = ___ + ~ 

M + 2   M + 2  
M 

- Lrj ( F j  - F i + l ) } ] ) ,  (13)  
M P j  

with the agreement that sums indicated by vanish if 
K < 2. (Relationship (6) is particularly useful in  arriving 
at  the particular  form  in which Eq. (13) is given.) 

A special case: k = 1 
“Standard”  print  chains are designed so that characters are 
repeated with equal frequency on  the chain, and copies of 
each  character are equally spaced along the chain. This case 
implies k = 1 and, if q 1  = 1 - p1, 
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Printing  groups of lines 
Return now to the  more general case, i.e., to k >_ 1, and  the 
corresponding formulas. All moments of T are finite SO that 
the  Central Limit Theorem of statistics applies when a large 
group of R independent lines is printed. 

In  that context,  suppose that incrementing the paper 
from line to line is ignored. Let T* be the effective time to 
print R independent lines and let E = E(T) in  the general 
case. Then the asymptotic distribution of the variable 

~- 3 
T* - RE 

UT fi (1 5 )  

(where uT2 is the variance of T )  is normal (Gaussian) with 
zero mean and unit  standard deviation. Hence, when R is 
large enough, the variable T* is approximately normally 
distributed with RE as  its expected value and UT a as  its 
standard deviation. 

A limiting  case 
Approximation of E(T) and E(P)  is desirable when M is 
large with respect top. Toward that end, consider the case 
in which M tends to infinity and p tends to zero in such a 
fashion that  the product Mp tends to a constant X. An 
arrow (4) is used to indicate passing to  the limit in  that 
fashion and  the  notation X i  = Xvi is adopted. Then, re- 
ferring to Eq. (8) and  the definitions which follow Eq. (5) ,  

Y r - +  1 
p r -  0 

M P ~  -+ cr icm,Xi/Q 

r n  

m=l 2 4  

(tpr + rrY + exp (-ar + tpr> , (1 6) 

in which 

and Pr is  the expression to which Mpr tends,  as is also 
shown in  Eq. (16). 

Corresponding limiting forms of F(t), JTt), E(T) and 
E(T2) are useful and  are obtained easily by inspection of 
their respective definitions. For example, using the notation 
P and to indicate the limiting values of F and Fj  respec- 
tively, reference to  Eq. (13) indicates 



Separation  of character copies 
It is natural to ask what is the best  way to arrange copies 
for  any character on the chain. In the present  context, the 
best arrangement  must  achieve a minimum  average print 
time  per  line. 

All examples  which the authors have  examined  indicate 
that equal spacing of character  copies gives the best ar- 
rangement. That is to say, if there are ri copies of character 
Ci, the corresponding Qij  values  should be equal so that 
Qij  = Q / r i  for each  copy. 

Though no rigorous mathematical support has been  de- 
vised, the authors adopt the equal spacing notion through- 
out Part ILI. The matter of selecting a best chain is ap- 
proached in two  distinct  phases. First, it is  assumed that 
equal spacing of copies  is  always  possible  for  each character 
regardless of the ri values  involved. A best  chain is found 
under that assumption. The second  phase  consists of de- 
signing  a  practical  character  copy  arrangement  which ap- 
proximates the best  “equal  spacing”  configuration as 
closely as possible. 

Summary oj equal spacing results 
It is easy to determine the effects  of  assumed equal copy 
spacing  when  results  given in preceding  sections are con- 
sidered.  Suppose that groups of characters are formed  ac- 
cording to the number of copies found on the chain,  i.e., 
all characters which appear on the chain  exactly rm times 
belong to the same group. Suppose further that a total of k 
such  groups can be  formed  among the characters CI, * , 
C,, and with no loss of generality, that r1 < r2 < < r k  

denote the k distinct  values  found  among the numbers r1, 
. , r,. The symbol  is adopted (m < k )  to denote  sum- 

mation over all indicated  values for characters which ap- 
pear on the chain rm times  (i.e.,  for all characters in the 
group associated  with rm). 

Then the symbols 

P:, = c:,Pvi y x:, = c;xi , 
a: = x;, 

m=l m=l 
T T 

m=l m=l 

permit  simplification of previous  results  when  applied to 
the equal spacing  case. 

One merely substitutes pm’ for pm, yrl for yTy etc.,  in the 
appropriate formula from the previous  paragraphs,  Eqs. 
(9), (lo), (13), (16), and (17) being  of  special interest. For 
example, in the special  case  of equal spacing 

and 

in which aj’ and Pj’ are used in determining P and Fj for all 
values of j .  

Part 111. Iterative optimization  procedure 
In the previous  section an expression for the expected  time 
to print a  line, E(T), (hereafter  denoted by E )  was  derived in 
terms of the character usage, the number of copies of each 
character on the chain, the number of character  positions 
on the chain, and the minimum  line-print  time.  This ex- 
pression will now be used in an iterative  procedure for 
determining  how  many  copies of each character should  be 
placed on the chain for the printer to operate at or near 
maximum  speed. 

