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Some  Computer  Aspects of Meteorology 

Abstract: A long  history of  large-scale  scientific  computing  is  associated  with  numerical  weather  prediction.  Recently, interest in this 
field  has  been  renewed  as a result of international  studies  concerning  the  feasibility of a global  observation  and  analysis  experiment 
preliminary to the World  Weather  Watch.  This  paper  describes  the  physical  phenomena  occurring in the atmosphere and the prob- 
lems  of  modeling them  for  computer  analysis.  The  numerical  methods  commonly  used in general  circulation  models are described 
briefly and the relative  advantages  discussed.  Finally,  an  analysis  of  the  computer  requirements for global  weather  calculations is de- 
veloped and the need  pointed  out  for  very  fast  computers  capable of executing the equivalent of hundreds of  millions  of instructions 
per second. 

Introduction 
Even in this age of scientific superlatives it is hard to find a 
field more far-reaching, with  more interesting problems and 
more difficulties, than  that of numerical weather prediction. 
The associated atmosphere physics behind it is literally 
world-wide. A large number of physical disciplines inter- 
act with each  other  in a most complex way. Fluid dynam- 
ics, which describes the major  motions of  the atmosphere 
and oceans, is considered classical physics. However, the 
energy sources and frictional forces which must  be included 
introduce quantum mechanics and diffusion theory as well 
as numerical analysis. 

Although one cannot  underestimate the importance of 
the physical theory and numerical  methods, the  real his- 
tory of numerical weather prediction has been essentially 
tied to that of the speed and capacity of the computers 
available. Richardson’s attemptR1  in  the 1920’s to perform 
numerical weather calculations starting from  the primitive 
equations of hydrodynamics is well known. He proposed 
tying the calculations into  an operational network. The 
magnitude of his effort and  the difficulties which he en- 
countered were enough to discourage serious work in this 
area  for over twenty years. However, reading his account 
now is an interesting experience because it  sounds surpris- 
ingly modern. One would have to make relatively few seri- 
ous changes in Richardson’s book to bring it out  as a 
modern  treatise in  the field. There is, however, an enor- 
mous difference between the  theory  and  the accomplish- 
ments of these early reports and  those of today-the growth 
in speed and capacity of the available computers has been 
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The purpose of this  paper is to survey the basic physical 
phenomena concerning the atmosphere and some of the 
numerical and computer design problems that arise in  at- 
tempting to model it. The emphasis is on general circula- 
tion research problems  rather than  on existing operational 
methods. Our feeling is that these research problems are 
the ones which stretch the  state of the  art, place the heav- 
iest demands on computers, and  point  the way to the fu- 
ture. 

Physical phenomena 
In discussing the requirements for  improved weather fore- 
casting, Phillipsp1 offers the following comment: “Un- 
fortunately, faster computing machines are  not  the only 
requirements for improved weather predictions. The basic 
physical equations, which are nonlinear, presuppose an ex- 
tremely detailed knowledge of the  state of the atmosphere 
at the beginning of the forecast. For example, the viscosity 
term  in  the Navier-Stokes hydrodynamic  equation is of 
fundamental  importance because it is ultimately respon- 
sible for  the frictional dissipation of kinetic energy in  the 
atmosphere. However, it can perform  this  vital  function  in 
a numerical calculation only if the  latter includes motion 
on scales as small as a millimeter. Analogous difficulties 
appear  in  other equations, especially those describing con- 
densation of water vapor and precipitation (where the 
fundamental physical laws apply to individual  raindrops) 
and radiation effects (where the molecular spectra are ex- 
tremely complicated). The most important weather phe- 
nomena, on  the other  hand,  have  horizontal scales of lo5 



to lo7 meters, and experience has shown that  it is necessary 
to consider conditions over almost an entire hemisphere 
to predict the weather several days in advance. It is obvi- 
ously impractical to allow for  this scale ratio of 1O’O in  any 
conceivable computation scheme.” 

Scaling  approximations 
To deal with these difficulties of scale many  kinds df ap- 
proximations in  the field of dynamic meteorology have been 
developed. They are all concerned with including or omit- 
ting certain physical quantities from  the model. As a con- 
sequence, the solutions of such approximate, discrete sys- 
tems do  not describe all physical phenomena  associated 
with the complete system of differential equations.  Such 
approximations are said to “filter out” entire ranges of 
phenomena, e.g. sound waves, which should not have an 
effect on  the answers of interest, e.g. large-scale cyclonic 
motion. 

In  the scale-analysis approach,  it is assumed that all de- 
pendent variables-such as  the velocity-are characterized 
by a “well-defined rate of variation,” i.e., a scale, in space 
and time. In  particular,  it  is assumed that a partial deriva- 
tive of a quantity will have an  order of magnitude at most 
equal to the magnitude of the quantity divided by the  ap- 
propriate scale length. This scale-analysis method  has the 
advantage of maintaining a relatively clear and unambigu- 
ous relationship between the  “true” variables in the at- 
mosphere and  the variables in  the simplified equation. It 
still requires some physical intuition, however, since defi- 
nite  statements about the order of magnitude of various 
quantities are necessary. 

Figure 1, from a graph by Arakawa,*‘ shows in a clear 
way how many of the regions of approximation are related. 
In particular, it shows where ordinary general circulation 
calculations fit  int.0 the range of physical phenomena. 
(Their characteristic  time scale is from lo3 to  lo5 seconds 
and their characteristic length scales from lo5 to lo7 
meters). These are motions  in which the Coriolis force 
from the earth’s rotation is important. 

Fortunately,  motions on this large scale are  not  only re- 
sponsible for most day-to-day weather changes (and  are 
therefore worth forecasting), but it seems that  their be- 
havior can  be predicted satisfactorily over periods of sev- 
eral days without too much detailed consideration of the 
unknown smaller-scale phenomena. “Small scale” phe- 
nomena  in  this case include individual thunderstorms, tor- 
nados, and even hurricanes. Except for special warning 
networks, they fall outside the regular  observations and 
realistic computing models. 

Fundamental conservation equations 
The physical and mathematical basis of all methods of 
dynamical weather prediction lies in  the principles of con- 
servation of momentum, mass, and energy. Applied to  the 
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Figure 1 A graph  showing the scales of various  atmospheric 
motions  in  wavelength  and  time  (from  Ref. Al). 

quasicontinuous statistical motion of an assemblage of 
liquid or gas molecules (through the methods of kinetic 
theory and statistical mechanics), these fundamental  prin- 
ciples are expressed mathematically in Newton’s equations 
of motion for a continuous medium, the  equation of con- 
tinuity  (for  mass conservation), and  the thermodynamic 
energy equation. So far as is known,  these equations  are 
universal, in  that they evidently apply to all fluids in nor- 
mal ranges of pressure, temperature, and velocity, without 
regard to composition,  container, or  state of motion. 

The basic equations contain  terms which describe such 
physical entities as heat influx, water vapor influx and fric- 
tional forces, which after discretization and scaling assump- 
tions  are  no longer implicitly described by the system. Such 
phenomena are said to be “parameterized” in  the model. 
For example, the fact  that  the  transport of water vapor into 
the atmosphere from water surfaces is accomplished by 
small eddies means that even the release of latent  heat by 
precipitation cannot be successfully treated  without in- 
cluding the effects of turbulence. 

A detailed discussion of the  conservation equations of 
fluid dynamics and their  numerical difference formulations 
is  not considered necessary in this  paper since they  have 
been discussed at  length by Quarles and Spielberg,Q1 
Thompson,T1 and Smagorinsky.sl 

The importance of the nonadiabatic effects, friction and 
precipitation is discussed by Phill ip~.~’ 

Atmospheric heating and cooling by radiation 
The effects of radiative  cooling in  the atmosphere are less 
well formulated  in existing models, but progress is being 583 
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an understanding of the way in which energy, gases, par- 
ticles, and electric charges move across the interface be- 
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made.s2 Although the hydrodynamic energy  of the atmos- 
phere is dominant and its motion can be calculated adia- 
batically to a fairly reasonable approximation, one must 
keep in mind that  the earth receives virtually all of its  en- 
ergy from space in the form of electromagnetic radiation 
from the sun. 

