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Similar  Motion  of  Two-Degree-of-Freedom 
Nonlinear  Vibrating  Systems  with  Nonsymmetric  Springs* 

Abstract: If  similar  motion  occurs, it is  demonstrated by a straight line  (linear  trajectory) in the  configuration  space  whose  orthogonal 
coordinates  are  the  displacements of the masses in the vibrating  system.  Since  the  systems  considered are conservative,  all  solutions  of 
the  equations of motion  must  satisfy the  Principle of Least  Action  and  its  Euler-Lagrange  equation.  The  solution  of  this  equation 
defines a trajectory  in  configuration  space,  thus  reducing  the  problem to one of geometry. 

If the  trajectory  is  linear,  the  Euler-Lagrange  equation  assumes a simple  form. The  form is further simplified  if the  coordinates of 
the  configuration  space are rotated  and  translated so that one  axis  coincides with the  linear  trajectory.  Hence,  if  linear  trajectories 
exist,  it  is  necessary that the  equation can  be so simplified;  it  is  sufficient that the  rotation and translation be  real. 

One  application of this  analysis  is  shown  for  the  case  of a system  whose  anchor  springs are air  bearings,  as used in a disk store. 

Introduction 
In applications dealing with linear systems, the concept of 
“free vibration in  normal modes” is well defined and fully 
understood. The meaning of this  phrase is not at all clear, 
however, when applied to nonlinear systems. Rosenberg 
and studied the normal-mode  vibrations of cer- 
tain nonlinear systems having multiple degrees of freedom. 
Their  studies were restricted to systems whose springs re- 
sist (or  aid) a prescribed deflection in tension or compres- 
sion to  the  same degree and whose potential  functions are 
negative definite. They have shown that vibration modes 
can exist where the displacements of the masses are linearly 
related. In addition they have shown that  the equations of 
motion  can  be uncoupled and hence solved. 

The purpose of this  paper is to develop a systematic pro- 
cedure to determine the conditions necessary for a spring- 
mass system to have free vibration with the motion of  the 
masses linearly related. The restrictions imposed in previous 

We shall consider a two-degree-of-freedom conservative 
and scleronomous system as shown in Fig. 1. The masses 
are considered as mass points, and  the springs are massless 
one-dimensional devices that change length  under the ac- 
tion of a force. 

do  not apply. 

There exists for this system an energy integral 

T(m1, m2, i1, i2) - u(ul, u2)  = h (a  constant) , (1) 

where T is the kinetic energy and U is a potential  function. 

618 Ref. 18.) 
*Based on author’s Ph.D.  thesis, University of California, 1964. (See 

Application of Hamilton’s principle to this system yields 
the equations of motion: 

It is convenient to transform to a new pseudosystem by 
means of the  transformation 

z i  = *i ui. (3) 

With  this  transformation the energy integral (1) becomes 

T(&, 22)  - U(m1, mz, z1, z2) = h . ( 1 4  

For this pseudosystem Hamilton’s principle yields the equa- 
tions of motion 

d2z i au 
dt2 
- = 2 ’  - - = UZi(Z1, z2) . 

azi 
I ”  

The motion of the system can be represented by a curve 
in the configuration space (the 2-space whose orthogonal 
coordinates are  the two displacements). This curve, defined 
by the  equation 

z2 = z2(z1) , (4) 

is a trajectory of the system. For different initial conditions, 
the trajectories are different, and hence Eq. (4) is different. 

Linear  trajectories 
In  this  paper we seek the most general potential  function 
that will, with the proper  initial  conditions, yield an Eq. 

IBM JOURNAL * NOVEMBER 1967 



Figure 1 A conservative  system  having  two  degrees of freedom 
(see  text). 

Figure 2 Configuration  space  discussed  in  Result 1. 

(4) that is linear. In  other words, it is desired to find systems 
that  can have at least one linear trajectory. In  order  to find 
these systems, we first of all  enumerate  three important re- 
sults determined by Ro~enberg .~ .~  These results are of con- 
siderable help in visualizing the configuration space and 
help to  form the concept on which this work is based. 

Result I: Every  straight  line  in  the zlzz configuration  space  which 
intersects  all  equipotential  curves U + h’ = 0 orthogonally, 
with 0 < h’ 5 h, is a linear  trajectory.  Conversely,  every  linear 
trajectory  intersects  all  equipotential  curves  orthogonally. If the 
linear  trajectory  passes through  the origin of the configuration 
space,  it is a linear  normal  mode.  (See  Fig. 2.) 