It will be assumed that the character usage statistics and 
printer  operating  characteristics are fixed, thus making E a 
function of the n variables rl, 12, - - e ,  r,  (where ri is the 
number of copies of character Ci). The expression  given for 
E in Eq. (20) is  based on the assumption that if the charac- 
ter Ci is on the chain ri times, its copies are equally  spaced 
around the chain. 

The basic  problem then is to determine  positive  integer 
values for the n variables rl, r2, - . e ,  r,, such that: 

n 

(i) ri = Q ,  and 
i=l  

(ii) E is a minimum . 
Since E is a complicated  function of the n integer  valued 

variables rl, r2, e ,  r,, the function will  be  minimized  by 
selecting  some  reasonable initial set of values for the n vari- 
ables and then  systematically  changing  these  values  until a 
local  minimum  is  determined for E. Experience  has  indi- 
cated that in most  cases only one  local  minimum  can  be 
found. (In those few  cases  where  more than one  local  mini- 
mum was found, the corresponding E values  differed  by  a 
negligible amount.) 

Obtuining a local minimum for E 
The smallest  possible  modification of the n variables  (sub- 
ject to the condition that the sum of their  integer  values 
must be Q)  is to add “1” to some  variable ri, and subtract 
“1” from  some other variable r j .  It will  be  assumed that a 
local  minimum  has  been  reached if no modification of this 
type will further reduce the value of E. (In  terms of the 
printer, this  is  equivalent to saying that we  will  have ob- 
tained the best print chain  definition if it is  impossible to 
make the printer run any  faster by adding  a  copy of some 
character Ci at the expense  of  removing a  copy of some 
other character Cj.) 

The basic step in the iterative  algorithm will be to select a 
pair of variables ( r z ,   r y )  that will result  in the largest  possible 135 
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reduction in E when they are modified by adding “1” to r x  
and subtracting “1” from r,. The algorithm will iterate on 
this  step and terminate when no (rz ,  r,) pair  can  be found 
that will further reduce the value of E.  

The key problem in each  step is to identify the ( rz ,  r,) 
pair that will  yield the largest reduction in E. This could be 
accomplished by evaluating E for all possible (r;, rj)  pairs. 
For n variables, this involves a total of n(n - 1) evaluations 
of E. The number of evaluations of E can  be greatly re- 
duced by making use of the following practical considera- 
tions. 

If some  character C; is printed  more frequently than 
some other  character Cj, clearly, for maximum printing 
speed, character C;  should have at least as many copies on 
the  chain as does character Ci. Thus, the following relation- 
ship must be true for maximum printing speed or minimum 
E:  

r ;  2 r j  if ei > e ? .  

This means that if two or more  characters have the same r; 
value, we only need to consider adding a copy of the char- 
acter with the largest value of e; and we only need to con- 
sider substracting a copy of the character  with the smallest 
value of e;. 

It will be convenient to partition the characters into k 
disjoint groups such that C; and Cj belong to the same 
group if and only if r; = rj .  At each  step in  the algorithm 
it will only be necessary to consider the most used and  the 
least used (largest and smallest e; value) member of each 
group  as possible candidates for r ,  and r ,  respectively. This 
will reduce the number of evaluations of E from n(n - 1) to 

A further reduction in  the number of evaluations of E 
can be achieved by selecting rz and r y  independently. We 
can determine rx  by evaluating the changes in E resulting 
from separately adding “1” to the r ;  value of the most used 
(largest e;) character in each group. The r; variable giving 
the largest reduction in E will be selected for r x .  Similarly, 
r ,  can be selected by separately subtracting “1” from the ri 
value of the least used character  in  each  group and selecting 
for r ,  the one giving the smallest increase in E. This tech- 
nique will reduce the  number of evaluations of E to 2k + 1 
for  each  step in the  iteration. If the (rx,  r,) pair selected in 
this manner does not result in a decrease in the value of E, 
it is then worthwhile evaluating all the k(k - 1) possible 
candidates for (rz, r,) to make  sure that  no other  combina- 
tion will result in a decrease in  the value of E. This also 
guarantees that a local minimum has been obtained. 

The following is a brief summary of the previously dis- 
cussed algorithm  for  obtaining a local minimum for E :  
1. Determine an initial set of positive integer values for  the 

2. Partition  the  characters into k disjoint groups such that 

k(k - 1). 

r; variables such that c:=l ri = Q. 

136 C; and Cj will belong to  the same group if ri = r j .  
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3. Select the (rz, r J  pair in the following way: 
a. For each of the k groups determine the change in E 
resulting from  adding 1 to the r; value of the character 
with the largest e; in that group. Select for r ,  that r; 
variable corresponding to  the largest decrease in E.  
b. For each of the k groups whose r; values are greater 
than 1 evaluate the change in E resulting from subtract- 
ing “1” from the r; value of the character with the small- 
est e; in  that group. Select for r ,  that r; variable corre- 
sponding to the smallest increase in E. (In  the unlikely 
event that r ,  and r ,  turn  out to be the same variable, 
select for r ,  the r; variable corresponding to  the second 
smallest increase in E.) 

