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SCEPTRE: A Program for Automatic  Network  Analysis* 

Abstract: This paper  describes the mathematical  formulation  of a computer  program  for  automatic  transient  analysis  of  electronic 
networks.  The formulation is based on the “state-variable”  approach to network  analysis  and  differs from other such programs pri- 
marily in the  way  that the network  equations  are  manipulated to produce a solution.  SCEPTRE includes a number  of  features  aimed 
at providing greater  flexibility and convenience for users of the  program.  Important  among  these  features is that no prescribed  equivalent 
circuit for active  elements  is  required for program  operation.  Also,  linearly  dependent  voltage  and  current  sources in a network  can be 
handled by the  program,  and  provision  has  been  made to allow a free-form  format  for  input  data.  The  paper  includes a discussion  of 
the program’s  ability to solve  networks  containing  time-varying  passive  elements,  and  considers  the  factors  that  influence  program 
running time. 

Introduction 
The digital  computer  has been  used for some  time to aid  in 
the solution of electronic  circuit  problems. A procedure  re- 
quired of analysts who  use  some  of  these  programs  is that 
they  write loop or node equations to describe the network 
and then translate them into a form that can be accommo- 
dated by the computer. In practice this procedure often is 
carried out by two  people:  the  engineer  who  writes the 
equations and the programmer who puts  them into com- 
puter  useable  form.  Even in the cases  where  one  individual 
performs both tasks, the process  is error prone and time 
consuming. The desirability of eliminating  these  disadvan- 
tages  has  led to the development of automatic circuit 
analysis  programs in which the user  does not write  circuit 
equations or do any  programming. In such programs the 
network  is  described  topologically and quantitatively ac- 
cording to  an easily learned format. Network solution is 
carried out by the program, which  effectively “writes” the 
appropriate differential and algebraic  equations. This equa- 
tion writing  ability is inherent  in the program and is based 
on a mathematical formulation that provides a solution to 
the general transient analysis  program. 

Kuol has  recently  published a survey that includes an 
extensive  bibliography of computer  programs  currently 
available  for  such  problems. The most well known of these 
programs are ECAP and NET-1. ECAP offers dc, ac, and 
transient  solutions and provides the option of worst  case 
and sensitivity  analysis  with all dc  solutions. Its most  seri- 
ous drawback  is that the particular transistor equivalent 
circuit  required for use in the program  limits the processing 
of nonlinear  network^.^^^ NET-1, on the other hand, offers 

dc and transient  analysis  capability  and  is not hampered by 
transistor equivalent  circuit n~nlinearities.~ Unfortunately, 
this program  requires the use of a specific topology that is 
provided in the stored diode and transistor model. No pro- 
vision  is  made for the entry of nonlinear  elements that are 
not part of these  two  stored  models. Another program, 
AEDNET,l9 has  been  designed to handle a greater  range of 
nonlinearities than do the other  programs but has not been 
widely  disseminated at this  time. 

PREDICT: the precursor to the program  discussed  in 
this paper, was intended  primarily for use in transient 
analysis  problems. Its mathematical formulation, i.e., the 
state-variable approachY6-l2 was  essentially the same as 
that used  in ECAP and NET-1.  But it had the important 
advantage that the analyst was not restricted to using a 
particular transistor model. Its successor,  SCEPTRE,13*14 
also uses the state-variable approach and has  considerably 
less  restriction on acceptable  network  topologies than do 
the previous  programs.  While the network equations gen- 
erated in the SCEPTRE  program are the same as in other 
programs of this type, the manner  in which the equations 
are processed is different. The new procedure  leads to a 
significant  reduction in computer solution time for many 
problems. The improvement is brought about in part by 
incorporating voltage  sources  directly into the network 
“tree” (to be  defined later) and forming and processing a 
larger  topological  matrix than is  usually  done. 
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The  important new features of SCEPTRE  that resulted 
from experience with PREDICT  are summarized as fol- 
lows: 

1. Any active element or interconnected group of elements 
that  can be described (subject to some restrictions) as a 
combination of voltage or current sources, passive ele- 
ments, and mutual  inductance may be stored on  tape by 
the user and called into use at  any point in a network. 

2. The user has  the  option of using a special portion of a 
program to determine the  dc steady-state response of a 
network. These results may then be automatically  in- 
serted as initial conditions of the transient section of the 
program, or they may be accepted as  output of the pro- 
gram. The program can  operate  in  the  dc mode, the 
transient  mode, or  in a combination of the two. 

3. Variations of a basic problem  can be studied if the user 
supplies the changes that will apply for each repeated 
run. 

4. A special section of the program  enables the user to de- 
fine output parameters other  than  the usual  source 
voltages and currents or passive-element voltages and 
currents. Systems of linear or nonlinear first-order differ- 
ential  equations that may or may not describe electrical 
networks may be entered into this section of the pro- 
gram. 

5. Voltage and current sources that  are linearly dependent 
on resistor voltages and currents, respectively, can be 
accommodated  without  computational delay. This fea- 
ture makes feasible the extensive use of a family of small 
signal transistor  equivalent circuits. 