The transformation of the incident solar radiation into 
scattered and thermal radiation, and the consequent ther- 
modynamic  effects on the earth’s gaseous envelope, are 
very complicated phenomena, requiring the most advanced 
methods of molecular physics and quantum mechanical  cal- 
culations. Absorption along a real atmospheric path, where 
pressure, temperature and composition all vary, presents 
problems only a few of  which  have  been  solved.  (See 
GoodyG1). 

Calculation of cloud effects 
If a cloud layer is present, the  drops of water of which a 
cloud consists are comparable in  size to the wavelengths  of 
thermal radiation, and their number per unit volume  is quite 
high. In this case consideration of the scattering is, there- 
fore, of great importance. The accurate solution of the 
problem of radiative heat transfer in clouds can be obtained 
only by using a detailed equation for radiative energy trans- 
fer. Calculations indicate that a cloud is “active” with re- 
spect to thermal radiation only around  its edges. The flux 
of thermal radiation entering the cloud is completely ab- 
sorbed in a distance of a few tens of meters. 

Probably the most formidable computational problems 
meterologists are likely to face  will arise from the calcula- 
tion of cumulus convection. In such problems no simple 
hydrostatic approximation for vertical motion can be as- 
sumed. The phase  changes  of  water in air will have to be 
carried in four forms-vapor,  ice,  water and droplets. Even 
electrostatic forces between droplets may  have to be cal- 
culated, at least in some average sense. These microscale 
calculations are  as demanding of computer time as  the gen- 
eral circulation problems. 

Air-sea interface 
Although the most important driving force for the atmos- 
phere is  ultimately the radiation from the sun, the second 
most important is no  doubt the atmosphere’s interactions 
with the ocean. The tremendously large heat capacity repre- 
sented by the oceans of the  earth provide its stability and 
relative uniformity of temperature. The oceans and the  air 
can be considered a two-fluid  system coupled relatively 
loosely but coupled  in a very important way. 

A Government report edited by BentonB1 emphasized 
the fact that the atmosphere and the oceans together form 
a single  mechanical and thermodynamic system, and that 

Energy transfer, in  the  form of radiation or latent heat, af- 
fects the circulation of both the atmosphere and  the oceans. 
The physical phenomena are complex and have far-reach- 
ing consequences. For example, water vapor, oxygen, car- 
bon dioxide, and other gases  move across the interface and 
influence both  the composition of the atmosphere and the 
life  cycle  of marine organisms. Salt particles from the 
oceans  provide condensation nuclei for precipitation. 
Charge separation in ocean spray may  be  significant  in the 
development  of  differences  in electrostatic potential be- 
tween the atmosphere and the  earth’s surface. 

Weather and climate modification 
Certainly no discussion of  the future of meteorological 
computations would  be complete without mentioning the 
enormous implications of weather and climate  modifica- 
tion. Several studies have  been made in  recent  years con- 
cerning the general problems of weather  modification. The 
most recent study, headed by G.  J. F. MacDonald,N1 has 
resulted  in an excellent report which  is  recommended to 
anyone interested in the subject. 

The major portion of atmospheric energy  exchange  is 
due to  the release of instabilities inherent in  the preferred 
states of the atmosphere. These  dynamically unstable situa- 
tions are looked upon as ‘‘levers’’ or “soft spots” in the sys- 
tem where  man’s efforts  might be able to trigger a chain of 
nature reactions. 

Man has exploited these instabilities on a limited  scale  in 
the belief that the effects  would be  as short-lived as  the 
phenomena  themselves and that the energies  released  would 
not escalate to the level  which  would change the weather 
permanently. 

I t  is  obvious from geological  evidence that the earth- 
atmosphere system can support radically different climatic 
regimes,  some of which could be disastrous to civilization. 
We do not yet  know  what can cause a shift from one 
climatic regime to another, whether  change can occur 
in an “instant” of geologic  time or only as a secular  cyclic 
process; our few theories still hang on the most tenuous 
evidence. 

Numerically integrated mathematical models  of the at- 
mosphere have come to be regarded as necessary tools for 
research in  modification of  the atmosphere. This is particu- 
larly true in areas where actual experimentation would  be 
too costly, take too long, or possibly  be  irrevzrsible. 

Numerical methods 
Because the partial differential equations (or in  the case of 
radiation, integral equations) for a fluid are nonlinear and 
possess  difficult initial and boundary conditions, they must 
be  solved by numerical methods for practical cases. This 
involves converting the equations describing the particular 
physical  model under consideration into a form which  can 
be solved  by numerical algorithms on a computer. 



Although it is a simple matter to convert a given system 
of differential equations to some finite difference form, it is 
a far  more difficult task to  obtain physically meaningful re- 
sults even if the  integration  method proves to be  stable. The 
hydrodynamical equations  of motion  contain among their 
solutions  the high-speed sound and gravity waves which, 
meteorologically speaking, are spurious  information. Un- 
less an unrealistically small time step (several seconds) is 
used, these solutions have a tendency to amplify in time 
and overshadow the physically meaningful results. It is 
necessary to find a  set of difference equations which will be 
stable in the sense that the calculation can go on for an 
indefinite time without nonsensical results developing. This 
is a particularly sensitive matter in an atmospheric  model 
since there  are  conditions under which the atmosphere itself 
can be temporarily unstable so that small disturbances 
really do grow. This  must be permitted  in the numerical 
model also, but in a reasonable way. 

By far  the  most serious obstacle to solving the hydro- 
dynamical equations arises from  the properties of the  at- 
mosphere itself. The large-scale horizontal accelerations of 
air are  about  an  order of magnitude less than either of the 
forces per unit mass taken individually, i.e., the Coriolis 
force due  to  the rotating earth  and horizontal pressure- 
gradient force. The atmosphere  maintains itself near  some 
state of balance and much more nearly so than is revealed 
by direct measurement.c5 

For similar reasons, the horizontal divergence of the 
wind velocity cannot be  computed accurately from direct 
measurements of the wind. It can  be inferred indirectly that 
the sum (&/ax f al;/ay) is generally an  order of magni- 
tude less than either au/ax or &/dy taken individually, i.e., 
the latter  tend to compensate each other almost completely. 
Thus,  in order  to compute V .  V = & / a x  t au/dy  to 
within 10% accuracy, the wind components  must  be meas- 
ured to within 1 accuracy. Winds, however, are  not 
measured and reported to within better than 10% accu- 
racy. As a result, the vertical air speed cannot be  computed 
accurately unless spuriously large fluctuations of divergence 
can somehow be suppressed. 

Present global general-circulation models use equations 
in which the hydrostatic assumption is made. (This approxi- 
mate set of equations is somewhat misleadingly referred to 
as the “primitive equations”  in meteorological literature.) 
This is an accurate  approximation  for  motions with hori- 
zontal scales of 25 miles or longer. Vertically propagating 
sound waves are excluded by this technique but gravity 
waves are retained. The size of the time  step permitted is 
proportional to  the horizontal  space  increment;  for  a  latter 
value of 125 miles, the time step  should  be less than 10 
minutes. 

Finite difference solutions and nonlinear instability 
At the present time no single finite-difference analog of the 

primitive equations has emerged which meets all  the  ob- 
jectives of the meteorological community. Such  a set of dif- 
ference  equations  must  be,  in  addition to being “physically” 
acceptable, mathematically accurate and stable. By accu- 
racy is meant consistency, and by stability, convergence. 

In 1956, PhillipsP2 in his early attempt at long-term in- 
tegration of the meteorological equations  encountered an 
unexpected difficulty. After about 20 simulated days the so- 
lution began to show a structure  termed  “noodling,” in 
which the  motion degenerates into eddies of elongated, 
filamented shapes. Once  formed, the eddies intensify with- 
out limit, causing a nonlinear computational instability and 
explosive growth of the  total kinetic energy. Phillips showed 
that  the instability is caused by “aliasing” or misrepresenta- 
tion of the shorter waves because a finite grid cannot prop- 
erly resolve them. Phillips showed further that the instabil- 
ity could not be reduced by shortening the time interval. 

