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H. G. Kolsky

Some Computer Aspects of Meteorology

Abstract: A long history of large-scale scientific computing is associated with numerical weather prediction. Recently, interest in this
field has been renewed as a result of international studies concerning the feasibility of a global observation and analysis experiment
preliminary to the World Weather Watch. This paper describes the physical phenomena occurring in the atmosphere and the prob-
lems of modeling them for computer analysis. The numerical methods commonly used in general circulation models are described
briefly and the relative advantages discussed. Finally, an analysis of the computer requirements for global weather calculations is de-
veloped and the need pointed out for very fast computers capable of executing the equivalent of hundreds of millions of instructions

per second.

Introduction

Even in this age of scientific superlatives it is hard to find a
field more far-reaching, with more interesting problems and
more difficulties, than that of numerical weather prediction.
The associated atmosphere physics behind it is literally
world-wide. A large number of physical disciplines inter-
act with each other in a most complex way. Fluid dynam-
ics, which describes the major motions of the atmosphere
and oceans, is considered classical physics. However, the
energy sources and frictional forces which must be included
introduce quantum mechanics and diffusion theory as well
as numerical analysis.

Although one cannot underestimate the importance of
the physical theory and numerical methods, the real his-
tory of numerical weather prediction has been essentially
tied to that of the speed and capacity of the computers
available. Richardson’s attempt®! in the 1920’s to perform
numerical weather calculations starting from the primitive
equations of hydrodynamics is well known. He proposed
tying the calculations into an operational network. The
magnitude of his effort and the difficulties which he en-
countered were enough to discourage serious work in this
area for over twenty years. However, reading his account
now is an interesting experience because it sounds surpris-
ingly modern. One would have to make relatively few seri-
ous changes in Richardson’s book to bring it out as a
modern treatise in the field. There is, however, an enor-
mous difference between the theory and the accomplish-
ments of these early reports and those of today—the growth
in speed and capacity of the available computers has been
the key ingredient.
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The purpose of this paper is to survey the basic physical
phenomena concerning the atmosphere and some of the
numerical and computer design problems that arise in at-
tempting to model it. The emphasis is on general circula-
tion research problems rather than on existing operational
methods. Our feeling is that these research problems are
the ones which stretch the state of the art, place the heav-
iest demands on computers, and point the way to the fu-
ture.

Physical phenomena

In discussing the requirements for improved weather fore-
casting, Phillips?! offers the following comment: “Un-
fortunately, faster computing machines are not the only
requirements for improved weather predictions. The basic
physical equations, which are nonlinear, presuppose an ex-
tremely detailed knowledge of the state of the atmosphere
at the beginning of the forecast. For example, the viscosity
term in the Navier-Stokes hydrodynamic equation is of
fundamental importance because it is ultimately respon-
sible for the frictional dissipation of kinetic energy in the
atmosphere. However, it can perform this vital function in
a numerical calculation only if the latter includes motion
on scales as small as a millimeter. Analogous difficulties
appear in other equations, especially those describing con-
densation of water vapor and precipitation (where the
fundamental physical laws apply to individual raindrops)
and radiation effects (where the molecular spectra are ex-
tremely complicated). The most important weather phe-
nomena, on the other hand, have horizontal scales of 10°




to 107 meters, and experience has shown that it is necessary
to consider conditions over almost an entire hemisphere
to predict the weather several days in advance. It is obvi-
ously impractical to allow for this scale ratio of 10 in any
conceivable computation scheme.”

® Scaling approximations

To deal with these difficulties of scale many kinds of ap-
proximations in the field of dynamic meteorology have been
developed. They are all concerned with including or omit-
ting certain physical quantities from the model. As a con-
sequence, the solutions of such approximate, discrete sys-
tems do not describe all physical phenomena associated
with the complete system of differential equations. Such
approximations are said to ‘“filter out™ entire ranges of
phenomena, e.g. sound waves, which should not have an
effect on the answers of interest, e.g. large-scale cyclonic
motion.

In the scale-analysis approach, it is assumed that all de-
pendent variables—such as the velocity—are characterized
by a “well-defined rate of variation,” i.e., a scale, in space
and time. In particular, it is assumed that a partial deriva-
tive of a quantity will have an order of magnitude at most
equal to the magnitude of the quantity divided by the ap-
propriate scale length. This scale-analysis method has the
advantage of maintaining a relatively clear and unambigu-
ous relationship between the “true™ variables in the at-
mosphere and the variables in the simplified equation. It
still requires some physical intuition, however, since defi-
nite statements about the order of magnitude of various
quantities are necessary.

Figure 1, from a graph by Arakawa,A! shows in a clear
way how many of the regions of approximation are related.
In particular, it shows where ordinary general circulation
calculations fit into the range of physical phenomena.
(Their characteristic time scale is from 10° to 10° seconds
and their characteristic length scales from 10% to 107
meters). These are motions in which the Coriolis force
from the earth’s rotation is important.

Fortunately, motions on this large scale are not only re-
sponsible for most day-to-day weather changes (and are
therefore worth forecasting), but it seems that their be-
havior can be predicted satisfactorily over periods of sev-
eral days without too much detailed consideration of the

unknown smaller-scale phenomena. “‘Small scale” phe-

nomena in this case include individual thunderstorms, tor-
nados, and even hurricanes. Except for special warning
networks, they fall outside the regular observations and
realistic computing models.

® Fundamental conservation equations

The physical and mathematical basis of all methods of
dynamical weather prediction lies in the principles of con-
servation of momentum, mass, and energy. Applied to the
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Figure 1 A graph showing the scales of various atmospheric
motions in wavelength and time (from Ref. Al).

quasicontinuous statistical motion of an assemblage of
liquid or gas molecules (through the methods of kinetic
theory and statistical mechanics), these fundamental prin-
ciples are expressed mathematically in Newton’s equations
of motion for a continuous medium, the equation of con-
tinvity (for mass conservation), and the thermodynamic
energy equation. So far as is known, these equations are
universal, in that they evidently apply to all fluids in nor-
mal ranges of pressure, temperature, and velocity, without
regard to composition, container, or state of motion.

The basic equations contain terms which describe such
physical entities as heat influx, water vapor influx and fric-
tional forces, which after discretization and scaling assump-
tions are no longer implicitly described by the system. Such
phenomena are said to be “parameterized” in the model.
For example, the fact that the transport of water vapor into
the atmosphere from water surfaces is accomplished by
small eddies means that even the release of latent heat by
precipitation cannot be successfully treated without in-
cluding the effects of turbulence.

A detailed discussion of the conservation equations of
fluid dynamics and their numerical difference formulations
is not considered necessary in this paper since they have
been discussed at length by Quarles and Spielberg,?*
Thompson,™ and Smagorinsky.S!

The importance of the nonadiabatic effects, friction and
precipitation is discussed by Phillips.F!

® Atmospheric heating and cooling by radiation
The effects of radiative cooling in the atmosphere are less
well formulated in existing models, but progress is being
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made.5? Although the hydrodynamic energy of the atmos-
phere is dominant and its motion can be calculated adia-
batically to a fairly reasonable approximation, one must
keep in mind that the earth receives virtually all of its en-
ergy from space in the form of electromagnetic radiation
trom the sun.

