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W. R. Remley

Synthesis of Transfer Functions in a

Prescribed Frequency Band

Abstract: A signal-processing system for synthesizing complicated transfer functions in a prescribed frequency band is described. The
system consists of a multiplier followed by a closed loop containing a delay line and phase modulator in series. One of the inputs to
the multiplier is the signal to be filtered. The second input to the multiplier is periodic, the period being equal to the loop delay. One
cycle of the periodic waveform is identical to the real part of the transfer function over a prescribed frequency band of width equal to
the reciprocal of the loop delay. The imaginary component of the transfer function is the negative of the Hilbert transform of the real
part, as in all physically realizable filters. Two applications of the system are discussed. It is shown how a continuously variable delay

line and chirp filter can be synthesized using these techniques.

One of the perplexing problems that continually confront
the communications or signal-processing engineer is the
synthesis of filters having complicated transfer functions.
This paper describes a system for electronically synthesiz-
ing certain types of filters. The system behaves as a narrow-
band, linear filter but has two input signals. One of the in-
puts, x(¢), is the narrowband signal to be filtered. The sec-
ond is a periodic waveform, w(¢), each cycle of which rep-
resents the real part of the desired transfer function over a
particular frequency band. A schematic of the system is
shown in Fig. 1. The product of the two inputs, x(¢) and
w(?), enters a unity-gain recirculating loop containing a de-
lay line and frequency shifter. The combination of a delay
line and frequency shifter in a recirculating loop can also
be operated as a spectral analyzer. Operation of the loop
in this fashion has received considerable attention, and is
usually called a “‘coherent memory filter.””1—*

The delay line delays the product for a time 7T, and the
frequency shifter increases the frequency by an amount
1/T. The frequency shifter can be regarded somewhat more
precisely as a phase modulator, where the phase is in-
creased by an amount 27¢/T. A bandpass filter is con-
nected to the loop. The output of the filter y(f) is the sys-
tem output.

Assume the following four conditions:

1. x(z) is limited to the band [k/T, (k + 1)/T], where k is
a positive integer.

2. w(t) = w(t + nT), where n is an integer. That is, w(?)
is periodic with period 7.

3. The highest frequency component in w(¢) is less than
k/T, and w(r) has zero mean value.

4, The bandpass filter has unity transfer in the band
[k/T, (k 4+ 1)/T], and zero elsewhere.
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Figure 1 Filter system diagram.

If these conditions are satisfied, then the Fourier transform
of the output y(?) is

Y(f) = 3 X(NIw(T?) — jw(fTH], (1)

where

Y(f) = Fourier transform of y(¢),

X(f) = Fourier transform of x(¢),

w(fT? = w(t) evaluated at t = 77,

W(fT? = w(r) advanced 90° in phase and evaluated when
t = fT? In other words, w(¢) is the Hilbert transform of

w(t).5
Therefore the transfer function of the filter is
_XY\H _ . P
W) =505 = ¥ WUT) = BUT]. (2)

Equations (1) and (2) are valid for any functions x(¢) and
w(f) which satisfy the four stated conditions; a rigorous
proof of this is contained in the Appendix. However, con-
sidering the special case of a sinusoidal input will provide
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Figure 2 Spectrum of input x(¢) = B exp (j8)

an understanding of the system operation that may be dif-
ficult to obtain from the proof for the general case.
Let the input x(f) be

x(t) = Bcos 2rft +0), (3)

where B is the input signal amplitude, f is the input fre-
quency, and 6 is the input phase. The spectrum of the in-
put is illustrated in Fig. 2. As has already been pointed
out, the input frequency must lie in the band [k/T,
(k + 1)/T71. Because w(¢) is periodic with period T, w(#) can
be expanded into a Fourier series with fundamental fre-
quency 1/T. Let w(f) be

w(t) = "; Ay cos [(2nnt/ T) + ¢a] , (4)

where A4, and ¢, are respectively the amplitude and phase
of the nt® harmonic. The spectrum of w(¢) is illustrated in
Fig. 3. The product x({)w(?) is

x(H)w(t)
k
= —g— 2 Ancos [2nft + 0+ (2ant/T) + ¢l
B &
+ - 2 Ancos [2rft + 60 — Qunt/T) — ¢,]. (5)

