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Power  Conversion  in  Nonlinear  Resistive  Elements 
Related  to  Interference  Phenomena* 

Abstract: This  paper  derives the power  conversion  in a nonlinear  resistive  element that is  in  series  with  linear  resistors. The  derivation 
of the power  conversion  is  analogous to the  Manley and Rowe  analysis. The power at the  fundamental  and  intermodulation  frequencies 
is defined  as the  product of the  Fourier  coefficients  of  the current  and  voltage  components at these  frequencies. In  the  analysis,  the 
Fourier coefficients are derived  as  functions  of  the  generator  voltage  in a lumped-element  circuit. To evaluate  the  Fourier  coefficients, 
the  relationship between current  and  generator  voltage  is  expressed by a power  series.  The  coefficients  of the power  series are given  in 
the form  of  polynomials that are valid for  nonlinear  resistive  elements  with  exponential  characteristics. 

For the  investigation  of  interference  phenomena,  the  equivalence  between  the  lumped-element  circuit and a microwave circuit is 
derived  and  the  generator  voltage  is  related to the power  flux  density  carried  by the  incident  waves  intercepted by support  structures. 
The  transfer of  power at the  intermodulation frequencies to radiating  structures is  then  described.  Finally,  the  power at the  intermodula- 
tion frequencies  is  evaluated  numerically  for  different  power  levels  in  the  incident  waves. The  computed  values  were  verified  experi- 
mentally. 

Introduction 
In recent years, interference phenomena on ships and  other 
vehicles were observed. These interferences were related to 
corroded joints  on  support structures. It was found  that 
such joints exhibit frequency conversion properties similar 
to the properties of nonlinear resistive elements.’ 

To describe the interference phenomena, it was assumed 
that  support structures of a vehicle intercept electromag- 
netic waves from onboard transmitters and guide the waves 
to the corroded  joints.  Intermodulation frequencies in  the 
corroded joints  are generated, guided and reradiated by the 
support structures. Since the frequencies of some of the 
newly generated signals can fall within the pass  band of 
receivers on  board  the vehicle, serious interference prob- 
lems can result from  the intermodulation signals generated 
by the corroded  joints. 

To investigate interference signals resulting from  the 
above  situation, an analysis will be performed on  the 
power conversion capability in a nonlinear resistive ele- 
ment that is resistively terminated. From the analysis we 
will derive the characteristics of the power at  the inter- 
modulation frequencies as a function of the power carried 
by the incident waves. In particular, we will analytically 
verify an experimental observation that showed that power 
at  some of  the intermodulation frequencies can decrease 
while the power carried by the larger of the incident waves 
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For  the analysis we assume an equivalent circuit where 
the corroded joint is represented by a nonlinear resistor 
with exponential current-voltage characteristic. The struc- 
tures  that intercept the incoming waves and reradiate the 
frequency converted waves are represented by linear re- 
sistors. The generator voltage in the equivalent circuit is 
related to the power  carried by the incident waves. There 
is  no restriction on  the power relations among  the incident 
waves. 

The functional  relationship between the current and  the 
generator voltage is expressed as a power series. The coef- 
ficients of the power series are given in the  form of poly- 
nomials. Since a large  number of terms  in the power series 
are required to approximate the current-generator/voltage 
relationship, the polynomials are given in recursive form. 

Expressions are presented for  the absorbed power at the 
fundamental frequencies and  for  the reradiated power at  
the intermodulation frequencies. The power conversion can 
be computed numerically from these expressions for typical 
nonlinear resistive elements as a  function of the power  in 
the incident waves. 

Investigations on nonlinear  resistors have been published 
previously. The power conversion in  a  nonlinear resistive 
element was treated analytically in Refs. 2-4 but in these 
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Figure 1 Lumped-element  circuit,  where a nonlinear  resistor is in 
series  with  two  linear  resistors. 

analyses the linear series resistors were not considered. L. 
M. OrlotP  and L. D. Neidlemq6 in  their analyses, have 
included linear resistors in series with the nonlinear ele- 
ment. However, Orloff has computed  only the first six 
coefficients of the power series representing the current- 
voltage relationship, and Neidleman, in his application of 
FORMAC, has evaluated only the first eight coefficients. 