The transformation of the incident solar radiation into
scattered and thermal radiation, and the consequent ther-
modynamic effects on the earth’s gaseous envelope, are
very complicated phenomena, requiring the most advanced
methods of molecular physics and quantum mechanical cal-
culations. Absorption along a real atmospheric path, where
pressure, temperature and composition all vary, presents
problems only a few of which have been solved. (See
GoodySY).

® Calculation of cloud effects

If a cloud layer is present, the drops of water of which a
cloud consists are comparable in size to the wavelengths of
thermal radiation, and their number per unit volume is quite
high. In this case consideration of the scattering is, there-
fore, of great importance. The accurate solution of the
problem of radiative heat transfer in clouds can be obtained
only by using a detailed equation for radiative energy trans-
fer. Calculations indicate that a cloud is “active” with re-
spect to thermal radiation only around its edges. The flux
of thermal radiation entering the cloud is completely ab-
sorbed in a distance of a few tens of meters.

Probably the most formidable computational problems
meterologists are likely to face will arise from the calcula-
tion of cumulus convection. In such problems no simple
hydrostatic approximation for vertical motion can be as-
sumed. The phase changes of water in air will have to be
carried in four forms—vapor, ice, water and droplets. Even
electrostatic forces between droplets may have to be cal-
culated, at least in some average sense. These microscale
calculations are as demanding of computer time as the gen-
eral circulation problems.

® Air-sea interface

Although the most important driving force for the atmos-
phere is ultimately the radiation from the sun, the second
most important is no doubt the atmosphere’s interactions
with the ocean. The tremendously large heat capacity repre-
sented by the oceans of the earth provide its stability and
relative uniformity of temperature. The oceans and the air
can be considered a two-fluid system coupled relatively
loosely but coupled in a very important way.

A Government report edited by BentonB' emphasized
the fact that the atmosphere and the oceans together form
a single mechanical and thermodynamic system, and that
an understanding of the way in which energy, gases, par-
ticles, and electric charges move across the interface be-
tween the two is essential to the development of geophysics.
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Energy transfer, in the form of radiation or latent heat, af-
fects the circulation of both the atmosphere and the oceans.
The physical phenomena are complex and have far-reach-
ing consequences. For example, water vapor, oxygen, car-
bon dioxide, and other gases move across the interface and
influence both the composition of the atmosphere and the
life cycle of marine organisms. Salt particles from the
oceans provide condensation nuclei for precipitation.
Charge separation in ocean spray may be significant in the
development of differences in electrostatic potential be-
tween the atmosphere and the earth’s surface.

® Weather and climate modification

Certainly no discussion of the future of meteorological
computations would be complete without mentioning the
enormous implications of weather and climate modifica-
tion. Several studies have been made in recent years con-
cerning the general problems of weather modification. The
most recent study, headed by G. J. F. MacDonald,N! has
resulted in an excellent report which is recommended to
anyone interested in the subject.

The major portion of atmospheric energy exchange is
due to the release of instabilities inherent in the preferred
states of the atmosphere, These dynamically unstable situa-
tions are looked upon as ““levers™ or *‘soft spots™ in the sys-
tem where man’s efforts might be able to trigger a chain of
nature reactions.

Man has exploited these instabilities on a limited scale in
the belief that the effects would be as short-lived as the
phenomena themselves and that the energies released would
not escalate to the level which would change the weather
permanently.

It is obvious from geological evidence that the earth-
atmosphere system can support radically different climatic
regimes, some of which could be disastrous to civilization.
We do not yet know what can cause a shift from one
climatic regime to another, whether change can occur
in an “instant” of geologic time or only as a secular cyclic
process; our few theories still hang on the most tenuous
evidence.

Numerically integrated mathematical models of the at-
mosphere have come to be regarded as necessary tools for
research in modification of the atmosphere. This is particu-
larly true in areas where actual experimentation would be
too costly, take too long, or possibly be irreversible.

Numerical methods

Because the partial differential equations (or in the case of
radiation, integral equations) for a fluid are nonlinear and
possess difficult initial and boundary conditions, they must
be solved by numerical methods for practical cases. This
involves converting the equations describing the particular
physical model under consideration into a form which can
be solved by numerical algorithms on a computer.




Although it is a simple matter to convert a given system
of differential equations to some finite difference form, it is
a far more difficult task to obtain physically meaningful re-
sults even if the integration method proves to be stable. The
hydrodynamical equations of motion contain among their
solutions the high-speed sound and gravity waves which,
meteorologically speaking, are spurious information. Un-
less an unrealistically small time step (several seconds) is
used, these solutions have a tendency to amplify in time
and overshadow the physically meaningful results. It is
necessary to find a set of difference equations which will be
stable in the sense that the calculation can go on for an
indefinite time without nonsensical results developing. This
is a particularly sensitive matter in an atmospheric model
since there are conditions under which the atmosphere itself
can be temporarily unstable so that small disturbances
really do grow. This must be permitted in the numerical
model also, but in a reasonable way.

By far the most serious obstacle to solving the hydro-
dynamical equations arises from the properties of the at-
mosphere itself. The large-scale horizontal accelerations of
air are about an order of magnitude less than either of the
forces per unit mass taken individually, i.e., the Coriolis
force due to the rotating earth and horizontal pressure-
gradient force. The atmosphere maintains itself near some
state of balance and much more nearly so than is revealed
by direct measurement.3

For similar reasons, the horizontal divergence of the
wind velocity cannot be computed accurately from direct
measurements of the wind. It can be inferred indirectly that
the sum (du/dx + 3v/dy) is generally an order of magni-
tude less than either du/dx or dv/dy taken individually, i.e.,
the latter tend to compensate each other almost completely.
Thus, in order to compute V-V = du/dx + 3dv/dy to
within 10 % accuracy, the wind components must be meas-
ured to within 19 accuracy. Winds, however, are not
measured and reported to within better than 1097 accu-
racy. As a result, the vertical air speed cannot be computed
accurately unless spuriously large fluctuations of divergence
can somehow be suppressed.

Present global general-circulation models use equations
in which the Aydrostatic assumption is made. (This approxi-
mate set of equations is somewhat misleadingly referred to
as the “primitive equations” in meteorological literature.)
This is an accurate approximation for motions with hori-
zontal scales of 25 miles or longer. Vertically propagating
sound waves are excluded by this technique but gravity
waves are retained. The size of the time step permitted is
proportional to the horizontal space increment; for a latter
value of 125 miles, the time step should be less than 10
minutes.

® Finite difference solutions and nonlinear instability
At the present time no single finite-difference analog of the

primitive equations has emerged which meets all the ob-
jectives of the meteorological community. Such a set of dif-
ference equations must be, in addition to being “physically”
acceptable, mathematically accurate and stable. By accu-
racy is meant consistency, and by stability, convergence.

In 1956, Phillips®? in his early attempt at long-term in-
tegration of the meteorological equations encountered an
unexpected difficulty. After about 20 simulated days the so-
lution began to show a structure termed “noodling,” in
which the motion degenerates into eddies of elongated,
filamented shapes. Once formed, the eddies intensify with-
out limit, causing a nonlinear computational instability and
explosive growth of the total kinetic energy. Phillips showed
that the instability is caused by ““aliasing” or misrepresenta-
tion of the shorter waves because a finite grid cannot prop-
erly resolve them. Phillips showed further that the instabil-
ity could not be reduced by shortening the time interval.