The spectrum of x(H)w(?) is illustrated in Fig. 4a. This
signal is always present at the input to the bandpass filter.
In passing through the loop x(f)w(z) is retarded in phase by
an amount 27f7T, and the frequency is increased by an
amount 1/7. Therefore, the spectrum of the input to the
bandpass filter after one circulation in the loop is as shown
in Fig. 4b. When x()w(r) passes through the loop a second
time, it is again retarded in phase and shifted in frequency.
This yields a total phase shift of (—4«fT)and a frequency
shift of 2/T. This process continues so that after { circula-
tions the phase shift is (—2imfT)and the frequency shift is
i/T. The spectrum of the input to the bandpass filter after
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Figure 3 Spectrum of periodic waveform w(s) = A; exp (jo:),
i=1,2,3.

Figure 4 Spectra of signals in the loop:

1 BA; exp [0 + ¢; — 2xnfT)), where » is the number of loop
circulations; (a) n = 0, (b) # = 1, (c) n = 3. The actual spectrum
appearing in the loop after a given number of circulations is the
superposition of the individual spectra generated during each of
the completed loop circulations.
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three circulations is shown in Fig. 4c. It should be noted
that the spectrum appearing in the loop is the superposi-
tion of all the individual spectra generated during each
preceding circulation of the loop.

The bandpass filter will pass energy in the band [k/T,
(k 4+ 1)/T] only. Furthermore, after sufficient time, energy
that has been around the loop once, twice, three times, etc.,
will exist at the input to the output bandpass filter. Adding
together all terms in the band [k/T, (k -+ 1)/T] yields the
spectrum of the output of the bandpass filter:

Y(f) = (BA:/2) exp [j(0 — ¢1 — 20 /T)]
+ (BA»/2) exp [j(0 — ¢2 — 4nfT)]
+ (BAs/2) exp [j(0 — é5 — 6xfT)] +

= [X(f)/2] ; Ay exp [—j(2anfT + ¢.)]

i

[X(f)/2] ; An cos (2rnfT + ¢n)

— jlx(5/2] 7; A, sin 2rnfT + )

I

[X(N/2lw(fT?) — iw(FTH]. (6)

This last expression constitutes a proof of Eq. (1) for the
special case of a sinusoidal input.

Several points are worth mentioning at this time. First,
it is not essential that w(r) bave zero mean value. This re-
striction was invoked purely for notational simplicity. If
w(f) has a nonzero mean value, the transfer function can-
not be described in terms of the modulating waveform
w(?), but must be expressed in terms of the spectral com-
ponents of w(s). For modulating waveforms containing dc
components the transfer function is

Nl,_

k

W(f) = 25 dvexp [=iCnnfT + ¢)] + 4o, (7)
where A, is the dc value of w(?). Second, because w(?) is
periodic with period T, the transfer function of the filter
W(f) is one cycle of a periodic function in frequency with
period 1/T. This can be seen by substituting f = n/T + f’
in Eq. (6). The “phase” or position in the spectrum of the
periodic transfer function is determined by the phase of
the local oscillator inherent in the phase modulator. Third,
the value of the real part of the transfer function at har-
monics of 1/T (i.e., zero phase) is determined at the in-
stant that the phase shift introduced by the phase modu-
lator is an integral multiple of 2. Therefore, to properly
position the transfer function in the frequency domain, the
periodic waveform w(r) must be synchronized with the
phase modulator.

The power transfer function of the filter is proportional
1o the square of the instantaneous envelope of w(r). That is,
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(W =1 W UT) + W (ST]. (8)

Therefore, if the phase of the filter is not important, only
the envelope of w(f) need be specified. However, w(f) must
still be periodic with period 7.