None of the previous analyses lends itself to a verifica- 
tion of the experimentally observed decrease in power at 
some  intermodulation frequencies with increasing power in 
the incident waves. The decrease in power is related to the 
linear resistors in the circuit. Their effect, however, became 
apparent only after we had evaluated a large number of 
terms  in the power series representing the current-voltage 
relationship. 

Power  relations 
Power conversion in nonlinear resistive elements was 
treated  in general form in several  publication^.^-^ In  the 
present paper, we derive the power conversion in a non- 
linear resistor that  is placed in an  actual circuit. In the 
circuit the nonlinear resistor is in series with linear resistors. 
The derivation of the power conversion in the nonlinear 
resistor is analogous to Manley and Rowe's analysis of the 
energy relations in nonlinear reactances.' 

In  our derivation we will assume that  the generator volt- 
age in the circuit is composed of three sine waves (i.e., at  
the frequencies f1, f z  and f i >  that  are  not harmonically re- 
lated. The current can then  be expressed as a  function of the 
generator voltage and can be represented by the Fourier 
series 

i = E 5 5 
m="m n="m p=-m 

X exp j (mwl+  nwz + P W ) ~ ,  (1) 

where w = 2rf .  

Since i is real, 
- ImSnsp - I?m,-ns-p and I-m*-n*-p 1 6 , n . p .  

The voltage across the circuit elements as a  function of the 
generator voltage, expressed by a Fourier series, is 

= 5 V m . n . p  

+m  +m 

m="m n=-m p="m 

X exp j (mwl+  nwz + P W Q ) ~ .  (2) 
Since v is real, 

V m , a , p  1 V-Tm,-n,-p and V-m, -n , -p  = V 2 , n . p .  

The product of current and voltage in Eqs. (1) and ( 2 )  
gives the power at  the fundamental frequencies, at  the 
harmonics, and  at  the sum and difference frequencies. Ex- 
pressions for the power, in general form, follow directly 
from Manley and Rowe's ana ly~is .~  The real power at  the 
frequency mf1 + nfi + pJ; is 

P m , n , p  = V m * n , p   I 2 , n . p  + V Z , n , p   I m , n , p  (3) 

Since in our analysis we  will not consider any reactances in 
the circuit, the real power is 

P m , n , p  = 2 V m . n , p J m , n , p  (4) 

Fourier  coefficients of current  and  voltage 
components 
The analysis considers the nonlinear resistor  operated  in the 
circuit shown in Fig. 1, where the nonlinear resistor is in 
series with linear resistors. The circuit does not contain  any 
frequency selective elements. 

To investigate the power relations  in the nonlinear  re- 
sistor, we must  evaluate the  Fourier coefficients in Eqs. (1) 
and (2).  To  do so, we will express the time varying current 
in the circuit and  the time varying voltages across the cir- 
cuit elements as functions of the time varying generator 
voltage. We assume that  the generator voltage v(t) is com- 
posed of three sine waves: 

v ( t )  = a cos w1t + b cos wzt + c cos w 3 t .  ( 5 )  

In general, the current-voltage characteristic of a non- 
linear resistive element can be approximated by an expo- 
nential  function: 

i(t) = i u [ p ( t )  - 11 9 (6) 

where i(t) is  the current through  the nonlinear resistor, e(t)  
is the voltage across the nonlinear resistor, and io and a are 
constant values that  are typical for a specific nonlinear 
resistor. 

The voltage across the nonlinear resistor in the circuit in 
Fig. 1 is 

e ( t )  = v ( t )  - u ( t )  = v ( t )  - i ( t ) R  , (7) 
where u(t) = ul(t)  + uz(t), and R = R1 + R z .  

follows from Eqs. (6)  and (7): 
The relationship between current and generator voltage 

q t )  = i o (  e a [ v ( t ) - i ( t ) R 1  - 1) . ( 8 )  545 
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The functional relationship in Eq. (8) is given in transcen- 
dental  form. An explicit relation between current and 
generator voltage in  the  form of a power series is given by 

where Hk(Z) are polynomials in z and 

di olio 

dv 1 + ioolR 

evaluated at v( t )  = 0. 