For a discussion of nonlinear stability and how it can be
overcome using the “leapfrog” scheme, see Leith’s frac-
tional time step method,l!, Arakawa’s method4? and the
discussion by Kolsky.%3

® Brief descriptions of existing general circulation

research models
At the present time there are four research groups in the
U. S. actively working on general circulation models.
Abroad there is one large group working in the USSR at
Novosibirsk. Many other groups here and abroad are
working on the theoretical aspects of general circulation or
are using numerical flow calculations for operational fore-
casts. Research in general circulation calculations obviously
is heavily dependent upon the availability of large com-
puters and upon the existence of a wealthy sponsor (usually
some government agency).

The present researchers in the field all owe a great debt
to the work of Charney and Phillips®? at the Institute for
Advanced Study in the early 1950’s. They also owe much
to the early operational models of Shuman®® and Cressman
and Bedient,®* who verified the importance of numerical
prediction. The following descriptions (listed in alphabet-
ical order) give some of the main features of recent pro-
grams.

The Kasahara-Washington model—This model is being de-
veloped by the newest group in the field, that of Drs. A.
Kasahara and W. Washington1? at NCAR. The model has
been in an evolutionary state in which more complicated
physical approximations are being included one by one.
The hydrodynamic and thermodynamic evolution of a
dry atmosphere is computed over the whole globe, includ-
ing solar heating, surface boundary-layer effects, and a
simple prescription for the latent heat release due to
precipitation. The prognostic variables, that is, the ones
which are used to advance the model in time, are pressure,
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temperature, and horizontal wind velocity on a five-degree
spherical mesh similar to that used by Leith, with two
levels in altitude.

Kasahara and Washington use a three-level “leapfrog”
scheme for 50 time steps—which is inherently unstable—
followed by one cycle of the Lax-Wendroff procedure,
whose damping properties prove to be sufficiently strong as
to render the whole procedure stable. This procedure re-
quires that the data be stored at two time levels.

The Leith model—An intermediate-term general circulation
model computer program has been developed over the past
five years by Dr. Cecil Leith™ of the Lawrence Radiation
Laboratory at Livermore.

The hydrodynamic and thermodynamic evolution of a
moist atmosphere is computed over the whole globe, taking
into account such effects as solar heating, latent heat of
evaporation and precipitation, surface friction of the earth,
and eddy viscosity. The prognostic dependent variables are
temperature, water vapor content, isobaric wind velocity,
and surface pressure, and the diagnostic dependent vari-
ables are isobaric wind divergence, vertical velocity, and
geopotential. Independent variables are latitude and longi-
tude at five-degree intervals, pressure at six levels from 1.0
to 0.1 bars, and time at ten-minute intervals.

The time-development of the prognostic dependent vari-
ables is obtained by numerical integration of the primitive
equations by a semi-implicit method of fractional time steps
which is second-order in time but requires data stored at
only a single time level. The thermodynamic heat source
contains approximations to the absorption of solar energy
by water vapor—a geometric computation without clouds
—and a prescribed radiative cooling rate which is a function
of pressure alone. Rainfall is assumed to develop at every
point of local supersaturation and the so-obtained latent
heat is found to be an important thermodynamic source.
No mountains are considered in the present calculation.

The mesh is scanned vertically for each horizontal mesh
point and all longitudes for each latitude, starting at the
equator and going to the North Pole, then back to the
equator and proceeding to the South Pole to complete one
time iteration. Three complete latitudes of data at one time
step are in core at one time.

The Mintz-Arakawa model—This is a two-level global
model developed by Professors Y. Mintz™! and A. Arakawa
of UCLA. The upper boundary condition is best summa-
rized by picturing the stratosphere as a layer of weightless
cork floating on the troposphere. Thus there is no infusion
of mass, momentum, or moisture into the troposphere from
above, and the upper boundary is an isobaric surface (0.2
bar).

The lower boundary condition is quite complicated, for
the model accounts for orography (i.e., land elevation) and
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for air-sea-ice difference. The continental land masses are
assumed to have zero thermal conductivity, and hence zero
heat capacity. Consequently, the surface temperature of the
land is a computed quantity, viz., that temperature which
gives zero net heat flux through the air-ground interface.
Conversely, it is assumed that the oceans have infinite heat
capacity and zero advection, and hence that the ocean sur-
face temperature is a prescribed function of season. Where
the surface is ice, the ice is also assumed to have zero ther-
mal conductivity. However, an upper limit of 0° C is taken
for the ice.

The Arakawa differencing scheme?? is applied to these
equations in their source-free form, thus assuming that the
averaged variations in the conserved quantities do indeed
result from the physical sources and sinks rather than from
truncation error. The Matsuno approximated backward-
differencing scheme is used; this gives almost no spurious
damping of the meteorologically importance motions.

The Smagorinsky models—The group headed by Dr. Joseph
Smagorinsky at the Geophysical Fluid Dynamics Labora-
tory of ESSA represents the oldest and most experienced
research group currently working in the field. They have
experimented with many models over the years. The most
recent model, published by Smagorinsky, Manabe and
Holloway,5? uses nine vertical levels distributed so as to re-
solve surface boundary layer fluxes as well as radiative
transfer by ozone, carbon dioxide, and water vapor. The
lower boundary is a kinematically uniform land surface
without any heat capacity. The stabilizing effect of moist
convection is implicitly incorporated into the model by re-
quiring an adjustment of the lapse rate (the vertical gradient
of temperature) whenever it exceeds the moist adiabatic
value. The numerical integrations are performed for the
mean annual conditions over a hemisphere starting with an
isothermal atmosphere at rest. The grid points of the cal-
culation are located on a stereographic projection plane
centered on the pole. The spatial distribution of gaseous
absorbers is assumed to have the annual mean value of the
actual atmosphere and to be constant with time.

Operational models—OQOperational numerical weather pre-
diction first came into its own with the formation of the
Joint Numerical Weather Prediction unit (JNWP) in 1954.
The U. S. Weather Bureau, the Air Force and the Navy
Jjointly established the INWP to capitalize on the research®
which had been done at the Institute for Advanced Study,
the Air Force’s Cambridge Research Center, and under the
late C. G. Rossby at Stockholm. The three main opera-
tional groups in existence today in the United States are
direct descendants of the INWP. They are: the ESSA
Weather Bureau’s National Meteorological Center at Suit-
land, the 3rd Weather Wing at Offutt AFB, and the Fleet
Numerical Weather Facility at Monterey.




Of course, there is a tremendous difference between doing
research on general circulation and issuing operational fore-
casts every twelve hours. The pressure of the latter has
forced the use of simpler models which have been tried and
found reliable under operational conditions. The opera-
tional models are steadily expanding as techniques are im-
proved by research and as better data become available.
For more details, see for example papers by Cressman,®?
Wolff,"! O’Neil,°! StaufferS¢ and their collaborators.

