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K. E. Haughton

Similar Motion of Two-Degree-of-Freedom
Nonlinear Vibrating Systems with Nonsymmetric Springs”

Abstract: If similar motion occurs, it is demonstrated by a straight line (linear trajectory) in the configuration space whose orthogonal
coordinates are the displacements of the masses in the vibrating system. Since the systems considered are conservative, all solutions of
the equations of motion must satisfy the Principle of Least Action and its Euler-Lagrange equation. The solution of this equation
defines a trajectory in configuration space, thus reducing the problem to one of geometry.

If the trajectory is linear, the Euler-Lagrange equation assumes a simple form. The form is further simplified if the coordinates of
the configuration space are rotated and translated so that one axis coincides with the linear trajectory. Hence, if linear trajectories
exist, it is necessary that the equation can be so simplified; it is sufficient that the rotation and translation be real.

One application of this analysis is shown for the case of a system whose anchor springs are air bearings, as used in a disk store.

Introduction

In applications dealing with linear systems, the concept of
“free vibration in normal modes™ is well defined and fully
understood. The meaning of this phrase is not at all clear,
however, when applied to nonlinear systems. Rosenberg
and others!™* studied the normal-mode vibrations of cer-
tain nonlinear systems having multiple degrees of freedom.
Their studies were restricted to systems whose springs re-
sist (or aid) a prescribed deflection in tension or compres-
sion to the same degree and whose potential functions are
negative definite. They have shown that vibration modes
can exist where the displacements of the masses are linearly
related. In addition they have shown that the equations of
motion can be uncoupled and hence solved.

The purpose of this paper is to develop a systematic pro-
cedure to determine the conditions necessary for a spring-
mass system to have free vibration with the motion of the
masses linearly related. The restrictions imposed in previous
work!™* do not apply.

We shall consider a two-degree-of-freedom conservative
and scleronomous system as shown in Fig. 1. The masses
are considered as mass points, and the springs are massless
one-dimensional devices that change length under the ac-
tion of a force.

There exists for this system an energy integral

T(m1, ma, 1, uz) — U, us) = h (a constant) , (1)
where T is the kinetic energy and U is a potential function.

* Based on author’s Ph.D, thesis, University of California, 1964. (See
Ref. 18.)
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Application of Hamilton’s principle to this system yields
the equations of motion:
du; 14

m; =miu',-=——=Uuiu,u). 2)
ar’ du; (s, s (

It is convenient to transform to a new pseudosystem by
means of the transformation

zi=\/—n7iui. (3)

With this transformation the energy integral (1) becomes

T(z1,22) — U(my, ma, 21, 23) = h. (1a)

For this pseudosystem Hamilton’s principle yields the equa-

tions of motion

@—E—L—U(z Z3) (2a)
=2z; = = \Z15 22) .

dt 2 ’ aZ i #i ’

The motion of the system can be represented by a curve
in the configuration space (the 2-space whose orthogonal
coordinates are the two displacements). This curve, defined
by the equation

23 = z3(z1) , (4)

is a trajectory of the system. For different initial conditions,
the trajectories are different, and hence Eq. (4) is different.

Linear trajectories
In this paper we seek the most general potential function

that will, with the proper initial conditions, yield an Eq.




Figure 1 A conservative system having two degrees of freedom
(see text).

Figure 2 Configuration space discussed in Result 1.
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(4) that is linear. In other words, it is desired to find systems
that can have at least one linear trajectory. In order to find
these systems, we first of all enumerate three important re-
sults determined by Rosenberg.** These resuits are of con-
siderable help in visualizing the configuration space and
help to form the concept on which this work is based.

Result 1: Every straight line in the z1z, configuration space which
intersects all equipotential curves U 4+ A = 0 orthogonally,
with 0 < i’ < h, is a linear trajectory. Conversely, every linear
trajectory intersects all equipotential curves orthogonally. If the

linear trajectory passes through the origin of the configuration
space, it is a linear normal mode. (See Fig. 2.)

Result 2: Every trajectory of the pseudosystem which actually
reaches the bounding curve U + # = 0 intersects it orthogonally.

Result 3: The transversal passing through any point in the con-
figuration space is in the direction of the force acting on the
unit mass at that point, i.e., at any point the force on the unit
mass is in a direction normal to the potential curve.

