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SCEPTRE: A Program for Automatic Network Analysis®

Abstract: This paper describes the mathematical formulation of a computer program for automatic transient analysis of electronic
networks. The formulation is based on the “state-variable approach to network analysis and differs from other such programs pri-
marily in the way that the network equations are manipulated to produce a sclution. SCEPTRE includes a number of features aimed
at providing greater flexibility and convenience for users of the program. Important among these features is that no prescribed equivalent
circuit for active elements is required for program operation. Also, linearly dependent voltage and current scurces in a network can be
handled by the program, and provision has been made to allow a free-form format for input data. The paper includes a discussion of
the program’s ability to solve networks containing time-varying passive elements, and considers the factors that influence program

running time,

Introduction
The digital computer has been used for some time to aid in

the solution of electronic circuit problems. A procedure re-
quired of analysts who use some of these programs is that
they write loop or node equations to describe the network
and then translate them into a form that can be accommo-
dated by the computer. In practice this procedure often is
carried out by two people: the engineer who writes the
equations and the programmer who puts them into com-
puter useable form. Even in the cases where one individual
performs both tasks, the process is error prone and time
consuming. The desirability of eliminating these disadvan-
tages has led to the development of automatic circuit
analysis programs in which the user does not write circuit
equations or do any programming. In such programs the
network is described topologically and quantitatively ac-
cording to an easily learned format. Network solution is
carried out by the program, which effectively ““writes” the
appropriate differential and algebraic equations. This equa-
tion writing ability is inherent in the program and is based
on a mathematical formulation that provides a solution to
the general transient analysis program.

Kuo! has recently published a survey that includes an
extensive bibliography of computer programs currently
available for such problems. The most well known of these
programs are ECAP and NET-1. ECAP offers dc, ac, and
transient solutions and provides the option of worst case
and sensitivity analysis with all dc solutions. Its most seri-
ous drawback is that the particular transistor equivalent
circuit required for use in the program limits the processing
of nonlinear networks.2:* NET-1, on the other hand, offers

dc and transient analysis capability and is not hampered by
transistor equivalent circuit nonlinearities.? Unfortunately,
this program requires the use of a specific topology that is
provided in the stored diode and transistor model. No pro-
vision is made for the entry of nonlinear elements that are
not part of these two stored models. Another program,
AEDNET, has been designed to handle a greater range of
nonlinearities than do the other programs but has not been
widely disseminated at this time.

PREDICT,? the precursor to the program discussed in
this paper, was intended primarily for use in transient
analysis problems. Its mathematical formulation, i.e., the
state-variable approach,’!* was essentially the same as
that used in ECAP and NET-1. But it had the important
advantage that the analyst was not restricted to using a
particular transistor model. Its successor, SCEPTRE,!*-14
also uses the state-variable approach and has considerably
fess restriction on acceptable network topologies than do
the previous programs. While the network equations gen-
erated in the SCEPTRE program are the same as in other
programs of this type, the manner in which the equations
are processed is different. The new procedure leads to a
significant reduction in computer solution time for many
problems. The improvement is brought about in part by
incorporating voltage sources directly into the network
“tree’” (to be defined later) and forming and processing a
larger topological matrix than is usually done.

* Work supported by the Air Force Weapons Laboratory under contract
AF 29(601)-6852. Dissemination of the SCEPTRE program is controlled by

the Air Force Weapons Laboratory, Attn: WLRET (Capt. Gary Pritchard),
Kirtland Air Force Base, New Mexico 87117.
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The important new features of SCEPTRE that resulted
from experience with PREDICT are summarized as fol-
lows:

1. Any active element or interconnected group of elements
that can be described (subject to some restrictions) as a
combination of voltage or current sources, passive ele-
ments, and mutual inductance may be stored on tape by
the user and called into use at any point in a network.

2. The user has the option of using a special portion of a
program to determine the dc steady-state response of a
network. These results may then be automatically in-
serted as initial conditions of the transient section of the
program, or they may be accepted as output of the pro-
gram. The program can operate in the dc mode, the
transient mode, or in a combination of the two.

3. Variations of a basic problem can be studied if the user
supplies the changes that will apply for each repeated
run.

4. A special section of the program enables the user to de-
fine output parameters other than the usual source
voltages and currents or passive-element voltages and
currents. Systems of linear or nonlinear first-order differ-
ential equations that may or may not describe electrical
networks may be entered into this section of the pro-
gram.

5. Voltage and current sources that are linearly dependent
on resistor voltages and currents, respectively, can be
accommodated without computational delay. This fea-
ture makes feasible the extensive use of a family of small
signal transistor equivalent circuits.