6. FORTRAN subroutines  may be inserted into otherwise 
conventional SCEPTRE runs.  This option provides ex- 
tension of the scope of the program. 

7. A new approach to solution (mentioned earlier) has 
been employed to assure more rapid  solution and, there- 
fore, a smaller amount of computer  solution  time for 
most  practical problems. 

8. Runs may be automatically  terminated  contingent upon 
the behavior of specified network quantities. 

input data. 
This paper has been written  with the aim of providing 

circuit designers an insight into  the mathematical processes 
by which SCEPTRE reaches a problem solution. Hence, 
mathematicians will find much that is familiar in the 
following sections. The paper reviews the state-variable 
approach to analysis, shows the particular way this  ap- 
proach is used in SCEPTRE, and describes the informa- 
tion  that must be supplied by the designer. It also analyzes 
the program’s ability to solve networks  containing time- 
varying passive elements and discusses the factors that 

9. Provision has been made for a free-form format  for 

628 influence program  running time. 
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Loopl:E,Rl ,C 

Loop 2: C, L,  R ,  

Loop 3 : R,, I 

CutsetW: E . R I  

Cut set X: R I .   C , L  

Cut set Y: L, RZ, I 

Figure 1 Sample  network  showing  elements  contained  in  loops 
and cut sets  and  identifying  network  tree. 

The state-variable  approach 
Consider the network shown in Fig. 1. Assume that  the 
values of source voltage, E, and source current, J ,  are 
known  functions of time. Also assume that  the capacitor 
voltage VC and inductor current I L  are specified initial 
conditions; i.e., their values are  known  at time to. It is easy 
to see that all other voltages and currents for  the network 
elements can be determined at  10 by solving, in the  order 
given, the following equations: 

To compute the transient values of the network voltages 
and currents, the next step is to evaluate the equations 
(a)-(f) at  some later instant of time, t l .  It  is possible to do 
this if new “initial  conditions” for  the interval starting at tl 
can be  obtained.  Hence,  updated values for V C  and I t  are 
reached by computing  their  time derivatives at to and then 
integrating them over the period from to to tl. After Equa- 
tions (a)-(f) have been solved at to, the derivatives can 
readily be calculated from 

P C  = IC/C 

iL  = v L / ~  
The process of solving Equations (aHh)  and integrating 
(g) and (h) to get updated  initial  conditions  can  be  repeated 
as  many times as is necessary to achieve a complete 
transient  solution of the network. 

Digital  computer analysis of a network  composed of 
many voltage and current sources, resistors, capacitors, in- 
ductors, and mutual  inductances proceeds essentially in the 



way Just described. The generalized version of this proce- 
dure is called the state-variable approach to network analy- 
sis. The  state variables of any system may be defined as  the 
minimum set of variables that, together  with all source in- 
puts (and under certain  conditions, the time derivatives of 
inputs), is sufficient to determine all other system variables 
at a given time. In general, the  state variables are  the set of 
independent initial conditions of the network.12 In particular, 
they are  the  set of all  capacitor voltages diminished by a 
subset equal  in number to  the number of voltage-source- 
capacitor loops in the network, and  the set of all inductance 
currents diminished by a subset equal  in number to the 
number of current-source-inductance cut-sets in  the net- 
work. (All capacitors  in such a loop cannot have inde- 
pendent voltages and all inductors in such a cut-set cannot 
have independent currents.) 

Computer programs that use the state-variable approach 
precede the solution of network equations by automati- 
cally forming the vectors and matrices involved in the equa- 
tions. In SCEPTRE the voltage and current vectors are 
formed by construction of a specific network "tree." A tree 
is defined as a connected subgraph of the network which 
includes every node of that network, but contains no closed 
loops. All elements of the network that  are included in  the 
tree are called tree branches and all elements excluded from 
the  tree are called links. The specific tree  formed by 
SCEFTRE contains  all voltage sources, a maximum num- 
ber of capacitors, a minimum number of inductors, and  no 
current sources. The program is capable of handling dis- 
connected networks since it can form multiple trees. 

The procedure for identifying the specific tree of a given 
network is as follows: Using the coded  description of the 
network supplied by the user, SCEPTRE compiles the 
names of all network elements into a list such that all volt- 
age sources come first, then capacitors, resistors, inductors, 
and current sources, in that order. The  numbers assigned by 
the user to  the nodes of the first voltage source in  the list 
are compared with the numbers assigned to  the terminal 
nodes of all other elements. Any element which has  the 
same  node  numbers as  the voltage source  must be a parallel 
element; it is immediately removed from  the list and cate- 
gorized as a link. Any element which has a node coincident 
with the TO node of the first voltage source will have that 
node  number changed to the number of the FROM node of 
the source. The first voltage source is then established as a 
tree  branch. 

At this point the process is repeated with  the nodes of the 
second voltage source  in the list serving as  the reference 
pair. Eventually, every element that serves as a reference is 
classified as a tree  branch, and every element that is to be- 
come a link is removed from  the list. If the network to- 
pology has forced the  program to classify any voltage 
source as a link or any current  source as a tree  branch, the 
run will be aborted  and  an  appropriate diagnostic message 

will be supplied to the user. It is important to note  that this 
procedure  does not require that networks  submitted for 
analysis be free of capacitor loops  or inductor cut-sets. 
Further, any  source dependencies that may exist seldom 
dictate  the  position that  the dependent  source may occupy 
in  the network. For example, a voltage-dependent current 
source  may be inserted at  almost any position that can 
accommodate an independent current  source. (The restric- 
tions are discussed in a later section.) 