At first glance, Eq. (6) may seem to impose undue phase
limitations on the proposed filter because the imaginary
part of the transfer function is completely determined by
the real part. This is indeed a phase limitation, but it must
be remembered that the imaginary part of the transfer func-
tion of any physically realizable filter is the negative of the
Hilbert transform of the real part. Therefore, the con-
clusion is that any physically realizable filter can be syn-
thesized with this technique. Usually the desired filter is
specified in terms of the magnitude and phase versus fre-
quency; but, using elementary complex algebra, one can
easily obtain the real part of the transfer function from
these two relationships.

In this explanation of the system operation, the “‘sum”
frequency components resulting from the multiplication
process were neglected. By using a negative frequency shift
in the loop, the system can be designed to use the “‘sum”
components instead of the “difference” frequency com-
ponents, but a high-pass filter would have to be inserted in
the loop to eliminate the accumulating “difference” com-
ponents. In this case, the transfer function of the filter can
be shown to be

W(f) = w(—fT") + (= fT") . (9)
Equation (9) shows that if w(#) is an even function, then
the transfer function in the “sum” mode is the complex
conjugate of the transfer function in the “difference’” mode.
It is worthwhile to consider the accuracy with which one
can approximate a desired transfer function. The actual
transfer function can be represented as a Fourier series
with N terms where N must be less than k. Therefore, a
particular transfer function in the band (f1, f2) can be ap-
proximated with an accuracy no better than a Fourier
series of N terms where N is the highest integer in the ratio
fi/(fz — fO. In other words, high-frequency, narrowband
filters are theoretically approximated more accurately.

Applications

® Delay synthesis
A delay line with delay 7 is characterized by the fact that

db(f) _
df

and

— 27T (10)

|W(f)|” = constant.
Integrating Eq. (10) yields

¢(f) = —2r7rf+ ¢o, (11)




where ¢ is an arbitrary constant phase shift. A transfer
function that satisfies the requirements is

W(f) = §exp [—jQnfr — ¢0)], (12,

where it is understood that W(f) is periodic with period
1/T, so that Eq. (12) represents the response in the band
[k/T, (k + 1)/T] only.

The real part of the transfer function is

% cos (2w fr — ¢o) . (13)

Using the transformation from frequency to time, T2 = ¢,
yields one period of the modulating waveform

w(t) = cos [(2rrt/ T — ¢o) . (14)

If 7 is not an integral multiple of 7, then w(s) will have a
periodic discontinuity. This means that, theoretically, the
previously stated condition 3 cannot be satisfied because
w(?) is not bandlimited. However, the effects of bandlimit-
ing w(r) to a large but finite number of harmonics will
merely introduce linear distortion near the band edges,
namely k/T and (k -+ 1)/T. This effect can be tolerated by
using an abundant bandwidth or, equivalently, a small T
The special case where 7 is an integral multiple of the delay
T results in a system that is equivalent to the frequency-
shifting delay loop invented by Munster.® In this case, the
delay line of length T is used in a simple frequency-multi-
plex manner to obtain delays of T, 2T, 3T, etc.

® Chirp-filter synthesis

Chirp filters are extensively used in radar and sonar
matched-filter systems because of their Doppler insensi-
tivity.” A chirp filter is characterized by square-law phase
such that

é(f) = 2raf’+ ¢o, (15)
where « is a constant. The delay at any frequency is
do(f) _

ar draf . (16)
A transfer function that satisfies this requirement is
W(f) = % exp [j(2raf’ + ¢o)] . amn

As before, it is understood that Eq. (17) represents the re-
sponse over the output band only. Using the frequency-
time transformation yields

w(t) = cos [(2rat®/ TY) + ¢ . (18)

As in the delay-synthesis application, the fact that w(r)
must be periodic with period T means that, if «/T? is not
an integer, then w(f) will exhibit a periodic discontinuity.
In fact, because of the periodic abrupt change in the rate-
of-change of the phase, the derivative of w(s) will exhibit a
periodic discontinuity irrespective of the value of «/72,

and therefore w(#) is not bandlimited. However, as argued
in the delay-synthesis case, this effect can be tolerated by
using a sufficiently large bandwidth.

Summary and conclusions

An electronic system has been described for synthesizing
complicated filters in a prescribed frequency band. The key
element of the system is a periodic, modulating waveform,
one period of which is identical to the real part of the trans-
fer function. In many cases this waveform may be difficult
to generate, but for the important applications discussed
in this paper the periodic waveform is easily produced. For
other applications, digital techniques may be necessary to
generate the periodic waveform.