For a discussion of nonlinear stability and how it can  be 
overcome using the “leapfrog” scheme, see Leith’s frac- 
tional  time  step method,L1, Arakawa’s methodA2  and  the 
discussion by K01sky.~~ 

Brief descriptions of existing general circulation 

At  the present time  there are four research groups  in the 
U. S. actively working on general circulation models. 
Abroad there is one large group working in the USSR at 
Novosibirsk. Many  other  groups here and  abroad  are 
working on  the theoretical aspects of general circulation or 
are using numerical flow calculations for operational fore- 
casts. Research in general circulation calculations obviously 
is heavily dependent upon  the availability of large com- 
puters and  upon  the existence of a wealthy sponsor (usually 
some government agency). 

The present researchers in the field all owe a great debt 
to the work of Charney and Phillipsc2 at  the Institute for 
Advanced Study  in the early 1950’s. They  also owe much 
to the early operational models of Shumans5 and Cressman 
and Bedient,c4 who verified the importance of numerical 
prediction. The following descriptions (listed in  alphabet- 
ical order) give some of the main  features of recent pro- 
grams. 

The Kasahara- Washington  model-This model is being de- 
veloped by the newest group  in the field, that of Drs. A. 
Kasahara  and W. WashingtonH2 at  NCAR.  The model  has 
been in an evolutionary state in which more complicated 
physical approximations are being included one by one. 

The hydrodynamic and thermodynamic evolution of a 
dry  atmosphere is computed over the whole globe, includ- 
ing solar heating, surface boundary-layer effects, and a 
simple prescription for the latent  heat release due to 
precipitation. The prognostic variables, that is, the ones 
which are used to advance the model in time, are pressure, 
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temperature, and horizontal wind velocity on a five-degree 
spherical mesh similar to  that used by Leith, with two 
levels in altitude. 

Kasahara  and Washington use a three-level “leapfrog” 
scheme for 50 time steps-which is inherently unstable- 
followed by one cycle  of the Lax-Wendroff procedure, 
whose damping properties prove to be sufficiently strong  as 
to render the whole procedure stable. This procedure re- 
quires that  the  data be stored at two  time levels. 

The Leith model-An intermediate-term general circulation 
model  computer  program  has been developed over the past 
five years by Dr. Cecil LeithL1 of the Lawrence Radiation 
Laboratory  at Livermore. 

The hydrodynamic and thermodynamic  evolution of a 
moist atmosphere is computed over the whole globe, taking 
into accoupt  such effects as solar heating, latent  heat of 
evaporation and precipitation, surface friction of the  earth, 
and eddy viscosity. The prognostic dependent variables are 
temperature, water vapor  content,  isobaric wind velocity, 
and surface pressure, and  the diagnostic dependent vari- 
ables are isobaric wind divergence, vertical velocity, and 
geopotential. Independent variables are latitude and longi- 
tude  at five-degree intervals, pressure at six levels from 1 .O 
to 0.1 bars, and time at ten-minute intervals. 

The time-clevelopment of the prognostic dependent vari- 
ables is obtained by numerical integration of the primitive 
equations by a semi-implicit method of fractional  time steps 
which is second-order in  time but requires data stored at 
only a single time level. The thermodynamic  heat  source 
contains  approximations to the absorption of solar energy 
by water vapor-a geometric computation  without clouds 
-and a prescribed radiative cooling rate which is a function 
of pressure alone.  Rainfall is assumed to develop at every 
point of local  supersaturation and  the so-obtained  latent 
heat is found to be an  important thermodynamic source. 
No mountains are considered in  the present calculation. 

The mesh is scanned vertically for each  horizontal mesh 
point and all longitudes for each  latitude,  starting at  the 
equator  and going to the  North Pole, then back to  the 
equator  and proceeding to the  South Pole to complete one 
time  iteration. Three complete latitudes of data  at  one time 
step are  in core at  one time. 

The Mintz-Arakawa model-This is a two-level global 
model developed by Professors Y .  Mintz“ and A.  Arakawa 
of UCLA. The upper  boundary  condition is best summa- 
rized by picturing the stratosphere as a layer of weightless 
cork floating on  the troposphere. Thus there is no infusion 
of mass, momentum, or moisture into  the troposphere from 
above, and  the upper  boundary is an isobaric surface (0.2 
bar). 

The lower boundary  condition is quite complicated, for 
588 the model  accounts for orography (i.e., land elevation) and 
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for air-sea-ice difference. The continental land masses are 
assumed to have zero thermal conductivity, and hence zero 
heat capacity. Consequently, the surface  temperature of the 
land is a computed  quantity, viz., that temperature which 
gives zero net heat flux through  the air-ground interface. 
Conversely, it is assumed that  the oceans have infinite heat 
capacity and zero advection, and hence that  the ocean sur- 
face temperature is a prescribed function of season. Where 
the surface is ice, the ice is also assumed to have zero  ther- 
mal conductivity. However, an upper limit of 0’ C is taken 
for  the ice. 

The Arakawa differencing schemeAZ is applied to these 
equations in their source-free form, thus assuming that  the 
averaged variations in  the conserved quantities do indeed 
result from  the physical sources and sinks rather  than  from 
truncation error.  The  Matsuno approximated backward- 
differencing scheme is used; this gives almost no spurious 
damping of the meteorologically importance  motions. 

The Smagorinsky modelsThe group  headed by Dr. Joseph 
Smagorinsky at  the Geophysical  Fluid Dynamics Labora- 
tory of ESSA represents the oldest and most experienced 
research group currently working in  the field. They have 
experimented with many models over the years. The most 
recent model, published by Smagorinsky, Manabe  and 
Holloway,s2 uses nine vertical levels distributed so as to re- 
solve surface boundary layer fluxes as well as radiative 
transfer by ozone, carbon dioxide, and water vapor. The 
lower boundary is a kinematically uniform land surface 
without any heat capacity. The stabilizing effect  of moist 
convection is implicitly incorporated into  the model by re- 
quiring an adjustment of the lapse rate (the vertical gradient 
of temperature) whenever it exceeds the moist adiabatic 
value. The numerical integrations are performed for  the 
mean annual conditions over a hemisphere starting with an 
isothermal atmosphere at rest. The grid points of the cal- 
culation are located on a stereographic projection  plane 
centered on  the pole. The spatial  distribution of gaseous 
absorbers is assumed to have the  annual mean value of the 
actual  atmosphere and  to be constant with time. 

Operational models-Operational numerical weather pre- 
diction first came into  its own with the formation of the 
Joint Numerical  Weather Prediction unit  (JNWP) in 1954. 
The  U. S. Weather Bureau, the Air Force  and  the Navy 
jointly established the  JNWP to capitalize on  the researchc5 
which had been done at the Institute for Advanced Study, 
the Air Force’s Cambridge  Research  Center, and under the 
late C. G.  Rossby at Stockholm. The three  main  opera- 
tional  groups  in existence today in  the United  States are 
direct descendants of the  JNWP. They  are: the ESSA 
Weather Bureau’s National Meteorological Center at Suit- 
land,  the 3rd Weather Wing at Offutt AFB, and  the Fleet 
Numerical Weather Facility at Monterey. 



Of course,  there is a tremendous difference between doing 
research on general circulation and issuing operational  fore- 
casts every twelve hours. The pressure of the latter  has 
forced the use of simpler models which have been tried and 
found reliable under operational  conditions. The opera- 
tional models are steadily expanding as techniques are im- 
proved by research and  as better data become available. 
For  more details, see for example papers by C r e ~ s m a n , ~ ~  
W ~ l f f , ~ ~  O’Nei1,O’ StaufferS6 and their  collaborators. 

The main difference between research and operations  can 
be related to the “real data” problem. The operational 
groups are geared to the world-wide data acquisition and 
communication  networks which furnish the initial condi- 
tions for their prediction models. A very important phase 
of data collection is the verification and smoothing of the 
raw measurements for  the entry into  the numerical model. 
For example, the  National Meteorological Center uses a 
combination of three IBM computers to perform  this  task. 
The distribution of the completed products of the centers 
to their customers is another large topic which we can only 
mention here. 

Nonjnfinite difference methods in numerical weather fore- 

In investigating the  future computer  requirements of nu- 
merical weather calculations, one always has the uneasy 
feeling that some radical  departure from the present finite- 
difference methods will make the computing estimates com- 
pletely invalid. The hope is that some entirely different nu- 
merical method might reduce the computations  required, 
by many orders of magnitude. 