Once an element has been classified as a tree  branch or 
Iink  by the procedure above, it is labeled according to the 
following scheme: 

Class I-Capacitor Links 
Class 2-Resistor Links 
Class 3-Inductor Links 
Class 4"Capacitor  Tree Branches 
Class 5-Resistor Tree Branches 
Class  &Inductor Tree Branches 
Class 7-Voltage Source Tree Branches 
Class 8-Current Source Links. 

These class numbers will appear  as subscripts on the 
voltage and current vectors that  are used in the detailed  de- 
scription of the mathematical  formulation. The  state vari- 
ables defined previously are now identified as  the vector of 
capacitor  tree  branch voltages, V4, and  the vector of induc- 
tor link currents, 1 3 .  

Referring back to  the simple example, Equations (a) and 
(b)  correspond  in the general case to the  solution  for resis- 
tor link  currents and voltages, 1 2  and VZ, respectively. 
Equations (c) and (d) correspond to resistor tree  branch 
currents and voltages, IS and Vg; Equation (e), to capacitor 
tree branch  currents, Z4; and  Equation (f), to inductor  link 
voltages, V3. Since the circuit contained no capacitor  loops 
or inductor cut sets, it was not necessary to solve any  equa- 
tions  corresponding to Zl, Vl, or Is, Ys. 

Matrices of network element values are also  formed by 
the  program for use in solving the network  equations. The 
diagonal matrices Rz2 and RS5 contain the values of link and 
tree branch resistors, respectively; the diagonal matrices S11 

and S 4 4  are  the inverses of the matrices C11 and C44 which 
contain  the values of link and  tree branch  capacitors,  re- 
spectively. Symmetric matrix L33 contains values of induc- 
tor links and  mutual inductance between inductor  links, 
and L66 contains values of inductor  tree  branches and in- 
ductances between tree  branch  inductors. The nonsym- 
metric matrix L36 = L6zT contains values of mutual induc- 
tance between inductor links and inductor  tree branches. 

Figure 2 summarizes the transient  solution process in 
terms of the variables used in SCEPTRE. The process be- 
gins with the insertion of the independent initial  conditions 
V4(f0) and ZS(f0). All other current and voltage vectors, and 
the derivatives r4 and Z 3  are calculated at t o .  Then r4 and 
f 3  are integrated to provide V4(t1) and Z3(tl) and  the process 629 
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Figure 2 Block diagram of computer  solution  procedure. 

is repeated for  as many time  steps as  are needed to reach 
the desired termination time. An awareness of these major 
operations  in the solution process should help the program 
user anticipate  the  approximate amount of computer  time 
that will be required for his particular problem. 

The numerical integration  routine  controls the size of the 
solution increments that  can be taken,  and therefore, the 
number of solution increments that  are required to reach 
the specified termination. SCEPTRE uses a variable-step 
integration  method for this p~rpose.’~*’~  The efficiency with 
which the equation  solution  operations are carried out 
controls the  amount of computer  time required per solution 
increment. 

Topological  description of networkg-12 
This section shows how the F-matrix,  a topological descrip- 
tion of the interconnections between tree  branch and link 
elements, is used in the  computation of network  currents 
and voltages. The F-matrix and  its transpose are sub- 
matrices of the “fundamental  circuit matrix,” T ,  and  the 
“fundamental cut-set matrix,” Q. For a general connected 
network that includes b elements and n nodes, the matrix T 
contains b columns and b - n + 1 rows. It is formed 
by comparing the assumed direction of each  fundamental 
circuit loop with the reference direction assigned to 
each element in  the  loop.  The matrix element values are 
determined by the rule: r + 1  if the direction of loop i coincides with the 

reference direction of element j in loop i, 

I ’  I reference direction of element j in loop i, 
t . .  = -1  if the direction of loop i is opposite to the 

[ o if element j is not  in loop i. 

By arranging  appropriately the columns that correspond 
to the link elements, T can be partitioned as 

T = [UFI,  

where the  columns of the (b - n + 1) X (b - n + 1) unit 
matrix, U, correspond to the link elements, and  the columns 
of the (b - n + 1) X (n - 1) matrix F correspond to tree 

630 branch elements. 

If V represents the vector of all element voltages, the 
matrix  equation for  the Kirchhoff voltage law is TV = 0. 
Partitioning V leads to an expression for  link voltages, VL, 
as  a  function of the F matrix and tree  branch voltages, VT. 
That is, 

VL = - F V T .  (1) 

The fundamental cut-set matrix, Q,  contains b columns 
and n - 1 rows. It is formed by observing whether the 
reference direction of each network element in  a  funda- 
mental cut-set is toward or away from the node. Matrix 
element values are given by: 

1 3-1 if the direction of cut-set i coincides with the 
reference direction of element j in cut-set i, 

q i j  = - 1 if the direction of cut-set i is opposite to the 
reference direction of elementj in cut-set i, 

0 if elementj is not  in cut-set i. 

