
I Communication 

S. K. Mullick 

Propagation of Signals  in  Nonlinear  Transmission  Lines 

Abstract: This communication  reports the results of a theoretical  investigation of the  propagation of signals in transmission  lines  whose 
nonlinear  parameters  are  distributed  capacitance and conductance.  Such  lines have their  physical counterpart in lossless transmission 
lines that  are  loaded with closely spaced  transistor  bases or junction  diodes,  and in waveguides  filled  with certain  ferroelectric  ceramic 
materials.  The  analysis  is  carried  out by conventional  perturbation  theory,  and  therefore  the  nonlinearities  and  dissipation  are  neces- 
sarily  assumed to be small. The  conditions  for  the  formation  of  shock  waves  in  such  lines are also derived. 

Introduction 
In recent years, considerable interest has been shown in 
problems associated with the propagation of electromag- 
netic waves in nonlinear media in order to effectively utilize 
the nonlinear effects in both  the radio and  the optical range. 
When losses in the medium are small, shock wave forma- 
tion is po~sible."~ Thus, transmission lines or waveguides 
with nonlinear propagation media can be used for  sharpen- 
ing wavefronts and consequently for harmonic  generation 
and parametric amplification of electromagnetic  signal^.^-^ 

The objectives of the present study are  to  obtain analyti- 
cal results for the deformation of signals as they propagate 
in transmission lines whose nonlinear parameters are dis- 
tributed capacitance and conductance. A physical counter- 
part of such a transmission system is a transmission line or 
a waveguide filled with certain ferroelectric ceramic ma- 
teriak9 A lossless transmission line loaded with closely 
spaced transistor bases or  junction diodes also can be con- 
sidered, as a first approximation, to be a uniform transmis- 
sion line with a nonlinear dielectric and a nonlinear con- 
ductor. The circuit representation for these two cases is 
shown in Fig. 1. 

When the nonlinearities are large over the signal ampli- 
tudes,  the problem does not always admit of analytical solu- 
tion; one must resort to numerical or graphic methods. 
However, when nonlinearities are small, we can  make use  of 
conventional perturbation techniques to  obtain analytical 
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Figure 1 Semi-infinite  transmission  line  with  nonlinear distrib- 
uted  capacitance  and  conductance. 

Formal solution of the  problem 
If v (z, t )  and i (z, t )  represent the voltage and current on  the 
transmission line system shown in Fig. 1 ,  their  propagation 
can be described by the following equations: 

Here Q(u)  is the charge on  the capacitor, and  the current 
Z(v) accounts  for the  shunt dissipation in  the line. 

Eliminating  the  current variable i (z, t )  from these equa- 
tions, we obtain  the following second-order partial differen- 
tial  equation describing the propagation of voltage w(z, t )  
along the line: 

results. Khokholov2 has used this  method to study the for- 8; - a z ( ~ )  - . 
mation of shock waves in lines with nonlinear dielectric and a z z  
a linear loss mechanism. The present study on similar lines 
serves to extend these results by taking into account the 
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At  the  input  to  the line, the voltage is given as 

at2 at (3)  

558 nonlinear nature of the shunt losses in the line. v(z, t )  = p ( t )  a t  z = O . (4) 
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Restricting ourselves to the case in which the line is  semi- 
infinite in the z-direction, we look  for solutions of Eq. (3) 
having the form of waves traveling to the right. 

Both the charge Q on  the capacitance and the  shunt  cur- 
rent Z(v) are nonlinear functions of &he voltage. Since we 
shall consider only small nonlinearities and losses, the func- 
tions Q(c) and I(v) can be taken to be 

Q ( v )  = C,v + e D v 2 ,  ( 5 )  

Z ( v )  = c(GOv + Fv2) , (6) 

where E is the explicit small parameter, CO and Go are  the 
fixed part of the capacitance and conductance per unit 
length and D and F are coefficients of the  corresponding 
voltage-dependent parts. 