6. FORTRAN subroutines may be inserted into otherwise
conventional SCEPTRE runs. This option provides ex-
tension of the scope of the program.

7. A new approach to solution (mentioned earlier) has
been employed to assure more rapid solution and, there-
fore, a smaller amount of computer solution time for
most practical problems.

8. Runs may be automatically terminated contingent upon
the behavior of specified network quantities.

9. Provision has been made for a free-form format for
input data.

This paper has been written with the aim of providing
circuit designers an insight into the mathematical processes
by which SCEPTRE reaches a problem solution. Hence,
mathematicians will find much that is familiar in the
following sections. The paper reviews the state-variable
approach to analysis, shows the particular way this ap-
proach is used in SCEPTRE, and describes the informa-
tion that must be supplied by the designer. It also analyzes
the program’s ability to solve networks containing time-
varying passive elements and discusses the factors that
influence program running time.
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Figure 1 Sample network showing elements contained in loops
and cut sets and identifying network tree.

The state-variable approach
Consider the network shown in Fig. 1. Assume that the

values of source voltage, E, and source current, J, are
known functions of time. Also assume that the capacitor
voltage V¢ and inductor current I are specified initial
conditions; i.e., their values are known at time . It is easy
to see that all other voltages and currents for the network
elements can be determined at #, by solving, in the order
given, the following equations:

Ipy = (E— V¢)/R: @)
Vi1 = Rilg (b)
Ips =1,—J ©
Ve2 = Rolgs @
Ic=1Ipi — I ©

VL= VC—VRZ.

®

To compute the transient values of the network voltages
and currents, the next step is to evaluate the equations
(a)—(f) at some later instant of time, #. It is possible to do
this if new “initial conditions” for the interval starting at #,
can be obtained. Hence, updated values for V¢ and 7, are
reached by computing their time derivatives at 7 and then
integrating them over the period from #, to #;. After Equa-
tions (a)—(f) have been solved at #y, the derivatives can
readily be calculated from

Ve=1¢/C (®
I =V./L. )]

The process of solving Equations (a)-(h) and integrating
(g) and (h) to get updated initial conditions can be repeated
as many times as is necessary to achieve a complete
transient solution of the network.

Digital computer analysis of a network composed of
many voltage and current sources, resistors, capacitors, in-
ductors, and mutual inductances proceeds essentially in the




way Just described. The generalized version of this proce-
dure is called the state-variable approach to network analy-
sis. The state variables of any system may be defined as the
minimum set of variables that, together with all source in-
puts (and under certain conditions, the time derivatives of
inputs), is sufficient to determine all other system variables
at a given time. In general, the state variables are the set of
independent initial conditions of the network.!? In particular,
they are the set of all capacitor voltages diminished by a
subset equal in number to the number of voltage-source-
capacitor loops in the network, and the set of all inductance
currents diminished by a subset equal in number to the
number of current-source-inductance cut-sets in the net-
work. (All capacitors in such a loop cannot have inde-
pendent voltages and all inductors in such a cut-set cannot
have independent currents.)

Computer programs that use the state-variable approach
precede the solution of network equations by automati-
cally forming the vectors and matrices involved in the equa-
tions. In SCEPTRE the voltage and current vectors are
formed by construction of a specific network “tree.” A tree
is defined as a connected subgraph of the network which
includes every node of that network, but contains no closed
loops. All elements of the network that are included in the
tree are called tree branches and all elements excluded from
the tree are called links. The specific tree formed by
SCEPTRE contains all voltage sources, a maximum num-
ber of capacitors, a minimum number of inductors, and no
current sources. The program is capable of handling dis-
connected networks since it can form multiple trees.

The procedure for identifying the specific tree of a given
network is as follows: Using the coded description of the
network supplied by the user, SCEPTRE compiles the
names of all network elements into a list such that all volt-
age sources come first, then capacitors, resistors, inductors,
and current sources, in that order. The numbers assigned by
the user to the nodes of the first voltage source in the list
are compared with the numbers assigned to the terminal
nodes of all other elements. Any element which has the
same node numbers as the voltage source must be a parallel
element; it is immediately removed from the list and cate-
gorized as a link. Any element which has a node coincident
with the To node of the first voltage source will have that
node number changed to the number of the FroM node of
the source. The first voltage source is then established as a
tree branch.

At this point the process is repeated with the nodes of the
second voltage source in the list serving as the reference
pair. Eventually, every element that serves as a reference is
classified as a tree branch, and every element that is to be-
come a link is removed from the list. If the network to-
pology has forced the program to classify any voltage
source as a link or any current source as a tree branch, the
run will be aborted and an appropriate diagnostic message

will be supplied to the user. It is important to note that this
procedure does not require that networks submitted for
analysis be free of capacitor loops or inductor cut-sets.
Further, any source dependencies that may exist seldom
dictate the position that the dependent source may occupy
in the network. For example, a voltage-dependent current
source may be inserted at almost any position that can
accommodate an independent current source. (The restric-
tions are discussed in a later section.)