The main difference between research and operations can
be related to the “real data” problem. The operational
groups are geared to the world-wide data acquisition and
communication networks which furnish the initial condi-
tions for their prediction models. A very important phase
of data collection is the verification and smoothing of the
raw measurements for the entry into the numerical model.
For example, the National Meteorological Center uses a
combination of three IBM computers to perform this task.
The distribution of the completed products of the centers
to their customers is another large topic which we can only
mention here.

® Nonfinite difference methods in numerical weather fore-
casting

In investigating the future computer requirements of nu-
merical weather calculations, one always has the uneasy
feeling that some radical departure from the present finite-
difference methods will make the computing estimates com-
pletely invalid. The hope is that some entirely different nu-
merical method might reduce the computations required,
by many orders of magnitude.

One suggestion which arises repeatedly is that Fourier
transform methods might be employed for the calculations.
This was considered as early as 1950 by Charney, Fjortoft
and von Neumann®! as a means for solving the Poisson
equation arising in their geostrophic model.

The necessity of solving the Poisson equation on each
time step which arises in the geostrophic models, is being
abandoned by the primitive equation approaches currently
in vogue.

Fourier methods, however, have continued to be used to
analyze and treat stability problems in numerical proce-
dures. These yield a good description of the nonlinear in-
stability arising from a cascading of energy from low- to
high-frequency waves due to “aliasing” mentioned earlier.
This phenomenon results from the fact that products of
functions yield Fourier components outside the spatial fre-
quency range corresponding to the grid size. These com-
ponents then contribute erroneously to the frequencies,
modulo the number of grid points, lying in the spectrum
corresponding to the grid. This suggests filtering out these
high frequencies by the introduction of diffusion terms in
the equations or by periodically sweeping over the grid
with some averaging process. But it also suggests a less

artificial means, namely the carrying out of the calculation
in the spatial frequency domain with the simple expedient
of dropping Fourier components outside the frequency
range being considered.

Calculations of Fourier transforms of actual weather
maps do not indicate any particular wavelength range that
can always be discarded.

More recently, spectral methods have become interesting
because new methods for computing Fourier transforms
have been devised by Cooley and Tukey®® which reduce the
number of operations from N?, where N is the number of
data points, to N loge N. It has been found that Fourier
transform methods, applied to the solution of the Poisson
equation by R. W. Hockney®! have resulted in computa-
tion speeds ten times as great as the best iterative methods.

The most serious objection to the use of spectral methods
is that they are generally not extendable to even slight com-
plications in the equations, such as the introduction of non-
constant coefficients or extra terms. This property, more
than any other, makes it unlikely that they can be applied
to the primitive equations in a realistic way. Nevertheless,
the possibility that someone may have a brilliant idea keeps
interest alive.

High-speed computer characteristics for
meteorological calculations
It is futile, of course, to try to describe a computer in terms

of a single speed number or to quote storage in terms of a
single value. ! However, if such numbers are not taken too
seriously, they can be helpful in giving an idea of the
capabilities of these devices. The secret is to emphasize the
important effects; that is, the ones whose inclusion results
in a factor of two or more, while trying not to get lost in
the myriad 109 effects.

Figures 2 and 3 show the progress of large machines
versus time, both in the raw speed (measured in terms of
millions of instructions per second executed) and in the in-
ternal storage (rated in terms of characters of storage re-
gardless of size of the words). Word size itself can affect
useful storage by as much as a factor of two effect but
usually it does not have this effect for scientific applica-
tions. The graphs show a steady increase in speed and stor-
age and, if one overlooks occasional plateaus and fluctua-
tions, there is almost a constant rate of increase of per-
formance and storage. Experts in the computer field have
been predicting a coming saturation in computer speed and
size ever since the beginning. It has not yet happened, how-
ever, and there are no indications that it will necessarily
happen in the next generation of computers. The velocity
of light, which is often quoted as the main barrier to com-
puter speed, is still there, but it has not proved to be the
barrier we expected. There are ways of obtaining an effec-
tively high instruction operation rate other than simply
making the individual components go faster and faster.
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Figure 2 Growth of computer speed vs time.

Since the beginning of the development of modern com-
puters there has always been at least one machine at any
given time which could be called the “supercomputer” of
its period. These machines are always “stretching the state
of the art” of the technology at their time. The STRETCH
computer (IBM 7030) obtained its name from this phe-
nomenon. Every supercomputer built to date, and prob-
ably most new ones to be discussed in the future, has one
thing in common, i.e., their protagonists use the numerical
weather problem as one of the reasons for developing their
machines. It has the following advantages for this purpose:
It can saturate the biggest computer. It is very important
for the nation to solve it. It resembles many other problems
based on partial differential equations and is completely
unclassified from the national security point of view.

A cynic might say that numerical weather prediction
seems to be a “feedback loop” in which the careful analysis
of physical theories and numerical methods is aimed mainly
at justifying the calculations which the available machine
can do.
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Figure 3 Growth of computer storage vs time.

From the computer architecture viewpoint, almost all
supercomputers made to date have been serial instruction-
stream computers. The System/360 Model 91 is the largest
single-instruction-stream computer presently announced. It
is however, highly parallel in its internal structure. There
are large numbers of buffers and arithmetic units, ali ca-
pable of operating concurrently on the instruction and data
streams. This internal overlapping is roughly equivalent to
a parallelism of 8- to 10-fold over a simple nonoverlapped
design. The important point is that it is still logically equiva-
lent to a serial instruction-stream. The programmer or pro-
gramming system need not consider the parallel nature of
the machine directly.

Two other machine design philosophies have been seri-
ously proposed which overtly act upon many sets of num-
bers at once. One design is that characterized by a single-
instruction-issuing serial computer which causes the execu-
tion of a given instruction by many processing units, each
of which operates on its own data. This design is frequently
called a “network processor.” The soLoMON is the best




known example.®* Computers of this design may perform
with dramatic effect on calculations of relatively unbranch-
ing structure which can match the structure of the machine.

The second design has been called a “vector processor™
or sometimes a ‘‘pipeline” machine. One such has been de-
scribed by Senzig and Smith.3! As its name implies, it op-
erates on vectors of numbers. The design has more flexibil-
ity than the network processor. Both of these designs are
capable of very high effective MIPS rates (millions of in-
structions per second), because many of the instructions
are occurring simultaneously. Both a network and a vector
machine may form the sum X; = 4; + B;for1 <i <N,
where N is the number of arithmetic units. The network
processor is usually considered with N = 128 to 1024,
while in a vector machine the individual arithmetic units
are not related to the number of components.

The speed of a serial machine can often be evaluated by
consideration of representative kernels from typical pro-
grams. For a parallel machine, it may be necessary to look
at the program as a whole. The network machine, in par-
ticular, is much more dependent on the nature of the prob-
lem and the skill of the programmer than js a conventional
machine.

There is another more general class of parallel computers
in which the separate arithmetic units have separate in-
struction-streams. These are usually referred to as “multi-
processor systems.” However, SchwartzS? has recently in-
troduced the term “Athene-type” for this class of machine
(as contrasted to ‘“‘Solomon-type”). The arithmetic registers
in such a machine would appear to the user as multiple
logically independent computers which could, however, all
be put to work on parts of the same problem. It would in-
clude operations of the network or pipeline types as special
cases. The difficulty usually comes in trying to prove that
the combination will really produce more useful work done
than N completely independent machines, or than one large
machine processing the same amount of hardware as the N
Pprocessors.