One suggestion which arises repeatedly is that  Fourier 
transform  methods might be employed for  the calculations. 
This was considered as early as 1950 by Charney, Fjartoft 
and von NeumannC1 as a means for solving the Poisson 
equation arising in  their  geostrophic model. 

The necessity of solving the  Poisson equation  on each 
time step which arises in the geostrophic models, is being 
abandoned by the primitive equation  approaches  currently 
in vogue. 

Fourier methods, however, have continued to be used to 
analyze and  treat stability problems in numerical proce- 
dures. These yield a good description of the nonlinear in- 
stability arising from a cascading of energy from low- to 
high-frequency waves due to “aliasing” mentioned earlier. 
This  phenomenon results from  the fact that products of 
functions yield Fourier  components  outside the spatial fre- 
quency range corresponding to  the grid size. These  com- 
ponents  then  contribute erroneously to the frequencies, 
modulo the number of grid points, lying in  the spectrum 
corresponding to  the grid. This suggests filtering out these 
high frequencies by the introduction of diffusion terms  in 
the equations or by periodically sweeping over the grid 
with some averaging process. But it also suggests a less 
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artificial means, namely the carrying out of the calculation 
in  the spatial frequency domain with the simple expedient 
of dropping  Fourier  components  outside the frequency 
range being considered. 

Calculations of Fourier transforms of actual weather 
maps do  not indicate any  particular wavelength range that 
can always be discarded. 

More recently, spectral  methods have become interesting 
because new methods for computing Fourier transforms 
have been devised  by Cooley and Tukeyc3 which reduce the 
number of operations from f l ,  where N is the number of 
data points, to N log, N .  It has been found  that  Fourier 
transform methods, applied to the solution of the Poisson 
equation by R. W. HockneyHi have resulted in computa- 
tion speeds ten times as  great as  the best iterative methods. 

The most  serious  objection to  the use of spectral  methods 
is that they are generally not extendable to even slight com- 
plications in the equations, such as  the introduction of non- 
constant coefficients or extra  terms.  This  property, more 
than any  other,  makes it unlikely that they can  be applied 
to the primitive equations  in a realistic way. Nevertheless, 
the possibility that someone may have a brilliant idea keeps 
interest alive. 

High-speed  computer  characteristics  for 
meteorological  calculations 
It is futile, of course, to  try to describe a computer  in terms 
of a single speed number or  to  quote storage in terms of a 
single value.K1 However, if such numbers are  not taken too 
seriously, they can be helpful in giving an idea of the 
capabilities of these devices. The secret is to emphasize the 
important effects; that is, the  ones whose inclusion results 
in a factor of two or more, while trying not to get lost in 
the myriad 10% effects. 

Figures 2 and 3 show the progress of large machines 
versus time, both  in  the raw speed (measured in terms of 
millions of instructions  per second executed) and  in  the in- 
ternal  storage  (rated  in  terms of characters of storage re- 
gardless of  size of the words). Word size itself can  affect 
useful storage by as much as a factor of two effect but 
usually it does not have this effect for scientific applica- 
tions. The graphs  show a steady increase in speed and stor- 
age and, if one  overlooks occasional plateaus and fluctua- 
tions,  there is almost a constant  rate of increase of per- 
formance and storage.  Experts in  the computer field have 
been predicting a coming saturation  in computer speed and 
size ever since the beginning. It has  not yet happened, how- 
ever, and there are  no indications that  it will necessarily 
happen in the next generation of computers. The velocity 
of light, which is often quoted  as  the main barrier  to corn- 
puter speed, is still there, but  it  has  not proved to be the 
barrier we expected. There are ways of obtaining an effec- 
tively high instruction  operation rate  other  than simply 
making the individual components go faster and faster. 
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Figure 2 Growth of computer  speed vs time. 

Since the beginning of the development of modern  com- 
puters there has always been at least one machine at  any 
given time which could be called the “supercomputer” of 
its period. These machines are always “stretching the  state 
of the  art” of the technology at  their time. The STRETCH 

computer  (IBM 7030) obtained its  name  from this phe- 
nomenon. Every supercomputer built to date, and prob- 
ably most new ones to be discussed in  the future, has  one 
thing  in  common, i.e., their protagonists use the numerical 
weather problem as  one of the reasons for developing their 
machines. It has  the following advantages for this  purpose: 
It can  saturate the biggest computer. It is very important 
for  the nation to solve it. It resembles many other problems 
based on partial differential equations and is completely 
unclassified from  the national security point of view. 

A cynic might say that numerical weather prediction 
seems to be a “feedback loop” in which the careful analysis 
of physical theories and numerical methods is aimed mainly 
at justifying the calculations which the available machine 
can do. 

‘ear 

Figure 3 Growth of computer  storage vs time. 

From  the computer  architecture viewpoint, almost all 
supercomputers made to date have been serial instruction- 
stream computers. The System/360 Model 91 is the largest 
single-instruction-stream computer presently announced. It 
is however, highly parallel in  its internal  structure. There 
are large numbers of buffers and arithmetic units, all ca- 
pable of operating concurrently on the instruction and  data 
streams. This  internal overlapping is roughly equivalent to 
a parallelism of 8- to 10-fold over a simple nonoverlapped 
design. The  important point is that it is still logically equiva- 
lent to a serial instruction-stream. The programmer or pro- 
gramming system need not consider the parallel nature of 
the machine directly. 

Two other machine design philosophies have been seri- 
ously proposed which overtly act  upon many sets of num- 
bers at once. One design is that characterized by a single- 
instruction-issuing serial computer which causes the execu- 
tion of a given instruction by many processing units, each 
of which operates on  its own data. This design is frequently 
called a “network processor.” The SOLOMON is the best 



known example.s4 Computers of this design may perform 
with dramatic effect on calculations of relatively unbranch- 
ing structure which can match  the structure of the machine, 

The second design has been called a “vector processor” 
or sometimes a “pipeline” machine. One such has been de- 
scribed by Senzig and Smith.s1 As  its  name implies, it op- 
erates on vectors of numbers. The design has  more flexibil- 
ity than  the network processor. Both of these designs are 
capable of very high effective MIPS  rates (millions of in- 
structions per second), because many of the instructions 
are occurring simultaneously. Both a network and a vector 
machine may form the sum Xi = A i  + Bi for 1 5 i 5 N ,  
where N is the number of arithmetic units. The network 
processor is usually considered with N = 128 to 1024, 
while in a vector machine the individual arithmetic units 
are not related to  the number of components. 

The speed of a serial machine can often  be evaluated by 
consideration of representative kernels from typical pro- 
grams. For a parallel machine, it may be necessary to  look 
at  the program as a whole. The network machine, in par- 
ticular, is much more dependent on  the nature of the prob- 
lem and the skill of the programmer than i s  a conventional 
machine. 

There is another  more general class of parallel computers 
in which the separate  arithmetic units have separate in- 
struction-streams. These are usually referred to as “multi- 
processor systems.” However, Schwartzs3 has recently in- 
troduced the  term “Athene-type” for this class of machine 
(as contrasted to “Solomon-type”). The arithmetic registers 
in such a machine would appear to  the user as multiple 
logically independent computers which could, however, all 
be put to work on  parts of the same problem. It would in- 
clude  operations of the network or pipeline types as special 
cases. The difficulty usually comes in trying to prove that 
the combination will really produce more useful work done 
than N completely independent machines, or  than  one large 
machine processing the same amount of hardware as the N 
processors. 

Relationship between storage  and  speed 
Perhaps the main property which differentiates a computer 
from any other piece of electronic equipment is the large 
number of internal storage  states which it possesses. The 
growth of computer capability has been directly tied to  the 
development of storage technology. This includes not  just 
the high-speed core  storage but also the peripheral bulk 
storage devices such as disks, drums and tapes. 

One of the imponderables in analyzing computer per- 
formance has always been how to relate memory size to  the 
speed of the arithmetic and logic of the system. Most knowl- 
edgeable people admit  that storage is very important,  but 
usually fall back to purely arithmetic comparisons when 
asked to compare two machines. Speed is not a substitute 
for large storage  in general, but a large storage is frequently 

a substitute for speed. KnightK1 has  made  an  attempt to 
quantify this. 

