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E. M. Rutz-Philipp

Power Conversion in Nonlinear Resistive Elements
Related to Interference Phenomena”®

Abstract: This paper derives the power conversion in a nonlinear resistive element that is in series with linear resistors. The derivation
of the power conversion is analogous to the Manley and Rowe analysis. The power at the fundamental and intermodulation frequencies
is defined as the product of the Fourier coefficients of the current and voltage components at these frequencies. In the analysis, the
Fourier coefficients are derived as functions of the generator voltage in a lumped-element circuit. To evaluate the Fourier coefficients,
the relationship between current and generator voltage is expressed by a power series. The coefficients of the power series are given in
the form of polynomials that are valid for nonlinear resistive elements with exponential characteristics.

For the investigation of interference phenomena, the equivalence between the lumped-element circuit and a microwave circuit is
derived and the generator voltage is related to the power flux density carried by the incident waves intercepted by support structures.
The transfer of power at the intermodulation frequencies to radiating structures is then described. Finally, the power at the intermodula-
tion frequencies is evaluated numerically for different power levels in the incident waves. The computed values were verified experi-

mentally.

Introduction
In recent years, interference phenomena on ships and other

vehicles were observed. These interferences were related to
corroded joints on support structures. It was found that
such joints exhibit frequency conversion properties similar
to the properties of nonlinear resistive elements.!

To describe the interference phenomena, it was assumed
that support structures of a vehicle intercept electromag-
netic waves from onboard transmitters and guide the waves
to the corroded joints. Intermodulation frequencies in the
corroded joints are generated, guided and reradiated by the
support structures. Since the frequencies of some of the
newly generated signals can fall within the pass band of
receivers on board the vehicle, serious interference prob-
lems can result from the intermodulation signals generated
by the corroded joints.

To investigate interference signals resulting from the
above situation, an analysis will be performed on the
power conversion capability in a nonlinear resistive ele-
ment that is resistively terminated. From the analysis we
will derive the characteristics of the power at the inter-
modulation frequencies as a function of the power carried
by the incident waves. In particular, we will analytically
verify an experimental observation that showed that power
at some of the intermodulation frequencies can decrease
while the power carried by the larger of the incident waves
increases.
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For the analysis we assume an equivalent circuit where
the corroded joint is represented by a nonlinear resistor
with exponential current-voltage characteristic, The struc-
tures that intercept the incoming waves and reradiate the
frequency converted waves are represented by linear re-
sistors. The generator voltage in the equivalent circuit is
related to the power carried by the incident waves. There
is no restriction on the power relations among the incident
waves.

The functional relationship between the current and the
generator voltage is expressed as a power series. The coef-
ficients of the power series are given in the form of poly-
nomials. Since a large number of terms in the power series
are required to approximate the current-generator/voltage
relationship, the polynomials are given in recursive form.

Expressions are presented for the absorbed power at the
fundamental frequencies and for the reradiated power at
the intermodulation frequencies. The power conversion can
be computed numerically from these expressions for typical
nonlinear resistive elements as a function of the power in
the incident waves.

Investigations on nonlinear resistors have been published
previously. The power conversion in a nonlinear resistive
element was treated analytically in Refs. 2-4 but in these

* The work was performed in support of “The Mathematical Model of Radio
Frequency Interference on the Saturn Vehicle,” under contract to NASA
Marshall Space Flight Center, Contract Number NAS 8-14000.
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Figure 1 Lumped-element circuit, where a nonlinear resistor is in
series with two linear resistors.
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analyses the linear series resistors were not considered. L.
M. Orloff® and L. D. Neidleman,® in their analyses, have
included linear resistors in series with the nonlinear ele-
ment. However, Orloff has computed only the first six
coefficients of the power series representing the current-
voltage relationship, and Neidleman, in his application of
FORMAC, has evaluated only the first eight coefficients.

None of the previous analyses lends itself to a verifica-
tion of the experimentally observed decrease in power at
some intermodulation frequencies with increasing power in
the incident waves. The decrease in power is related to the
linear resistors in the circuit. Their effect, however, became
apparent only after we had evaluated a large number of
terms in the power series representing the current-voltage
relationship,

Power relations
Power conversion in nonlinear resistive elements was

treated in general form in several publications.?~* In the
present paper, we derive the power conversion in a non-
linear resistor that is placed in an actual circuit. In the
circuit the nonlinear resistor is in series with linear resistors.
The derivation of the power conversion in the nonlinear
resistor is analogous to Manley and Rowe’s analysis of the
energy relations in nonlinear reactances.”