Res& 2: Every trajectory of the pseudosystem  which  actually 
reaches the bounding  curve U + h = 0 intersects  it  orthogonally. 
Result 3: The  transversal  passing through any  point  in the  con- 
figuration  space  is in the  direction of the force  acting  on  the 
unit  mass at that  point,  i.e., at any  point  the  force  on  the  unit 
mass  is in a direction  normal to the  potential  curve. 

Conventionally, the equations of motion (2) or (2a) are 
used for  the study of vibrating systems. In this  work we are 
interested in a  trajectory  in  the configuration space. To ap- 
proach the problem from this  point of  view it is convenient 
to consider the Principle of Least  Action 

** ~ 

d U  + h ds = minimum. ( 5 )  

Here s is the  arc length along the path or trajectory of the 
motion. The Euler-Lagrange equation obtained  from Eq. 
(5 )  is 

The primes indicate differentiation with respect to z1. 
If a system is such that, with the proper  initial  conditions 

a linear trajectory can exist, it will appear  as a  straight line 
somewhere in the configuration space z1, zz of the pseudo- 
system. Using a translation and a rotation,  it is possible to 
move the coordinates to any desired position in  the space 
they span. It is, therefore, possible to place a coordinate 
system (here taken as the xl,  xq system) so that  one axis 
coincides with the linear  trajectory if it exists. The Euler- 
Lagrange  equation  obtained from (5 )  will have exactly the 
same  form for this  coordinate system as  it did in the orig- 
inal  coordinate system. 

2(U + h)xz” + (1  + [x2’Iz) (x2’Uz, - Ux.,> = 0.(6a) 

Here  the primes indicate differentiation with respect to XI. 

Let us now assume the new coordinate system XI, xz is 
located and orientated so the x1 axis coincides with the 
linear  trajectory if it exists. The linear trajectory is repre- 
sented by the equation x2 3 0. 

It follows that along the trajectory x2 x2’ x2” = - 0. 
Equation (6a) is valid throughout  the  domain,  but  along 

the trajectory it takes on  the particularly simple form 

U,,(Xl, 0 )  = 0 . (7) 
If a system is one  that can possess a motion representable 
by a linear trajectory, it is necessary that  Eq. (7) be satis- 
fied. Sufficiency is satisfied if the  rotation  and translation 
used are real. 

Let us now identify the systems that can meet this re- 
quirement. Since the transformation (3) to  the pseudosys- 
tem presents no problem, it will be assumed in  the follow- 
ing that we have the potential  function of the pseudosystem. 

The  rotation  and translation placing the  coordinate sys- 
tem with the x1 axis  along the trajectory (if  it exists) can  be 
expressed by the matrix equation 

The rotation  matrix is a nonsingular orthogonal matrix 
and satisfies 

v l j  v l k  f v 2 j  VZk = B j k  j , k  = 1 , 2 ,  (9) 

where 8 i k  is Kronecker  delta. From Eq. @),along the linear 
trajectory where xz = 0, we can deduce 

From  Eq. (10) it is apparent  that  the slope of the trajectory, 
or  modal constant, is 61 9 
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There are two ways to  approach  the  matter of determin- 
ing what systems satisfy Eq. (7) with real  rotations  and 
translations in  Eq. (8). One  approach is to integrate Eq. (7) 
and use the inverse of Eq. (8) to return  to  the  coordinate 
system of the pseudosystem. The  other  approach is to con- 
sider different classes of systems separately and use the fol- 
lowing procedure: 

(1) Assume the linear  trajectory exists. 
( 2 )  Substitute Eq. (8) in  the potential  function. 
(3) Perform the operations  indicated by Eq. (7). 
(4) Solve for  the  rotation matrix and translation matrix. 

Because of its generality, the first approach is cumbersome 
to use; consequently, the second will be used in  this  paper. 

Some general systems 
If springs whose forces are everywhere analytic in  the de- 
flections are considered, one general form of a potential 
function of the pseudosystem is 

Here piz = ml/mz is the mass ratio, ai(m)  and a,'?) are 
coefficients that may have any value including zero, and r 
is some  number, the maximum value of m. Considering 
now a rotation  and translation as given  by Eq. (8) and dif- 
ferentiation as given  by Eq. (7), we have (b( = bi/vll) 

The satisfaction of (13) is necessary for  the existence of 
linear trajectories. It is  sufficient that c2, 61, and bz be real. 