The basic effect can perhaps be summarized by this simple 
statement: “Any computer  program  can be made simpler 
by the  addition of a larger core storage.” The level of com- 
plexity of any given calculation is reduced by not having to 
worry about  the blocking and ordering of data, or using 
overlaid programs, etc. Even very small programs which 
are  not themselves changed will profit indirectly by the 
existence of more efficient compilers and monitors. This 
could  be  stated as an equally general statement: “An in- 
crease in arithmetic speed or computer parallelism without 
an increase in  storage and  other  data flow capacity will  re- 
sult in an increase in  program complexity.” 

Complexity threshold 
One should couple these statements with another basic rule, 
which can be stated as follows: Problem  originators  each 
have a “complexity threshold” beyond which a problem 
will not be attempted.  This is so not because the problem 
cannot be solved nor that it cannot  be properly modeled 
nor blocked into arrays,  but simply because it has reached 
a certain point of complexity at which the problem orig- 
inator decides not  to  attempt  it  and will do a simpler job 
or a different problem instead. This  threshold, of course, is 
quite different for different people and  at different times for 
the same person. However, it is certainly a very important 
phenomenon, because no matter how many programmers 
or assistants are  put  upon a large calculation, it is always a 
relatively small group,  often a single individual-a senior 
scientist-who really originates the calculation and lays out 
its over-all structure. His threshold of complexity will  gov- 
ern  the calculations which are  attempted by his group.  If we 
lower the level of complexity of every single problem, by 
providing a larger random access store, we may extend the 
frontier of complexity into a whole new range. There is a 
point where size is no longer simply a question of scaling 
problems, but where it really opens up a whole new class of 
calculations. 

Flow of data between primary and secondary storage 
The  total  data storage required for large weather problems 
is so far beyond the internal  storage capabilities presently 
available or foreseen in any supermachine that we will 
probably always have the requirement for keeping most of 
the problem data in secondary bulk storage devices. This 
places a serious requirement upon the  data transmission 
between such secondary devices and the  internal high-speed 
storage.  This, in  turn,  is very  heavily dependent upon the 
nature of the calculation and  the organization of the prob- 
lem to make effective  use of external storage.  If a problem 
is poorly organized, the computer speed may be limited 
solely by the access time of the first word of each  storage 
block. An ideal problem organization would be one  in 
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Figure 4 Relation  between  data rate  and  internal  storage,  plotted 
on  log-log  coordinates. 

Figure 5 Data  rates  needed  between  primary  and  secondary 
storage  as a function of size  of  internal  data  storage  and  problem 
formulation. 
Example  formulations of a 2” mesh  problem: 

1. 1 Point 5.  3 Latitude  lines 
2. 1 Vertical  column 6. 15 Latitude  lines 
3. 5 Vertical  columns 7. Hemisphere 
4. 114 Long.-3 lat. 8. Entire  sphere 

lo!- 1 

(Internal data  storage  available 

which the utilization of a given number is directly propor- 
tional to the time  which it spends  in the internal storage. 
The data rate would  be  determined by the computer  speed 
and the  average amount of computation per data word. 
This can be  represented in Fig. 4, which  is a log-log plot. 
In practice,  however, a problem has a number of discon- 
tinuous breaks  related to natural block boundaries in the 
calculations. An  example of such an analysis is givenKa in 
Fig. 5. 

Q The need for supercomputers 
It has  been pointed out in a recent National Academy  of 
Sciences reportN1 that there are a number of problems 
within the context of geophysical  hydrodynamics  which are 
now  being  worked on which  may  provide us with the basis 

for an estimate of the computation demands that can be 
anticipated  within the next  decade. The characteristic  time 
and space  scales  range from those  concerning turbulent ex- 
change  processes to those responsible for maintaining the 
large-scale  ocean  circulations. 

It is of interest that, despite a span of  simulated-experi- 
ment  time  ranging  from 10 sec to 30 years  (a ratio of 
the number of dependent  variables  generated during the 
experiment is roughly invariant, i.e., lolo. Thus, the prob- 
lems are of similar computational magnitude. It is also 
typical of and common to such  hydrodynamical  calcula- 
tions that approximately 200 computer operations are re- 
quired to generate  one  dependent  variable at each new 
time  step, so that somewhat in excess  of 10l2 computer  op- 
erations are necessary to complete a single  experiment. 

We must define a “reasonable  time” to spend in doing a 
numerical  simulation  experiment. The purpose of doing ex- 
periments  is to study the nonlinear  response of the numeri- 
cal  model to changes  in  parameters. By this  process one de- 
velops the sought-after  insight.  Since a series  of  such  ex- 
periments is  necessary  in  order to span a physically  realiz- 
able  range of each  of the parameters, we can  arrive  subjec- 
tively at a threshold of tolerance.  Obviously 1,000 hours of 
machine  time  (one-half  year of first-shift  time) for a single 
experiment is intolerable. The threshold  is  more  likely to 
be 100 hours (2.5 weeks  of  first-shift  time), but a convenient 
time  is  closer to 10 hours. Operational  considerations also 
impose  similar  limits.  Hence, we  need to be  able to perform 
10l2 computer operations in 10 hours, or approximately  one 
operation every 30 nsec, or 33 MIPS. 

This figure  exceeds  by a factor of 50 the power of the 
fastest of the present  computing  systems. 

Estimates of computer  requirements in the  future 

Q Main properties contributing to speed and 

A really accurate estimate of the computer  speeds needed 
for future global  weather  calculations is probably not pos- 
sible no matter how  much  detail one puts into the estimates. 
Even though the estimated  average  values may be  fairly  ac- 
curate, the over-all speed  of a system  often  depends  upon 
combinations of interactions. In other words,  system  per- 
formance  depends on  the distribution of the variables and 
their correlations as well as their  mean  values.  An unfortu- 
nate coincidence  of  slow  events can spoil the running  time 
of the whole calculation, thus making  accurate  estimates 
very  difficult.  Even so, one  can  usually  arrive at numbers 
bracketing the computer  speeds and requirements that are 
reasonably  safe as typical values. 

For the global  weather  calculations which  we are con- 
sidering, the following appear to be the main properties 
which contribute to the computer  speed and storage re- 
quirements.  Some  trade-off between  them is possible: 

storage requirements 
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(a) The complexity of the numerical model being used, in- 
cluding the number of physical effects being approxi- 
mated and  the difficulty of each  algorithm used to com- 
pute them. 

(b) The number of computer  operations needed per  pro- 
gram and their types, compared to those available on 
the computer  under consideration. 

(c) The  total number of space points and time steps needed 
in a calculation. 

(d) The desired ratio of speed of the computed  solution of 
the atmospheric  motion  compared to real time. 

There are  other  important factors which one could list, 
such as ease of programming, reliability, convenience of 
the display of results, etc. These are very important  in 
building a satisfactory system but have only a secondary 
effect on  the estimates of raw computer speed and storage 
capacity. 

Complexity of the  model 
The most important property that gives the character of the 
calculation is,  of course, the numerical model of the weather 
problem being solved. It is made up of mathematical  ap- 
proximations to the physical quantities, the particular nu- 
merical algorithms being used to solve the mathematical 
equations, and  the interactions allowed between the equa- 
tions being solved. 

It is customary to consider the dependent variables in a 
problem as either prognostic or diagnostic variables. There 
are five fundamental prognostic variables which must be 
evaluated and stored  each time for each mesh point  in the 
three-dimensional grid. They are:  The three  components of 
wind velocity, the temperature and  the water vapor con- 
tent. In addition  there are  two  or more  quantities which are 
two-dimensional in  nature.  These are kept  in  storage cor- 
responding to  the horizontal grid. An example would be 
the surface pressure. 

In addition to  the variables there are large numbers of 
constants. Usually no three-dimensional constants are car- 
ried but there  can be a number of two-dimensional arrays 
of constants. Surface properties such as  the differences be- 
tween land  and sea, the number of daylight hours,  radiation 
properties, etc., can  be  kept as constants. 

The diagnostic variables can vary in number considerably 
from  one problem to  another depending on what is being 
studied. Diagnostic variables are defined as quantities 
which can be determined completely from  the prognostic 
variables, or  as intermediate results from  the computation 
of the  prognostic variables. Most of them are  not stored 
for  the full three-dimensional or two-dimensional meshes, 
and many are  not saved except as contributions to averages 
or limits. 