In our derivation we will assume that the generator volt-
age in the circuit is composed of three sine waves (i.e., at
the frequencies f1, f2 and f3) that are not harmonically re-
lated. The current can then be expressed as a function of the
generator voltage and can be represented by the Fourier
series
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where w = 2xf.
Since i is real,

Inpnyp = Ifm,——n.—p and I 0. p = I;rkz,n.p-

The voltage across the circuit elements as a function of the
generator voltage, expressed by a Fourier series, is
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Since v is real,
Vono = Vinnp and Viop o _p= Vio,.

The product of current and voltage in Eqgs. (1) and (2)
gives the power at the fundamental frequencies, at the
harmonics, and at the sum and difference frequencies, Ex-
pressions for the power, in general form, follow directly
from Manley and Rowe’s analysis.” The real power at the
frequency mfi + nfe + pfsis

Pm,n,p = Vm,n,pI;rk;,n,p + V:::,n,p Im,n.p . (3)

Since in our analysis we will not consider any reactances in
the circuit, the real power is

Ponp=2Vanplnno- 4)

Fourier coefficients of current and voltage
components
The analysis considers the nonlinear resistor operated in the

circuit shown in Fig. 1, where the nonlinear resistor is in
series with linear resistors, The circuit does not contain any
frequency selective elements.

To investigate the power relations in the nonlinear re-
sistor, we must evaluate the Fourier coefficients in Eqgs. (1)
and (2). To do so, we will express the time varying current
in the circuit and the time varying voltages across the cir-
cuit elements as functions of the time varying generator
voltage. We assume that the generator voltage v(f) is com-
posed of three sine waves:

v(t) = a cos wit + b cos wat - ¢ coS wst . (5
In general, the current-voltage characteristic of a non-

linear resistive element can be approximated by an expo-
nential function:

i(f) = o™ — 1], (6)
where i(¢) is the current through the nonlinear resistor, e(?)
is the voltage across the nonlinear resistor, and 7o and « are
constant values that are typical for a specific nonlinear
resistor.

The voltage across the nonlinear resistor in the circuit in
Fig. 1is
e(t) = v(t) — u(t) = v() — i(NR, (7
where Il(l) = uy(r) + ug(t), andR = R; } R..

The relationship between current and generator voltage
follows from Eqgs. (6) and (7):

i(f) = iofe " OTIOR _ (8)
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The functional relationship in Eq. (8) is given in transcen-
dental form. An explicit relation between current and
generator voltage in the form of a power series is given by

— 1
i(0) = 2 — Hy(2)" () , 9)
=1 k!
where Hy(z) are polynomials in z and
. (10)
dv 1 + ioOlR

evaluated at v(Y) = 0.
The polynomials H,(z) in recursive form were derived by
H. D. Mills® (this issue):

Olk_l 2k—1 R
Hk(z) = _—]{_- ZO ak,j(ZR)] (11)
j=

and

ar,; = Jar—,; — 2(j — DVar—1,j1+ (G — 2)ar—1,j—2 -
(12)

The relation between current and generator voltage in a
circuit where a nonlinear resistor is in series with linear re-
sistors is expressed in Eq. (9) in the form of a power series.
The expression is valid for a nonlinear resistor with an
exponential current-voltage characteristic. In the relation
between current and generator voltage, the linear resistors
introduce a deviation from the exponential dependence of
current upon voltage. We have to realize that the functional
relation in Eq. (8) cannot be approximated with sufficient
accuracy by a power series unless a very large number of
terms in the power series is considered.

The relation between the voltage across the nonlinear
resistor and the generator voltage, and between the voltage
across the linear resistors and the generator voltage in the
form of power series follow from Egs. (7) and (9).

To evaluate the Fourier coefficients of the current and
the voltages across the nonlinear and across linear resistors
as functions of the amplitudes of the three sine waves from
Egs. (5), (7) and (9), we use an expression that was derived
previously by C. A. A. Wass.® From this expression the
Fourier coefficients of a time varying function can be com-
puted, that is, represented by a power series. The Fourier
coefficients of the current and voltage components at the
fundamental frequencies and at the intermodulation fre-
quencies are represented in the form of series. A few terms
of the Fourier coefficients I1,0,0; fo.1,0 Zo,0,15 I1,1,0 and
L o 5 are given in the Appendix.

Power transfer
Radiating systems on ships and on space vehicles operate in

general at ultrahigh frequencies or at microwaves. At these
frequencies, we measure the power carried by the incident
and reflected waves and power in waves at newly generated
frequencies. A general equation is presented, Eq. (4), for the
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power at the fundamental frequencies and at the inter-
modulation frequencies in a nonlinear resistive element.
The Fourier coefficients in this equation are derived from
the current and voltage relations in the lumped-element
circuit in Fig. 1. It is required to relate the lumped-element
circuit to an equivalent microwave circuit. In a lumped-ele-
ment circuit, the circuit elements are small compared to a
wavelength and no impedance transformation occurs along
the interconnecting transmission lines.