It is apparent  that there are different powers K of XI, 

K = 0, 1, . . e ,  r in  Eq. (13). The coefficient of each  must 
vanish in  order  that U2,(x1, 0) E 0. Hence, we have r + 1 
equations from (13), and there are three unknowns. In  
general, only a favorable  combination of coefficients will 
allow a solution. 

Based on  the above discussion the following result is 
stated: 

Result 4: A two-degree-of-freedom  spring-mass  system  whose 
potential  function is given by (12) has a linear  trajectory  pro- 

620 
vided real c2 and bi can be found that satisfy the r + 1 equations 
obtained  from Eq. (13). 

Considering linear  normal modes, bi = 0 and Eq. (13) 
take 

r 

UZ,(Xl, 0 )  = - c v11 -a!m)cz + a$)cF m+l 

m=O v l l  

(m)  - a12 (c2 + ~ 1 2 ) ( 1  - ~lzc2)" x'; = 0 . 
(14) 

i 
This  can  be satisfied regardless of the values assumed by 

m under certain conditions. 

Result 5: Given a two-degree-of-freedom  spring-mass  system 
whose  potential function is  given by (12), 
(1) The system has a linear  normal  mode  with c2 = pZl if 

(2) The system  has a linear  normal  mode  with c2 = -pI2 if 

(3) If the masses are equal  and the anchor  springs  behave  as 
though rn is  always odd,  then  both  the  above  can be  satisfied. 

(See Appendix V of Ref. 18 for  the method of solution 
when the exponents are  not  odd but behave as though  odd.) 

The homogeneous case is defined as  that where m as- 
sumes a single particular value throughout the potential 
function. If linear normal modes of homogeneous systems 
are sought, a single equation is obtained from  Eq. (14): 

f(c2) = -alm'cz + a2 c2 

= m-I 
P-21 a2 

a i m )  = ( - p 1 2 ) m - 1 ~ p .  

(m) m 

- a!?(cz + ~ 1 2 )  (1 - P I Z C ~ ) ~  = 0 . (15) 

Expanding the term with the exponent, Equation (15) can 
be written 

f(cz) = a12 ~ l z c z  + P m Z  + . . . (m) m m+l 

+ plcz - a!?p12 = o . (1 6) 

If  m is an  odd number (or if the springs produce forces that 
are  odd functions of  the displacement regardless of the 
value of m), there will always be at  least one positive and 
one negative real root to Eq. (16). This is easily proved as 
follows: 

If cz = 0, then f(0) < 0 (assuming u 1 ~ ( ~ )  > 0 ;  reverse 
reasoning can be used if ai?) < 0). 

If c2 = a or c~ = -b,  where a and b are sufficiently large, 
the first term of (16)  will become predominant, and we 
havef(a) > 0 andf( -b) > 0. 

From  the continuity off(cz), it follows that there  must  be a 
real root 0 < cz < a and a real root -b  < cz < 0. 

From this  observation follows the theorem: 
A homogeneous two-degree-of-freedom system with a poten- 
tial junction of the jorm of (12) and  whose  springs  produce 
forces that are  odd functions of their displacement always 
has  at  least  one  linear  normal mode of positive slope (in- 
phase mode or i-mode) and at least one  linear normal mode 
of negative  slope (out-oFphase mode or o-mode). 
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Systems with first- and second-degree spring-force terms 
As previously mentioned, it is apparent  that there are dif- 
ferent powers K of X I ,  K = 0, 1, * e ,  r in Eq. (13). The 
coefficient of each must vanish in  order  that UZ2(x1, 0) = 0. 
It follows that there are r + 1 equations from (13), and 
there are three  unknowns cz, bl’, and b2’. It is logical to in- 
vestigate the case where r = 2 ,  since this  produces the same 
number of equations as unknowns. One of these equations 
(the vanishing of the coefficients of x?) is identical to that 
obtained when seeking linear normal modes for a system 
that is homogeneous of degree 2.  We  conclude  then that 
any linear  trajectory for such a system must be parallel to 
the linear normal modes of the second-degree homogene- 
ous system. The remaining two  equations  provide restric- 
tions on  the coefficients that must  be satisfied for  the linear 
trajectories to exist. 

