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Synthesis  of  Transfer  Functions  in a 
Prescribed  Frequency  Band 

Abstract: A signal-processing  system  for  synthesizing  complicated  transfer  functions in a prescribed  frequency  band  is  described.  The 
system  consists of a multiplier  followed by a closed  loop  containing a delay  line and phase  modulator in series.  One  of the inputs to 
the multiplier  is the signal to be filtered.  The  second  input to the multiplier  is  periodic, the period  being  equal to the loop delay.  One 
cycle of the  periodic  waveform  is  identical to the real part of the  transfer  function  over a prescribed  frequency  band  of  width  equal to 
the  reciprocal of the  loop  delay.  The  imaginary  component of the  transfer  function is the negative  of the  Hilbert  transform of the  real 
part, as  in  all  physically  realizable  filters.  Two applications of the system are discussed. It is  shown  how a continuously  variable  delay 
line  and chirp filter  can  be  synthesized  using  these  techniques. 

One of the perplexing problems that continually confront 
the communications or signal-processing engineer is  the 
synthesis of filters having complicated  transfer  functions. 
This  paper describes a system for electronically synthesiz- 
ing  certain types of filters. The system behaves as a narrow- 
band, linear filter but  has two input signals. One of the  in- 
puts, x(& is the narrowband signal to be filtered. The sec- 
ond is a periodic waveform, w(t),  each cycle of which rep- 
resents the  real  part of the desired transfer  function  over a 
particular frequency band. A schematic of the system is 
shown in Fig. 1. The  product of the  two inputs, x(t)  and 
w(t), enters a unity-gain recirculating loop containing a de- 
lay line and frequency shifter. The combination of a delay 
line and frequency shifter  in a recirculating loop can also 
be  operated as a spectral analyzer. Operation of the  loop 
in this  fashion has received considerable attention,  and is 
usually called a “coherent memory filter.””-4 

The delay line delays the  product  for a time T,  and  the 
frequency shifter increases the frequency by an  amount 
1/T. The frequency shifter  can be regarded  somewhat more 
precisely as a phase modulator, where the phase is in- 
creased by an  amount 2 ~ t / T .  A bandpass filter is con- 
nected to the loop. The  output of the filter y(~) is the sys- 
tem output. 

Assume the following four conditions: 

-_ x(t) Input ! D Dclay T - 

Figure 1 Filter  system  diagram. 

If  these  conditions are satisfied, then  the  Fourier  transform 
of the  output y( t )  is 

Y ( f )  = 3 X ( f )  [ d f T 2 )  - j W - T 2 )  1 9 (1) 

where 
Ycf) = Fourier  transform of y( t ) ,  
X ( f )  = Fourier transform of x(t), 
w(fT2) = w(t) evaluated at  t = f T 2 ,  

$ ( f T 2 )  = w(t) advanced 90” in phase and evaluated when 
t = fP .  In  other words, %(t) is the Hilbert  transform of 
W(tI .5  

1. x(t)  is limited to  the  band [k /T ,  (k  + l)/TJ, where k is Therefore the transfer  function of the filter is 
a positive integer. 

2. w(t) = w(t + nr), where n is an integer. That is, w(t) w ( f )  = -- = 1 [ 
is periodic with period T. 

3. The highest frequency component  in w(t) is less than Equations (1) and (2)  are valid for  any functions x(t)  and 
k/T, and w(t) has zero  mean value. w(t) which satisfy the  four  stated  conditions; a rigorous 

4. The bandpass filter has unity  transfer  in the  band proof of this is contained in  the Appendix. However, con- 
638 [k/T,  ( k  + l)/Tl, and zero elsewhere. sidering the special case of a sinusoidal input will provide 

X ( f )  
2 w ( f T 2 )  - j G ( f T 2 ) ]  . ( 2 )  
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Figure 2 Spectrum of input x(r) = B exp (j0) 

an understanding of the system operation  that may be dif- 
ficult to  obtain  from  the proof for  the general case. 

Let  the  input x(t)  be 

x ( t )  = B COS (2Af t  + e) , (3)  

where B is the  input signal amplitude, f is the  input fre- 
quency, and 8 is the input phase. The spectrum of the in- 
put is illustrated  in Fig. 2.  As has already been pointed 
out,  the  input frequency must  lie in  the  band [k /T ,  
(k  + l)/Ti'. Because w(t) is periodic with period T, w(t) can 
be expanded into a Fourier series with  fundamental fre- 
quency 1/T.  Let w(t) be 

k 

~ ( t )  = A, COS ~ ( 2 ~ n t /  Tj + 4,1 , (4) 
7l=l 

where A ,  and & are respectively the amplitude and phase 
of the n t h  harmonic. The spectrum of w(t) is illustrated  in 
Fig. 3. The product x(t)w(t) is 

x( t> w(t>  

= - A, COS [2rf t  + e + ( 2 ~ 1  T )  + 4,] 