Arranging  the  columns of Q in the same order  as was done 
for T permits the partition 

Q = -FTU, 

where F T  is the transpose of the previously defined matrix, 
F,  and U is an (n - 1) X (n - 1) unit  matrix. Here, the 
columns of F T  correspond to network link elements and  the 
columns of U correspond to tree branch elements. The 
matrix equation  for  the Kirchhoff current law is Q I  = 0. 
Partitioning the current vector I leads to  an expression for 
tree  branch  currents IT in  terms of FT and  the link currents 
IL .  That is, 

“ 

IT = F I L  . T 

Figure 3 shows the partitioned T and Q matrices for  the 
network of Figure 1. Equations (1) and (2) have eliminated 
the T and Q matrices, and all subsequent derivations are 
framed  in  terms of the F matrix. 

Figure 3 (a)  Incidence  matrix Q for network  of  Figure 1 ; (b) In- 
cidence matrix T for  same  network. 

Eleincnts Elements 
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Further partitioning of the Fmatrix gives the submatrices 
that are actually formed by SCEPTRE for use  in obtaining 
network solutions: 

F = [:: g: ;36 :] 
where the subscripts indicate that submatrix FrS describes 
the interconnections between the network elements in 
Classes r and s. The zero submatrices can be  explained by 
observing that the submatrix F,, # 0 only if the network 
contains Class rand Class s elements, and at least one Class 
r element  closes a loop containing a Class s element. For 
example, the condition F15 # 0 would require at least one 
capacitor link (Class 1) that closes a loop containing a re- 
sistor tree branch (Class 5). The method used  in SCEFTRE 
to form the specific network tree prohibits the occurrence 
of this condition, as well as the conditions F16 and F26 # 0. 

Partitioning of V L ,   V T ,  Z L  and IT according to the classes 
defined earlier, leads to the following expansions of the 
Kirchhoff equations (1) and ( 2 ) :  

F14 0 0 

Fs4  Fs5  Fse  Fa1 

v1 = -F14v4 - F17EI (3a) 

v2 = -F24V4 - F25V5 - F27E7 (3 b) 

V3 = -F34V4 - F35V5 - F36Vs - F37E7 (34 

vs = -Fs4V4 - FaV5 - Fs6v6 - Fg7E7, ( 3 4  

and 

1 4  = F I ~  11 -I- Fz4T 1 2  + F34T 1 3  + FsdT J s  (4a) 

1 5  = FzhTZz -k F35T13 -k FssTJs (4b) 

I6 = F3cT13 -k F ~ F , ~ J ~  (4c) 

17 = F I ~ ~ I I  -I- FmTZz f FuTZ3 + Fs7T J s  . (4d) 

Derivation of network  quantities 
The purpose of this section is to present the matrix equa- 
tions that SCEPTRE uses to  compute  all unknown net- 
work quantities in terms of known quantities (state varia- 
bles, V4 and 13; sources, E7 and J s ;  and the submatrices of 
the F matrix). Appropriate adjustments for networks con- 
taining elements  whose  values are functions of time will  be 
discussed  in a later section. 

Resistive  quantities 
All resistor currents and voltages in any network are in- 
cluded in the vectors Zt,Z5, V z  and V5.  The solution for 12 
makes  use  of the fact that 

V2 = RzzZz ( 5 )  

V5 = R5515 . (6) 

Substituting Eqs. (4b), (5) and (6) into Eq. (3b)  yields 

The utility of Eq. (7) depends on the existence of the 
inverse of MR. It is a straightforward matter to show that 
A ~ R  is a positive  definite matrix and, hence, its inverse 
exists. 

Once ZZ has been computed from Eq. (7), the remaining 
resistive quantities Z5,  Vz  and V5 are computed by solving 
Eqs. (4b), (5) and (6), in  that order. 

It is  possible to attain the same end using an alternate ap- 
proach. Instead of  using Eqs. (5) and (6), one would  use the 
expressions 

where Gz2 = R;; and G55 = R;: 
Then, substituting (3b), (9) and (IO) into Eq. (4b) gives 

G55 V5 = F25TGzz[- Fz4 v4 - FZ5 v5 - F27E7] 

f F35T  13 + FsjT Js  

or 

V5 = I V G ' [ F Z ~ ~ C Z Z ( - F Z ~ V ~  - F m G )  + F3jT13 

+ F a T  J s ]  , (11) 

where MG is R positive  definite matrix given  by 

MG = G55 + FzsTGzzF25 . (1 2) 

Once V b  is known, the remaining resistive quantities VZ,  I2 

and Z5 can be determined from Eqs. (3b), (9) and (lo), re- 
spectively. 