Conventionally, the equations of motion (2) or (2a) are
used for the study of vibrating systems. In this work we are
interested in a trajectory in the configuration space. To ap-
proach the problem from this point of view it is convenient
to consider the Principle of Least Action

/ ] VU + hds = minimum . (5)

Here s is the arc length along the path or trajectory of the
motion. The Euler-Lagrange equation obtained from Eq.
(5 is

20U+ Wz 4+ 1+ 21 E'U., — U,) =0. (6)

The primes indicate differentiation with respect to z;.

If a system is such that, with the proper initial conditions
a linear trajectory can exist, it will appear as a straight line
somewhere in the configuration space z3, z» of the pseudo-
system. Using a translation and a rotation, it is possible to
move the coordinates to any desired position in the space
they span. It is, therefore, possible to place a coordinate
system (here taken as the x, x, system) so that one axis
coincides with the linear trajectory if it exists. The Euler-
Lagrange equation obtained from (5) will have exactly the
same form for this coordinate system as it did in the orig-
inal coordinate system.

20U + m)xd” + (1 + [x'1%) (xd' Us, — Us,) = 0.(6a)

Here the primes indicate differentiation with respect to x;.
Let us now assume the new coordinate system xi, xs is
located and orientated so the x; axis coincides with the
linear trajectory if it exists. The linear trajectory is repre-
sented by the equation x, = 0.
It follows that along the trajectory x: = x2’ = x»/’ = 0.
Equation (6a) is valid throughout the domain, but along
the trajectory it takes on the particularly simple form

U, (x1,0) = 0. (1)

If a system is one that can possess a motion representable
by a linear trajectory, it is necessary that Eq. (7) be satis-
fied. Sufficiency is satisfied if the rotation and translation
used are real.

Let us now identify the systems that can meet this re-
quirement. Since the transformation (3) to the pseudosys-
tem presents no problem, it will be assumed in the follow-
ing that we have the potential function of the pseudosystem.

The rotation and translation placing the coordinate sys-
tem with the x; axis along the trajectory (if it exists) can be
expressed by the matrix equation

(=) =G )+ (). ®

The rotation matrix is a nonsingular orthogonal matrix
and satisfies

k=12, 9)

where § ;; is Kronecker delta. From Eq. (8),along the linear
trajectory where x, = 0, we can deduce

vi; vie + ve; var = i

Zg=ligl21—%b1+b2. (10)

V11

From Egq. (10) it is apparent that the slope of the trajectory,
or modal constant, is
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C = “21 . (1 1)
V11
There are two ways to approach the matter of determin-
ing what systems satisfy Eq. (7) with real rotations and
translations in Eq. (8). One approach is to integrate Eq. (7)

_ and use the inverse of Eq. (8) to return to the coordinate

system of the pseudosystem. The other approach is to con-
sider different classes of systems separately and use the fol-
lowing procedure:

(1) Assume the linear trajectory exists.

(2) Substitute Eq. (8) in the potential function.

(3) Perform the operations indicated by Eq. (7).

(4) Solve for the rotation matrix and translation matrix.

Because of its generality, the first approach is cumbersome
to use; consequently, the second will be used in this paper.

Some general systems
If springs whose forces are everywhere analytic in the de-

flections are considered, one general form of a potential
function of the pseudosystem is

( )
e
1 (21 - M12Z2)m+1} . (12)

Here ui; = my/my is the mass ratio, a;™ and a{J®’ are
coefficients that may have any value including zero, and r
is some number, the maximum value of m. Considering
now a rotation and translation as given by Eq. (8) and dif-
ferentiation as given by Eq. (7), we have (b = b;/v1)

- v m m
sz(XI, 0) = — 2 V{an % {—a§ >C2(X1 + blr)
11

m=

+ a5 (eaxs + b7)"
— afy (c2 + p12) ([1 — pazealxs (13)

+ [bll —_ M12b2’])m} = 0 .

The satisfaction of (13) is necessary for the existence of
linear trajectories. It is sufficient that ¢, b1, and b; be real.
It is apparent that there are different powers K of xi,
K = 0,1, - -, rin Eq. (13). The coefficient of each must
vanish in order that U,,(x;, 0) = 0. Hence, we have r + 1
equations from (13), and there are three unknowns. In
general, only a favorable combination of coefficients will
allow a solution.
Based on the above discussion the following result is
stated:
Result 4: A two-degree-of-freedom spring-mass system whose
potential function is given by (12) has a linear trajectory pro-

vided real ¢; and b; can be found that satisfy the r + 1 equations
obtained from Eq. (13).
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Considering linear normal modes, 4, = 0 and Eq. (13)
take