® Relationship between storage and speed

Perhaps the main property which differentiates a computer
from any other piece of electronic equipment is the large
number of internal storage states which it possesses. The
growth of computer capability has been directly tied to the
development of storage technology. This includes not just
the high-speed core storage but also the peripheral bulk
storage devices such as disks, drums and tapes.

One of the imponderables in analyzing computer per-
formance has always been how to relate memory size to the
speed of the arithmetic and logic of the system. Most knowl-
edgeable people admit that storage is very important, but
usually fall back to purely arithmetic comparisons when
asked to compare two machines. Speed is not a substitute
for large storage in general, but a large storage is frequently

a substitute for speed. Knight®X! has made an attempt to
quantify this.

The basic effect can perhaps be summarized by this simple
statement: “Any computer program can be made simpler
by the addition of a larger core storage.” The level of com-
plexity of any given calculation is reduced by not having to
worry about the blocking and ordering of data, or using
overlaid programs, etc. Even very small programs which
are not themselves changed will profit indirectly by the
existence of more efficient compilers and monitors. This
could be stated as an equally general statement: “An in-
crease in arithmetic speed or computer parallelism without
an increase in storage and other data flow capacity will re-
sult in an increase in program complexity.”

® Complexity threshold

One should couple these statements with another basic rule,
which can be stated as follows: Problem originators each
have a “‘complexity threshold” beyond which a problem
will not be attempted. This is so not because the problem
cannot be solved nor that it cannot be properly modeled
nor blocked into arrays, but simply because it has reached
a certain point of complexity at which the problem orig-
inator decides not to attempt it and will do a simpler job
or a different problem instead. This threshold, of course, is
quite different for different people and at different times for
the same person. However, it is certainly a very important
phenomenon, because no matter how many programmers
or assistants are put upon a large calculation, it is always a
relatively small group, often a single individual—a senior
scientist—who really originates the calculation and lays out
its over-all structure. His threshold of complexity will gov-
ern the calculations which are attempted by his group. If we
lower the level of complexity of every single problem, by
providing a larger random access store, we may extend the
frontier of complexity into a whole new range. There is a
point where size is no longer simply a question of scaling
problems, but where it really opens up a whole new class of
calculations.

® Flow of data between primary and secondary storage

The total data storage required for large weather problems
is so far beyond the internal storage capabilities presently
available or foreseen in any supermachine that we will
probably always have the requirement for keeping most of
the problem data in secondary bulk storage devices. This
places a serious requirement upon the data transmission
between such secondary devices and the internal high-speed
storage. This, in turn, is very heavily dependent upon the
nature of the calculation and the organization of the prob-
lem to make effective use of external storage. If a problem
is poorly organized, the computer speed may be limited
solely by the access time of the first word of each storage
block. An ideal problem organization would be one in
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Figure 4 Relation between data rate and internal storage, plotted
on log-log coordinates.

Figure 5 Data rates needed between primary and secondary
storage as a function of size of internal data storage and problem
formulation.
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which the utilization of a given number is directly propor-
tional to the time which it spends in the internal storage.
The data rate would be determined by the computer speed
and the average amount of computation per data word.
This can be represented in Fig. 4, which is a log-log plot.
In practice, however, a problem has a number of discon-
tinuous breaks related to natural block boundaries in the
calculations. An example of such an analysis is given®? in
Fig. 5.

® The need for supercomputers

It has been pointed out in a recent National Academy of
Sciences reportN! that there are a number of problems
within the context of geophysical hydrodynamics which are
now being worked on which may provide us with the basis

for an estimate of the computation demands that can be
anticipated within the next decade. The characteristic time
and space scales range from those concerning turbulent ex-
change processes to those responsible for maintaining the
large-scale ocean circulations.

It is of interest that, despite a span of simulated-experi-
ment time ranging from 10 sec to 30 years (a ratio of 107%),
the number of dependent variables generated during the
experiment is roughly invariant, i.e., 10'°. Thus, the prob-
lems are of similar computational magnitude. It is also
typical of and common to such hydrodynamical calcula-
tions that approximately 200 computer operations are re-
quired to generate one dependent variable at each new
time step, so that somewhat in excess of 102 computer op-
erations are necessary to complete a single experiment.

We must define a “reasonable time” to spend in doing a
numerical simulation experiment. The purpose of doing ex-
periments is to study the nonlinear response of the numeri-
cal model to changes in parameters. By this process one de-
velops the sought-after insight. Since a series of such ex-
periments is necessary in order to span a physically realiz-
able range of each of the parameters, we can arrive subjec-
tively at a threshold of tolerance. Obviously 1,000 hours of
machine time (one-half year of first-shift time) for a single
experiment is intolerable. The threshold is more likely to
be 100 hours (2.5 weeks of first-shift time), but a convenient
time is closer to 10 hours. Operational considerations also
impose similar limits. Hence, we need to be able to perform
10'2 computer operations in 10 hours, or approximately one
operation every 30 nsec, or 33 MIPS.

This figure exceeds by a factor of 50 the power of the
fastest of the present computing systems.

Estimates of computer requirements in the future

® Main properties contributing to speed and

Storage requirements
A really accurate estimate of the computer speeds needed
for future global weather calculations is probably not pos-
sible no matter how much detail one puts into the estimates.
Even though the estimated average values may be fairly ac-
curate, the over-all speed of a system often depends upon
combinations of interactions. In other words, system per-
formance depends on the distribution of the variables and
their correlations as well as their mean values. An unfortu-
nate coincidence of slow events can spoil the running time
of the whole calculation, thus making accurate estimates
very difficult. Even so, one can usually arrive at numbers
bracketing the computer speeds and requirements that are
reasonably safe as typical values.

For the global weather calculations which we are con-
sidering, the following appear to be the main properties
which contribute to the computer speed and storage re-
quirements. Some trade-off between them is possible:




(a) The complexity of the numerical model being used, in-
cluding the number of physical effects being approxi-
mated and the difficulty of each algorithm used to com-
pute them.

(b) The number of computer operations needed per pro-
gram and their types, compared to those available on
the computer under consideration.

(c) The total number of space points and time steps needed
in a calculation.

(d) The desired ratio of speed of the computed solution of
the atmospheric motion compared to real time.

There are other important factors which one could list,
such as ease of programming, reliability, convenience of
the display of results, etc. These are very important in
building a satisfactory system but have only a secondary
effect on the estimates of raw computer speed and storage
capacity.

® Complexity of the model

The most important property that gives the character of the
calculation is, of course, the numerical model of the weather
problem being solved. It is made up of mathematical ap-
proximations to the physical quantities, the particular nu-
merical algorithms being used to solve the mathematical
equations, and the interactions allowed between the equa-
tions being solved.

It is customary to consider the dependent variables in a
problem as either prognostic or diagnostic variables. There
are five fundamental prognostic variables which must be
evaluated and stored each time for each mesh point in the
three-dimensional grid. They are: The three components of
wind velocity, the temperature and the water vapor con-
tent. In addition there are two or more quantities which are
two-dimensional in nature. These are kept in storage cor-
responding to the horizontal grid. An example would be
the surface pressure.