Once an element has been classified as a tree branch or
link by the procedure above, it is labeled according to the
following scheme:

Class 1—Capacitor Links

Class 2—Resistor Links

Class 3—Inductor Links

Class 4—Capacitor Tree Branches
Class 5—Resistor Tree Branches

Class 6—Inductor Tree Branches

Class 7—Voltage Source Tree Branches
Class 8—Current Source Links.

These class numbers will appear as subscripts on the
voltage and current vectors that are used in the detailed de-
scription of the mathematical formulation. The state vari-
ables defined previously are now identified as the vector of
capacitor tree branch voltages, V4, and the vector of induc-
tor link currents, 7.

Referring back to the simple example, Equations (a) and
(b) correspond in the general case to the solution for resis-
tor link currents and voltages, I, and JV,, respectively.
Equations (¢) and (d) correspond to resistor tree branch
currents and voltages, I; and V5; Equation (e), to capacitor
tree branch currents, I;; and Equation (f), to inductor link
voltages, V. Since the circuit contained no capacitor loops
or inductor cut sets, it was not necessary to solve any equa-
tions corresponding to I, V1, or Is, V.

Matrices of network element values are also formed by
the program for use in solving the network equations. The
diagonal matrices Rq2 and Rj; contain the values of link and
tree branch resistors, respectively ; the diagonal matrices Si;
and Sy are the inverses of the matrices Cy; and Cyy which
contain the values of link and tree branch capacitors, re-
spectively. Symmetric matrix Ls; contains values of induc-
tor links and mutual inductance between inductor links,
and Lgg contains values of inductor tree branches and in-
ductances between tree branch inductors. The nonsym-
metric matrix Lsg = LgsT contains values of mutual induc-
tance between inductor links and inductor tree branches.

Figure 2 summarizes the transient solution process in
terms of the variables used in SCEPTRE. The process be-
gins with the insertion of the independent initial conditions
Vi(to) and I3(t). All other current and voltage vectors, and
the derivatives V, and I; are calculated at #o. Then ¥, and
Isare integrated to provide V4(t;) and I;(¢;) and the process
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Figure 2 Block diagram of computer solution procedure.

is repeated for as many time steps as are needed to reach
the desired termination time. An awareness of these major
operations in the solution process should help the program
user anticipate the approximate amount of computer time
that will be required for his particular problem.

The numerical integration routine controls the size of the
solution increments that can be taken, and therefore, the
number of solution increments that are required to reach
the specified termination. SCEPTRE uses a variable-step
integration method for this purpose.’31* The efficiency with
which the equation solution operations are carried out
controls the amount of computer time required per solution
increment.

Topological description of network®2

This section shows how the F-matrix, a topological descrip-
tion of the interconnections between tree branch and link
elements, is used in the computation of network currents
and voltages. The F-matrix and its transpose are sub-
matrices of the “fundamental circuit matrix,” T, and the
“fundamental cut-set matrix,” Q. For a general connected
network that includes b elements and # nodes, the matrix 7
contains » columns and 4 — #n + 1 rows. It is formed
by comparing the assumed direction of each fundamental
circuit loop with the reference direction assigned to
each element in the loop. The matrix element values are
determined by the rule:

41 if the direction of loop i coincides with the
reference direction of element j in loop i,
ti; = < —1if the direction of loop i is opposite to the
’ reference direction of element j in loop i,
| 0if element j is not in loop i.

By arranging appropriately the columns that correspond
to the link elements, T can be partitioned as

T = [UF],

where the columns of the (b — n 4+ 1) X (b — n + 1) unit
matrix, U, correspond to the link elements, and the columns
of the (b — n + 1) X (n — 1) matrix F correspond to tree
branch elements.
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If V represents the vector of all element voltages, the
matrix equation for the Kirchhoff voltage law is TV = 0.
Partitioning ¥ leads to an expression for link voltages, V1,
as a function of the F matrix and tree branch voltages, V.
That is,

TV = [UF]I:Z::I =0,

V= —FVp. (1)

The fundamental cut-set matrix, Q, contains b columns
and n — 1 rows. It is formed by observing whether the
reference direction of each network element in a funda-
mental cut-set is toward or away from the node. Matrix
element values are given by:

~+1if the direction of cut-set i coincides with the
reference direction of element j in cut-set i,
qi; = § —1if the direction of cut-set i is opposite to the
reference direction of element j in cut-set i,
0 if element j is not in cut-set .