H. D. Mills* (this issue): 

z = -  ___ (1 0) 

The polynomials Hk(z)  in recursive form were derived by 

and 

The relation between current and generator voltage in a 
circuit where a nonlinear resistor is in series with linear re- 
sistors is expressed in  Eq. (9) in the  form of a power series. 
The expression is valid for a nonlinear  resistor with an 
exponential current-voltage characteristic. In the relation 
between current and generator voltage, the linear resistors 
introduce a deviation from  the exponential dependence of 
current upon voltage. We have to realize that  the  functional 
relation  in  Eq. (8) cannot be  approximated with sufficient 
accuracy by a power series unless a very large  number of 
terms  in the power series is considered. 

The relation between the voltage across the nonlinear 
resistor and  the generator voltage, and between the voltage 
across the linear resistors and  the generator voltage in the 
form of power series follow from Eqs. (7) and (9). 

To evaluate the Fourier coefficients of the current and 
the voltages across the nonlinear and across  linear resistors 
as functions of the amplitudes of the three sine waves from 
Eqs. ( 3 ,  (7) and (9), we use an expression that was derived 
previously by C. A. A.  was^.^ From this expression the 
Fourier coefficients  of a time varying function can be com- 
puted, that is, represented by a power series. The  Fourier 
coefficients of the current and voltage components at  the 
fundamental frequencies and  at  the intermodulation fre- 
quencies are represented in the  form of series. A few terms 
of the Fourier coefficients Z ~ , O , ~ ;  Z0,l.o Z O , O J ;  Z I J , O  and 
Z~,O,~ are given in the Appendix. 

Power  transfer 

power at the fundamental frequencies and at the inter- 
modulation frequencies in a nonlinear resistive element. 
The Fourier coefficients in  this  equation are derived from 
the  current and voltage relations  in the lumped-element 
circuit in Fig. 1.  It is required to relate the lumped-element 
circuit to an equivalent microwave circuit. In a lumped-ele- 
ment circuit, the circuit elements are small  compared to a 
wavelength and no impedance  transformation  occurs along 
the interconnecting transmission lines. 

The investigation in  this  paper considers a corroded joint 
on  an  open metal  structure. At microwaves the nonlinear 
junction  in a corroded joint will still be small compared to a 
wavelength. The transmission path  on  the open  metal  struc- 
ture, however, can be many wavelengths long. But, on  the 
metal  structures waves can propagate only in the  form of 
hybrid TE-TM  mode surface waves.1° Surface waves of this 
type are highly attenuated. On transmission paths  that  are 
highly attenuated,  impedance  transformation is minimized. 
Although the preceding analytical results do  not  take  into 
consideration  any impedance transformation, they can  be 
assumed to be valid for a corroded joint on an open  metal 
structure. 

The equivalent microwave circuit is given in Fig. 2 ,  which 
shows two antennas, two attenuators  and a nonlinear re- 
sistor. They represent the  support structures that intercept, 
guide and  radiate  the waves together with the corroded 
joint. The function of the linear  resistors in Fig. 1 is equiva- 
lent to the function of the  antennas  and  attenuators  in Fig. 
2 when we assume that  the equivalent characteristic imped- 
ances of the  support structures are frequency independent. 
This assumption can be made for  operation over a limited 
frequency range. Since we are concerned with interference 
signals that  are within the frequency range of the radiating 
systems on  the vehicle-within the  UHF  and microwave 
range-the equivalence between Fig. 1 and Fig. 2 can be 
assumed. 

The incoming waves are intercepted by a support struc- 
ture  on  the vehicle that functions as a receiving antenna. 
The power incident on  the corroded joint is 

* 
P i n m , n , p  = S m , n , p A e f a  9 ( 1 3 )  
where SnL,n,p is the power flux density in the incoming 
waves, A ,  is the effective absorption cross section of the 
support structure, and f a  is a factor representing the at- 
tenuation over the transmission path on the metal structure. 

The amplitudes of the sine waves in Eq. (5) are related to 
the power in the incident waves by 

Radiating systems on ships and  on space vehicles operate in where Zo is the equivalent characteristic impedance of the 
general at  ultrahigh frequencies or  at microwaves. At these open  metal  structure that guides the incoming waves to the 
frequencies, we measure the power carried by the incident 
and reflected waves and power in waves at  newly generated 

546 frequencies. A general equation is presented, Eq. (4), for  the t a, ,o )o = a;  a. 91 = b; a , .  ,, = c 
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Figure 2 Schematic presentation of corroded  joint that functions 
as a nonlinear  resistive  element, and of support  structures  that 
function as attenuators  and  antennas  (microwave  equivalent 
circuit). 

corroded  joint.  (In  Eq. (14) it is assumed that only half of 
the power that  is intercepted by the  support structure is 
guided to  the corroded  joint. This is consistent  with the 
definition of the effective absorption cross  sectionlo of the 
support  structure that relates the power flux density of the 
intercepted waves to the power that is guided to  the cor- 
roded  joint.) 