Theoretically, the system can be used to synthesize any
physically realizable narrowband filter. The technique
should prove useful for matched-filter applications, delay-
line synthesis, and channel equalization. The system re-
quires accurate positive feedback, and therefore will pose
some difficult analog-circuit design and maintenance prob-
lems. However, the operations could be performed digitally
with considerable accuracy, thereby alleviating the design
and maintenance difficulties.

Appendix

This appendix presents a proof of the system operation for
the general input signal, x(¢). For convenience, the com-
plex-polar, or analytic, signal representation that results
from the single-sided inverse Fourier transform is used.?
The analytic signal representation is denoted with the sub-
script a. For example

w(t) = real partof [w,(¢)], (A1)
and

wa(t) = w(t) + jw(1) . (A2)
To begin the proof, define the product

u(t) = x(O)yw(t) . (A3)

Using conditions 1 and 3, and Bedrosian’s theorem? for
the Hilbert transform of the product of a low-pass and
high-pass signal, yields

u(t) = w(@®)x(t) + jw(t)x(¢) (A4)
w(t)x,(t) .

After one circulation, this signal is delayed T seconds and
shifted in frequency by 1/T Hz. This yields

u,(t — T) exp (2wjt/T) .
After N circulations, the signal at the input to the band-
pass filter is

> u,(t — nT) exp (2mjnt/ T) . (A5)

n=0
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The Fourier transform of the analytic representation of the
output of the bandpass filter is

+ N
n =] 6t 3w~ am

X exp {2xjt[(n/T) — fl}dt, (A6)

where G(f) is the transfer function of the bandpass filter.
Performing a time translation ¢ — nT — ¢ gives

to N
v = [ 3 exp (= 20im DG 00

X exp [2xjt(n/ T — f)]dt (AT)

Because w(?) is periodic (condition 2), it may be expanded
into a Fourier series. This yields

M
u (1) = x,(7) ;{ A exp ujmt/T) , (A8)

where A, is the complex amplitude of the mt harmonic
and, for notational simplicity, 4, is assumed to be zero;
M is the number of harmonic components in w(¢). Com-
bining Eqgs. (A7) and (A8):

Yo(f) = 2 X Amexp (= 2njnfTIG(S)
"+
X /.m xo(1) exp { —2mjt[f — (m 4+ n)/T]}dt.

(49)

Now, by condition 1, the Fourier transform of x.(fy—
namely X ,(f)—is nonzero only in the band [k/ T, (k -+ 1)/T1.
Therefore, the integral in Eq. (A9) will vanish unless

k/T) <[f— (m+n/T)] < [(k+1)/T].
Also by condition 4, G(f) is nonzero only if

k/T) < |fl <[+ 1)/T].
These two conditions ensure that Y,(f) will vanish unless
m= —n. (A10)

Because # has only positive integer values, Y ,(f) will vanish
except for negative integer values of m. Therefore, Eq. (A9)
becomes (after sufficient time to ensure that N > M)

M
Y.(f) = Z A_yexp (—2xjnfT)

n=1 -
X / x.(t) exp (2mjft)dt (A11)
M
= X.(/) n; A_, exp (—2xjnfT) . (A12)
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The transfer function of the bandpass filter has been
omitted because it was assumed to be unity in the band
[k/T, (k + 1)/T]. Because w(7) is real, A_, is the complex
conjugate of 4,. Also recall that the spectrum of the an-
alytic signal is twice that of the real signal for positive fre-
quencies. Therefore

M
Ya(f) = Xu(f) ;1 A% exp (—2mjmfT)

=} X(HwWE(ST) . (A13)

where the asterisk denotes a complex conjugate.
Equation (A13) describes a linear filter with the following
transfer function:

w(f) = % w(sT") — jw(fTh]. (A14)
Consequently, proof of Eq. (2) has been established for a

general input and for filters that are subject to the con-
straints imposed by the conditions stated in the paper.
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