Arranging the columns of Q in the same order as was done
for T permits the partition

Q = —FU,

where FT is the transpose of the previously defined matrix,
F,and Uisan (n — 1) X (# — 1) unit matrix. Here, the
columns of F7 correspond to network link elements and the
columns of U correspond to tree branch elements. The
matrix equation for the Kirchhoff current law is QI = 0.
Partitioning the current vector / leads to an expression for
tree branch currents Ir in terms of FT and the link currents
Ir. That is,

oI = [—FTUJ[’L] ~ o,
Iy
Ip = F'I, . (2)

Figure 3 shows the partitioned T and Q matrices for the
network of Figure 1. Equations (1) and (2) have eliminated
the 7 and Q matrices, and all subsequent derivations are
framed in terms of the F matrix.

Figure 3 (a) Incidence matrix Q for network of Figure 1; (b) In-
cidence matrix T for same network.
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Further partitioning of the F matrix gives the submatrices
that are actually formed by SCEPTRE for use in obtaining
network solutions:

Fua g 0 Fir
Fy Fop O Fy
Fay F3 Fs Fy
Fsy  Fgs  Fae Fg |,

where the subscripts indicate that submatrix F,, describes
the interconnections between the network elements in
Classes r and s. The zero submatrices can be explained by
observing that the submatrix F,; # 0 only if the network
contains Class r and Class s elements, and at least one Class
r element closes a loop containing a Class s element. For
example, the condition Fy5 % 0 would require at least one
capacitor link (Class 1) that closes a loop containing a re-
sistor tree branch (Class 5). The method used in SCEPTRE
to form the specific network tree prohibits the occurrence
of this condition, as well as the conditions Fj¢ and Fas 7 0.

Partitioning of V1, Vr, I, and I7 according to the classes
defined earlier, leads to the following expansions of the
Kirchhoff equations (1) and (2):

Vi= —Ful, — FpEy (3a)
Vo= —FauVi— Fo3V5 — Fukq (3b)
Vs = —FVy — F3sVs — F3eVs — FEn (30
Vs = —FgVy — FgsVs — FgsVg — FiEn, 3d)
and

L=F{L+F L+ F L+ Fo." Js (4a)
I; = Fo" I + Fss' I + FssT-ls (4b)
Is = F3" I + Fas' Js (4c)
L=Fi b+ Fu' L+ Fa' It + Fsr' Js. (4d)

Derivation of network quantities

The purpose of this section is to present the matrix equa-
tions that SCEPTRE uses to compute all unknown net-
work quantities in terms of known quantities (state varia-
bles, ¥, and /3; sources, E; and Js; and the submatrices of
the F matrix). Appropriate adjustments for networks con-
taining elements whose values are functions of time will be
discussed in a later section.

® Resistive quantities

All resistor currents and voltages in any network are in-
cluded in the vectors I, Is, V5 and V5. The solution for I,
makes use of the fact that

Vs = Rools ®
V5 = R5515 . (6)

Substituting Egs. (4b), (5) and (6) into Eq. (3b) yields

Rosly = FpaVs — FasRes(Fas 1, + Fss Iy + Fas J)
— FnkE;,

or

I, = MEI[—F24V4 — F25R55(F3?:5 I + Fa Js)
_F27E7] ’ (7)

where

Mz = Roz + FasRssFss . (8)

The utility of Eq. (7) depends on the existence of the
inverse of Mg. It is a straightforward matter to show that
Mg is a positive definite matrix and, hence, its inverse
exists.

Once I, has been computed from Eq. (7), the remaining
resistive quantities I5, ¥, and V5 are computed by solving
Egs. (4b), (5) and (6), in that order.

It is possible to attain the same end using an alternate ap-
proach. Instead of using Egs. (5) and (6), one would use the
expressions

I = Gale ©®
I = GssVs, 10)

where Ga; = Ry, and Gs; = R}
Then, substituting (3b), (9) and (10) into Eq. (4b) gives

Gss Vs = FstGzz[—Fu Vi— Fos V5 — FurEr]
4+ F" I+ Fss' Js

or

Vs = Mgl[FstG22(—F24V4 — FuE7) + Fss' I
+ Fss"Js], (11)

where M is a positive definite matrix given by
Mg = G55 + Fay GasFos . (12)

Once V; is known, the remaining resistive quantities V', I»
and 5 can be determined from Egs. (3b), (9) and (10), re-
spectively.