At  the corroded joint  one  part of the incident waves is 
absorbed,  one part is reflected and  one  part is transferred 
to  the  output guiding structure. The  part of the incoming 
waves that is absorbed by the  corroded joint  can be  con- 
verted to waves at  the intermodulation frequencies. The 
waves at  the intermodulation frequencies are guided and 
radiated by the two support structures. 

The power at  the fundamental frequencies that is ab- 
sorbed by the nonlinear resistor follows from  Eq. (4) for 
V m , n , p  = Em, , , , ;  it is 

Pabsorbed m , n , p  = 2 Em,n.pzmm,n.P , (15) 

where Em,n,p and Z m , n , p  can be computed from Eqs. ( S ) ,  (7) 
and (9) for R = 2Z0 and  from C .  A.  A. Wass' expres~ion.~ 

The power at  the intermodulation frequencies mf1 f 
n& f pf3 that is guided and radiated by the  support struc- 
tures follows from  Eq. (4)  for Vm,,,, = Urn,,.,. It is 

P m  n,p = 2 U m . n , p I m , n , p  9 (1  6) 

where Um,n,p is the  Fourier coefficient  of the voltage com- 
ponent  across  the  linear resistors in the lumped  element cir- 
cuit at the frequencies mf1 f nf2 f pf3. (The equivalence of 
the  linear resistors in the lumped element circuit and the 
characteristic impedance of the guiding and radiating  struc- 
tures  in the microwave circuit were outlined before.) 

For  the microwave circuit, where R = 2Z0, we obtain 
from Eq. (7)  

U m , n , p  = 2 I m , n , p Z o  . ( 1 7 )  

Then the power at  the intermodulation frequencies in Eq. 
(16) is 

P m , n , p  = 4 1 i , n , p z O .  (18) 

Because we have assumed the same equivalent character- 
istic impedance for  the  input  and  output transmission paths 

in  the microwave circuit, half the power in  Eq. (18)  is guided 
and radiated by the structure that  had intercepted the in- 
coming waves. The  other half power is guided and radiated 
by the  output radiating  structure. 

Characteristics of Fourier  coefficients of current 
components 
The general power relations in  the foregoing sections do 
not yield any  quantitative results. The numerical  evaluation 
of the power at  the intermodulation frequencies from  Eq. 
(18)  was restricted by limitations of our  computer program 
to comparatively low power levels. To learn  more about  the 
characteristics of the power at  the intermodulation fre- 
quencies we investigated the characteristics of the  Fourier 
coefficients of the current  components 1, , p .  

For  the investigation of interferences on ships and  other 
vehicles, we assumed that the physical and chemical struc- 
ture of a corroded joint corresponds to a metal-metal  com- 
pound rectifier. Then, for a certain asymmetry of the  junc- 
tion of the  corroded joint, its  nonlinear  current-voltage re- 
lation can be described by the exponential  function in  Eq. 

For a nonlinear resistor characterized by the exponential 
function in  Eq. (6), the relationship between the Fourier 
coefficient Im,n ,p  and  the power in the incident waves is de- 
termined by the coefficients in  the power series in  Eq. (9). 
The coefficients are weighted by the  contribution of the 
amplitudes of the incident waves to the current  component 
at  the frequencies mfi =t n f .  f pf3.  Thus,  the character- 
istics of the  Fourier coefficients are closely related to the 
characteristics of the polynomials Hk(z) in the power series. 

We numerically evaluated the polynomials Hk(z) for 
typical values of the constants a! and io of a nonlinear re- 
sistor and  for typical values of the linear  resistor R in the 
circuit. We found that the magnitude of the polynomials 
Hk(z) is determined by all three constant  parameters cy, 
io and R. The polynomials are  not all positive but  alternate 
between positive and negative values. In particular, the 
polynomials for small values of k are positive and very 
small. They become larger as k increases, reach a maximum 
value, decrease and become negative. Then, when k is 
further increased, the polynomials &(z) go through nega- 
tive and positive cycles  of increasing amplitudes. (When the 
linear  resistor R is zero, all the coefficients in the power 
series in Eq. (9) are positive.) 