The investigation in this paper considers a corroded joint
on an open metal structure. At microwaves the nonlinear
junction in a corroded joint will still be small compared to a
wavelength. The transmission path on the open metal struc-
ture, however, can be many wavelengths long. But, on the
metal structures waves can propagate only in the form of
hybrid TE-TM mode surface waves.® Surface waves of this
type are highly attenuated. On transmission paths that are
highly attenuated, impedance transformation is minimized.
Although the preceding analytical results do not take into
consideration any impedance transformation, they can be
assumed to be valid for a corroded joint on an open metal
structure.

The equivalent microwave circuit is given in Fig. 2, which
shows two antennas, two attenuators and a nonlinear re-
sistor. They represent the support structures that intercept,
guide and radiate the waves together with the corroded
joint. The function of the linear resistors in Fig. 1 is equiva-
lent to the function of the antennas and attenuators in Fig.
2 when we assume that the equivalent characteristic imped-
ances of the support structures are frequency independent.
This assumption can be made for operation over a limited
frequency range. Since we are concerned with interference
signals that are within the frequency range of the radiating
systems on the vehicle—within the UHF and microwave
range—the equivalence between Fig. 1 and Fig. 2 can be
assumed.

The incoming waves are intercepted by a support struc-
ture on the vehicle that functions as a receiving antenna.
The power incident on the corroded joint is

Pinm,ﬂ,p = Sm,n,pAefa ’* (13)

where Sy, is the power flux density in the incoming
waves, A, is the effective absorption cross section of the
support structure, and f, is a factor representing the at-
tenuation over the transmission path on the metal structure.

The amplitudes of the sine waves in Eq. (5) are related to
the power in the incident waves by

R ¢
Amn,p = V8Pinm,n,pZO ;* (14)

where Z, is the equivalent characteristic impedance of the
open metal structure that guides the incoming waves to the

*m,n,p=1,0,0;0 1, 0; 0, 0, 1; respectively.

Ta:,o.o = a;aoylio =b;a0' " =c
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Figure 2 Schematic presentation of corroded joint that functions
as a nonlinear resistive element, and of support structures that

function as attenuators and antennas (microwave equivalent
circuit).

corroded joint. (In Eq. (14) it is assumed that only half of
the power that is intercepted by the support structure is
guided to the corroded joint. This is consistent with the
definition of the effective absorption cross section!® of the
support structure that relates the power flux density of the
intercepted waves to the power that is guided to the cor-
roded joint.)

At the corroded joint one part of the incident waves is
absorbed, one part is reflected and one part is transferred
to the output guiding structure. The part of the incoming
waves that is absorbed by the corroded joint can be con-
verted to waves at the intermodulation frequencies. The
waves at the intermodulation frequencies are guided and
radiated by the two support structures.

The power at the fundamental frequencies that is ab-
sorbed by the nonlinear resistor follows from Eq. (4) for
Vieng = Enpnps itis

Pabsorbed m,n,p — 2 Em,n,p Im,n,p ’ (15)

where E,, ., and I . , can be computed from Egs. (5), (7)
and (9) for R = 2Z, and from C. A. A. Wass’ expression.®

The power at the intermodulation frequencies mfi ==
nf; -+ pf: that is guided and radiated by the support struc-
tures follows from Eq. (4) for Vi n,p = Unnp Lt is

P, np = 2 Um.n,plm,n,p » (16)

where U, .. is the Fourier coefficient of the voltage com-
ponent across the linear resistors in the lumped element cir-
cuit at the frequencies mf; == nf2 &= pfs. (The equivalence of
the linear resistors in the lumped element circuit and the
characteristic impedance of the guiding and radiating struc-
tures in the microwave circuit were outlined before.)

For the microwave circuit, where R = 2Z,, we obtain
from Eq. (7)

Uninp = 2InnpZo. a7
Then the power at the intermodulation frequencies in Eq.
(16) is

Pm,n,p = 4172n,n,pZO . (18)

Because we have assumed the same equivalent character-
istic impedance for the input and output transmission paths

in the microwave circuit, half the power in Eq. (18) is guided
and radiated by the structure that had intercepted the in-
coming waves. The other half power is guided and radiated
by the output radiating structure.

