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C. J. Standish

Two Remarks on the Reconstruction of
Sampled Non-Bandlimited Functions

This communication considers the error in the reconstruc-
tion of a deterministic, non-bandlimited real function from
its sampled values. We have two objectives in mind. First,
we show that in a certain sense, to be made precise in the
sequel, the error in the reconstruction of f(¢) from its sam-
pled values f(nm/2) by sin x/x interpolation is small pro-
vided the portion of the amplitude spectrum lying outside
[—Q, Q] is small. Our second objective is to show the analo-
gous situation need not hold for the energy spectrum. In-
deed, we shall exhibit a function with an arbitrarily small
amount of its energy outside the frequency band |w| < @
for which the sin x/x interpolation series
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fails to converge either pointwise or in the mean square
sense.

The first objective is accomplished by use of a suitable
combination of the techniques employed in two recent
papers by Stickler! and Brown,? who cousidered the case
where f(¢) is the Fourier transform of a Lebesgue integrable
function. Brown also considered the case of bandpass
sampling. We note, however, that Stickler did not attempt
to establish the convergence of the interpolation series
formed from the sampled values, and Brown invoked in the
course of his proof (see his Lemma 3) the incorrect result
that the Lebesgue integrability of the function implies the
integrability of its square. A simple counterexample is fur-
nished by f() = %@ <t < 1.

Specifically, in this paper we establish the following:

Theorem: Let f(1) be the Fourier-Stieltjes transform of a
Sfunction of bounded variation
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where G(w) is continuous at w = 2k + 1)Q, k = 0,1, 2,
-« « and normalized to be right continuous everywhere. Define
fald) to be the “bandlimited reconstruction” of f(1) given by
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then the series defining f.(t) converges for all values of t and
the reconstruction error e(t) = f(t) — fu(?) is bounded by

w1 = 2([Tasonl + [aew). @

Proof:
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The expression inside the braces is a partial sum Sy (W, 1)
of the Fourier series of the periodic continuation of the
function defined in the interval — @ < w < Q by exp
( —iwt). Since exp (—iwr) is of bounded variation in the
open interval |w| < the partial sums of its Fourier series
are uniformly bounded in N and M for fixed 7. (See e.g.,
Titchmarsh,? p. 408). G(w), being of bounded variation, is
expressible as the difference Gy(w) — Ga(w) of two mono-
tone non-decreasing functions which, by the assumed con-
tinuity of G(w) at w = =2k + 1)2, can be chosen to be
continuous at the same points. The partial sums Sy (w, £)
are then bounded almost everywhere with respect to the
Lebesgue-Stieltjes measures induced by Guw) and Ga(w).
The Lebesgue dominated convergence theorem can then be
invoked to yield
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where S(w, 1) is the periodic extension of exp (iwr). The con-
vergence of the series defining f.(¢) having been established,




we can proceed analogously as in Stickler! to obtain

e(t) = f(t) — fu(t) = 2%_/_2 exp(—iwt)

— S(w, t) dG(w) ,
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The result of Stickler and Brown appears as the
Corollary. If G(w) defined in (2) is absolutely continuous,
dG(w) = F(w) dw and f(¢) is real then

e =2 7 1Fon)law (6)

We remark that the continuity of G(w) at w = =2k
-+ 1)Qis not a superfluous assumption since, in the presence
of discontinuities at these points, the series for f,(f) may
diverge. In other words, divergence may occur when there
are line components in the frequency of f(r) at odd har-
monics of the cutoff frequency. Indeed, deine G(w) by

{0,w< (2o + 1)Q
GO =\ 1 w> (2 + 1)2.

Then an easy calculation shows

i’: sin (Q1) 1
& 2 (Qf — nm)’

folt) =

which is obviously divergent.

We now turn to the second objective of this note, the con-
struction of a function f(¥) with an arbitrarily small amount
of its energy outside the frequency band |w| < Q for which
the interpolation series diverges. The required function is
constructed as follows:
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where
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A trivial calculation shows

/:;fz(t)?dt <e (8)

and an application of Parseval’s theorem, recalling fi(?) is
strictly bandlimited shows

1 mlf<>ldw+ f [F(w)?ldw < e,

where f(w) is the Fourier transform, in the mean square

sense, of f(£). Thus, the portion of the energy of f(¢) outside

the frequency band [— €, Q] is less than ¢ in magnitude.
Now f(#) can be written in the form
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the convergence of the series above being assured by our
Theorem. The convergence of this series implies that the
series
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either both converge or both diverge. Clearly the second
series diverges pointwise since it reduces to
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Finally, the divergence of the series in the mean square
sense follows from
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the last step arising from the orthogonality of the sequence
sin (U — nm)/(Q — nm)on — o <t < ©,
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