In  the series representation of the  Fourier coefficients of 
&he current  components, where the polynomials Hk(z) are 
weighted by the contributions of the amplitudes of the inci- 
dent waves to  the current  components, the weighting factors 
have the effect of damping the alternating cycles  of positive 
and negative values of the polynomials. 

We examined the contribution of positive and negative 
terms in  the series presentation of the  Fourier coefficients. 
To do so, we computed the  contribution of the first 25 

(6). 
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Figure 3 Contributions of the  first 25 terms  in  the  series  represen- 
tation of the  Fourier  coefficients: (a) Z~,O,O, (b) 20,1,0 and Zo,o.l, (c) 
IIJ,~,  and(d)h,o,z. In all computationsPi,o,l,o = P~,o,o,I = 0.105 
X 104W, 01 = 23V", io = 3 X 10-6A, and R = low. 

terms of the power series to  the  Fourier coefficients of the 
current  components at  the fundamental frequencies f1, f i ,  

and,f3, and  at  the intermodulation  frequenciesfl f fz  and 
f1 f 2f3. In particular, we computed  the change of the 
contribution to the  Fourier coefficients that occurs when 
we increase the power carried  by the incident wave at  the 
frequency f1, while the power carried by the incident waves 
at  the frequencies fi andfs remained constant. (The signal 

548 at the frequency f1 is  the largest of the three signals.) The 
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numerical evaluation was performed for power levels in the 
incident waves that were considered typical for interfer- 
ences between radiating systems on ships and space vehi- 
cles.* 

The results are shown  in Fig. 3. Apparently, the main 
contribution of the Fourier. coefficients is contained within 
the first terms  in the series where the polynomials are posi- 
tive. The first positive terms are largest  for the fundamental 
frequencies and decrease with increasing order of the inter- 
modulation frequencies. The higher order  terms  in the 
series where the polynomials go through cycles of negative 
and positive values constitute a correction  factor that is 
negative. The contribution from  the terms that alternate 
between negative and positive values is almost the same at  
the different frequencies. 

When the power carried by the incident waves is small, 
the negative correction  factor is  quite insignificant. This 
means the alternating cycles of negative and positive values 
of the polynomials are damped  quite strongly by the weight- 
ing factor.  When the power carried by the incident waves 
becomes larger, the contribution of the negative correction 
terms becomes more effective. When the incident power is 
further increased, the alternating cycles  of negative and 

*The polynomials H&(d and the contribution of the k terms of the series 
representing  the  Fourier  coefficients  were evaluated by an IBM 1410. 
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Figure4 Relativecontributionof the sumof the first  positive  terms, 
k = 1 to 7, (shown as solid  lines),  and  of  the  negative  correction 
terms, k = 8 to 25, (shown  as dashed lines), to  the  series  represen- 
tation of the Fourier coefficients, Zm,n, , .  Same  circuit  parameter 
values  as  for  Fig. 3. 

positive values of the polynomials are damped by the 
weighting factor  for very large values of k only. For smaller 
values of k, the alternating cycles of negative and positive 
values increase in amplitude. 

The relation between the first positive terms  in the series 
representation of the Fourier coefficients and of the negative 
correction factor becomes more  apparent  in  Fig. 4, where 
we give the relative contribution to  the Fourier coef- 
ficients Zm,n , p  from  the sum of the first positive terms  in the 
series representation, to the sum of the alternating negative 
and positive terms. This  relation is given as a  function of 
the power in  the incident wave at  the frequency,fl. It is  ap- 
parent that the negative correction terms become more 
effective as  the power carried by the incident wave at  the 
frequency f1 becomes larger. Furthermore, the contribution 
from  the negative correction  terms is more significant at  the 
higher order intermodulation frequencies, where the contri- 
bution from  the first positive terms is smaller. 

From  the  data in Fig. 4 we can extrapolate the character- 
istics of the current  components for higher power levels. 
The current  components at the lower order intermodulation 
frequencies will always be larger than  the current  compo- 
nents at  the higher order intermodulation frequencies. 
When the power carried by the incident wave at f1 further 
increases, the contribution of the negative correction term 
to the current  components will become even more effective. 