Characteristics of Fourier coefficients of current
components
The general power relations in the foregoing sections do

not yield any quantitative results. The numerical evaluation
of the power at the intermodulation frequencies from Eq.
(18) was restricted by limitations of our computer program
to comparatively low power levels. To learn more about the
characteristics of the power at the intermodulation fre-
quencies we investigated the characteristics of the Fourier
coefficients of the current components 7, ,, p.

For the investigation of interferences on ships and other
vehicles, we assumed that the physical and chemical struc-
ture of a corroded joint corresponds to a metal-metal com-
pound rectifier. Then, for a certain asymmetry of the junc-
tion of the corroded joint, its nonlinear current-voltage re-
lation can be described by the exponential function in Eq.
6).

For a nonlinear resistor characterized by the exponential
function in Eq. (6), the relationship between the Fourier
coefficient I, , and the power in the incident waves is de-
termined by the coefficients in the power series in Eq. (9).
The coefficients are weighted by the contribution of the
amplitudes of the incident waves to the current component
at the frequencies mf1 == nf: &= pfs. Thus, the character-
istics of the Fourier coefficients are closely related to the
characteristics of the polynomials H,(z) in the power series.

We numerically evaluated the polynomials H(z) for
typical values of the constants « and iy of a nonlinear re-
sistor and for typical values of the linear resistor R in the
circuit. We found that the magnitude of the polynomials
H(z) is determined by all three constant parameters «,
io and R. The polynomials are not all positive but alternate
between positive and negative values. In particular, the
polynomials for small values of & are positive and very
small. They become larger as & increases, reach a maximum
value, decrease and become negative. Then, when k is
further increased, the polynomials H,(z) go through nega-
tive and positive cycles of increasing amplitudes. (When the
linear resistor R is zero, all the coefficients in the power
series in Eq. (9) are positive.)

In the series representation of the Fourier coefficients of
the current components, where the polynomials H;(z) are
weighted by the contributions of the amplitudes of the inci-
dent waves to the current components, the weighting factors
have the effect of damping the alternating cycles of positive
and negative values of the polynomials,

We examined the contribution of positive and negative
terms in the series presentation of the Fourier coefficients.
To do so, we computed the contribution of the first 25
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Figure 3 Contributions of the first 25 terms in the series represen-
tation of the Fourier coefficients: (a) 10,0, (b) £o,1,0 and Iy,0,1, (c)
I1,1,0, and (d) [1,0,2. In all computations Pipg,1,0 = Pin 0,01 = 0.105
X 10W, « = 23V, = 3 X 10~°A, and R = 100Q.

terms of the power series to the Fourier coefficients of the
current components at the fundamental frequencies f1, /2,
and f3, and at the intermodulation frequencies f; 4= f2 and
f1 &= 2f;. In particular, we computed the change of the
contribution to the Fourier coefficients that occurs when
we increase the power carried by the incident wave at the
frequency f1, while the power carried by the incident waves
at the frequencies f» and f3 remained constant. (The signal
at the frequency f1 is the largest of the three signals.) The
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numerical evaluation was performed for power levels in the
incident waves that were considered typical for interfer-
ences between radiating systems on ships and space vehi-
cles.*

The results are shown in Fig. 3. Apparently, the main
contribution of the Fourier coefficients is contained within
the first terms in the series where the polynomials are posi-
tive. The first positive terms are largest for the fundamental
frequencies and decrease with increasing order of the inter-
modulation frequencies. The higher order terms in the
series where the polynomials go through cycles of negative
and positive values constitute a correction factor that is
negative. The contribution from the terms that alternate
between negative and positive values is almost the same at
the different frequencies.

When the power carried by the incident waves is small,
the negative correction factor is quite insignificant. This
means the alternating cycles of negative and positive values
of the polynomials are damped quite strongly by the weight-
ing factor. When the power carried by the incident waves
becomes larger, the contribution of the negative correction
terms becomes more effective. When the incident power is
further increased, the alternating cycles of negative and

* The polynomials Hi(z) and the contribution of the k terms of the series
representing the Fourier coefficients Ji, 2, p were evaluated by an IBM 1410,
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Figure 4 Relative contribution of the sumof the first positive terms,
k = 1to 7, (shown as solid lines), and of the negative correction
terms, k = 8to 25, (shown as dashed lines), to the series represen-
tation of the Fourier coefficients, I x,p. Same circuit parameter
values as for Fig. 3.

positive values of the polynomials are damped by the
weighting factor for very large values of k£ only. For smaller
values of k, the alternating cycles of negative and positive
values increase in amplitude.

