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Propagation of Signals in Nonlinear Transmission Lines

Abstract: This communication reports the results of a theoretical investigation of the propagation of signals in transmission lines whose
nonlinear parameters are distributed capacitance and conductance. Such lines have their physical counterpart in lossless transmission
lines that are loaded with closely spaced transistor bases or junction diodes, and in waveguides filled with certain ferroelectric ceramic
materials. The analysis is carried out by conventional perturbation theory, and therefore the nonlinearities and dissipation are neces-
sarily assumed to be small. The conditions for the formation of shock waves in such lines are also derived.

Introduction
In recent years, considerable interest has been shown in

problems associated with the propagation of electromag-
netic waves in nonlinear media in order to effectively utilize
the nonlinear effects in both the radio and the optical range.
When losses in the medium are small, shock wave forma-
tion is possible.'™® Thus, transmission lines or waveguides
with nonlinear propagation media can be used for sharpen-
ing wavefronts and consequently for harmonic generation
and parametric amplification of electromagnetic signals.®—*

The objectives of the present study are to obtain analyti-
cal results for the deformation of signals as they propagate
in transmission lines whose nonlinear parameters are dis-
tributed capacitance and conductance. A physical counter-
part of such a transmission system is a transmission line or
a waveguide filled with certain ferroelectric ceramic ma-
terials.® A lossless transmission line loaded with closely
spaced transistor bases or junction diodes also can be con-
sidered, as a first approximation, to be a uniform transmis-
sion line with a nonlinear dielectric and a nonlinear con-
ductor. The circuit representation for these two cases is
shown in Fig. 1.

When the nonlinearities are large over the signal ampli-
tudes, the problem does not always admit of analytical solu-
tion; one must resort to numerical or graphic methods.
However, when nonlinearities are small, we can make use of
conventional perturbation techniques to obtain analytical
results. Khokholov? has used this method to study the for-
mation of shock waves in lines with nonlinear dielectric and
a linear loss mechanism. The present study on similar lines
serves to extend these results by taking into account the
nonlinear nature of the shunt losses in the line.
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Figure 1 Semi-infinite transmission line with nonlinear distrib-
uted capacitance and conductance.

Formal solution of the problem

If v (z, ) and i (z, ) represent the voltage and current on the
transmission line system shown in Fig. 1, their propagation
can be described by the following equations:

ov ai
2 g0t (1)

Here Q(v) is the charge on the capacitor, and the current
I(v) accounts for the shunt dissipation in the line.

Eliminating the current variable i (z, /) from these equa-
tions, we obtain the following second-order partial differen-
tial equation describing the propagation of voltage v(z, #)
along the line:

Y, 3’0 (v) 8 I(v)

922 o L =0 G)
At the input to the line, the voltage is given as

v(z,1) = o(t) atz=0. (4)




Restricting ourselves to the case in which the line is semi-
infinite in the z-direction, we look for solutions of Eq. (3)
having the form of waves traveling to the right.

Both the charge Q on the capacitance and the shunt cur-
rent I(v) are nonlinear functions of the voltage. Since we
shall consider only small nonlinearities and losses, the func-
tions Q(v) and I(v) can be taken to be

QW) = Cp + eDv’, (s)
I{(v) = e(Gp+ oY), (6)

where ¢ is the explicit small parameter, Cy and G, are the
fixed part of the capacitance and conductance per unit
length and D and F are coefficients of the corresponding
voltage-dependent parts.