Systems with  piecewise linear springs 
A frequently investigated form of nonlinear spring  mass 
system is  that where the spring is piecewise linear.6 An ex- 
ample of this is shown  in Fig. 3. Here, different springs are 
applied, depending upon the direction of the  motion; 
hence, a force vs deflection curve with a corner is created 
as shown. If  one considers a two-degree-of-freedom system 

Figure 3 System  having  piecewise  linear  spring, in which  differ- 
ent springs are applied,  depending on direction  of  motion. 

with piecewise linear positive springs (springs that resist 
stretching or compressing), the forces of the pseudosystem 
are  as shown in Fig. 4. 

The force-displacement functions for  anchor spring 1 can 
be written as follows: 

F1 = -mzl + (rn - s )b  Z I  5 b 

F1 = - S Z 1  h < z l < a  

F1 = -rz1 + ( r  - s)a z 1 2  a .  

Similar expressions can be written for  the  other two springs. 
The potential  function for  the pseudosystem that  has 

these forces  can be written 

(0) a1 (0) a2 2 
(1) (1) 

2 2 U(Z1, z2) = “ a 1  z1 - - z1 - a2 z2 - - z2 

(1) 
a12 - nloz’(z1 - 1.11222) - 2 (z1 - 1.112z2)2 . 

(1 7)  

In  this case the coefficients a1(O), al(I) ,  etc., take  on differ- 
ent values, depending upon what  zone of the  appropriate 
force-deflection curve is applicable at any given instant. 
For example, if z1 2 a, then al(’) = rand = (s - r)a. 

As in the previous cases, it is necessary that Eq. (7) be 
satisfied along  any  linear  trajectory that exists. Substitu- 
tion of the transformation (8) in  Eq. (17) and differentia- 
tion produces Eq. (13) with m having the values 0 and l. 

If Eq. (13) is to vanish identically, it is clear that two 
equations  must be satisfied (the coefficient of x1 must van- 
ish, and  the constant  terms  must vanish). 

Using these two  equations, the slope of the linear trajec- 
tory  and a relationship between 61 and bz can  be  found. 
The relationship between bl and bz is, as inspection will  re- 
veal, a linear relationship bz = czbl + A.  

As previously stated,  all the coefficients assume different 
values in different ranges of the independent variables. The 
equations  must both be satisfied everywhere on  the trajec- 
tory. If the springs are like the  one shown in Fig. 3, or if 
at any  point  along the trajectory all springs are operating 
in the center range shown in Fig. 4, at least one set of 

Figure 4 Forces in system  having two degrees  of  freedom and  incorporating piecewise  linear  positive  springs. I x h 
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Figure 5 Spring  forces  in a piecewise  linear  system  where the two  masses are equal. 

622 

= az@) = a l l )  = 0, and  it can easily be  shown that 
A = 0. If A = 0, we may choose bl = bz = 0 since the 
line along which 61 and 62 are located passes through the 
origin. Under these conditions the problem reduces to one 
of finding linear normal modes since the linear trajectories 
are given  by z2 = czzl + A.  The following work is con- 
fined to the search for linear  normal  modes for these sys- 
tems. The procedure is the same but algebraically difficult 
if all linear trajectories are considered. We have, then,  two 
equations  with only one unknown (vanishing of  coefficients 
of x1 and vanishing of constant terms). One of these can 
be considered an equation for  the  modal constant c2 and 
the  other a restriction on  the coefficients: 

x1: a2 c2 - a1 c2 - U i 2 ( C 2  + 1.112) (1 - 1.112CZ) = 0 
(1 8) 

const: U P )  - c2a10) - alY(c2 + p12) = o . (19) 

(1) ( 1 )  

(3)  Ifcz < 0, 
(1) - a2 k - s  w - r  h - m  

a12 n t P 
- 

( 1 )  
- - 

* (23) 

The requirement that (a2(') - ~ ( ~ ) ) / u ( l )  remain con- 
stant along the  modal line also requires that  more  than  one 
spring be deflected to a corner if any are.  Considering now 
the case where all  three springs have corners in their re- 
spective force-deflection curves, the following requirements 
are deduced by demanding that  the deflections be  such that 
corners on all force-displacement curves be reached simul- 
taneously. 