The practical difference between the two approaches lies
in the size of the matrix that must be inverted. The Mg
matrix of Eq. (8) is of dimension # X # where # equals the
number of resistor links in any network. The Mg matrix of
Eq. (12) is of dimension s X m where m equals the number
of resistor tree branches in any network. In practice, it hap-
pens more often than not that m < n. Consequently, the
second method of obtaining resistive quantities often re-
quires the inversion of a smaller matrix than does the first
method. SCEPTRE compares the number of tree branch
resistors with the number of link resistors and evaluates
My or Mg, depending on which is smaller.
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® Capacitative quantities

All capacitor currents and voltages are included in the
vectors Iy, I, V4 and V5. The vector of state variables, V4,
is a known quantity at the beginning of each time step, but
the vector of the derivatives of the state variables, Vs, must
be determined. The unknown capacitive quantities then are
I, I, V1 and V, and they are computed in that sequence.

The solution for I; is derived from the relations
Vi = Ssls a3

Vl = Sul, (14)
and from differentiation of Eq. (3a)
Vi= — FuVi— FuE;. (15)

Note that Eq. (15) introduces the need for the derivative of

the source variable, F;. Substituting Egs. (4a), (13), and

(14) into Eq. (15) gives

Sul = — FuSulFlshy + Fu o + Fisls + FiyJs]
— Fi7E7

or

I = Mg [— FiuSu(Fai I + Figly + FigJs)
— Fi K], (16)

where M is a positive definite matrix given by
Mg = Su + FiuSuFiy. 17

The rest of the capacitive quantities, 7, V1 and ¥, can now
be determined from Egs. (4a), (3a) and (13), respectively.

® Inductive quantities

All inductive currents and voltages are included in the vec-
tors I3, Is, V3 and V. The vector of state variables, I3, is a
known quantity at the beginning of each time step, but the
vector of the derivatives of the state variable, I'; must be de-
termined. The unknown inductive quantities, then, are iz,
Vs, Vs and Is and they are computed in that sequence.

The derivation of 73 makes use of the relations

Vs = Lysls + Laels 18
Ve = Lesls + Leols 19)
and the derivative of Eq. (4¢)

Iy = FLi, 4+ FRJs. (20)

Note that Eq. (20) introduces the need for the derivative of
the source variable Js. Manipulation of Egs. (3c), (18), (19)
and (20) leads to

Lasls + Las(Fsels + Fiols)
= — F3Vy — Fy5Vs — FagLasl
— FsgLooFagls — FisLeoFasls — FsrEx

S. R. SEDORE

or

Iy = M7'[— FsaVs — FssVs — (FasLeoFis
+ Lsng;s)js — Fy Ef] (21)

where

My, = Ls3 4 LysFss + FssLes + FasLooFis . (22)

Since Li3 and Leg are not necessarily diagonal, M, is not
necessarily nonsingular. In fact, it can be shown that if
unity coupling between inductors exists, M, is singular.
Hence, users of SCEPTRE are cautioned against permitting
unity coupling in networks submitted for analysis.

Equation (21) gives the inductor-link current derivative
vector in terms of known quantities. The remaining induc-
tive quantities, V3, Vs, and I, can now be obtained from
Egs. (18) and (20), (19) and (20), and (4c), respectively.

® Current-source voltages and voltage-source currents

Now that all passive-element currents and voltages have
been determined, Eq. (3d) yields the vector of current-
source voltages, and Eq. (4d) yields the vector of voltage
source currents.

® Special classes of dependent sources

The formulation of the equations used to compute network
quantities can be modified slightly to allow analysis of net-
works containing certain voltage and current sources that
are dependent on resistor voltages and currents, respective-
ly. The class of allowable dependent voltage sources, called
Class Y elements, is defined by the matrix equation

Ey = kaVs + koV's, 23

where k1 is a matrix of constants, having a number of rows
equal to the number of Class Y elements and a number of
columns equal to the number of resistor links; k» has a
number of rows equal to the number of Class Y elements
and a number of columns equal to the number of tree
branch resistors.

The class of allowable dependent current sources, called
Class X elements, is defined by

Jx = ksly + kals , (29

where the matrices k3 and k4, are described analogously to
kq and ks.

The F matrix for networks containing such sources is en-
larged to include the submatrices describing the intercon-
nections between these sources and the other elements.
That is,

F14 0 0 Fl'l FlY
Fau Fos 0 For Fy
F =] Fy Fss Fe Fx Fsy
Fgy Fss Fse Fg7 Fsy
Fxy  Fxs Fx¢ Fxi Fxy
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Figure 4 Computed solution for capacitor voltage in network
containing time-varying resistor.

Modification of the equations for the computation of volt-
age and current vectors is straightforward. Notice, however,
that the modified equations for ¥; and J¢ (see Egs. (15) and
(20)) require the derivatives Ey and Jx whenever F;y and
F x¢ are nonzero:

Vi = —FuVy— FuF; — FiyEy
Is = Fiols 4+ Fiels + Frelx .