Because of the number of special two-dimensional cases 
concerned with the surface conditions it is easier to describe 

the number of quantities for a vertical column of points 
rather  than for each point in the three-dimensional mesh. 
On this basis, Leith’s programL1  stores 31 variables per 
horizontal  point containing 6 vertical levels, and Smago- 
rinskys2 uses 37 variables for 9 levels plus other diagnostic 
variables which are  not computed every cycle. 

Additional physical effects usually enter into  the equa- 
tions as diffusion terms  in the energy equations. Since the 
vertical cases are handled separately, there will usually be 
two additional  horizontal diffusion terms  per  point which 
must be stored. The inclusion of additional  quantities and 
physical effects may or may not have an appreciable effect 
on  the computing time. The storage may also be organized 
to avoid reading in slowly varying quantities  more  often 
than they are needed. 

For five-day forecasts the effects of radiation are usually 
considered not very important. Radiation effects, however, 
are uniform, consistent and slowly varying, and so are cu- 
mulative. For forecasts longer than five days the radiation 
drives the atmosphere and must be included in  the calcula- 
tion.  There are also cases of shorter duration where radia- 
tive effects can  be  dominant if other forces are weak. 

Adequate  treatment of radiation requires a suitable sta- 
tistical treatment of local cloud cover. A reasonable guess 
by Kasahara is that this would add four dependent prog- 
nostic variables to  the problem-three numbers repre- 
senting the fractional grid coverage by each of three 
cloud types and a radiative  heat  source term-at every 
mesh point. The slow variation in time of these variables 
allows a time  step of a few hours.  Although the cloud and 
radiation coding will be lengthy and difficult, he estimates 
that  the infrequency of calculation would result in only 
a few per cent increase in  the over-all computation time. 
The doubling of the number of dependent variables, 
however, is certainly a significant consideration in  terms 
of storage  requirements and  data transmission rates within 
the computer. 

A two-fold increase in  the linear  resolution can cause an 
increase of up  to a factor of 10 in total computation. How- 
ever, by Smagorinsky’s estimate an increase in  the number 
of dependent  variables by one (e.g., adding  ozone  in a gen- 
eral circulation model) will increase the number of calcula- 
tions by only 20 per cent. Likewise, an increase of vertical 
resolution  in the quasihorizontal models has a relatively 
small impact on computing time. Increases in physical com- 
plexity and fidelity in formulating the slow-acting processes 
(e. g., radiation, ocean coupling on  the atmospheric general 
circulation) are  also trivial in  the  total number of computa- 
tions because they are  done  rather infrequently, 

Number of computer operations executed 
For rough estimates the best  parameter seems to be the 
number of instructions executed per mesh point per cycle, 
This is a complicated average to compute from a program, 593 
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but it is easy to measure and very easy to use in making 
estimates. After examining several programs and making 
allowances for cases of Jnput/Output limitations, the fol- 
lowing seem to be typical. 

For a straightforward hydrodynamics program with no 
complications, approximately 300 instructions are ex- 
ecuted per mesh point in a three-dimensional grid per time 
step. The most complicated programs with many complex 
physical effects included, run less than 3000 instructions 
executed per mesh point per time step. The programs them- 
selves could be different in total size by more like a factor 
of 100. The  important point is that  the running time of a 
calculation in terms of computer  operations per point per 
cycle does not seem to range over more than a factor of 
ten  in practice. 

The particular mixture of computer  operations that  are 
used to advance a typical mesh point are made  up of the 
necessary floating-point arithmetic calculations plus the 
logical instructions to handle the branching and indexing. 
Even with the  same numerical algorithm  there are a number 
of ways in which individual equations may be programmed 
in machine language. A carefully written program will or- 
dinarily use combinations of instructions which run the 
fastest. Thus  there  can be fairly strong feedback between 
the particular computer  operation code characteristics and 
the precise way in which the numerical algorithm for the 
problem is set up. As a result, the product of the typical 
number of instructions executed per mesh point times the 
execution time of a typical instruction may give a total 
time which can differ considerably from  the actual  time 
needed to compute the mesh point.  This is true because 
the two averages are  not independent quantities. A well- 
coded  program will tend to use more of the highest speed 
instructions. More details are given in Ref. K3. 

Mapping problem 
One problem which is somewhat unique to the general cir- 
culation model is that of choosing a coordinate system to 
represent the surface of the  earth in a convenient fashion 
in  the computer.  At first glance it seems that a trivial change 
of coordinates  should solve it. However, like many such 
"trivial" matters it has caused a great  deal of serious 
thought and planning, since the whole structure of the 
problem  storage and  the details of the difference equations 
depend on the form of mapping used. 

Three types of mappings are used. The easiest to under- 
stand is the latitude-longitude grid such as  that used by 
Leith  and  Mintz. It has the problem that  the longitude lines 
get closer together as  one goes toward the poles. Some 
means of cutting down on  the number of computed  zones 
as  one approaches the poles is necessary. This creates arti- 
ficial discontinuities in the mesh which can (and frequently 
does) cauSe problems. 

The second method, which has been used by the Weather 
Bureau, the Air Force  and  the Fleet  Numerical  Weather 
Facility, is that of projecting the  northern  part of the globe 
onto a plane centered at  the  North Pole, then subdividing 
the plane  in  some regular way. The Southern Hemisphere, 
of course, can be done  the same way. This method gives 
the simplest differencing scheme and gives best resolution 
in the upper and middle latitudes. It has difficulties in 
patching the two hemispheres together. For a detailed 
discussion of mapping, see Quarles and SpielbergQ'. 

The  third method is that of using some  algorithm  for 
spacing points equally (almost) over the whole globe. 
Kurihara"' has described such a system which preserves 
latitude lines while spacing points  almost equally. Smago- 
rinsky's newer programs will  use this approach since there 
is an appreciable storage saving promised. 

In  the estimates given later we compute the number of 
mesh points, simply assuming that  the  earth is spread out 
in a 360" by 180" rectangular plane. For example, the rec- 
tangular grid just mentioned gives 2592 horizontal mesh 
points for 5" mesh. The  actual 40 X 40 mesh used by 
Smagorinsky results in 2514. Leith's zoning scheme results 
in 2036, because of the reduction in  number of mesh points 
toward the poles. Kurihara's  proposed equal spacing 
scheme would be able to get by with 1682 total points for 
the  same approximate resolution. This is almost a factor 
of 1/3 reduction, although  it is bought at  the expense of 
longer interpolation calculations in the mapping  equations. 
This is a good example of the trade-off between complexity 
and storage requirements. 

Time and space resolution problem 
In  the finite difference methods of solution which we have 
been considering, one of the main characteristics determin- 
ing the running  time of the problem  and the accuracy of its 
results is the  number of mesh points used in the calculation. 
Any of the models are capable of arbitrarily fine refinement 
in both space and time. Within the limitations of round-off 
error,  the answers will improve, the finer the resolution. 
This creates a certain insatiability in  the calculational re- 
quirements for such problems. In  the  Table 1 we have taken 
a number of typical mesh sizes which have either been done 
or discussed as  future plans and have computed the  total 
number of spatial mesh points. 

In general, if a linear dimension is reduced, the time  step 
must be reduced in direct proportion.  This is strictly true 
for explicit hyperbolic-type equations. Normally, the 
weather circulation models are  run  at a finer time step than 
that which would be called for simply by the stability con- 
dition, mainly because of convenience. Also, the stability 
condition is usually finer in some parts of the mesh than 
others. Normally the entire mesh is carried at a single time 
step  for logical convenience. 