.
Us,(x1,0) = — 2> V’{'frl@{

m=0 V11

ey + asVes

—ay (ca + m2)(1 — M126‘2)m} xr=0.
(14)

This can be satisfied regardless of the values assumed by
m under certain conditions.
Result 5: Given a two-degree-of-freedom spring-mass system
whose potential function is given by (12),
(1) The system has a linear normal mode with ¢; = pa if
alm = up=taim,
(2) The system has a linear normal mode with ca = —up if
g™ = (—pym e,
(3) If the masses are equal and the anchor springs behave as
though m is always odd, then both the above can be satisfied.
(See Appendix V of Ref. 18 for the method of solution
when the exponents are not odd but behave as though odd.)
The homogeneous case is defined as that where m as-
sumes a single particular value throughout the potential
function. If linear normal modes of homogeneous systems
are sought, a single equation is obtained from Eq. (14):

flez) = —a™es + ascy
- ai;n) (6‘2 + ,U~12)(1 - lec‘z)m =0. (15)

Expanding the term with the exponent, Equation (15) can
be written

fles) = a$5 uises ™ + puch 4 - - -
+ sl = 0. ”

If m is an odd number (or if the springs produce forces that
are odd functions of the displacement regardless of the
value of m), there will always be at least one positive and
one negative real root to Eq. (16). This is easily proved as
follows:

If c; = 0, then f(0) < 0 (assuming a;2¢™ > 0; reverse
reasoning can be used if a{y") < 0).

If ¢ = aorc; = —b, where a and b are sufficiently large,
the first term of (16) will become predominant, and we
have f(a) > 0 and f(—5) > 0.

From the continuity of f(c,), it follows that there must be a
real root 0 < ¢; < a and a real root —b6 < ¢ < 0.

From this observation follows the theorem:
A homogeneous two-degree-of-freedom system with a poten-
tial function of the form of (12) and whose springs produce
Jorces that are odd functions of their displacement always
has at least one linear normal mode of positive slope (in-
phase mode or i-mode) and at least one linear normal mode
of negative slope (out-of-phase mode or o-mode).




® Systems with first- and second-degree spring-force terms
As previously mentioned, it is apparent that there are dif-
ferent powers K of x;, K = 0, 1, - - -, r in Eq. (13). The
coefficient of each must vanish in order that U, (x1,0) = 0.
It follows that there are r + 1 equations from (13), and
there are three unknowns c., by’, and b.’. It is logical to in-
vestigate the case where » = 2, since this produces the same
number of equations as unknowns. One of these equations
(the vanishing of the coefficients of x,?) is identical to that
obtained when seeking linear normal modes for a system
that is homogeneous of degree 2. We conclude then that
any linear trajectory for such a system must be parallel to
the linear normal modes of the second-degree homogene-
ous system. The remaining two equations provide restric-
tions on the coefficients that must be satisfied for the linear
trajectories to exist.

® Systems with piecewise linear springs

A frequently investigated form of nonlinear spring mass
system is that where the spring is piecewise linear.® An ex-
ample of this is shown in Fig. 3. Here, different springs are
applied, depending upon the direction of the motion;
hence, a force vs deflection curve with a corner is created
as shown. If one considers a two-degree-of-freedom system

Figure 3 System having piecewise linear spring, in which differ-
ent springs are applied, depending on direction of motion.

with piecewise linear positive springs (springs that resist
stretching or compressing), the forces of the pseudosystem
are as shown in Fig. 4.

The force-displacement functions for anchor spring 1 can
be written as follows:

Fi = —mz; + (m — s)b z<b
F, = —sz b<zika
Fi= —rz1+ (r — s)a z1>a

Similar expressions can be written for the other two springs.
The potential function for the pseudosystem that has
these forces can be written

[6)] [
() a2 () as” o
Uz, z2) = —ai 21 — Zi — Q3 'Zs — —5 22
2 2
[0 a§12) 2
— aie (21 - u1222) - 2 (21 - #1222) .

(17)

In this case the coefficients a;, a;‘V, etc., take on differ-
ent values, depending upon what zone of the appropriate
force-deflection curve is applicable at any given instant.
For example, if z; > a,thena; ™ = rand a;® = (s — Pa.

As in the previous cases, it is necessary that Eq. (7) be
satisfied along any linear trajectory that exists. Substitu-
tion of the transformation (8) in Eq. (17) and differentia-
tion produces Eq. (13) with m having the values 0 and 1.