It is apparent  that at the higher power levels, the current 
components will not increase continuously. Each of the 
current  components will reach a maximum value as the 

rate of increase of the first positive terms in the series repre- 
sentation of the Fourier coefficient becomes equal  to  the 
rate of increase of the negative correction term. When the 
power in the incident wave at fi is  further increased, the 
rate of increase of the negative correction term will exceed 
the  rate of increase of-the first positive terms and  the cur- 
rent component will become smaller. 

The contribution from  the negative correction  terms will 
be  more effective at the higher order intermodulation fre- 
quencies than  at  the lower order intermodulation frequen- 
cies. Therefore, the maximal values of the  current  com- 
ponents at  the lower order intermodulation frequencies will 
be  obtained at a higher power level of the incident waves 
than  the maximal values of the current  components of the 
higher order  intermodulation frequencies. 

Power  at  intermodulation  frequencies 
The power at the intermodulation frequencies mf1 f nfi 
=k pf3  defined in Eq. (18) is  proportional  to  the  square of the 
Fourier coefficient of current  component Z m , n , p .  Conse- 
quently, the characteristics of the power at  the intermodula- 
tion frequencies follow directly from  the characteristics of 
the current  components  in the preceding section. We con- 
clude that for given power level of the incident waves, the 
power at  the lower order intermodulation frequencies is 
higher than  the power at  the higher order intermodulation 
frequencies. (This is in  accordance with the limitations on 
the power at  the intermodulation frequencies that  are given 
in general form by R. H. Pantell.2) Furthermore, when the 
power carried by the incident waves is small and then  in- 
creases, the power at  the lower order intermodulation fre- 
quencies increases faster than  the power at  the higher order 
intermodulation frequencies. 

We computed the power at  the intermodulation frequen- 
cies f1 f fi and f1 f 2f3 as a function of the power carried 
by the incident wave at the frequency f1 from  the Fourier 
coefficients in the  last Section. The results are shown in Fig. 
8. The power at  the frequencies f1 f fi is higher and in- 
creases very fast when the power in the incident wave at the 
frequency Ji becomes larger. The power at  the frequencies 
f1 f 2 j 3  is lower and increases considerably slower. 

The power carried by the incident waves in  our  computa- 
tion is approximately one  order  of magnitude lower than 
the power level for maximum transfer of power from the 
incident waves to the nonlinear  resistor where = 

,p.* Although we have not computed the current  com- 
ponents  for the higher power level, we have extrapolated 
their characteristics from  data computed at the lower power 
level. We conclude from  the analysis that the power at  each 
of the intermodulation frequencies will increase, reach a 
maximum value and then decrease when the power in  the 
larger of the incident waves increases. The maximum power 

* m, n, p = 1, 0,   0;  0, 1. 0 ;  0, 0, 1 ; respectively. 549 
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Figure 5 Power at frequenciesfi - fi andfi + 2f3 for low values 
of incident  power at f i .  Same  circuit  parameter  values  as  for  Fig. 
3. 

at the low order intermodulation frequencies will be  ob- 
tained at  a higher power level of the incident waves than  the 
maximum of power at  the higher order intermodulation 
frequencies. These characteristics were observed experi- 
mentally. 

Experimental  verification 
We built a  model of the microwave circuit in Fig. 2 where a 
microwave nonlinear resistor diode of the type 1  N21E is in 
series with the inner  conductor of a 50-ohm strip transmis- 
sion line. Microwave attenuators were placed at  the  input 
and  output of the diode. Three microwave signals were 
directed to the nonlinear resistor. 

We measured the power at  the  intermodulation  fre- 
quencies that were within the microwave band,  and investi- 
gated the change of power at  the intermodulation frequen- 
cies that occurred when we increased the power in the 
largest of the signals while the power in the two  smaller 

550 signals remained constant. The results of our measurements 
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Figure 6 Power at frequenciesfi - f i  andfi + 2h for intermedi- 
ate values of incident  power at fi. Same  circuit  parameter  values 
as  for  Fig. 3. 

are shown in Figs. 5,6 and 7. (We measured the sum of the 
power in the waves travelling towards the  load  and towards 
the generator.) 