In addition to the variables there are large numbers of
constants. Usually no three-dimensional constants are car-
ried but there can be a number of two-dimensional arrays
of constants. Surface properties such as the differences be-
tween land and sea, the number of daylight hours, radiation
properties, etc., can be kept as constants.

The diagnostic variables can vary in number considerably
from one problem to another depending on what is being
studied. Diagnostic variables are defined as quantities
which can be determined completely from the prognostic
variables, or as intermediate results from the computation
of the prognostic variables. Most of them are not stored
for the full three-dimensional or two-dimensional meshes,
and many are not saved except as contributions to averages
or limits.

Because of the number of special two-dimensional cases
concerned with the surface conditions it is easier to describe

the number of quantities for a vertical column of points
rather than for each point in the three-dimensional mesh.
On this basis, Leith’s program™ stores 31 variables per
horizontal point containing 6 vertical levels, and Smago-
rinsky®? uses 37 variables for 9 levels plus other diagnostic
variables which are not computed every cycle.

Additional physical effects usually enter into the equa-
tions as diffusion terms in the energy equations. Since the
vertical cases are handled separately, there will usually be
two additional horizontal diffusion terms per point which
must be stored. The inclusion of additional quantities and
physical effects may or may not have an appreciable effect
on the computing time. The storage may also be organized
to avoid reading in slowly varying quantities more often
than they are needed.

For five-day forecasts the effects of radiation are usually
considered not very important. Radiation effects, however,
are uniform, consistent and slowly varying, and so are cu-
mulative. For forecasts longer than five days the radiation
drives the atmosphere and must be included in the calcula-
tion. There are also cases of shorter duration where radia-
tive effects can be dominant if other forces are weak.

Adequate treatment of radiation requires a suitable sta-
tistical treatment of local cloud cover. A reasonable guess
by Kasahara is that this would add four dependent prog-
nostic variables to the problem—three numbers repre-
senting the fractional grid coverage by each of three
cloud types and a radiative heat source term—at every
mesh point. The slow variation in time of these variables
allows a time step of a few hours. Although the cloud and
radiation coding will be lengthy and difficult, he estimates
that the infrequency of calculation would result in only
a few per cent increase in the over-all computation time.
The doubling of the number of dependent variables,
however, is certainly a significant consideration in terms
of storage requirements and data transmission rates within
the computer.

A two-fold increase in the linear resolution can cause an
increase of up to a factor of 10 in total computation. How-
ever, by Smagorinsky’s estimate an increase in the number
of dependent variables by one (e.g., adding ozone in a gen-
eral circulation model) will increase the number of calcula-
tions by only 20 per cent. Likewise, an increase of vertical
resolution in the quasihorizontal models has a relatively
small impact on computing time. Increases in physical com-
plexity and fidelity in formulating the slow-acting processes
(e. g., radiation, ocean coupling on the atmospheric general
circulation) are also trivial in the total number of computa-
tions because they are done rather infrequently.

® Number of computer operations executed

For rough estimates the best parameter seems to be the
number of instructions executed per mesh point per cycle,
This is a complicated average to compute from a program,
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but it is easy to measure and very easy to use in making
estimates. After examining several programs and making
allowances for cases of Input/QOutput limitations, the fol-
lowing seem to be typical.

For a straightforward hydrodynamics program with no
complications, approximately 300 instructions are ex-
ecuted per mesh point in a three-dimensional grid per time
step. The most complicated programs with many complex
physical effects included, run less than 30600 instructions
executed per mesh point per time step. The programs them-
selves could be different in total size by more like a factor
of 100. The important point is that the running time of a
calculation in terms of computer operations per point per
cycle does not seem to range over more than a factor of
ten in practice.

The particular mixture of computer operations that are
used to advance a typical mesh point are made up of the
necessary floating-point arithmetic calculations plus the
logical instructions to handle the branching and indexing.
Even with the same numerical algorithm there are a number
of ways in which individual equations may be programmed
in machine language. A carefully written program will or-
dinarily use combinations of instructions which run the
fastest. Thus there can be fairly strong feedback between
the particular computer operation code characteristics and
the precise way in which the numerical algorithm for the
problem is set up. As a result, the product of the typical
number of instructions executed per mesh point times the
execution time of a typical instruction may give a total
time which can differ considerably from the actual time
needed to compute the mesh point. This is true because
the two averages are not independent quantities. A well-
coded program will tend to use more of the highest speed
instructions. More details are given in Ref. K3.

® Mapping problem

One problem which is somewhat unique to the general cir-
culation model is that of choosing a coordinate system to
represent the surface of the earth in a convenient fashion
in the computer. At first glance it seems that a trivial change
of coordinates should solve it. However, like many such
“trivial” matters it has caused a great deal of serious
thought and planning, since the whole structure of the
problem storage and the details of the difference equations
depend on the form of mapping used.

Three types of mappings are used. The easiest to under-
stand is the latitude-longitude grid such as that used by
Leith and Mintz. It has the problem that the longitude lines
get closer together as one goes toward the poles. Some
means of cutting down on the number of computed zones
as one approaches the poles is necessary. This creates arti-
ficial discontinuities in the mesh which can (and frequently
does) cause problems.

H. G. KOLSKY

The second method, which has been used by the Weather
Bureau, the Air Force and the Fleet Numerical Weather
Facility, is that of projecting the northern part of the globe
onto a plane centered at the North Pole, then subdividing
the plane in some regular way. The Southern Hemisphere,
of course, can be done the same way. This method gives
the simplest differencing scheme and gives best resolution
in the upper and middle latitudes. It has difficulties in
patching the two hemispheres together. For a detailed
discussion of mapping, see Quarles and Spielberg®??.

The third method is that of using some algorithm for
spacing points equally (almost) over the whole globe.
Kurihara®? has described such a system which preserves
latitude lines while spacing points almost equally. Smago-
rinsky’s newer programs will use this approach since there
is an appreciable storage saving promised.

In the estimates given later we compute the number of
mesh points, simply assuming that the earth is spread out
in a 360° by 180° rectangular plane. For example, the rec-
tangular grid just mentioned gives 2592 horizontal mesh
points for 5° mesh. The actual 40 X 40 mesh used by
Smagorinsky results in 2514, Leith’s zoning scheme results
in 2036, because of the reduction in number of mesh points
toward the poles. Kurihara’s proposed equal spacing
scheme would be able to get by with 1682 total points for
the same approximate resolution. This is almost a factor
of 1/3 reduction, although it is bought at the expense of
longer interpolation calculations in the mapping equations.
This is a good example of the trade-off between complexity
and storage requirements.

® Time and space resolution problem

In the finite difference methods of solution which we have
been considering, one of the main characteristics determin-
ing the running time of the problem and the accuracy of its
results is the number of mesh points used in the calculation.
Any of the models are capable of arbitrarily fine refinement
in both space and time. Within the limitations of round-off
error, the answers will improve, the finer the resolution.
This creates a certain insatiability in the calculational re-
quirements for such problems. In the Table 1 we have taken
a number of typical mesh sizes which have either been done
or discussed as future plans and have computed the total
number of spatial mesh points.