If there is no attenuation and nonlinearity present, Eq.
(3) has a solution of the form

v(z, 1) = ¢t — zvLCy) , (M)

and the propagation is without distortion. It is therefore
reasonable to assume that, for small attenuation and non-
linearity, the solution of (3) does not differ drastically from
(7) and, hence, we may assume a solution of the form

v = l‘(EZ, r— Z\/_Ea) . (8)

Making the following transformation of variables:

t=1t—2ICo=1— —, (9)

Uy
x = e, (10)

we write the equation (3) as

p-k il”ﬁ% -1 (cw)

- LG(U) ® o, (11)
where
Cl) = 96% — Co+ 2¢Dv, (12)
) = 3 = (G + 2F) (13)

Simplifying (11) by substituting (12) and neglecting second-
order terms in ¢, we obtain

2 8%
_M—o 5@ + LBE<2DU 8T£> LG(v =0
dl 2 ov

Integrating equation (14) over £, we have

—+ 2aDv—+B(v+)\v) = h(x), (15)

where
_ ol
==
B = aGO’
F
A= Go’
v = 2aD, (16)

and 4(x) is an arbitrary function of x. Since we are assuming
that the line is in a quiescent state to start with, we can set
h(x) = 0 and are left with a first-order quasi-linear partial
differential equation:
*—i—’yv +B(v+)\v)= . V)]
This equation can now be considered to be the defining
equation for wave propagation, and its solution and in-
terpretation are the primary goals of the following discus-
sion. It can be solved by the method of characteristics.!?
The characteristic equations are

dx
=L (18)
gg_ =, (19)
dv

7 = B+ N, (20)

where s is the parameter for the characteristic curves.
Integrating these characteristic equations, we find

x=xo+ 5, (21)

E=&+ v[vs - /sdv] ) (22)
1

V= BrE T (23)

where xo, and &, and B, are determined by initial and
boundary conditions. Substituting (23) in (22), we have

E=to+ye ™ l:eas e B +8 f(eas e ds:l
(24)

Performing the integration in (24) and simplifying it, we
have the following set of equations:

x=x+ s,
— 50 + B)\ [ _ )\e—(B +ﬂs)] ,
1
v = e#’;“+ax - (23)
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Identifying s with the space variable and setting s = 0
yields

Xo — 0,
fo=1— g—)\ln (1=,
1)
Bo = |ln ¢(t) . (26)

Substituting the values of £, and B, in (25) and simplifying
it provides the following equation

£ = t—Bl)\ln (1 — )

— Z |:x - éln (e — M‘%] ) (27)

Eliminating ¢ from the equation with the help of (26) then
yields the formal solution of the problem as an implicit
relationship,

R
T L 4l =

— %m 14+ (1 — ™). (28)

When the nonlinearity in the conductance is absent, A —0;
and then

£= ¢ e + (v/8) (™ — 1)v, (29)

a result which is identical to that of Khokholov.2

Formation of shock waves

® Sinusoidal input

If the input signal is sinusoidal, then at z = 0,

v = vg sin wt , (30)

and the function ¢! which is the inverse of the function ¢
of Eq. (4) is given by

¢ () = (1/w) sin™" (v/vo) - (31)

Equation (28) now takes the following form:

Bz
il e v/vo
wE = sin [1 + (1 — ef’z)]
— X1 4 (1 — ™).

BA
Letting
K =v/B\ = 2D/F, (32)
Bz
_ e ’U/vo
Y= T (1l — ey 2 (33)
Z = Mo(1 — e_ﬂx) , (34)
we can write
wE=sin""y+ Koln (14 Zy). (35)
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The distortion of the waveform as it propagates down the
line can be observed by plotting (35) for various values of
Z. Khokolov calls Z the “reduced distance™; it character-
izes the extent to which the nonlinearity of the system mani-
fests itself. Actually Z is just a one-to-one nonlinear trans-
formation of the space variable x. It has been introduced
mainly for the convenience of mathematical manipulation.

For a given value of v and Kw the point of onset of shock
waves can be obtained either from plots of y vs. wé using
(35) or by the following procedure. Since the onset of the
shock wave corresponds to

d(w§)/dy = 0,
we have from equation (35) the following condition for this
event:

_ 1
1=y
Solving for Z, we have two possible solutions:

%-{-Kw 0.