The practical difference  between the two approaches lies 
in  the size  of the matrix that must be inverted. The M R  
matrix of Eq. (8) is of dimension n X n where n equals the 
number of resistor  links  in  any network. The MG matrix of 
Eq. (12) is of dimension m X m where m equals the number 
of resistor tree branches in any network. In practice, it hap- 
pens more often than not that m < n. Consequently, the 
second method of obtaining resistive quantities often re- 
quires the inversion of a smaller matrix than does the first 
method. SCEPTRE compares the number of tree branch 
resistors with the number of link resistors and evaluates 
ME or MG, depending on which  is smaller. 631 
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Capacitative quantities 
All capacitor currents  and  voltages are included in the 
vectors 1 4 , 1 1 ,  V4 and Vl .  The vector of state variables, V4, 
is a known quantity at the beginning of each  time step, but 
the vector of the derivatives of the state variables, v4, must 
be determined. The unknown  capacitive quantities then are 
Z,, 1 4 ,  Vl and v4 and they are computed in that sequence. 

The solution for Zl is  derived from the relations 

and from differentiation of Eq. (3a) 

PI = - F 1 4 V 4  - F17&. (1 5)  

Note that Eq. (15) introduces the need for the derivative of 
the source  variable, I&. Substituting Eqs. (4a), (13), and 
(14) into Eq. (15) gives 

Si1 4 = - F14S44[FT411 + FZ Zz + FZ 1 3  + F L  J a ]  

- F17 E7 

or 

It = M z l [ -  F I ~ S ~ ~ ( F ~ I Z  + F3TqZ3 + F L  J8)  

- FIT&] , (1 6) 

where Mc is a positive  definite  matrix  given  by 

Mc = 5'11 f F14S44FT4. (1  7) 

The rest of the capacitive quantities, 14, VI  and v4 can now 
be determined from Eqs.  (4a),  (3a) and (13),  respectively. 

Inductive quantities 
All inductive currents and voltages are included  in the vec- 
tors Z3,  1 6 ,  V3 and v6. The vector of state variables, 1 3 ,  is a 
known quantity at the beginning of each  time  step, but the 
vector of the derivatives of the state variable, i 3  must  be  de- 
termined. The unknown  inductive  quantities,  then, are is, 
V3, v6 and 16 and they are computed in that sequence. 

The derivation of i 3  makes  use of the relations 

v3 = ~~~i~ + ~~~i~ 
v6 = L63i3 + L66j6 

and  the derivative of Eq. (4c) 

i 6  = + & j 8  . (20) 

Note that Eq. (20) introduces the need for the derivative of 
the source variablej8. Manipulation of Eqs. (3c),  (18),  (19) 
and (20) leads to 

L33j3 + L36(FZi3 + Fr6j8) 

= - F34V4 - F35 V5 - F36L63i3 

632 -F~36L66F:613 - F36hFr638 - F37E7 
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or 

i 3  = M;'[- F34 v4 - F35 vs - (F36L66F& 

f L36F;)ja - F37E7I (21) 

where 

ML = L33 f L36& + F36L63 f F36L66Fc. (22) 

Since L33 and L66 are not necessarily  diagonal, ML is not 
necessarily  nonsingular. In fact, it can be shown that if 
unity  coupling  between  inductors  exists, ML is singular. 
Hence,  users of SCEFTRE are cautioned  against  permitting 
unity  coupling in networks  submitted for analysis. 

Equation (21) gives the inductor-link current derivative 
vector in terms of known  quantities. The remaining  induc- 
tive  quantities, V3, v6, and 16, can now  be obtained  from 
Eqs. (18) and (20), (19) and (20), and (4c),  respectively. 

Current-source voltages and voltage-source currents 
Now that all passive-element currents and voltages  have 
been  determined,  Eq. (3d)  yields the vector of current- 
source  voltages,  and Eq. (4d)  yields the vector of voltage 
source  currents. 

Special classes of dependent sources 
The formulation of the equations used to compute  network 
quantities can be modified  slightly to allow  analysis of net- 
works  containing certain voltage and current sources that 
are dependent on resistor  voltages and currents,  respective- 
ly. The class of allowable  dependent  voltage  sources,  called 
Class Y elements,  is  defined  by the matrix equation 

EY = k1V2 + kzVs, (23) 

where kl is a matrix of constants, having a number of  rows 
equal to the number of Class Y elements and a number of 
columns equal to the number of resistor links; kz has a 
number of  rows equal to the number of  Class Y elements 
and a number of columns equal to the number of tree 
branch resistors. 

The class of allowable  dependent current sources,  called 
Class X elements, is defined  by 

J x  = k312 + k4Z5 , (24) 

where the matrices k3 and k4, are described  analogously to 
kl and kz. 

The F matrix for networks containing such  sources is en- 
larged to include the submatrices  describing the intercon- 
nections between these  sources and the other elements. 
That is, 

F14 0 0 
F24 F25 0 
F 3 4  F35 F36 F37 

F x ~  Fx5 Fx6 
Fa4 Fss Fa6 FS7 FSY 
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Figure 4 Computed  solution for capacitor voltage in network 
containing  time-varying  resistor. 