These equations  must remain invariant regardless of the (2) If 0 < c2 < 1.121, 
zone of operation of the springs at any given instant. It is 
convenient to write Eq. (18) in a different form  to see the 0 - d = p n f  

consequence of this requirement. b - e = plzg  

cz = f / a  = g /b  

c; + 1.121 c2 - 1 = 0 .  (20) (3) Ifcz < 0, 

It is apparent, then, that  the ratio (a2(') - a1 ( l ) ) / U $ k )  

must  not change all  along the linear normal mode even 
though  the three coefficients are different in different zones 
of the deflection. If we refer to Fig. 4 and consider values 
of c2 in three ranges, this  requirement  demands that  the 
slopes of the force-deflection curves be  related as follows: 

(1) If c2 > 1.121, 
ai1) - ai1) h - r k - s w - m 

a12 P t n 
- 

( 1 )  
- - (21) 

(2) I f 0  < c2 < 1.121, 

a - d = plzg  

b - e = m f  
cz = g / a  = f / b  . (26) 

Equation (19) remains to be satisfied. (It is also easy to 
show that  the value of c2 given  by (24), (25),  or (26) satis- 
fies Eq. (20).) From  the above discussion we state  the fol- 
lowing result : 

Result 6: A two-degree-of-freedom  system,  whose  springs  have 
continuous piecewise  linear  force-deflection  curves,  as  shown in 
Fig. 4, has a linear  normal  mode  providing  either (24) and (21) 
or (25) and (22) or (26) and (23) are satisfied  in addition to Eq. 
(19). The slope of the modal  line  is  as  given by (24), (25), or (26). 

up)  - ai') h - r k - s w - m From  the previous discussion one might be  tempted to - 
( 1 )  

- - 
a12 n t P (22) conclude that systems with piecewise linear springs cannot 
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have more than  one modal line. This  is  not  true;  in fact, it 
is possible to have three  modal lines, one with c2 > p21, 

one with 0 < c2 < p21, and  one with cp < 0. 
Since Eqs. (21), (22), and (23) all have one common 

term, it follows that  the best we can hope for is to  obtain 
the same value of (a2(') - al (l))/aji) from each and hence 
obtain two values of c2 from  Eq. (20). The restrictions (24), 
(25), and (26) appear to further reduce this to  one possi- 
bility. There is, however, one way to circumvent this diffi- 
culty. The restrictions given  by (24),  (25), and (26) or the 
equations from which they are derived, are all satisfied if 
there is a single corner allowed for each spring and  that is 
at the origin. Under these conditions, a = b = d = e 
= f = g = 0. In  effect, this system satisfies the restriction 
(19) by putting al(0) = a2(0) = a::) = 0 in all "zones of 
operation." 

By allowing a single corner at  the point of zero deflection 
of each spring, the requirement that  the  ratio (a2(') - 
ul ( l ) ) /u i i )  be constant  along a modal line again  produces 
Eqs. (21), (22), and (23), except the common  term is now 
missing; so it may be possible to satisfy these and have the 
ratio be (a2(')  - al(l))/aji) different in each case. 

Equations (21),  (22), and (23) are all satisfied if n = - p  
and h - r = m - w. If this is the case, there will be at 
least two, and perhaps three, different values of (a2(') - 
al( ')) /uU) obtained from  the three equations. 

Example I 
Consider now a piecewise linear system with the two masses 
equal. The spring forces of the system are as  shown in Fig. 
5. Referring to Fig. 4 for comparison, the constants for 
this system are: 

4 2 1 1 
3 '  3 4 '  4 

3 1 
2 '  2 

sl: m = - r = - sI2: p = - n = -- 

sZ: w = -  h = - .  

For this system, the masses are equal, and  Eq. (21) is valid 
for c2 > 1.  This  equation yields 

a2 a1 

a12 
(1) 

(1) - (1) h - w - m 2 - - 
P n 3 '  

- " 

Using this value of (a2(') - u l ( l ) ) / u i i ) ,  Eq. (20) yields 

Of the two values, only cp = 1.388 is greater than one, 
and hence it is the only one of the two that is valid due to 
the restriction on (21). Similarly, considering Eqs. (22) and 
(23), we obtain  other valid values of c2 i.e., c2' = 0.721 
and c2" = -0.28. 