Z —
14+ 2y

1
2 T Ke(l— ) (36)
and

1
Zy = T (37

~y — Ke(l =y}
We must now find the value of y that yields a minimum
value of Z. It can easily be shown that for

yie==+ 14+ K2w2)—%, (38)

dz,
dy

and

az,
Y=V1 ,2 dy

= 0,

Y=Y1,2

&’z
dy2 Y=Y1,2
but
d222
dy* Y=v1 2

> 0.

Hence, substituting (38) in (37), we obtain two values of Z
for the onset of shock waves.

1

Zyq = T+ Ko’ (39)
14+ K%}
ze:= - PR} (40)

Hence, if F > 0, the shock waves start forming at a “‘re-
duced distance” corresponding to Z = (1 + K22} For
F < 0, we have to look for the least negative value of Z.
Proceeding exactly as before, we arrive at the conclusion
that in this case the onset of shock waves is given by
Z =— (14 K%
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Figure 2 Formation of shock waves in nonlinear transmission lines.

If v.it is defined as the amplitude of the input signal be-
low which shock waves will not be formed in the line at any
distance from the input, we can obtain its value from (39).
For F > 0,

Verit = 22,1/>\ = (1 + K2w2)~% X (GO/F)

= Go(F* + 4D’ 7t (41)
In this case, verit 1S Seen to be smaller than for the case in
which there is no nonlinearity in the conductor. For F — 0,

Verit = Go/2Do . (42)

® Step input
Consider an input signal ¢(7) of the form

() = vo(1 + &7 — 27, (43)

A signal of this form can be made to approximate rather
well any realistic switching waveform with proper choice
of a. Equation (43) provides us with the following inverse

function:
¢ ) = — -‘I;In (1 - \/L> . (44)

Vo

From equation (28), we now have

1 ¢ (v/v0) )‘
=t <1 +2(l = %)
—'%ln{l-}-)\v(l — ™). (45)

Using the same notation as before, we have

at=—In(1 —+y)+ Kaln (1 + Zy) . (46)

By proceeding exactly as before, it can be shown that for
0 < Ka < 1/2, the formation of shock waves is possible for
either of the two conditions: (1) both Fand D > 0; (2) both
Fand D < 0, However, for Ka > 1/2orKa < 0,D < 0is
a necessary condition for sharpening of wavefronts and for-
mation of shock waves. In all cases the shock waves will
start forming at

1 — 2Ka

K2a2 *

In Fig. 2, Eq. (46) has been plotted for Ka = —1 and for
various values of Z. It is seen from this plot that, for an in-
put of unit amplitude, Z..;; = 3 as given by (47). The curve
for Zvs = 4 has no physical meaning but is drawn just to
show the multiple-valued nature of the solution. Clearly the
analysis is no longer valid.

As before, the critical amplitude of the input signal below
which shock waves will not be formed in the line at any
distance from the input is given by

Zcrit = (47)

_Zuw _Go [j_ _ ]
Verit = A - Da 4Da 1 . (48)
For F— 0,
Verit = _GO/Da . (49)
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By considering various cases, it can easily be shown from
the above analysis that when the nonlinear part of the con-
ductance is such that F > 0, veris is larger and when F < 0,
verit 1S smaller than for the case when there is no nonline-
arity present in the conductor, It is assumed here of course
that we are considering only the positive-going step input.
This distinction did not appear in the previous case of a
sinusoidal input for then the signal went through equal
positive and negative excursions.

Conclusions

Using the perturbation technique, we have solved the prob-
lem of propagation of signals in a nonlinear transmission
line with weak nonlinearity in its distributed capacitance
and small nonlinear shunt loss. The conditions for the for-
mation of shock waves in such a line are also derived. It is
shown that for sinusoidal inputs, the presence of nonlinearity
in the shunt loss makes possible the formation of shock
waves at a smaller amplitude than when the nonlinearity is
absent. For step-like inputs, this critical amplitude either
increases or decreases depending on the sign of the non-
linearity and the polarity of the step. These results should
prove useful for the study of small signal distortions in
propagation through a nonlinear, dispersive medium.
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