If there is no  attenuation  and nonlinearity present, Eq. 
(3) has a solution of the  form 

v ( z ,  r )  = p ( t  - zdm) , (7 )  

and the  propagation is without distortion. It is therefore 
reasonable to assume that, for small attenuation  and non- 
linearity, the solution of (3) does not differ drastically from 
(7) and, hence, we may assume a solution of the form 

2' = 2.(EZ, I - Z G G )  . (8) 

Making the following transformation of variables: 

F = r - z ~ / E G = t - ' ,  
UO 

x = E Z ,  

we write the equation (3) as 

- L G ( v )  -- = 0 ,  av 

a2: 
where 

C ( C )  = - = €(Go f 2Fv) . a z  
av (13) 

Simplifying (1 1 )  by substituting (12) and neglecting second- 
order terms in E ,  we obtain 

2 @ +  2 L D v -  + LGov + LFv 
at 
d V  

Integrating  equation (14) over (, we have 

where 

a = -  uo L 
2 '  

P = &GO, 
F x = -  
Go ' 

y = 2 a D ,  

and h(x) is an arbitrary  function of x .  Since we are assuming 
that the line is in a quiescent state to start with, we can set 
k(x) = 0 and  are left with a first-order quasi-linear partial 
differential equation: 

av - + yv - + P ( v  + Xu2) = 0 .  av 
ax at (17)  

This  equation  can now be considered to be the defining 
equation for wave propagation, and  its solution and in- 
terpretation are  the primary goals of the following discus- 
sion. I t  can be solved by the  method of characteristics.'O 
The characteristic equations are 

- =  1 ,  dx 
ds 

dE - = y v ,  ds 

- = -P(. + Xu2) , dv 
ds ( 2 0 )  

where s is the parameter  for the characteristic curves. 
Integrating these characteristic equations, we find 

x = x o +  s, 

where XO, and to, and Bo are determined by initial and 
boundary conditions. Substituting (23) in (22), we have 

( 2 4 )  

Performing the integration  in (24) and simplifying it, we 
have the following set of equations: 

559 

NONLINEAR TRANSMISSION LINES 



Identifying s with the space variable and setting s = 0 
yields 

x0 = 0 ,  

t o  = t - -In (1 - Xe-Bo) Y 
P i  

Substituting  the values of E o  and Bo in (25) and simplifying 
it provides the following equation 

Eliminating t from  the  equation with the help of (26) then 
yields the formal  solution of the problem as  an implicit 
relationship, 

- - In [I + ~ v ( 1  - eaz)l . Y 
PA (28) 

When the nonlinearity in  the conductance is absent, X ”+ 0; 
and then 

E = cp-’[veoz~ + ( Y / P )  (eaz - 1). , (29)  

a result which is identical to  that of Khokholov.2 

Formation of shock waves 

SinusoidaI input 
If the  input signal is sinusoidal, then at  z = 0, 

v = v o  sin u t ,  (30) 

and  the function cp” which is the inverse of the function cp 
of Eq. (4) is given  by 

cp-l(v) = ( l / w )  sin” (w/vo) . (31) 

Equation (28) now takes the following form: 

z = XVO(I - e-’”> , 
we can write 

(33)  

(34) 

The distortion of the waveform as  it propagates  down the 
line can be observed by plotting (35) for various values of 
2. Khokolov calls Z the “reduced distance”; it character- 
izes the extent to which the nonlinearity of the system mani- 
fests itself. Actually Z is  just a one-to-one nonlinear. trans- 
formation of the space variable x. It has been introduced 
mainly for  the convenience of mathematical manipulation. 

For a given value of uo and Kw the point of onset of shock 
waves can be obtained  either from plots of y vs. wE using 
(35) or by the following procedure. Since the onset of the 
shock wave corresponds to 

d(wt ) /dy  = 0 , 
we have from  equation (35) the following condition  for  this 
event : 

, -r 
1 - L 

(1 - y2)i 1 + ZY 
+ Kw----- = 0 .  