In general, if a linear dimension is reduced, the time step
must be reduced in direct proportion. This is strictly true
for explicit hyperbolic-type equations. Normally, the
weather circulation models are run at a finer time step than
that which would be called for simply by the stability con-
dition, mainly because of convenience. Also, the stability
condition is usually finer in some parts of the mesh than
others. Normally the entire mesh is carried at a single time
step for logical convenience.




Table 1 The number of mesh points required by numerical weather problems as a function of resolution

Scale Number of Points
No. of points
Spacing, Spacing, No. of hori- No. of Total no. Time advanced to
degrees kilometers zontal mesh vertical of mesh step,>  compute 1 hr.
latitude N! (atequator) points? levels points min. of real time Typical programs
10° 18 1111. 648. 3 1.9 X 103 20 5.8 X 10 Programs of early 1950’s. Present
stream function codes.
8° 22 889. 1,000. 2 2.0 X 103 12 1.0 X 10* Mintz’s 2-level code.
5° 36 556. 2,592. 6 1.5 X 10* 10 9.3 X 10¢  Leith, Smagorinsky’s N = 20 code
3° 60 333. 7.,200. 9 6.5 X 104 6 6.5 X 10° Experimental calculations 1965-69
2° 90 222, 16,200. 12 1.9 X 108 4 2.9 X 108  Future operational region 1970’s
1° 180 111, 64,800. 18 1.2 X 108 2 3.5 X 107 Future experimental region 1970’s

! N equals twice the number of mesh spaces between the pole and equator.
2 The number of horizontal points is computed for a 360° X 180° square grid. An actual problem can have 10 to 309 fewer horizontal points, depending on the

mapping method used.

3 The assumption is that each point is advanced every time step. In larger problems, the time step would probably be variable.

Since these problems can saturate any machine, the most
serious question then becomes, What resolution is really
needed ? The detailed five-day forecast studies of Smago-
rinsky et al. were performed with a 40 X 40 horizontal
mesh per hemisphere per altitude (approximately 5° mesh).
It was found that the sub-mesh energy transport by eddy
diffusion accounted for approximately 5 per cent of the to-
tal energy transport. Since the eddy diffusion in the at-
mosphere is not really known, the practical philosophy
adopted is that the grid scale should be chosen small
enough that a change by a factor of two or more in the
eddy viscosity results in no significant change in the mete-
orologically significant large-scale effects. Ideally one would
continue to halve the mesh interval until computed results
become insensitive (although the physical model might be-
come inappropriate in the process). Manabe feels an 80 X
80 horizontal mesh per hemisphere per altitude level is
probably sufficient. This corresponds approximately to a
two-degree mesh interval at the equator.

In order to represent the important temperature gra-
dients in the ocean at least two vertical levels into the ocean
are necessary. A total of 18 to 20 levels for both the ocean
and the atmosphere is probably adequate. A time step of
about 3 or 4 minutes would go with this resolution.

These estimates lead one to a spatial mesh of 80 X 80 X
20 = 1.3 X 10° points. Four dependent variables (eight
with radiation and clouds) would be stored and at least five
variables computed per mesh point each time cycle. A five-
day forecast would require 2400 time steps, yielding a total
of 3 X 10® mesh-point computations for a complete prob-
lem. If one wishes to perform this calculation at 100:1 times
real time (1 hour 12 minutes for a 5-day forecast) then each

mesh point must be advanced in an average of 14.4 ysec!
If there are 3000 instructions to be executed to advance one
mesh point, then the computer must execute instructions at
the rate of 210 million instructions per second!

Of course, one can reduce this incredible figure by back-
ing off on the above criteria. In particular the easiest to re-
Iax is the 100:1 speed criterion. A rate of 10:1 should still
be quite reasonable for an operational system,

® Ratio of the speed of calculation to real time

The ratio of calculation speed to real time is one of the
simplest numbers to state, yet next to the spatial resolution
it is the most important in setting the computer require-
ments. Present models range from 1-to-1, that is, the cal-
culation proceeding at the same rate as the actual weather,
to perhaps 10-to-1. Older, greatly simplified models can be
integrated on present-day computers at a much higher
ratio—100-to-1 or more.

Tables 2 and 3 show examples of computer speed in
terms of millions of instructions per second for different
complexity models and different spatial resolutions. Some
of these results are shown in the graphs where they become
straight lines on log-log paper. The graphs are given for
particular combinations of vertical resolution and time step
corresponding to diagonal values in the table. (See Fig. 6).

These curves show perhaps better than any other means
the true open-endedness of the computer requirements for
general circulation models. They also show, however, that
if one wishes to operate at speeds between 10:1 and 100:1,
with a 2° mesh resolution or better with a fairly complicated
model, one must certainly get into the range of 20-200
million instructions per second executed.
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Table 2 Approximate computer speeds required for a fast model
computing at 10:1 times real time

Horizontal MIPS for various vertical levels
resolution.
Spacing in 3 6 9 12 18
degrees latitude Levels Levels Levels Levels Levels
10° 0016 0.032 0.049 0.065 0.097
5° 13 .26 .39 .52 .78
3° .60 1.2 1.8 2.4 3.6
2° 2.0 4.0 6.1 8.1 12,
1° 16.2 32, 49. 65. 97.

Table 3 Approximate computer speeds required for a fast model
computing at 100:1 times real time

Horizontal MIPS for various vertical levels
resolution.
Spacing in 3 6 9 12 18
degrees latitude Levels Levels Levels Levels Levels
10° 0.16 0.32 0.49 0.65 0.97
5° 1.3 2.6 39 5.2 7.8
3° 6.0 12. 18. 24. 36.
2° 20. 40. 61. 81. 120.
1° 162. 320. 490. 650. 970.

A ““fast model” is defined as one requiring 1000 computer operations to ad-
vance one mesh point one time step on the average,

Programming considerations

® Higher-level languages and efficiency

The question of programming-system efficiency is very seri-
ous for a large problem. The millions of instructions per
second used up by an inefficient programming system are
just as real as those used on a complicated physical calcula-
tion. In general, one is willing to spend more time in the
programming of a large operational program that will be
run many, many times than one is for a small program or
a ““one shot” experiment.

It is generally agreed today that it is unreasonable to ex-
pect people to do large-scale scientific programming in
machine language. It is also agreed that they should not be
penalized too heavily for using FORTRAN or pL/1. In
practice, a combination of FORTRAN supplemented by
key data handling subroutines written in machine language
achieves most of the efficiency while retaining the ability to
modify and improve the large production problem.

There should also perhaps be a set of special instructions
which the average user could ignore but which could be
used to streamline the inner loops of big programs. Ex-
amples of such instructions might be: multiplying by an
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ranges of 4 and x are limited, say, between 0.1 and 1.0.
Careful attention should be paid to the little “bottleneck”
situations in weather calculations. Better diagnostic pro-
grams for locating bottlenecks automatically, and perhaps
even eliminating them automatically in big calculations,
would seem to be a very fruitful area for investigation.