This example, therefore, satisfies all three of the equa- 
tions, (21),  (22), and (23), and yields a different value of 
the  ratio (az(')  - al(l))/ajf) in  each case. With each value 
the quadratic  equation (20) produces a modal constant  that 

~2 = "0.721, 1.388. 

t" 

Figure 6 Configuration  space  with  equipotential  contours and 
modal  lines  for  system  having  piecewise  linear  springs and  two 
degrees of freedom. 

is in the restricted range  related to each of these equations. 
This system has piecewise linear springs and  has 2 degrees 
of freedom and there are 3 modal lines. Figure 6 shows the 
configuration space with equipotential contours  and  the 
modal lines for this case, as  found by direct solution of the 
differential equations on  an analog  computer. 

Systems with  other piecewise springs 
The techniques used in the study of systems with piecewise 
linear springs can be used for systems where the force-de- 
flection curves of the springs are piecewise combinations of 
any functions. The functions, for example, may be  such 
that  the forces are  proportional to the displacement raised 
to some  exponent in  one range of displacement and some 
other exponent in  another range. 

Potential  functions of  other  forms 
This discussion and examples to this point  have dealt with 
systems whose potential  function  for the pseudosystem can 
be  written in  the  form of Eq. (12). Even though some of 
the results presented up to this  point are restricted to sys- 
tems of this form,  the general techniques used are valid for 
other systems. For example, there are  no restrictions on 
the  form of the potential  function as long as  it satisfies 

A system whose anchor springs are  air bearings as de- 
scribed by Haughton' and whose coupling spring is linear 
is an example of a system with a potential  function that is 
quite different from those previously considered. This is a 
system that is realistic; it occurs in  actual operation  in some 
large capacity magnetic memory devices. 

Eq. (7). 



Figure 7 Plot for determining  whether or not  trajectory is 
bounded.  (See  explanation of Eq. (29) in  text.) 

For this system, the potential  function of the pseudosys- 
tem  can be written 

L ( Z 1 ,  z2) = -- { F o [  
1 

ma0 (n - 1)  (1 + Zl)" 

+ 1 

(n - 1) (1 - ZZ)"" 
+ z1 - z2 

Here, Fo = equilibrium load  in the coupling spring in lbs. 
A = coupling spring rate in  lbs/in. 
m = slider mass in lb-sec2/in. 
a. = equilibrium spacing of air bearing in in. 
zi  = ui/ao. 

Using the techniques described above in this  paper, it 
can be shown that the  linear  normal  mode z2 = - z l  exists 
for this system. 

Stability 
In  order to discuss stability even briefly, it is necessary that 
a clear definition of stability be established. A trajectory, 
linear or not, in two-dimensional configuration space can 
be represented by Eq. (4). 

Suppose that z2*(z1) is a trajectory, where the zi(t) satisfy 
the equations (2a) of motion. Z Z * ( Z ~ )  is said to be orbitally 
stable if for any 0 < E << 1 which satisfies 

I Z Z ( Z 1 )  - Z f ( Z 1 ) I  < E ,  

l Z z ( Z 3  - Z f ( 2 )  1 < 6 (E) . 
there exists a 0 < 6 ( ~ )  5 E such that 

Here z1O represents the maximum displacement. In  other 
words, the solution is orbitally stable if the motion in the 
configuration space is contained in  an E tube  about  the 
trajectory z2*(zl). 624 
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In this work a solution is considered stable if it is orbit- 
ally stable and z2 is bounded. It may seem superfluous to 
say z2 is bounded, but potential  functions that  are not 
negative definite have been allowed, and  it  is possible to 
have orbitally  stable systems with  unbounded deflections. 
If z2 is bounded,  then  the length of the trajectory is bounded. 

Considering the above discussion, it is quite natural  to 
investigate stability along the trajectory to see if z2 is 
bounded and normal to the trajectory to see if the trajec- 
tory is orbitally stab1e.l' The previous work supplies a good 
basis from which to study stability in this  manner since the 
transformations  found using Eqs. (8) and (7) place the x1 
axis along the linear trajectory. 