In Fig. 5 we compare the measured values of the power 
at the intermodulation  frequenciesfi - f z  andfl + 2f3 to 
the computed values. To correlate the measured and com- 
puted values, we evaluated the  Fourier coefficients for  the 
parameters a and io of a microwave diode of the type 
1N21E and  for  the characteristic impedance of the trans- 
mission path of 50 ohms. 

There is very close agreement between the power meas- 
ured at  the intermodulation frequencies in the microwave 
band  and  the power that was computed from  equations 
derived for a low-frequency equivalent circuit. The close 
agreement confirms the validity of our assumption that re- 
actances need not be considered in  the analysis. Even the 
shunt capacitance of the nonlinear resistor can be neglected. 

We had assumed that  the  shunt capacitance may be dis- 
regarded for  the following reason. The power at  the inter- 
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Figure 7 Power at frequencies fi - fi, fi - fi + f 3 ,  and fi - 2f3 
for high values  of  incident  power at fi. Same  circuit  parameter 
values  as for Fig. 3. 

modulation frequencies in  Eq. (16) is directly rebated to 
the distortions  in the voltage waveform across the nonlinear 
resistor in Eq. (7). The distortions occur in the forward 
conduction region, where the instantaneous impedance of 
the nonlinear resistor is small. In this region the  shunt 
capacitance is actually least effective. 

Figures 6 and 7 give the power at  the intermodulation 
frequencies measured at  higher power levels in the incident 
waves. These measurements were performed to confirm the 
characteristics of the power at the  intermodulation frequen- 
cies that were extrapolated from  the computed  data. 

In Fig. 6 we show an extension of the measured values in 
Fig. 5 to higher power in the incident wave at  the frequency 
f 1 .  In Fig. 7 we present measured values of the power at  the 
intermodulation frequencies f 1  - f 2 ,  f 1  - f2 + f 3  and 
f i  - 2f3. The power level of the incident waves is approxi- 

mately one order  of magnitude  above the power level in 
Fig. 6. 

We can observe that  the power at the low order inter- 
modulation frequencies is higher than  the power at  the 
higher order intermodulation frequencies. Furthermore, 
power at frequencies f 1 -  fi continues to increase as power in 
the incident wave at f 1  becomes larger, while the power at 
f i  - fi + f3 and  at fi f 2f3 reaches maximum values and 
then decreases. Thus, the measured characteristics are in 
agreement with the characteristics of the power at  the inter- 
modulation frequencies that were extrapolated from  the 
analytical  results for lower power levels. 

Conclusions 
From  the analysis presented in this  paper we derived the 
characteristics of the power at  the intermodulation  frequen- 
cies that were generated in a nonlinear resistive element in 
series with linear resistors. We found  that  the power at  the 
lower order intermodulation frequencies is always higher 
than  the power at  the higher order intermodulation fre- 
quencies. When the power in the incident waves is small, 
the power at  the intermodulation frequencies is small. 
When the power carried by the larger of the incident waves 
increases, the powers at  the intermodulation frequencies 
increase, reach maximal values, and decrease. The maxi- 
mum power at  the low order intermodulation frequencies is 
obtained at  a higher power level for the incident waves than 
the maximum power at  the higher order intermodulation 
frequencies. 

These characteristics are significant when we evaluate 
interferences between radiating systems on ships and  other 
vehicles. Obviously, the power at  the intermodulation fre- 
quencies, generated in  a  nonlinear resistive element in an 
actual circuit, can become smaller although the power in 
some of the incident waves increases. Furthermore,  the 
power at the low order intermodulation frequencies can  in- 
crease, while the power at  the higher order intermodulation 
frequencies is decreasing. 

Acknowledgments 
The  author acknowledges the assistance of Dr.  Harlan D. 
Mills, who derived the coefficients of the power series in 
recursive form.  She  also thanks  H. P. Fischer for the experi- 
mental verification of the computed data. 

Appendix 
Fourier coefficients of the  current components Zl,o,o; Zo,l,o; 
lo,o,l; ZI,I,~ and ZI,O,Z when the generator voltage is given 
by Eq. (5). (First  terms only.) 

Zl,O,O = - 2 [ H l ( z ) a  + j j  H3(Z) - a3 + - ab2 + - ac (: 1 3 
2 2 
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