Differentiation of Egs. (23) and (24) shows that Ey depends
on Vs and Vs, and J x depends on /, and ;. Since SCEPTRE
contains no provision for computing these derivatives, the
program automatically checks for the existence of non-zero
Fiy or Fxe and terminates the run if one of them occurs.
Hence, there is some restriction on the position that de-
pendent sources may occupy in a network to be analyzed by
SCEPTRE. The prohibited circuits are capacitor loops con-
taining a dependent voltage source, and inductor cut-sets
containing a dependent current source.

Extension to time-varying networks

The purpose of this section is to discuss the application of
the preceding formulation to the class of networks in which
one or more of the passive elements are variable functions
of time. First, consider a series RC network in which the
capacitance is constant, C = 1, and the resistor is a variable
function of time, R = r 4+ 1. Assume there is no initial
charge on the capacitor and that a 10-V step function is
applied to the circuit. The network is described by the
equation

dq q _ 10
d ' (t+1)C t+1°

and the capacitor voltage is given by the particular solution

10
s Computed solution
6
Closed form solution
4 R=1
B + v'»'f‘v\'—l
S 2 C=t+5
£ =
. I | L !
0 10 20 30 40 50
Time in nscc

Figure 5 Comparison of computed solution and closed form
solution for capacitor voltage in network containing time-vary-
ing capacitor.

A plot of the computed solution based on the formulation
of this paper is given in Fig. 4. This result is virtually indis-
tinguishable from the closed form solution since the maxi-
mum error was about 0.02 V. This error can be attributed
to roundoff in the computer and truncation in the integra-
tion routine.

Now consider the same network, but let the resistance be
constant, R = 1, and the capacitance a variable function of
time, C = r + 5. Again, assume there is no initial charge
and that a 10-V step function is applied. The network equa-
tion is
dq q 10

d " Rt+5 R’

and the closed form solution for the capacitor voltage is

125
(t+5)°

Fig. 5 presents plots of both the closed form solution and
the computed solution. A significant error is evident. The
source of this error can be determined by an examination of
the manner in which state variable derivatives are com-
puted. The relation I = C(dV/dr) is implicit in Eq. (13):
Vs = Sul.. However, it is always true that if C = Q/V,

Vc(t) = -

dQ d dv  dC
I—dt—E(CV)—Cdt—I—dtV. (25)
The formulation of SCEPTRE has not included the (dC/
dnV term. Hence, it is clear that this error will be incurred
for networks containing time varying capacitors unless the
analyst applies a compensating procedure.

One such procedure is to shunt the capacitor by a current
generator J, where J, = V,(dC/dt). The total current into
the node becomes (CdV/df) + (VdC/df), which effects the
necessary correction. A computer run with the additional
current generator was made for purposes of corroboration.
The error was again about 0.02 V.
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Exactly the dual situation exists for time-varying induc-
tors. Equation (18) in the program formulation (V3 = Lssl;
+ Lasls) implies that ¥ = L(dI/df). It is always true that
V =d¢/dtandif L = ¢/I,

v=2 =2y (26)

Hence the formulation will produce an error in the solu-
tion of networks with time-varying inductors. Correction
may be applied in the form of a series voltage source Er,
where E;, = (dL/dpl.

Another small but very practical class of networks that
cannot be classed as linear may be accurately accommo-
dated by this formulation. Consider the situation in which
one or more variable capacitors exist in a network such that
C = C(V).If capacitance is defined as C = Q/V, then (25)
may be written as

1—%%——5’—c(v)v— c(v) —+ V———C(V)
- [ew + v ] 22, @

It is clear that (27) contains a term that is not provided by
the formulation Eq. (13) and an error must result. If, how-
ever, the capacitances of interest are instead defined as C =
dQ/dV, then substitution into (13) yields simply I = dQ/dt
which is certainly correct as it stands. The class of voltage
dependent capacitors that are defined this way are the
transition and diffusion capacitances associated with semi-
conductor junctions.'®8 This definition allows the formu-
lation in this paper to accurately determine the transient
response of transistor and diode networks without change.

Application and utilization

The special subroutines and auxiliary functions that make
up the SCEPTRE program system require over 15,000 in-
structions, which in turn require over 5000 punched cards.
As a matter of convenience, most of the instructions are
stored on a system tape and the user need supply only a
comparatively small number of cards. The cards that are
supplied by the user may be divided into two groups: a
starter deck and a problem deck. The information con-
tained in the starter deck together with the IBSYS Monitor
System controls the insertion of the basic program into core
storage and onto an overlay tape. The latter tape is neces-
sary because the entire program cannot be accommodated
by the 32,000-word capacity that is available with conven-
tional IBM 7094 computing systems. It should be empha-
sized that the starter deck is entirely independent of the
specific network that is to be solved.