Solving for Z, we have two possible solutions: 

2 1  = - 1 (36) 
y + Kw(l  - y2)+’ 

and 

We must now find the value of y that yields a minimum 
value of Z. It  can easily be shown that for 

y l ,2  = f (1 + K2w2)>-* 

but 

%/=Yl , 2  > 0 .  

Hence, substituting (38) in (37), we obtain two values of Z 
for  the onset of shock waves. 

(1  + K2w2)’ 
1 - K2u2 Z2,Z = - 

Hence, if F > 0, the shock waves start forming at a “re- 
duced distance” corresponding to Z = (1 + K2u2)-i. For 
F < 0, we have to look  for  the least negative value of Z. 
Proceeding exactly as before, we arrive at  the conclusion 
that in  this case the onset of shock waves is given  by 
2 = - (1 + K2w2)- *. 
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Figure 2 Formation of shock waves  in nonlinear transmission lines. 

If ucrit is defined as  the amplitude of the  input signal be- 
low which shock waves will not be formed in  the line at any 
distance from  the  input, we can obtain  its value from (39). 
For F > 0, 

ucrit = Zz,l/X = (1 + K2w2)-' X (Co/F) 

= Go(F2 + 4 0  w ) . 2 2 -+ 
(41) 

In this case, ucrit is seen to be smaller than for the case in 
which there is no nonlinearity in the conductor. For F + 0, 

Vcrit = Go/2Dw . (42) 

Step input 
Consider an input signal cp(t) of  the  form 

cp(t) = u O ( l  + e"2at - 2e-at) . (43 ) 

A signal of this form can  be  made to approximate rather 
well any realistic switching waveform with proper choice 
of a. Equation (43) provides us with the following inverse 
function: 

-1 

a 

From equation (28), we now have 

(44) 

3 4 5 

Using the same  notation as before, we have 

a[ = - In (1 - dF) + KaIn  (1 + Z y )  . (46 )  

By proceeding exactly as before, it can be shown that  for 
0 < Ka < 1/2, the formation of shock waves is possible for 
either of the two conditions: (1) both F and D > 0;  (2) both 
Fand D < 0. However, for Ka > 1/2 or Ka < 0, D < 0 is 
a necessary condition  for sharpening of wavefronts and  for- 
mation of shock waves. In all cases the shock waves will 
start forming at  

z .  -~ 1 - 2Ka 
crit - 

K2a2 * 
(47) 

In Fig. 2, Eq. (46) has been plotted for Ku = - 1 and for 
various values of 2. It is seen from this  plot that, for an in- 
put of unit  amplitude, &it = 3 as given by (47). The curve 
for ZVO = 4 has no physical meaning but  is drawn just to 
show the multiple-valued nature of the solution. Clearly the 
analysis is no longer valid. 

As before, the critical amplitude of the  input signal below 
which shock waves will not be formed  in the line at any 
distance from  the  input is given  by 

r 

For F --f 0, 
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By considering various cases, it can easily be shown from 
the above analysis that when the nonlinear part of the con- 
ductance is such that F > 0, Vorit is larger and when F < 0, 
vcrit is smaller than  for  the case when there is no nonline- 
arity present in  the conductor. It is assumed here of course 
that we are considering only the positive-going step input. 
This distinction did not appear  in the previous case of a 
sinusoidal input  for then the signal went through  equal 
positive and negative excursions. 

Conclusions 
Using the perturbation technique, we have solved the  prob- 
lem of propagation of signals in a nonlinear transmission 
line with weak nonlinearity in its distributed  capacitance 
and small nonlinear shunt loss. The conditions for  the for- 
mation of shock waves in such a line are also derived. It  is 
shown that  for sinusoidalinputs, the presenceof nonlinearity 
in  the  shunt loss makes possible the formation of shock 
waves at a smaller amplitude than when the nonlinearity is 
absent. For step-like inputs,  this critical amplitude  either 
increases or decreases depending on the sign of the  non- 
linearity and  the polarity of the step. These results  should 
prove useful for the study of small signal distortions in 
propagation  through a nonlinear, dispersive medium. 
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