If Eq. (13) is to vanish identically, it is clear that two
equations must be satisfied (the coefficient of x; must van-
ish, and the constant terms must vanish).

Using these two equations, the slope of the linear trajec-
tory and a relationship between b; and b; can be found.
The relationship between b; and b, is, as inspection will re-
veal, a linear relationship b, = 361 + A.

As previously stated, all the coefficients assume different
values in different ranges of the independent variables. The
equations must both be satisfied everywhere on the trajec-
tory. If the springs are like the one shown in Fig. 3, or if
at any point along the trajectory all springs are operating
in the center range shown in Fig. 4, at least one set of

Figure 4 Forces in system having two degrees of freedom and incorporating piecewise linear positive springs.

Fy AFp

Fy

————a
0 ——

Y
P I

2 T M2y

——a
-
———]-

! 621

NONLINEAR VIBRATING SYSTEMS




622

T

9}

Figure 5 Spring forces in a piecewise linear system where the two masses are equal.

m® = g,® = g{® = 0, and it can easily be shown that
A = 0.If A = 0, we may choose b, = b, = 0 since the
line along which b; and b, are located passes through the
origin. Under these conditions the problem reduces to one
of finding linear normal modes since the linear trajectories
are given by z; = c¢z1 -+ A. The following work is con-
fined to the search for linear normal modes for these sys-
tems. The procedure is the same but algebraically difficult
if all linear trajectories are considered. We have, then, two
equations with only one unknown (vanishing of coefficients
of x; and vanishing of constant terms). One of these can
be considered an equation for the modal constant ¢, and
the other a restriction on the coefficients:

X1 aél)cz — ail)w - aglz) (02 + I-l12) (1 - #1202) =0

(18)
const: ay) — c2al” — a3 (c2 + p12) = 0. (19)

These equations must remain invariant regardless of the
zone of operation of the springs at any given instant. It is
convenient to write Eq. (18) in a different form to see the
consequence of this requirement.

(O] n
2 a — a
¢z + un - o
ae

- (1 - .uf2)}02— 1=0.(20)

It is apparent, then, that the ratio (@ — a;*?)/a{®
must not change all along the linear normal mode even
though the three coefficients are different in different zones
of the deflection. If we refer to Fig. 4 and consider values
of ¢, in three ranges, this requirement demands that the
slopes of the force-deflection curves be related as follows:

(1) Ifce > wpe,
(1) [¢))

a’ — a h—r k—s w— m
2 m Lo = = (21)
aps p t n
(2) If0 < 3 < pay,
(1) 1)
as’ — a h—r k—s w—m
2 5 Lo = = (22)
are n t D

K. E. HAUGHTON

AF,
3
T
4 2
2 —;z Z:
1
2
(3) Ifes <O,
aél)—agl) w—r k—s h—m
S8 = = = . (23)
aps n t 4

The requirement that (as® — a;")/a‘? remain con-
stant along the modal line also requires that more than one
spring be deflected to a corner if any are. Considering now
the case where all three springs have corners in their re-
spective force-deflection curves, the following requirements
are deduced by demanding that the deflections be such that
corners on all force-displacement curves be reached simul-
taneously.

(1) Ifes > pa,

a—e= uaf

b—d= g

C2 = f/a = g/b (24)
(2) If0 < s < pa,

a—d= puf

b—e = mog

C2 = f/la = g/b (25)
3) Ifea< O,

a—d= usg

b—e = maf

cs =g/a= f/b. (26)

Equation (19) remains to be satisfied. (It is also easy to

show that the value of ¢, given by (24), (25), or (26) satis-
fies Eq. (20).) From the above discussion we state the fol-
lowing result:
Result 6: A two-degree-of-freedom system, whose springs have
continuous piecewise linear force-deflection curves, as shown in
Fig. 4, has a linear normal mode providing either (24) and (21)
or (25) and (22) or (26) and (23) are satisfied in addition to Eq.
(19). The slope of the modal line is as given by (24), (25), or (26).

From the previous discussion one might be tempted to
conclude that systems with piecewise linear springs cannot




have more than one modal line. This is not true; in fact, it
is possible to have three modal lines, one with ¢; > ua,
one with 0 < ¢z < ua1, and one with ¢, < 0.