Modification of the equations for  the computation of volt- 
age and current vectors is straightforward. Notice, however, 
that  the modified equations  for Vl and is (see Eqs. (15) and 
(20)) require the derivatives E y  and jx whenever F l y  and 
F x ~  are nonzero : 

V I  = - F 1 4 V 4  - F17E7 - F l y e y  

i6 = + FF~JS + F ~ G J x  . 
Differentiation of Eqs. (23) and (24) shows that depends 
on Vz and ri,, and 1, depends on iz and is. Since SCEETRE 
contains no provision for computing these derivatives, the 
program  automatically checks for  the existence of non-zero 
F l y  or Fx6 and terminates  the run if one of them occurs. 
Hence, there is some  restriction on  the position that de- 
pendent sources may occupy in a network to be analyzed by 
SCEPTKE. The prohibited circuits are capacitor  loops con- 
taining a dependent voltage source, and inductor  cut-sets 
containing a dependent current source. 

Extension to time-varying networks 
The purpose of this section is to discuss the application of 
the preceding formulation to  the class of networks  in which 
one  or  more of the passive elements are variable functions 
of time. First, consider a series RC network in which the 
capacitance is constant, C = 1 ,  and the  resistor is a variable 
function of time, R = t + 1.  Assume there is no initial 
charge on  the capacitor and  that a 10-V step  function is 
applied to the circuit. The network is described by the 
equation 

and the capacitor voltage is given  by the particular solution 

10 V c ( t )  = - - 
t +  1 + l o .  

I Timc in nscc 

Figure 5 Comparison of computed  solution and closed  form 
solution  for  capacitor  voltage  in  network  containing  time-vary- 
ing  capacitor. 

A  plot of the  computed solution based on  the formulation 
of this  paper is given in Fig. 4. This result is virtually indis- 
tinguishable from  the closed form solution since the maxi- 
mum  error was about 0.02 V. This  error  can be attributed 
to  roundoff in the computer and  truncation in the integra- 
tion routine. 

Now consider the same  network,  but let the resistance be 
constant, R = 1,  and the capacitance a variable function of 
time, C = t + 5. Again, assume  there is no initial  charge 
and  that a 10-V step  function is applied. The network  equa- 
tion is 

and the closed form solution  for  the  capacitor voltage is 

125 
V , ( t )  = - ~ 

( t  + 5 ) 2  + 5 .  

Fig. 5 presents plots of both  the closed form solution and 
the computed solution. A significant error is evident. The 
source of this error  can be determined by an examination of 
the manner  in which state variable derivatives are com- 
puted. The relation Z = C(dV/dt) is implicit in Eq. (13): 
V 4  = S4414. However, it is always true  that if C = Q /  V ,  

1=-=- (cV)=c-+-V .  dQ d dV dC 
dt dt dt dt 

The formulation of SCEPTRE  has  not included the (dC/ 
dt)V term. Hence, it  is clear that this error will be incurred 
for networks  containing  time varying capacitors unless the 
analyst applies a compensating procedure. 

One such procedure is to  shunt  the capacitor by a current 
generator Jc where J, = V,(dC/dt). The  total current into 
the node becomes (CdV/dt) + (VdC/dt), which effects the 
necessary correction.  A  computer run with the additional 
current generator was made for purposes of corroboration. 
The error was again about 0.02 V. 633 
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Exactly the  dual situation exists for time-varying induc- 
tors. Equation (18) in the program  formulation ( V3 = LS3i3 
-k L3d6) implies that V = L(dZ/dt). It is always true  that 
V = d+/dt and if L = +/Z, 

Hence the formulation will produce an  error in the solu- 
tion of networks with time-varying inductors.  Correction 
may be applied in  the  form of a series voltage source EL, 
where EL = (dL/dt)Z. 

Another small but very practical class of networks that 
cannot be classed as linear may be accurately accommo- 
dated by this  formulation.  Consider the situation in which 
one  or more variable capacitors exist in  a  network  such that 
C = C( V). If  capacitance is defined as C = Q /  V,  then (25) 
may be written as 

dQ d I = - j t = - C ( V ) V = C ( V )  -+  V-"(V) 
dV  d 

dt dt  dt 

It is clear that (27) contains  a term  that is not provided by 
the formulation  Eq. (13) and  an  error must result. If, how- 
ever, the capacitances of interest are instead defined as C = 
dQ/dV, then substitution into (13)  yields simply I = dQ/dt 
which is certainly correct as it stands. The class of voltage 
dependent capacitors that  are defined this way are  the 
transition and diffusion capacitances associated with semi- 
conductor  junctions.l6!ls  This definition allows the formu- 
lation  in this  paper to accurately determine the transient 
response of transistor and diode  networks  without change. 

Application and utilization 
The special subroutines and auxiliary functions that make 
up  the  SCEPTRE program system require over 15,000 in- 
structions, which in  turn require over 5000 punched cards. 
As a matter of convenience, most of the instructions are 
stored  on a system tape  and  the user need supply only a 
comparatively small  number of cards. The cards that  are 
supplied by the user may be divided into  two  groups: a 
starter deck and a problem deck. The information  con- 
tained  in the  starter deck together with the IBSYS Monitor 
System controls the insertion of the basic program into core 
storage and  onto  an overlay tape.  The  latter  tape is neces- 
sary because the entire  program cannot be  accommodated 
by the 32,000-word capacity that is available with conven- 
tional IBM 7094 computing systems. It should be empha- 
sized that  the starter deck is entirely independent of the 
specific network that is to be solved. 