Once the information contained in the starter deck has
been processed, the specific network information contained
in the problem deck is utilized to carry out the desired tran-
sient solution. When the amount of output information ex-
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Figure 6 Preparation of circuit diagram for solution by computer
program. (a) Inverter circuit (b) Ebers-Moll equivalent transistor
circuit (¢) Inverter circuit diagram in format required by pro-
gram,

ceeds an allotted amount, it is buffered onto the intermedi-
ate output tape as many times as necessary. At the conclu-
sion of the run, the output data is processed into the proper
format and stored on the output tape. This information is
then converted into conventional printed and machine
plotted form at any subsequent time. The starter deck con-
sists of about 200 cards and the problem deck usually con-
tains from 20 to 100. The problem deck must contain all the
topological and quantitative information that describes the
particular network under analysis. The following prerequi-
sites must be met before the problem deck for any network
can be prepared:

1. The network must be composed of resistances, capaci-
tances, inductances (including mutual inductances), and
voltage and current sources. All active elements must,
therefore, be represented by equivalent circuits that are
made up of these basic components.

2. A consistent set of units must be used to describe all
quantitative information.

3. All nodes in the network must be identified.

4. Assumed current directions must be chosen for all pas-
sive elements in the network.




The circuit shown in Fig. 6a will be used to illustrate the
procedure required of the designer who wishes to make use
of SCEPTRE. The schematic shows an inverter circuit
which is biased in the off condition by the negative dc volt-
age that is applied to the transistor base. Let it be desired
to determine the transient response of this circuit to an in-
put voltage pulse supplied by the voltage generator 1. The
first requirement is met by replacing the transistor by the
conventional Ebers-Moll large-signal equivalent circuit
shown in Fig. 6b. (It is not required, however, that this
particular equivalent circuit be used.) The diodes of the
equivalent circuit are in turn represented by voltage de-
pendent current sources that reflect the current-voltage
relationships that exist in these devices.

The second prerequisite requires that all quantitative
information be entered in a consistent set of units. One set
of units that works well with modern transistorized net-
works is

Time in nanoseconds
Voltage in volts

Current in milliamperes
Resistance in kilohms
Capacitance in picofarads
Inductance in microhenries.

To satisfy the other two preliminary requirements, each of
the nodes in the network is identified by a number (or letter)
and assumed current directions through each of the passive
elements in the network are indicated. The nodes may be
numbered in any arbitrary fashion; numerical sequence
need not be observed. The assumed current direction
through the passive elements is also arbitrary. The effect of
an “incorrect” choice will show up only in the sign of the
computed current or voltage. If the equivalent circuit of
Fig. 6b replaces the transistor in Fig. 6a, the resulting net-
work of Fig. 6¢ is in a form suitable for the preparation of a
problem deck. A problem deck listing for this circuit is given
in Table 1. There are five header cards in this listing. The
information contained under each heading is coded in the
following fashion:

1. ELEMENTS—The names of all circuit elements (resis-
tors, capacitors, inductors, mutual inductances, voltage
and current sources), their values, their terminal nodes,
and the assumed directions of current through them are
coded in the format: (ELEMENT), (FROM NODE) — (TO
NODE) = (ELEMENT VALUE). For example, rRT, 3-4 = 18
indicates that resistor RT is connected between nodes 3
and 4 with the assumed positive sense of current flow
from 3 toward 4, and that this resistor contains 18 units
of resistance. If an element has a variable value specified
by some function in either tabular or equation form, the
coded entry for ELEMENT VALUE will be, for example,
TABLE 1 or EQUATION 3. The table or equation is then
given in detail under the “Functions” header.

Table 1 Problem deck

ELEMENTS
El,1 — 2 = TABLE 1

ET, 4 —1=35

Ec,1 — 8 =10

CcN, 5 — 1 = equaTioN 3 (10., 80., JBE)
cc, 5 — 6 = BQuUATION 3 (10., 400., JBC)
RB,2 — 3 =2

RT,3 — 4 = 18

RBB,3 — 5§ = .2

RCcc, 7 — 6 = 015

RL, 8 — 7 = 1.5

*5BE, 5 — 1 = DIODE EQUATION (I.E — 7,35.)
JBC, 5 — 6 = DIODE EQUATION (5.E — 7,37.)
11,1 — 5 =.1 *1BC

12,6 — 5 = 98 * JBE

OUTPUTS

VCN, IRL

INITIAL CONDITIONS

VCN = —.5

vee = —10.5

FUNCTIONS

TABLE 1

0,0

10, 5

25,25

40, 1.5

60, .7

90, .1

100, 0

120, 0

EQUATION 3 (A, B, C) = (A + B *C)
RUN CONTROLS

STOP TIME = 500

END

* The diode equation is prestored in the program and need not be supplied
in detail.