Since Egs. (21), (22), and (23) all have one common
term, it follows that the best we can hope for is to obtain
the same value of (@ — a;V)/a{}’ from each and hence
obtain two values of ¢, from Eq. (20). The restrictions (24),
(25), and (26) appear to further reduce this to one possi-
bility. There is, however, one way to circumvent this diffi-
culty. The restrictions given by (24), (25), and (26) or the
equations from which they are derived, are all satisfied if
there is a single corner allowed for each spring and that is
at the origin. Under these conditions, a = 6 = d = ¢
= f = g = 0. In effect, this system satisfies the restriction
(19) by putting a1® = @&® = 4 = 0 in all “zones of
operation.”

By allowing a single corner at the point of zero deflection
of each spring, the requirement that the ratio (@, —
a;V)/af}’ be constant along a modal line again produces
Egs. (21), (22), and (23), except the common term is now
missing; so it may be possible to satisfy these and have the
ratio be (@2® — a;1V)/a{}’ different in each case.

Equations (21), (22), and (23) are all satisfied if » = —p
and # — r = m — w. If this is the case, there will be at
least two, and perhaps three, different values of (a;V —
a1M)/af}’ obtained from the three equations.

Example 1

Consider now a piecewise linear system with the two masses
equal. The spring forces of the system are as shown in Fig.
5. Referring to Fig. 4 for comparison, the constants for
this system are:

oA 2 R T

s1: o om = 3,r— 3 s12: P = 4’ 4
3 1

S9: w=7’h=—é—'

For this system, the masses are equal, and Eq. (21) is valid
for ¢y > 1. This equation yields

aél)—a?) h—r w— m 2

asy D n 3°
Using this value of (@& — a1 V)/al), Eq. (20) yields
¢y = —0.721, 1.388.

Of the two values, only ¢, = 1.388 is greater than one,
and hence it is the only one of the two that is valid due to
the restriction on (21). Similarly, considering Egs. (22) and
(23), we obtain other valid values of ¢; ie., ¢’ = 0.721
and ¢’/ = —0.28.

This example, therefore, satisfies all three of the equa-
tions, (21), (22), and (23), and yields a different value of
the ratio (a.V — a;V?)/ald’ in each case. With each value
the quadratic equation (20) produces a modal constant that

3]

e’y = =028

U+h=0

Figure 6 Configuration space with equipotential contours and
modal lines for system having piecewise linear springs and two
degrees of freedom.

is in the restricted range related to each of these equations.
This system has piecewise linear springs and has 2 degrees
of freedom and there are 3 modal lines. Figure 6 shows the
configuration space with equipotential contours and the
modal lines for this case, as found by direct solution of the
differential equations on an analog computer.

® Systems with other piecewise springs

The techniques used in the study of systems with piecewise
linear springs can be used for systems where the force-de-
flection curves of the springs are piecewise combinations of
any functions. The functions, for example, may be such
that the forces are proportional to the displacement raised
to some exponent in one range of displacement and some
other exponent in another range.

Potential functions of other forms

This discussion and examples to this point have dealt with
systems whose potential function for the pseudosystem can
be written in the form of Eq. (12). Even though some of
the results presented up to this point are restricted to sys-
tems of this form, the general techniques used are valid for
other systems. For example, there are no restrictions on
the form of the potential function as long as it satisfies
Eq. (7).

A system whose anchor springs are air bearings as de-
scribed by Haughton” and whose coupling spring is linear
is an example of a system with a potential function that is
quite different from those previously considered. This is a
system that is realistic; it occurs in actual operation in some
large capacity magnetic memory devices.
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Figure 7 Plot for determining whether or not trajectory is
bounded. (See explanation of Eq. (29) in text.)

For this system, the potential function of the pseudosys-
tem can be written

U(z1, z2) = _L (F [ 1
e may ‘ (n—1)A +z)""
1
+ (n— 1)1 — z)"" ta- ‘2]
+ 0 (o~ 4)2}. @7)

Here, Fp = equilibrium load in the coupling spring in 1bs.
A = coupling spring rate in 1bs/in.
m = slider mass in Ib-sec?/in.
ay = equilibrium spacing of air bearing in in.
z; = u;/a.
Using the techniques described above in this paper, it
can be shown that the linear normal mode z; = — z; exists
for this system.

Stability
In order to discuss stability even briefly, it is necessary that
a clear definition of stability be established. A trajectory,
linear or not, in two-dimensional configuration space can
be represented by Eq. (4).

Suppose that zs*(z;) is a trajectory, where the z,(7) satisfy
the equations (2a) of motion. zy*(z1) is said to be orbitally
stable if for any 0 < e << 1 which satisfies

lzz(Zl) - z"é(zl)l <e,
there exists a 0 < 8(¢) < e such that

l25(21) — 23(21)] < 6(e) .