Once the information  contained in  the  starter deck has 
been processed, the specific network  information  contained 
in  the problem deck is utilized to carry out  the desired tran- 

634 sient solution. When the  amount of output information ex- 

RL=1.5K 

R,=2K 

RT=18K 

-5v 
(a) 

RCC u .. 

(c)  
Figure 6 Preparation of circuit  diagram  for  solution by computer 
program. (a) Inverter  circuit (b) Ebers-Moll  equivalent  transistor 
circuit  (c)  Inverter  circuit  diagram  in  folmat  required by pro- 
gram. 

ceeds an allotted amount,  it is buffered onto  the intermedi- 
ate  output  tape  as many times as necessary. At  the conclu- 
sion of the  run,  the  output  data is processed into  the proper 
format and  stored on  the  output tape.  This  information is 
then converted into conventional  printed and machine 
plotted form  at any subsequent time. The  starter deck con- 
sists of about 200 cards and  the problem deck usually con- 
tains  from 20 to 100. The problem deck must  contain  all the 
topological and quantitative  information that describes the 
particular  network  under analysis. The following prerequi- 
sites must be met before the problem deck for any  network 
can be  prepared: 

1. The network must be composed of resistances, capaci- 
tances,  inductances (including mutual inductances), and 
voltage and current sources. All active elements must, 
therefore, be represented by equivalent circuits that  are 
made  up of these basic components. 

2. A consistent set of units  must be used to describe all 
quantitative  information. 

3. All nodes  in the network  must be identified. 
4. Assumed current directions must be chosen for all pas- 

sive elements in  the network. 
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The circuit shown in Fig. 6a will be used to illustrate the 
procedure  required of the designer who wishes to make use 
of SCEPTRE. The schematic shows an inverter  circuit 
which is biased in  the off condition by the negative dc volt- 
age that is applied to  the transistor base. Let  it be desired 
to determine the transient response of this circuit to an in- 
put voltage pulse supplied by the voltage generator EI. The 
first requirement is met by replacing the transistor by the 
conventional Ebers-Moll large-signal equivalent circuit 
shown in Fig. 6b. (It is not  required, however, that this 
particular equivalent circuit be used.) The diodes of the 
equivalent circuit are in turn represented by voltage de- 
pendent current sources that reflect the current-voltage 
relationships that exist in these devices. 

The second prerequisite requires that  all quantitative 
information  be  entered in a consistent set of units.  One  set 
of units that works well with modern  transistorized  net- 
works is 

Time  in  nanoseconds 
Voltage in volts 
Current in milliamperes 
Resistance in kilohms 
Capacitance in picofarads 
Inductance in microhenries. 

To satisfy the  other  two preliminary requirements, each of 
the nodes  in the network is identified by a number (or letter) 
and assumed current directions through each of the passive 
elements in the network are indicated. The nodes may be 
numbered in any arbitrary fashion; numerical sequence 
need not be observed. The assumed current direction 
through  the passive elements is also arbitrary. The effect of 
an “incorrect” choice will show up only  in the sign of the 
computed  current or voltage. If the equivalent circuit of 
Fig. 6b replaces the transistor in Fig. 6a, the resulting net- 
work of Fig. 6c is in  a form suitable for  the preparation of a 
problem deck. A  problem deck listing for this  circuit is given 
in  Table 1. There are five header cards  in  this listing. The 
information  contained  under  each heading is coded in the 
following fashion: 

1. ELEMENTS-The names of all circuit elements (resis- 
tors,  capacitors,  inductors,  mutual inductances, voltage 
and current sources), their values, their  terminal  nodes, 
and  the assumed directions of current  through  them  are 
coded in  the  format: (ELEMENT), (FROM NODE) - (TO 
NODE) = (ELEMENT VALUE). For example, RT, 3-4 = 18 
indicates that resistor RT is connected between nodes 3 
and 4 with the assumed positive sense of current flow 
from 3 toward 4, and  that this  resistor  contains 18 units 
of resistance. If an element has a variable value specified 
by some function  in  either tabular  or  equation form, the 
coded  entry for ELEMENT VALUE will be, for example, 
TABLE 1 or EQUATION 3. The  table  or  equation is then 
given in detail  under the “Functions” header. 

Table 1 Problem deck 

ELEMENTS 
El, 1 - 2 = TABLE 1 
ET,4 - 1 = 5 
EC, 1 - 8 = 10 
CN, 5 - 1 = EQUATION 3 (lo., 80., JBE) 
CC, 5 - 6 = EQUATION 3 (lo., 400., JBC) 
RE,? - 3 = 2 
RT, 3 - 4 = 18 
RBB, 3 - 5 = .2 
RCC,  7 - 6 = .015 
RL, 8 - 7 = 1.5 

*JBE, 5 - 1 = DIODE EQUATION (l.E - 7,35.) 
JBC, 5 - 6 = DIODE EQUATION (5.E - 7,37.) 
3 1 ,  1 - 5 = .1  * JBC 
J2,6 - 5 = .98 * JBE 
ourpurs 
VCN, IRL 
INITIAL CONDITIONS 
VCN = -.5 
vcc = -10.5 
FUNCTIONS 
TABLE 1 
0,o 
10, 5 
25,  2.5 
40, 1.5 
60, .7 
90, .1 
loo, 0 
120,o 
EQUATION 3 (A, B, C) = (A + B * C) 
RUN CONTROLS 
STOP TIME = 500 
END 

in detail. 
*The diode equation is prestored in the program and need not be supplied 

2. OUTPUTS-All voltages and currents that  the program 
user wishes to see as  output  are listed under  this heading. 
The  notation VCN calls for  the voltage across  capacitor 
CN. The  output values are always produced  in  printed 
form, but a machine plotted version is optionally availa- 
ble. 