+ A, COS [2aft + e - ( 2 T n t / ~ )  - 4~ . ( 5 )  

B k  
2 ?'=I 

B k  
7Z=l 

The spectrum of x(t)w(t) is illustrated  in Fig. 4a. This 
signal is always present at the  input to the bandpass filter. 
In passing through the  loop x(t )w(t )  is retarded in phase by 
an  amount 2 r P ,  and  the frequency is increased by an 
amount 1/T. Therefore, the spectrum of the input  to  the 
bandpass filter after  one circulation  in the  loop is as shown 
in  Fig.  4b. When x(t)w(t) passes through  the  loop a  second 
time, it is again  retarded in phase and shifted in frequency. 
This yields a total phase shift of (-47rj"') and a frequency 
shift of 2/T.  This process continues so that  after i circula- 
tions  the phase shift is (- 2 i r f T )  and  the frequency shift is 
i/T. The spectrum of the  input  to  the bandpass filter after 

'requency 

Figure 3 Spectrum of periodic  waveform w(t) = Ai exp (&), 
i = 1, 2, 3. 

Figure 4 Spectra of signals  in  the loop: 
4 BAi exp [j(O + qh - 2~nfZ71, where n is the  number of loop 
circulations;  (a) IZ = 0, (b) n = 1, (c) n = 3. The  actual  spectrum 
appearing in the loop  after a given  number of circulations is the 
superposition of the  individual  spectra  generated  during each of 
the  completed loop circulations. 
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three circulations is shown in Fig. 4c. It should be noted 
that the spectrum appearing in the loop is the superposi- 
tion of all the individual spectra generated during each 
preceding circulation of the loop. 

The bandpass filter  will  pass  energy  in the band [k /T ,  
(k  + 1)/T] only. Furthermore, after sufficient time, energy 
that has been around the loop once, twice, three times, etc., 
will exist at the input to the  output bandpass filter. Adding 
together all terms in the band [k /T ,  (k 3. l)/T] yields the 
spectrum of the output of the bandpass filter: 

Y ( f )  = ( B A 1 / 2 )  exp [ i ( e  - +1 - 2 ~ f T ) l  

+ ( B A 2 / 2 )  exp [i(S - 42 - 4nJ’T)I 

+ ( B A 3 / 2 )  exp [ d e  - 43 - 6a fT) I  + . . 
k 

= [ x ( f ) / 2 I  A, exp [ - j ( 2 r n f r  + 4 n > 1  
,=l 

k 

= [ X ( f ) / 2 1  A,  cos ( 2 a n f T  + 
n=l 

k 

- j [ ~ ( f ) / 2 I  A, sin ( 2 a n f ~  + 4%) 
,=l 

= I X ( f ) / 2 1 [ w ( f T 2 )  - j w ” m  * (6) 

This last expression constitutes a proof of Eq. (1) for the 
special  case of a sinusoidal input. 

Several points are worth mentioning at this time. First, 
it is not essential that w(t) have zero mean value. This re- 
striction was invoked purely for notational simplicity.  If 
w(t) has a nonzero mean value, the transfer function can- 
not be described in terms of the modulating waveform 
w(t), but must be expressed in terms of the spectral com- 
ponents of w(t). For modulating waveforms containing dc 
components the transfer function is 

l k  
~ ( f )  = 1 C An ~ X P  [ - i ( 2 a n f ~  + 4 n > 1  + ~o t (7) 

n=1 

where A. is the dc  value of w(t). Second,  because w(t) is 
periodic  with period T ,  the transfer function of the filter 
W ( f )  is one cycle  of a periodic function in  frequency with 
period 1/T.  This can be seen  by substitutingf = n/T + f’ 
in Eq. (6). The “phase” or position in the spectrum of the 

I W ( f ) I 2  = a [ w 2 ( f T 2 )  + m ~ 2 ) 1  . (8) 

Therefore, if the phase of the filter  is not  important, only 
the envelope of w(t) need  be  specified.  However, w(t) must 
still be periodic with period T .  

At first glance, Eq. (6) may  seem to impose undue phase 
limitations on the proposed filter because the imaginary 
part of the transfer function is  completely determined by 
the real part. This is indeed a phase limitation, but it must 
be remembered that the imaginary part of the transfer func- 
tion of any physically  realizable filter is the negative of the 
Hilbert transform of the real part. Therefore, the con- 
clusion is that any physically  realizable  filter can be syn- 
thesized with this technique. Usually the desired  filter is 
specified  in terms of the magnitude and phase  versus fre- 
quency; but, using  elementary  complex algebra, one can 
easily obtain the real part of the transfer function from 
these two relationships. 