Here z;,° represents the maximum displacement. In other
words, the solution is orbitally stable if the motion in the
configuration space is contained in an e tube about the
trajectory z»*(z1).

K. E. HAUGHTON

In this work a solution is considered stable if it is orbit-
ally stable and z, is bounded. It may seem superfluous to
say zy is bounded, but potential functions that are not
negative definite have been allowed, and it is possible to
have orbitally stable systems with unbounded deflections.
If z, is bounded, then the length of the trajectory is bounded.

Considering the above discussion, it is quite natural to
investigate stability along the trajectory to see if z, is
bounded and normal to the trajectory to see if the trajec-
tory is orbitally stable.!! The previous work supplies a good
basis from which to study stability in this manner since the
transformations found using Egs. (8) and (7) place the x;
axis along the linear trajectory.

The trajectory is given by x, = 0, in this coordinate sys-
tem, so the coordinates of a point that neighbors the tra-
jectory in configuration space are given as (xi, 1s), where
ne represents a “small” value in the x. direction. In this
neighborhood the potential function can be expanded in
the power series

U(.X'1, 172) = U(Xl, 0) "I— N2 Uzz (X1, 0)
2

+ 0 Usaan(1, 0) - - (28)

The existence of a linear trajectory requires the satisfac-

tion of Eq. (7); therefore, the second term of the potential

function (28) vanishes and, to first order in the variable 7,

the following equations of motion can be written:
X = Uz,(xl, 0) (29)

7.7'2 = 772Uz,12(x1: 0) . (30)

The solution of Eq. (29) indicates directly whether or
not the trajectory is bounded. Since the potential function
is the negative of the potential energy, it is easy to tell if
the trajectory is bounded by inspecting a plot showing the
negative of the potential function along the x; axis. Figure
7 shows a possible graph of this type. As long as the initial
conditions are such that additional energy must be sup-
plied to escape the concave upward section of the energy
curve, the trajectory is bounded. For example, in Fig. 7, if
the initial energy level is less than 5 and the initial displace-
ment is less than a, then the motion will be such that x; is
contained by the energy well. However, if the initial dis-
placement is greater than a, the deflection will increase in-
definitely since the system will seek the lowest energy level.
If the initial displacement is negative and the energy level
is greater than b, the motion will be such that x; = a will
be exceeded and also go on to unbounded deflections.

The solution of Eq. (30) determines if the #, variable
stays within the e tube about the trajectory.

Example 2
As a final example, we consider a system of considerable
interest since the system has one stable linear normal mode,




= U (x;,0) — U (x,0) = U (x,0)
* X I\A *
c, = 1.182 ¢y = 0.849 ¢y =~ 0467

Figure 8 Energy contours for three modes in the system of
Example 2.

Figure 9 Energy contours and modal lines in system of Ex-
ample 2.

¢ = —0.467

one where the deflections become unbounded along the
modal line, and one that is unstable normal to the modal
line. Consider a system with piecewise linear springs that
is the same as Example 1 except the coupling spring is
twice as stiff.

For this system, Eqgs. (21), (22) and (23) yield

> 1 w—m_h—r__ 1
n D 3

0<ec < 1t h—r _w—m_ 1
n D 3

¢ < 0: h—m=w~r=__i
)/ n 3

In each case the number determined above is substituted
into Eq. (20), and it is solved for c,. In this case each
quadratic equation yields a valid constant, and there are
three modal constants:

c = 1.182,

Figure 8 shows these energy contours as calculated using
Eq. (17). It is apparent, since the system will seek the posi-
tion of minimum potential energy, that the modal line with
cy’’ = —0.467 will have unbounded deflections and hence
is unstable along the modal line.

c = 0.849, ¢’ = —0.467.

To study stability normal to the modal line, Eq. (30)
must be investigated. For the piecewise linear case, as we
have here, Uspe, (X1, 0) is piecewise a constant. For this
example, the motion with Cs’ = 0.849 is unstable normal
to the modal line since Us,e, (X1, 0) > 01in part of the range
of motion. For the case C, = 1.182 a careful study is re-
quired (beyond the scope of this paper) since Us,e, (X1, 0)
assumes two different values, one when X; > 0 and another
when X; < 0 and both are negative, hinting possible sta-
bility. Figure 9 shows the energy contours and modal lines
for this system as plotted by analog computer (Note the
modal line C; = 1.182 is stable).
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