2. OUTPUTS—AIl voltages and currents that the program
user wishes to see as output are listed under this heading.
The notation vcN calls for the voltage across capacitor
cN. The output values are always produced in printed
form, but a machine plotted version is optionally availa-
ble.

3. INITTAL CONDITIONS—The initial values of all ca-
pacitor voltages and inductor currents are specified
under this heading. This section of the list may be
omitted if all initial values are zero. If the initial condi-
tions are unknown, they can be automatically computed
by the program upon request.

4. FUNCTIONS—This section is used to define explicitly
all the tables and equations, if any, that were referenced
but not described under the ELEMENTS subheading. The
general format for table descriptions includes a card giv-
ing the name of the table followed by cards which con-
tain pairs of numbers describing the numerical values of
the independent and dependent variables in that order.
All intermediate points of the independent variable are
used in a linear interpolation routine to determine the
corresponding value of the dependent variable. It is clear
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that a more accurate representation of a nonlinear func-
tion may be obtained by the use of more entries in the
table.

5. RUN CONTROLS—This section contains all the aux-
iliary information needed to control the run. Most of
these quantities (for example, maximum, minimum, and
starting step sizes for the integration routine) have auto-
matically preset entries that hold unless the user chooses
to replace them with other values. The one quantity that
must always be supplied is the real-time problem dura-
tion in the time units that are used.

A complete discussion of the coding procedure is given in
the SCEPTRE user’s manual.'

Factors that influence running time

Users of automatic transient circuit analysis programs are
understandably concerned with the amount of computer
time required for the solution of problems. A knowledge of
the factors that lead to excessive solution times can often
permit the user to modify if not completely avoid them. The
most important factors are:

1. Number of differential equations required. This number
is exactly equal to the number of independent capacitors
and inductors in the network and is not necessarily pro-
portional to the size of the network.

2. Variable resistors. If all network resistors are constant
in value, only one inversion of the matrix Mz or Mg is
necessary. If one or more resistors are variable, however,
the appropriate matrix must be inverted at each time
step. Since most practical networks require hundreds or
thousands of time steps for solution, it is clear that many
more matrix inversions, and therefore, more computer
time is needed.

3. Large forcing functions or dependent sources. These
quantities lead to large values for the state variable
derivatives and force the integration routine to proceed
at smaller time steps to maintain solution accuracy.

4. Network time constants. Small time constants in the
network will cause the integration routine to operate at
small step sizes and will, therefore, require that many
steps be taken.

The influence of network time constants on computer solu-
tion time can be illustrated by example. Consider the net-
work of Fig. 7 which contains poles in the s-plane at \; = 1
and A\, = 10,001.

The largest step size that may be taken during the tran-
sient solution is limited by the stability radius of the particu-
lar integration routine that is used. It can be shown that
hmax (i.€., maximum time increment in an integration rou-
tine) of a modified trapezoidal integration routine’ is ap-
proximately equal to six times the reciprocal of the absolute
value of the largest pole in the network.

S. R. SEDORE
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Figure 7 Two-pole network.

More information is available when it is realized that the
closed form solution for the state variables of this network
must be:

Ver = K1€1)‘“ + ng)‘“ + K;
ch = K4e)‘“ + K;,e)‘“ + Ks.

Since |A\s] > | A1, itis clear that the problem duration must be
at least 4/|\] to assure that the network has practically
settled to its final value. The minimum number of steps re-
quired for a complete transient solution is simply the ratio
of the problem duration to the maximum step size. For the
example of Fig. 7 the minimum number of steps is (4/A\1)/
(6/A2) = 6667. This may be contrasted to the situation that
arises if Cyin Fig. 7 is increased to 0.01 units of capacitance.
Then, poles exist at \; = —1 and A\, = —101 and only 68
steps are required for a complete transient solution. Since
the amount of computer solution time per step is unaffected
by the size of any element, it is clear that the larger C; re-
duces computer time by a factor of about 100. It is therefore
quite clear that the computer user must be very critical of
the insertion of unnecessarily small time constants in
practical networks since these can lead to widely separated
poles (or eigenvalues). The analysis given in the preceding
paragraph obviously depends upon the characteristics of
the numerical integration method that is used. SCEPTRE
users have the choice of three different integration methods,
the best of which, from the standpoint of the accuracy-
speed trade-off, is usually the Fowler-Warten method.?
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