The real need in a programming system is better coupling
between the problem formulators and the computing equip-
ment. The real goal should be to reduce the time from prob-
lem formulation to useful answers—not to increase “speed”’
or “turn-around time” or any of the other usual measures
of computing, although they would also improve. Paper
improvement in computer efficiency forced by rigid sched-
ules and control program constraints is often exactly the
wrong way to measure real progress on a scientific calcu-
lation,




® [ife and death of a large production program

The numerical weather prediction programs which are pres-
ently being run are all the result of a long series of technical
iterations involving the physical problem being solved, the
equations arising from theoretical considerations, and ex-
perimental observations that are made of various physical
phenomena. During the design iterations, new numerical
differencing and approximation schemes are derived to
solve the equations, experimental results are used to cali-
brate certain constants, then the calculations are refined,
the equations improved, and so on. Some of the larger pro-
grams, such as Smagorinsky’s which have been in existence
for a number of years, have actually gone through several
cycles of this physical-mathematical-experimental-program-
ming iteration. One result of this history is that when new
computing equipment becomes available, it is not as easy
to take advantage of all of its power as might be expected,
simply because one cannot break with the past completely
in these practical design problems.

The life cycle of a large calculation usually starts from an
experimental phase in which variations and improvements
on past calculations are consolidated in a new code. It will
become proved out throughout a number of exploratory
calculations, comparisons against experimental results,
previous calculations, etc., until it becomes accepted for
its own right by the scientists who are making the practical
decisions as a good tool for analysis. Often there may be
two or three active versions of the same code in operation
at one time, depending on the particular set of approxima-
tions or perhaps the machine upon which it is being run. It
is thus hard to identify exactly what is being referred to in
any given program.

When a production program is being replaced it does not
really die suddenly. Usually what .will happen is that a
better approximation or a better program will gradually
become used more and more and the older program will be
relegated largely to the role of reruns of past examples. In
cases where comparisons against earlier problems or de-
signs are desired, the designers may wish to run them on the
same old code as the originals were run. Also, calibration
problems for the new code will be another type of use.

In a sense, any program which has at one time been used
for heavy production becomes really completely obsolete
only when people essentially have forgorten how to run it.
This can happen because the machine on which it was
written is no longer available, or the problem originators
or the problem users have really forgotten how to run prob-
lems of interest on it. At this point the program is truly
dead.

Example of the use of a numerical weather model
The use of electronic computers as tools to solve the data

processing and physical analysis problems associated with
daily operational forecasts is certainly understood and con-
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Figure 7 Configuration of vertical surfaces in the Mintz-Arakawa
model showing how mountain ranges are described. Definition:
o = (p — 200)/(p, — 200). From Mintz M

sidered worthwhile by the public today. The role of general
circulation calculations which use unreal initial conditions
on an “‘artificial” world is probably less well understood.

Such calculations should be considered in the same spirit
as laboratory experiments in which a model of a complex
non-linear system is studied by carefully varying individual
parameters to determine the basic behavior of the system.
The goal is to isolate the key physical phenomena from
among all the confusing details. As with any active field,
there are many discussions and disagreements among nu-
merical meteorologists concerning the relevancy of their
various models and their results.

An excellent example of the use of a numerical model to
study the cause of certain large global patterns is given by
Mintz™! in his calculations demonstrating the importance
of the Himalayas for the winter surface pressure pattern
over Siberia (known as the “Siberian High” by meteorolo-
gists).

Prof. Mintz used a modified version of a coordinate sys-
tem originally proposed by Phillips in 1957. The vertical
dimension in the model is expressed in “sigma coordinates™
as shown in Fig. 7. The ground is represented by ¢ = 1.
It includes a smoothed representation of mountain ranges
as shown. ¢ = 0 represents the 0.2 bar pressure surface
and is the upper limit of the calculation. The horizontal
grid is relatively coarse, being 9° of longitude at the equator
and 7° of latitude, giving a total of 1000 horizontal mesh
points. A time step of 12 minutes was used.

The calculation was started so that in the beginning the
air was everywhere at rest, everywhere the same tempera-
ture (250°K), and everywhere having the same surface
pressure of one atmosphere (1.013 bar). The sun’s declina-
tion was set for the northern hemisphere winter. Initially
the mountains were left out and the globe was a smooth
sphere, although land, sea, and ice were differentiated.
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Figure 8 Mean kinetic energy of the entire atmosphere, as a function of time. KE is the global mean of the kinetic energy, per unit
mass, of the total (vector) wind. KEV is the global mean of the kinetic energy of only the meridional (south to north) component of
the wind. The left part of the figure is for the experiment without mountains. The right part is for a period many days after the large

scale mountain systems had been added. From MintzM?,

From this initial state of rest the kinetic energies rose to
their long-term steady state values in about 40 days. (See
Fig. 8.) When this run reached a steady state, the mountain
experiment was performed. The results showed that the
Siberian High does not appear on the mean sea level
pressure map when there is no Himalayan mountain chain.
In Prof. Mintz’s words: “After the experiment with the
smooth, mountainless globe, I changed the surface data
cards, at a given instant in the middle of a run, and in this
way suddenly raised into place the large scale mountain
systems of the Earth. As soon as this was done the air be-
gan to pour down the mountain sides (as would water
down the sides of an island emerging from the sea), pro-
ducing large gravity waves. After some days these large ex-
ternal gravity waves died out and only the familiar meteor-
ological motions remained, as the synoptic charts will show.
In terms of the global mean Kkinetic energies, the presence
or absence of mountains seems to make little difference, as
may be seen by comparing the right and left hand sides of
Fig. 8.”

The time-averaged results of the mountain experiment
are shown in Fig. 9. The surface pressure reduced to sea-
level shows a number of features which have been observed
experimentally. These include the Siberian High; the Alas-
ka-Yukon High; the Icelandic Low; the North Pacific Low;
the North Australian Low, and others. Other features are
not in agreement with experiment; particularly noticeable
are the High over Greenland and the Low over the Great
Lakes, the absence of observed low centers over South
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For a numerical experiment, the results which disagree
can be as significant as those which agree. The details for
the above example are discussed in the original report.M!
As is often the case in physical experiments, each numerical
experiment often raises more questions than it answers.
This phenomenon helps maintain the insatiability for com-
puting time which characterizes meteorology.

Future outlook
Numerical weather prediction has progressed in the past 15

years from theoretical speculations to fully operational net-
works. The plans for the next ten years, which include the
World Weather Watch, automated data collection and com-
munications, promise to outshine the accomplishments of
the past.

Concerning the numerical models to be used, the trend
toward the finite difference solution of primitive equations
will probably continue. Other new methods, such as those
based on Fourier transforms, seem to offer little hope. One
can expect that more and more detailed physics will be in-
cluded. Coupled air-sea calculations will be commonly
used. Clouds and moisture will be handled much more
realistically. The emphasis will probably be on the incor-
poration of more satellite data, and other exotic measure-
ments, directly into the models.

Fortunately the projected computer speeds, storage ca-
pacities and data rates for the 1970’s seem to match the
projected needs in terms of resolution and speed for the
global weather problems of the same period. Perhaps this
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Figure 9 Some results of Mintz' numerical general calculation experiment with mountains. The curves are surface pressure isobars
reduced to sea level, for Northern Hemisphere winter and Southern Hemisphere summer, in millibars. (The broken lines are inter-
mediate 214 mb isobars.) The curves represent the 30 day mean (from day 256 to 285) computed in the numerical experiment. From
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is another case of “feedback” as mentioned earlier, although C2. Charney, J. G. and N. A. Phillips, *‘Numerical Integration
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