4. Modify the r; values by adding 1 to r ,  and subtracting 1 
from r ,  and evaluate the change in E.  
a. If the new value of E is less than  the previous value, 
repeat  the  procedure beginning at step 2. 
b. If the new value of E is not less than  the previous 
value, go to step 5. 

5. With the r; values prior to step 4 evaluate the change in 
E resulting from adding and subtracting 1 to r ,  and rll, 
respectively, for all possible combinations of r ,  and r y ,  
where C ,  is the most used member of some group  and 
C, is the least used member of some group whose r; 
values are greater than 1. If an (rx,  r,) pair is found that 
further reduces the value of E, update the r; values ac- 
cordingly and  go  to step 2. If no ( rx ,   rU)  pair is found that 
reduces the value of E, a local minimum has been ob- 
tained  for E. 

Part IV. Validation tests 
In this section we present results which indicate that  the 
two-fold purpose mentioned in the Introduction  can be 
achieved using the methods of this paper; i.e.,  given char- 
acter usage statistics we can (1) reliably estimate printing 
speed for a given character  chain  arrangement and (2) im- 
prove the arrangement so as to increase the average printing 
speed. 

We shall give three examples of evaluation and “optimi- 
zation.” The first two  are concerned with usage statistics 
from two  separate printing applications. The  third illus- 
trates  what  can be done with usage statistics from a number 
of different printing  applications when “optimization” is 
based on the composite statistics. 

The usage statistics for Example 1 come from printing 
samples in  the  area of cost accounting, while those of 
Example 2 come from inventories. Usage statistics were 
gathered from 10,000 lines of output for each of the two 
jobs  and  an “optimum”  chain configuration was deter- 
mined for each. The tests were run  on  an  IBM 1403 Model 
2 Printer with the Universal Character Set feature and were 
accomplished by loading the IBM 2821 Control  Unit Buffer 
with the 240 characters  corresponding to each of the  various 
chain configurations used. A 5000-line sample from each 
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Figure 4 Number of character copies and log,, of average use  per line of each character on optimum chain. Characters used 
less than 10-3  times per line are  not identified and their usage statistics are shown as 10-3. (a) Example 1 : cost accounting ap- 
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Table 1 Calculated  and  measured  printing  speeds  for  test  examples 

Example I-Cost accounting Example 2-Inventory 

Standard chain Optimum chain  Improvement Standard chain Optimum chain % Improvement 

Measured 605  LPM 694  LPM 14.7 584  LPM 741  LPM 26.9 
Calculated 605  LPM 702  LPM 16.1  597  LPM 749  LPM  25.5 
Error 0% 1.15% 2.22 % 1.08 % 

Figure 5 Log, of usage  statistics for each character on a chain optimized for a composite of  22  different applications. The solid line 
shows the average for all applications. 
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job was printed twice, once with the  standard chain (each 
character on chain five times) and once with the correspond- 
ing "optimum chain." It should be noted that  the contents 
of the buffer did not match  the  actual  characters on  the 
physical chain  in the case of the  "optimum chains." In order 
to facilitate comparisons between theory and experiment, 
single spacing was forced; printing was done in batches of 
1,000 lines and measured with a stop watch. Table 1 pre- 
sents the results of the tests. The  standard times of 1.665 
msec/scan and 21.7 msec/carriage advance were used in 
determining the calculated speeds. 

The logarithms of the character usage statistics of Ex- 
amples 1 and 2 are shown plotted in Figs. 4a  and b along 
with the number of times each  character occurred on  the 
corresponding  "optimum chain." The characters are or- 
dered according to their respective usage. Note  that  at 
least one copy of each  character  in  the  character  set occurs 
on these chains even though it is not used. Also note  the 
wide range  in  character usage, especially in Example 2. 

The results of the foregoing tests indicate that significant 
increases in printing speed may be obtained provided the 
usage statistics are indicative of the printing demands. 

Often, however, printers are called upon to print output 
from a wide variety of applications, so that  the character 
usage statistics for a given job may vary drastically from, 
say, the average character usage which the printer  must 
handle. 

In order to examine this effect, usage statistics from some 
22 different types of printing jobs (Examples 1 and 2 in- 
cluded) were equally weighted and combined for Example 
3. The average number of characters  printed per line varied 
from about  13  to  about 70. The logarithms of the usages for 
each  character are plotted as points  in Fig. 5 ,  arranged  in 
order of the composite usage. The composite usage is shown 
as a continuous curve in order to emphasize the scatter 
about  the average. A chain was optimized according to  the 
composite statistics and  the printing speed of each job was 

I Average number of characters per line 

Figure 6 Average  printing  speed  for  each of 22 applications using 
standard  chain and chain  optimized  with  composite  usage 
statistics. 

then individually computed assuming the same  type of 
printer  as in  the first two examples. The results are plotted 
in Fig. 6 and show that moderate increases in printing 
speeds can  be achieved even when based on a broad  range 
of applications. 
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