Table 1 The  number of mesh points required by numerical  weather  problems as a function of resolution 

Scale  Number of Points 
No. of points 

Spacing,  Spacing, No. of hori- No. of Total no. Time  advanced to 
degrees  kilometers  zontal  mesh  vertical  of  mesh step,3 compute I hr. 
latitude N 1  (at equator) points2 levels points  min. of real time Typical  programs 

~~ ~ 

10" 18  1111.  648. 3 1.9 x 1 0 3  20 5.8 x lo3 Programs of early 1950's. Present 

8" 22 889. 1 ,OOo. 2  2.0 x 103 12 1.0 x IO1 Mintz's 2-level code. 
5" 36 556. 2,592. 6 1 . 5  x 1 0 4  10 
3" 60 333. 7,200. 9 6.5 x 1 0 4  6 

9.3 X I O4 Leith, Smagorinsky's N = 20 code 

2" 90 222. 16,200. 12 1.9 x 105 4 
6.5 X lo5 Experimentalcalculations 1965-69 

1" 
2.9 x IO6 Future operational region 1970's 

stream  function  codes. 

180 1 11. 64,800. 18 1.2 x 106 2 3.5 X IO7 Futureexperimental region 1970's 

' N equals twice the number of mesh spaces between the pole and equator. 

mapping method used. 
a The assumption is that each point is advanced every  time step. In larger problems, the tirre step would probably he variable. 

The number of horizontal points is computed for a 360" x 180" square grid. An actual problem can have 10 to 30% fewer horizontal points, depending on the 

Since these problems can  saturate  any machine, the most 
serious question then becomes, What resolution is really 
needed? The detailed five-day forecast studies of Smago- 
rinsky et al. were performed with a 40 X 40 horizontal 
mesh per hemisphere per altitude  (approximately 5' mesh). 
It was found  that  the sub-mesh energy transport by eddy 
diffusion accounted for approximately 5 per cent of the  to- 
tal energy transport. Since the eddy diffusion in the  at- 
mosphere is not really known,  the practical philosophy 
adopted is that  the grid scale should be chosen small 
enough  that a change by a factor  of two or more in the 
eddy viscosity results in no significant change in the mete- 
orologically significant large-scale effects. Ideally one would 
continue to halve the mesh interval until computed results 
become insensitive (although the physical model might be- 
come  inappropriate in  the process). Manabe feels an 80 X 
80 horizontal mesh per hemisphere per altitude level is 
probably sufficient. This  corresponds approximately to a 
two-degree mesh interval at  the  equator. 

In  order to represent the  important temperature gra- 
dients  in the ocean at least two vertical levels into  the ocean 
are necessary. A total of 18 to 20 levels for  both  the ocean 
and  the atmosphere is probably  adequate. A time  step of 
about 3 or 4 minutes would go with this resolution. 

These estimates lead  one to a  spatial mesh of 80 X 80 X 
20 = 1.3 X lo5 points. Four dependent variables (eight 
with radiation and clouds) would be stored  and  at least five 
variables computed per mesh point  each  time cycle. A five- 
day forecast would require 2400 time steps, yielding a total 
of 3 X lo8 mesh-point computations  for  a complete prob- 
lem. If one wishes to perform this calculation at 1OO:l times 
real  time (1 hour 12 minutes for a 5-day forecast) then  each 

mesh point  must be advanced  in an average of 14.4 pec !  
If there are 3000 instructions to be executed to advance one 
mesh point,  then the computer  must execute instructions at 
the  rate of  210 million instructions per second! 

Of course, one  can reduce this incredible figure by back- 
ing off on  the above criteria. In particular the easiest to re- 
lax is the 1OO:l speed criterion. A rate of 10:l should still 
be quite reasonable for  an operational system. 

Ratio of the speed of calculation to real time 
The  ratio of calculation speed to real time is one of the 
simplest numbers to state, yet next to  the spatial resolution 
it is the most important in setting the computer require- 
ments. Present models range from 1-to-1, that is, the cal- 
culation proceeding at  the same rate  as  the  actual weather, 
to perhaps 10-to-1. Older, greatly simplified models can be 
integrated on present-day computers at a much higher 
ratio-100-to-1 or more. 

Tables  2 and 3 show examples of computer speed in 
terms of millions of instructions per second for different 
complexity models and different spatial resolutions. Some 
of these results are shown  in the graphs where they become 
straight lines on log-log paper. The graphs are given for 
particular combinations of vertical resolution and time  step 
corresponding to diagonal values in the table. (See Fig. 6). 

These curves show perhaps better than  any  other means 
the true open-endedness of the computer  requirements for 
general circulation models. They  also show, however, that 
if one wishes to operate at speeds between 1O:l and 100:1 ,  
with a 2' mesh resolution or better with a fairly complicated 
model, one must certainly get into  the  range of 20-200 
million instructions per second executed. 505 
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Table 2 Approximate computer speeds required for a fast model 
computing at 1O:l times real time 

Horizontal 
resolution. 
Spacing in 

degrees latitude 

10" 
5" 
3" 
2" 
1" 

MIPS for various vertical levels 

3 6 9 12 18 
Levels Levels Levels Levels Levels 

0.016 0.032 0.049 0.065 0.097 
.13 .26 .39 .52 .78 
.Bo 1.2 1.8 2.4 3.6 

2.0 4.0 6.1 8.1 12. 
16.2 32. 49. 65. 97. 

Table 3 Approximate computer speeds required for a fast model 
computing at 1OO:l times real time 

Horizontal MIPS for various vertical levels 
resolution. 
Spacing in 3  6 9 12 18 

degrees latitude Levels  Levels  Levels  Levels Levels 

10" 0.16 0.32 0.49 0.65 0.97 
5" 1.3 2.6 3.9 5.2 7.8 
3" 6.0 12. 18. 24. 36. 
2" 20. 40. 61. 81. 120. 
1" 162. 320. 490. 650. 970. 

A "fast model" is defined as  one  requiring 1000 computer  operations  to  ad- 
vance one mesh point one time  step on the average. 

Programming  considerations 
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Higher-level languages and eficiency 
The question  of  programming-system  efficiency  is  very  seri- 
ous for a  large  problem. The millions  of  instructions  per 
second  used up by an inefficient programming  system are 
just as real as those used on a  complicated  physical  calcula- 
tion. In general, one is  willing to spend  more  time in the 
programming of a  large operational program that will  be 
run many,  many  times than one  is for a  small  program or 
a  "one  shot"  experiment. 

It is  generally  agreed today that  it is  unreasonable to ex- 
pect  people to do large-scale  scientific  programming  in 
machine  language. It is also agreed that they  should not be 
penalized too heavily for using FORTRAN or PL/L In 
practice, a combination of FORTRAN supplemented by 
key data handling subroutines written in machine  language 
achieves  most  of the efficiency  while retaining the ability to 
modify  and  improve the large  production  problem. 

There  should  also  perhaps  be  a  set  of  special  instructions 
which the average  user  could  ignore but which could  be 
used to streamline the inner loops of  big  programs. Ex- 
amples  of  such instructions might  be:  multiplying by an 
integral  power of a number; calculating A" where the 

No. of zones N 

320 160 80 40 20 10 
1000 I \  I \  I I I 1 

... 0 2 LOL 

~ Il 5 0.5 

.- 0.2 "_ 
I 

I 0.1 

; 0.05 

15 0.02 

> ... 
B 

20 

"""""""" 
7090 

50 100 

L z 
2 1.0 
0 """""""""" Stretch 
5 0.5 

2 - 7090 
3 
O 0.2: 

d 
:: 0.1 

@ 
; 0.05 

- 
0 ... 

- 
c 
L 
.- 

.- "_"""""""" 
I - 

- 
> ... 
B 
15 0.02 20 I 50 I 100 , 200 1~~ 500 1000 2000 A 

2000 

IHorizontal  resolution  in km (at equator) 
I I I 1  I I I 

0.5 1 2 3 5 10 20 

Horizontal  spacing  in  degrees of latitude 

Figure 6 Computer speed vs. horizontal resolution on the globe 
for a complex model for various values of treel/icalculated. 

ranges of A and x are limited,  say, between 0.1 and 1.0. 
Careful attention should  be  paid to the little  "bottleneck" 
situations in weather  calculations.  Better  diagnostic pro- 
grams for locating  bottlenecks  automatically, and perhaps 
even eliminating them automatically in big calculations, 
would  seem to be  a  very  fruitful area for investigation. 

The real need in a  programming  system  is  better  coupling 
between the problem formulators and the computing  equip- 
ment. The real  goal  should  be to reduce the time from prob- 
lem formulation to useful  answers-not to increase  "speed" 
or "turn-around time" or any of the other usual  measures 
of computing, although they  would  also  improve. Paper 
improvement in computer efficiency forced by rigid  sched- 
ules and control program constraints is  often  exactly the 
wrong way to measure real progress on a  scientific  calcu- 
lation. 