The trajectory is given  by x2 = 0, in  this  coordinate sys- 
tem, so the coordinates of a point that neighbors the  tra- 
jectory  in configuration space are given as (XI, q2), where 
q 2  represents a "small" value in  the x2 direction. In this 
neighborhood the potential  function  can be expanded in 
the power series 

W X l ,  112) = U ( X 1 ,  0 )  + 112 uz, (XI, 0 )  

+ y2 UjZZ,(Xl, 0) -t: . . . 2! (28) 

2 

The existence of a linear  trajectory requires the satisfac- 
tion of Eq. (7); therefore, the second term of the potential 
function (28) vanishes and,  to first order in the variable q2, 
the following equations of motion  can  be written: 

x1 = Uz,(Xl, 0 )  (29) 

$2 = q2Uz,z,(x1, 0 )  . (30) 

The solution of Eq. (29) indicates directly whether or 
not  the trajectory is bounded. Since the potential function 
is the negative of the potential energy, it is easy to tell if 
the trajectory is bounded by inspecting a plot showing the 
negative of the potential  function  along the x1 axis. Figure 
7 shows a possible graph of this type. As long as  the initial 
conditions are such that additional energy must  be  sup- 
plied to escape the concave upward section of the energy 
curve, the trajectory is bounded. For example, in Fig. 7, if 
the initial energy level is less than b and  the initial displace- 
ment is less than  a,  then  the motion will be such that x1 is 
contained by the energy well. However, if the initial dis- 
placement is greater than a, the deflection will increase in- 
definitely since the system will seek the lowest energy level. 
If the initial displacement is negative and  the energy level 
is greater than b, the  motion will be  such that x1 = a will 
be exceeded and also go  on  to unbounded deflections. 

The solution of Eq. (30) determines if the q 2  variable 
stays within the E tube  about  the trajectory. 

Example 2 
As a final example, we consider a system of considerable 
interest since the system has  one stable linear normal mode, 



t - t - O )  t - O )  

I c; = 0.849 I c; = - 0.467 

Figure 8 Energy contours for three modes in  the system of 
Example 2. 

Figure 9 Energy contours and modal  lines  in  system  of  Ex- 
ample 2. 

one where the deflections become unbounded  along the 
modal line, and  one  that is  unstable normal  to the modal 
line. Consider  a system with piecewise linear  springs that 
is the  same  as Example 1 except the coupling spring is 
twice as stiff. 

For this system, Eqs. (21),  (22) and (23) yield 

w - m   h - r  1 

c2 < 0: 

In each case the number  determined  above is substituted 
into  Eq. (20), and  it is solved for cq. In  this case each 
quadratic  equation yields a valid constant,  and there are 
three  modal constants: 

h - r n  w - r  5 - 
P n 3 ’  

- 

~2 = 1.182, c i  = 0.849, c:‘ = -0 .467 . 
Figure 8 shows these energy contours  as calculated using 

Eq. (17). It is apparent, since the system will  seek the posi- 
tion of minimum  potential energy, that  the  modal line with 
cZ” = -0.467 will have unbounded deflections and hence 
is  unstable  along the  modal line. 

To study stability normal  to  the  modal line, Eq. (30) 
must be investigated. For  the piecewise linear case, as we 
have here, UZZx2 (Xl, 0 )  is piecewise a constant.  For  this 
example, the  motion with Cq’ = 0.849 is  unstable normal 
to  the  modal line since Uxqxp (Xl, 0 )  > 0 in  part of the  range 
of motion. For  the case Cs = 1.182 a careful  study is re- 
quired  (beyond the scope of this  paper) since UxZx2 ( X I ,  0) 
assumes two different values, one when X I  > 0 and  another 
when X1 < 0 and  both  are negative, hinting possible sta- 
bility. Figure 9 shows the energy contours  and  modal lines 
for this system as plotted by analog  computer  (Note  the 
modal line C2 = 1.182 is stable). 

Acknowledgments 
The assistance of Mrs. Beverly Taskett on  the use of the 
analog  computer is gratefully acknowledged. 

References 
1. R. M. Rosenberg  and C.  P. Atkinson, “On the Natural 

Modes and Their  Stability in Nonlinear  Two-Degree-of- 
Freedom  Systems,” Journal of Applied Mechanics, Trans. 
ASME 26, Series E, 377-385 (1959). 

2. R. M.  Rosenberg, “Normal Modes  of Nonlinear  Dual-Mode 
Systems,” Journal of Applied Mechanics,  Trans. ASME 27, 
Series E, 263-268 (1960). 

3. R. M. Rosenberg, “On Normal  Vibrations of a General 
Class  of  Nonlinear Dual-Mode  Systems,” Journal of Applied 
Mechanics, Trans. ASME 28, Series E, 275-283 (1961). 