In this explanation of the system operation, the “sum” 
frequency components resulting from the multiplication 
process  were  neglected. By using a negative  frequency shift 
in  the loop, the system can be  designed to use the ‘‘sum’’ 
components instead of the “difference”  frequency  com- 
ponents, but  a high-pass filter  would  have to be inserted in 
the  loop to eliminate the accumulating “difference”  com- 
ponents. In this case, the transfer function of the filter can 
be  shown to be 

W ( f )  = w ( - f T 2 )  + j G ( - f T 2 ) .  (9) 

Equation (9) shows that if w(t) is an even function, then 
the transfer function in the “sum” mode is the complex 
conjugate of the transfer function in  the “difference”  mode. 

It is  worthwhile to consider the accuracy  with  which one 
can approximate a desired transfer function. The actual 
transfer function can be represented as  a Fourier series 
with N terms where N must be less than k .  Therefore, a 
particular transfer function in the band (fi, fi) can be ap- 
proximated with an accuracy no better than a  Fourier 
series of N terms where N is the highest  integer in the ratio 
f l l ( j - 2  - fi). In other words, high-frequency, narrowband 
filters are theoretically approximated more accurately. 

Applications 

periodic transfer function is  determined by the phase of 
the local oscillator inherent in the phase modulator. Third, 
the value of the real part of the transfer function at har- 

Delay synthesis 
A delay line with delay 7 is characterized by the fact that 

monics of 1/T (Le., zero phase) is determined at the in- d $ ( f )  
stant that the phase shift introduced by the phase modu- 
lator is an integral multiple of 27r. Therefore, to properly 
position the transfer function in the frequency domain, the 
periodic waveform w(t) must be synchronized with the I w ( f )  l 2  = constant . 

” 

df 

and 

- - 2 m  

phase modulator. 
The power transfer function of the filter  is proportional Integrating Eq. (10) yields 

640 to the square of the instantaneous envelope of w(t). That is, 6 ( f )  = - 2aTf + 4,, , 
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where cP0 is an arbitrary constant phase shift. A transfer 
function that satisfies the requirements is 

W ( f )  = $ exp [ - j ( 2 ~ f 7  - $0)1 ,  (1 2) 

where it is understood that Wcf) is periodic with period 
1/T, so that Eq. (12) represents the response in the band 
[k/T, (k + 1>/11 only. 

The real part of the transfer function is 

$ cos (27rf7 - $0) . (13)  

Using the transformation from frequency to time, j T 2  = t ,  
yields one period  of the modulating waveform 

w ( t )  = COS [ (27r7t/ T 2 )  - $0) . (1 4) 

If 7 is not an integral multiple of T, then w(t) will have a 
periodic discontinuity. This means that, theoretically, the 
previously stated condition 3 cannot be  satisfied  because 
w(t) is not bandlimited. However, the effects  of bandlimit- 
ing w(t) to a large but finite number of harmonics will 
merely introduce linear distortion near the band edges, 
namely k/T and (k  + l ) /T .  This effect can be tolerated by 
using an abundant bandwidth or, equivalently, a small T. 
The special  case  where 7 is an integral multiple of the delay 
T results in a system that is equivalent to the frequency- 
shifting delay loop invented by Munster.6 In this case, the 
delay line of length T is  used in a simple frequency-multi- 
plex manner to  obtain delays of T,  2T, 3T, etc. 

Chirp-jlter synthesis 
Chirp filters are extensively  used in  radar and sonar 
matched-filter  systems because of their DoppIer insensi- 
tivity.’ A chirp filter  is  characterized by square-law phase 
such that 

$(f) = 2.rraf2 + $0 7 (15) 

where a is a constant. The delay at any frequency  is 

A transfer function that satisfies this requirement is 

~ ( f )  = 3 exp [ j (2?ra~.~ + $ 0 1 1  . (1 7) 

As before, it is understood that Eq. (17) represents the re- 
sponse over the output band only. Using the frequency- 
time transformation yields 

w ( t )  = cos [ (2aat2 /~4)  + 40] . (1 8) 

As in the delay-synthesis application, the fact that w(t) 
must be  periodic with period T means that, if a /T2  is not 
an integer, then w(t) will exhibit a periodic discontinuity. 
In fact, because  of the periodic abrupt change  in the rate- 
of-change  of the phase, the derivative of w(t) will exhibit a 
periodic discontinuity irrespective of the value of a /P ,  

and therefore w[t) is not bandlimited. However, as argued 
in  the delay-synthesis  case, this effect can be tolerated by 
using a sufficiently large bandwidth. 