Life and death of a large production program 
The numerical weather prediction programs which are pres- 
ently being run are  all  the result of a long series of technical 
iterations involving the physical problem being solved, the 
equations arising from theoretical considerations, and ex- 
perimental  observations that  are  made of various physical 
phenomena. During the design iterations, new numerical 
differencing and approximation schemes are derived to 
solve the equations, experimental results are used to Cali- 
brate certain  constants,  then the calculations are refined, 
the equations improved, and so on. Some of the larger pro- 
grams,  such as Smagorinsky’s which have been in existence 
for a number of years, have actually gone through several 
cycles of this physical-mathematical-experimental-program- 
ming iteration.  One result of this history is that when new 
computing equipment becomes available, it is not  as easy 
to take advantage of all of its power as might be expected, 
simply because one  cannot break with the past completely 
in these practical design problems. 

The life cycle of a large calculation usually starts  from  an 
experimental phase in which variations and improvements 
on past calculations are consolidated in a new code. It will 
become proved out  throughout a number of exploratory 
calculations, comparisons against experimental results, 
previous calculations, etc., until it becomes accepted for 
its own  right by the scientists who are making the practical 
decisions as a good tool for analysis. Often  there may be 
two  or three active versions of the same code  in  operation 
at one time, depending on the  particular set of approxima- 
tions or perhaps the machine upon which it is being run. It 
is thus  hard  to identify exactly what is being referred to in 
any given program. 

When a production  program is being replaced it does not 
really die suddenly. Usually what .will happen is that a 
better  approximation or a better program will gradually 
become used more and more and  the older program will be 
relegated largely to  the role of reruns of past examples. In 
cases where comparisons against earlier problems or de- 
signs are desired, the designers may wish to  run them on the 
same old code as  the originals were run. Also, calibration 
problems for  the new code will be another type of use. 

In  a sense, any program which has  at one  time been used 
for heavy production becomes really completely obsolete 
only when people essentially have forgotten how to  run it. 
This can  happen because the machine on which it was 
written is no longer available, or the problem  originators 
or  the problem users have really forgotten how to run prob- 
lems of interest on it. At this  point the program is truly 
dead. 

Example of the  use of a  numerical  weather  model 
The use of electronic computers  as  tools to solve the  data 
processing and physical analysis problems associated with 
daily operational forecasts is certainly understood and con- 
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Figure 7 Configuration  of  vertical  surfaces  in  the  Mintz-Arakawa 
model showing how mountain  ranges  are  described.  Definition: 
u = ( p  - 200)/(p, - 200). From  Mintz.” 

sidered worthwhile by the public today. The role of general 
circulation calculations which use unreal  initial  conditions 
on  an “artificial” world is probably less  welt understood. 

Such calculations should be considered in  the same spirit 
as  laboratory experiments in which a model of a complex 
non-linear system is studied by carefully varying individual 
parameters to determine the basic behavior of the system. 
The goal is to isolate the key physical phenomena from 
among  all  the confusing details. As with any active field, 
there are many discussions and disagreements among nu- 
merical meteorologists concerning the relevancy of their 
various models and their results. 

An excellent example of the use of a numerical model to 
study  the cause of certain large global  patterns is given by 
MintzM1 in his calculations  demonstrating the importance 
of the Himalayas  for the winter surface pressure pattern 
over Siberia (known as the “Siberian High” by meteorolo- 
gists). 

Prof. Mintz used a modified version of a coordinate sys- 
tem originally proposed by Phillips in 1957. The vertical 
dimension in the model is expressed in “sigma coordinates” 
as shown in Fig. 7. The ground is represented by u = 1. 
It includes a smoothed representation of mountain ranges 
as shown. u = 0 represents the 0.2 bar pressure surface 
and is the upper limit of  the calculation. The horizontal 
grid is relatively coarse, being 9” of longitude at the  equator 
and 7” of latitude, giving a total of 1000 horizontal mesh 
points. A time  step of 12 minutes was used. 

The calculation was started so that  in  the beginning the 
air was everywhere at rest, everywhere the same tempera- 
ture (250°K), and everywhere having the same surface 
pressure of one atmosphere (1.013 bar). The sun’s declina- 
tion was set for  the  northern hemisphere winter. Initially 
the mountains were left out  and the globe was a smooth 
sphere, although  land, sea, and ice were differentiated. 597 
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Figure 8 Mean  kinetic  energy  of the  entire  atmosphere,  as a function  of  time. KE is the global  mean  of the kinetic  energy,  per unit 
mass, of the total (vector)  wind. KEV is the  global  mean of the kinetic  energy of only the meridional  (south to north) component  of 
the wind.  The  left part of the  figure is for  the experiment  without  mountains.  The  right part is for a period  many  days  after the large 
scale  mountain  systems  had  been  added.  From  Mintz”. 

From this initial state of rest the kinetic energies rose to 
their long-term steady state values in about 40 days. (See 
Fig. 8.) When this run reached a steady state, the mountain 
experiment was performed. The results showed that  the 
Siberian High does not appear on  the mean sea level 
pressure map when there is no Himalayan  mountain chain. 
In Prof. Mintz’s words:  “After  the experiment with the 
smooth, mountainless globe, I changed the surface data 
cards, at a given instant  in  the middle of a run, and  in this 
way suddenly raised into place the large scale mountain 
systems of the Earth. As soon as this was done  the air be- 
gan to pour down  the  mountain sides (as would water 
down the sides of an island emerging from the sea), pro- 
ducing large gravity waves. After some days these large ex- 
ternal gravity waves died out  and only the familiar meteor- 
ological motions remained, as the synoptic charts will show. 
In terms of the global mean kinetic energies, the presence 
or absence of mountains seems to make little difference, as 
may be seen by comparing  the  right and left hand sides of 
Fig. 8.” 

The time-averaged results of the mountain experiment 
are shown in Fig. 9. The surface pressure reduced to sea- 
level shows a number of features which have been observed 
experimentally. These include the Siberian High;  the Alas- 
ka-Yukon High;  the Icelandic Low;  the  North Pacific Low; 
the North Australian  Low, and others. Other features are 
not in agreement with experiment; particularly noticeable 
are  the  High over Greenland and  the Low over the  Great 
Lakes,  the absence of observed low centers over South 
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For a numerical experiment, the results which disagree 
can be as significant as those which agree. The details for 
the above example are discussed in the original report.M1 
As is often the case in physical experiments, each numerical 
experiment often raises more questions than  it answers. 
This phenomenon helps maintain the insatiability for com- 
puting time which characterizes meteorology. 

Future outlook 
Numerical weather prediction has progressed in the past 15 
years from theoretical speculations to fully operational net- 
works. The plans for  the next ten years, which include the 
World Weather Watch,  automated data collection and com- 
munications, promise to outshine  the accomplishments of 
the past. 

Concerning the numerical models to be used, the trend 
toward  the finite difference solution of primitive equations 
will probably continue. Other new methods, such as those 
based on Fourier  transforms, seem to offer little hope. One 
can expect that more and more detailed physics will be in- 
cluded. Coupled air-sea calculations will be commonly 
used. Clouds and moisture will be handled much more 
realistically. The emphasis will probably be on  the incor- 
poration of more satellite data, and other exotic measure- 
ments, directly into  the models. 

Fortunately the projected computer speeds, storage ca- 
pacities and  data rates for the 1970’s seem to match the 
projected needs in terms of resolution and speed for  the 
global weather problems of the same period. Perhaps  this 
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Figure 9 Some results of Mintz’ numerical general calculation experiment with mountains. The curves are surface pressure isobars 
reduced to sea level, for Northern Hemisphere winter and Southern Hemisphere summer, in millibars. (The broken lines are inter- 
mediate 2% mb isobars.) The curves represent the 30 day mean (from day 256 to 285) computed in  the numerical experiment. From 
Mintz.” 

is another  case of “feedback”  as  mentioned  earlier,  although 
it will take a tremendous  effort  from  many  groups  and  in- 
dividuals to bring  it to pass. 
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