4. R. M. Rosenberg, “The Normal  Modes of Nonlinear n- 
Degree-of-Freedom  Systems,” Journal of Applied Mechanics, 
Trans. ASME 29, Series E, 7-14 (1961). 

5. R. M. Rosenberg, “On the  Existence of Normal  Mode Vi- 
bration of Nonlinear Systems  with  Two  Degrees of Free- 
dom,” to be  published. 

6. J. P.  Den Hartog, Mechanical Vibrations, McCraw-Hill 
Book Company,  Inc., New York, N. Y., third  edition, 1947, 
p. 425. 

7. K. E. Haughton, “Air Lubricated Slider  Bearings for Mag- 
netic  Recording  Spacing Control,” Proceedings  of the Sym- 
posium on Large-Capacity  Memory Techniques for Com- 
puting Systems, edited  by  M. C.  Yovits,  The  Macmillan 
Company, New York, N. Y. ,  1962, pp. 341-350. 

8. R. M.  Rosenberg and J. K. Kuo, “Nonsimilar  Normal 
Mode  Vibrations  of Nonlinear Systems Having  Two  De- 
grees of Freedom,” to be  published. 

9. C. P. Atkinson, S. J. Bhatt, and Tericio Pacitti, “The  Stabil- 
ity  of the  Normal  Modes of Nonlinear Systems  with  Poly- 
nomial  Restoring  Forces of  High  Degree,” Journal of Ap- 
plied Mechanics, Trans. ASME 30, Series E, 163-198 (1963). 

10. C.  P. Atkinson, “On the  Stability of the Linearly  Related 
Modes  of Certain  Nonlinear  Two-Degree-of-Freedom  Sys- 
tems,” Journal of Applied Mechanics, Trans. ASME 28, 
Series E, 71-77 (1961). 

11. Jack  Porter and C. P. Atkinson,  “A  Note on a New Stability 
Method for the  Linear  Modes of Nonlinear  Two-Degree- 
of-Freedom  Systems,” Journal of  Applied Mechanics, Trans. 
ASME 29, Series E, 258-262 (1962). 

12. Kark Klotter and Gertrud Kotowski, “Uber die Stabilitat 
der  Losungen  Hillscher  Differential  gleichungen  mit  drei 
unabhangigen  parametern,” Zeitschrift fur  angewandte 
Mathematik und Mechanik 23,149-155 (1943). 

13. C. S. Hsu, “On a Restricted  Class  of Coupled Hill’s Equa- 
tions and Some  Applications,” Journal of  Applied Mechan- 
ics,  Trans. ASME 28, Series E, 551-556 (1961). 

14. R. A. Struble, Nonlinear Differential Equations, McGraw- 
Hill  Book Company, New York, N. Y., 1962. 625 

NONLINEAR  VIBRATING SYSTEMIS 



15. J. J. Stoker, Nonlinear Vibrations, Interscience Publishers, 
Inc., New York, N. Y.,  1950. 

16. C. P. Atkinson, “A Study of the Free Vibrations of Non- 
linear Systems  of Two Degrees  of Freedom in Which the 
Restoring Forces Are Polynomials of the Displacements and 
Whose Oscillations are Related by a Modal Constant; and 
a Comparison of the Stability Characteristics of Such Sys- 
tems With Those of Homogeneous Systems,” IER Applied 
Mechanics Series 159, Issue 2, November 1960, with Sup- 
plement by C. P. Atkinson and S. J. Bhatt (University of 
California). 

17. R. M. Rosenberg and C. S. Hsu,  “On  the Geometrization 
of Normal Vibrations of Nonlinear Systems Having Many 

626 

K. E. HAUGHTON 

Degrees of Freedom,” IER Applied Mechanics Series 159, 
Issue 6, July 1961 (University of California). 

18. K. E. Haughton, “Similar Motion of Multi-Degree of Free- 
dom Nonlinear Vibrating Systems  with Nonsymmetric 
Springs,” Unpublished Ph.D Thesis, University of Califor- 
nia, 1964. 

19. K. E. Haughton, “Similar Motion of  n-Degree  of Freedom 
Nonlinear Vibrating Systems,” Third Southeastern Con- 
ference on Theoretical and Applied Mechanics, April 1966. 

Received November 2, 1966. 