Summary  and  conclusions 
An electronic system has been  described for synthesizing 
complicated filters in a prescribed frequency band. The key 
element  of the system  is a periodic, modulating waveform, 
one period of which is identical to the real part of the trans- 
fer function. In many  cases this waveform  may  be  difficult 
to generate, but  for  the  important applications discussed 
in this paper the periodic waveform is easily produced. For 
other applications, digital techniques  may be necessary to 
generate the periodic  waveform. 

Theoretically, the system can be  used to synthesize any 
physically  realizable narrowband filter. The technique 
should prove useful for matched-filter applications, delay- 
line synthesis, and channel equalization. The system  re- 
quires accurate positive feedback, and therefore will pose 
some difficult analog-circuit design and maintenance prob- 
lems.  However, the operations could be performed digitally 
with considerable accuracy, thereby alleviating the design 
and maintenance difficulties. 

Appendix 
This appendix presents a proof of the system operation for 
the general input signal, ~ ( t ) .  For convenience, the com- 
plex-polar, or analytic, signal representation that results 
from the single-sided  inverse Fourier transform is  used.8 
The analytic signal representation is denoted with the sub- 
script a. For example 

w ( t )  = real  part of [ w U ( t ) ]  , (-41) 

and 

w,(t) = w ( t )  + j + ( t )  . (A21 

To begin the proof, define the product 

u(t j  = x ( t ) w ( t )  . (-43) 

Using conditions 1 and 3 ,  and Bedrosian’s theoremg for 
the Hilbert transform of the product of a low-pass and 
high-pass  signal,  yields 

ua(t) = w ( t ) x ( t )  + j w ( t ) 2 ( t )  (-44) 

= w ( t ) x , ( t )  . 
After one circulation, this signal is delayed T seconds and 
shifted in  frequency by 1/T Hz. This yields 

u,(t - T )  exp ( 2 ~ j t /  T )  . 
After N circulations, the signal at the input to the band- 
pass  filter  is 
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The  Fourier transform of the analytic  representation of the 
output of the bandpass filter is 

r+ - N 

Y,U> = ’ ~ ( f )  2 u,(t - n T )  
“m n=O 

X exp { 2 . l r j t [ ( n / O  - f l l d t  , (-46) 
where G ( f )  is the transfer  function of the bandpass filter. 
Performing a time  translation t - nT ”+ t gives 

X exp [ 2 n j t ( n / T  - f ) ] d t  (-47) 

Because w(t) is periodic (condition 2), it may be expanded 
into a Fourier series. This yields 

+M 

uu(t)  = xu(t) C A ,  exp (2?rjmt/ T )  , (AS) 

where A ,  is the complex amplitude of the mth harmonic 
and, for notational simplicity, A0 is assumed to be zero; 
M is the number of harmonic  components  in w(t). Com- 
bining Eqs. (A7) and (AS): 

“M 

N M  

Y , ( f )  = 2 2 A,exp ( - 2 ? r j n f T ) G ( f )  
n=O m-M 

x , ( t )  exp { - 2 ? r j t [ f -  ( m  + n ) / T ] } d t .  

(A9) 
Now, by condition 1, the  Fourier transform of x,(t)- 
namely X,(f)-is nonzero only in the  band [k/T, (k + l)/Z‘l. 
Therefore, the integral in Eq. (A9)  will vanish unless 

< [f- (m + d o l  < [ (k  + 1)/7-1 
Also by condition 4, G ( f )  is nonzero  only if 

( k l 0  < I f 1  < [ (k  + 1)/Tl  
These  two  conditions  ensure that Y, ( f )  will vanish unless 

m = “n. (A101 

Because n has only positive integer values, Y,(f) will vanish 
except for negative integer values of m. Therefore, Eq. (A9) 
becomes (after sufficient time to ensure that N > M )  

~ , ( f )  = A_, exp ( - 2 7 r j n f ~ )  
M 

n-1 

+- 
X x u ( t )  exp (z?rj.ft)  dt ( A l l )  

M 

= ~,(f’) A_, exp ( - 2 ? r j n f ~ )  . (A1 2)  
n=l 

The transfer  function of the bandpass filter has been 
omitted because it was assumed to be unity in the  band 
[k/T, (k + l)/Z“J. Because w(t) is real, A_,  is the complex 
conjugate of A,. Also recall that  the spectrum of the  an- 
alytic signal is twice that of the real signal for positive fre- 
quencies. Therefore 

Y,(Y) = x,(f) & e x p  ( - 2 n j m f ~ )  
M 

m=l 

= 4 Xa(f) wX(fT2)  . (A1 3)  

where the asterisk denotes a complex conjugate. 

transfer  function: 
Equation (A13) describes a linear filter with the following 

W ( f )  = 3 [ W ( f T 2 )  - j @ ( f T 2 ) ] .  (A14) 

Consequently, proof of Eq. (2) has been established for a 
general input  and  for filters that  are subject to the con- 
straints imposed by the conditions  stated  in the paper. 
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