3. INITIAL CONDITIONS-The initial values of all ca- 
pacitor voltages and  inductor  currents are specified 
under  this heading. This section of the list may be 
omitted if all initial values are zero. If the initial condi- 
tions are unknown, they can be automatically computed 
by the program upon request. 

4. FUNCTIONS-This section is used to define explicitly 
all  the tables and equations, if any, that were referenced 
but not described under the ELEMENTS subheading. The 
general format  for  table descriptions includes a  card giv- 
ing the name of the  table followed by cards which con- 
tain pairs of numbers describing the numerical values of 
the independent and dependent variables in  that  order. 
All intermediate  points of the independent variable are 
used in a linear  interpolation routine to determine the 
corresponding value of the dependent variable. It is clear 635 
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that a more accurate  representation of a nonlinear  func- 
tion may be  obtained by the use of more  entries in  the 
table. 

5. RUN CONTROLS-This section contains all  the aux- 
iliary information needed to control  the  run.  Most of 
these quantities (for example, maximum, minimum, and 
starting step sizes for  the integration routine) have auto- 
matically preset entries that hold unless the user chooses 
to replace them with other values. The  one quantity that 
must always be  supplied is the real-time problem dura- 
tion  in  the time  units that  are used. 

A complete discussion of the coding procedure is given in 
the  SCEPTRE user’s man~a1 . l~  

Factors  that  influence  running  time 
Users of automatic transient circuit analysis programs are 
understandably concerned with the  amount of computer 
time required for  the solution of problems. A knowledge of 
the factors that lead to excessive solution times can  often 
permit the user to modify if not completely avoid  them. The 
most important factors are: 

1 .  Number of differential equations required. This  number 
is exactly equal to  the number of independent  capacitors 
and inductors in  the network and is not necessarily pro- 
portional to the size of the network. 

2. Variable resistors. If all  network resistors are  constant 
in value, only one inversion of the matrix ME or MG is 
necessary. If one  or  more resistors are variable, however, 
the  appropriate matrix  must be inverted at each  time 
step. Since most practical networks  require  hundreds or 
thousands of time  steps for solution, it is clear that many 
more  matrix inversions, and therefore, more computer 
time is needed. 

3. Large forcing functions or dependent sources. These 
quantities lead to large values for  the  state variable 
derivatives and force the integration routine  to proceed 
at smaller  time  steps to maintain  solution accuracy. 

4. Network  time  constants.  Small  time  constants in  the 
network will cause the integration  routine to operate  at 
small step sizes and will, therefore,  require that many 
steps be taken. 

The influence of network  time  constants on computer solu- 
tion time can be illustrated by example. Consider the net- 
work of Fig. 7 which contains poles in  the s-plane at X1 = 1 
and Xz = 10,001. 

The largest step size that may be taken during the  tran- 
sient solution is limited by the stability radius of the particu- 
lar integration routine  that is used. It can be shown that 
h,,, (i.e., maximum  time increment in  an integration  rou- 
tine) of a modified trapezoidal  integration  routine5 is ap- 
proximately equal to six times the reciprocal of the absolute 

636 value of the largest pole in  the network. 

Figure 7 Two-pole  network. 

More information is available when it is realized that  the 
closed form solution for  the  state variables of this  network 
must  be: 

Since 1 Xz 1 > I A l l ,  it is clear that  the problem duration must be 
at least 4/IXll to assure that  the network has practically 
settled to its final value. The minimum number of steps re- 
quired for a complete transient  solution is simply the  ratio 
of the problem duration to the maximum  step size. For  the 
example of Fig. 7 the minimum number of steps is (4/X1)/ 
(6/Xz) = 6667. This may be contrasted to  the situation that 
arises if Cz in Fig. 7 is increased to 0.01 units of capacitance. 
Then, poles exist at X1 = -1 and X 2  = -101 and only 68 
steps are required for a complete transient solution. Since 
the  amount of computer  solution  time per step is unaffected 
by the size of any element, it is clear that  the larger Cz re- 
duces computer  time by a factor of about 100. It is therefore 
quite clear that  the computer user must be very critical of 
the insertion of unnecessarily small time constants in 
practical  networks since these can  lead to widely separated 
poles (or eigenvalues). The analysis given in the preceding 
paragraph obviously depends upon  the characteristics of 
the numerical  integration  method that is used. SCEPTRE 
users have the choice of three different integration  methods, 
the best of which, from the  standpoint of the accuracy- 
speed trade-off, is usually the Fowler-Warten method.20 
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