The relation between the first positive terms in the series
representation of the Fourier coefficients and of the negative
correction factor becomes more apparent in Fig. 4, where
we give the relative contribution to the Fourier coef-
ficients I, , from the sum of the first positive terms in the
series representation, to the sum of the alternating negative
and positive terms. This relation is given as a function of
the power in the incident wave at the frequency fi. It is ap-
parent that the negative correction terms become more
effective as the power carried by the incident wave at the
frequency f1 becomes larger. Furthermore, the contribution
from the negative correction terms is more significant at the
higher order intermodulation frequencies, where the contri-
bution from the first positive terms is smaller.

From the data in Fig. 4 we can extrapolate the character-
istics of the current components for higher power levels.
The current components at the lower order intermodulation
frequencies will always be larger than the current compo-
nents at the higher order intermodulation frequencies.
When the power carried by the incident wave at fi further
increases, the contribution of the negative correction term
to the current components will become even more effective.

It is apparent that at the higher power levels, the current
components will not increase continuously. Each of the
current components will reach a maximum value as the

rate of increase of the first positive terms in the series repre-
sentation of the Fourier coefficient becomes equal to the
rate of increase of the negative correction term. When the
power in the incident wave at f; is further increased, the
rate of increase of the negative correction term will exceed
the rate of increase ofthe first positive terms and the cur-
rent component will become smaller.

The contribution from the negative correction terms will
be more effective at the higher order intermodulation fre-
quencies than at the lower order intermodulation frequen-
cies. Therefore, the maximal values of the current com-
ponents at the lower order intermodulation frequencies will
be obtained at a higher power level of the incident waves
than the maximal values of the current components of the
higher order intermodulation frequencies.

Power at intermodulation frequencies
The power at the intermodulation frequencies mfi == nfa

=+ pfidefined in Eq. (18)is proportional to the square of the
Fourier coefficient of current component I, , Conse-
quently, the characteristics of the power at the intermodula-
tion frequencies follow directly from the characteristics of
the current components in the preceding section. We con-
clude that for given power level of the incident waves, the
power at the lower order intermodulation frequencies is
higher than the power at the higher order intermodulation
frequencies. (This is in accordance with the limitations on
the power at the intermodulation frequencies that are given
in general form by R. H. Pantell.?) Furthermore, when the
power carried by the incident waves is small and then in-
creases, the power at the lower order intermodulation fre-
quencies increases faster than the power at the higher order
intermodulation frequencies.

We computed the power at the intermodulation frequen-
cies f1 & f> and f1 = 2f3 as a function of the power carried
by the incident wave at the frequency f1 from the Fouriet
coefficients in the last Section. The results are shown in Fig.
8. The power at the frequencies f; &= f2 is higher and in-
creases very fast when the power in the incident wave at the
frequency f1 becomes larger. The power at the frequencies
J1 == 2f; is lower and increases considerably slower.

The power carried by the incident waves in our computa-
tion is approximately one order of magnitude lower than
the power level for maximum transfer of power from the
incident waves to the nonlinear resistor where E,, ., =
Un.» ¥ Although we have not computed the current com-
ponents for the higher power level, we have extrapolated
their characteristics from data computed at the lower power
level. We conclude from the analysis that the power at each
of the intermodulation frequencies will increase, reach a
maximum value and then decrease when the power in the
larger of the incident waves increases. The maximum power

*m,n,p=1,0,0;0,1,0; 0,0, 1; respectively.
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Figure 5 Power at frequencies fi — f; and f; + 2f; for low values
of incident power at fi. Same circuit parameter values as for Fig.
3.

at the low order intermodulation frequencies will be ob-
tained at a higher power level of the incident waves than the
maximum of power at the higher order intermodulation
frequencies. These characteristics were observed experi-
mentally.

Experimental verification
We built a model of the microwave circuit in Fig. 2 where a

microwave nonlinear resistor diode of the type 1 N21E is in
series with the inner conductor of a 50-ohm strip transmis-
sion line. Microwave attenuators were placed at the input
and output of the diode. Three microwave signals were
directed to the nonlinear resistor.

We measured the power at the intermodulation fre-
quencies that were within the microwave band, and investi-
gated the change of power at the intermodulation frequen-
cies that occurred when we increased the power in the
largest of the signals while the power in the two smaller
signals remained constant. The results of our measurements
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Figure 6 Power at frequencies fi — fz and fi + 2f: for intermedi-
ate values of incident power at fi. Same circuit parameter values
as for Fig. 3.

are shown in Figs. 5, 6 and 7. (We measured the sum of the
power in the waves travelling towards the load and towards
the generator.)

In Fig. 5 we compare the measured values of the power
at the intermodulation frequencies /1 — f2 and f1 + 2f; to
the computed values. To correlate the measured and com-
puted values, we evaluated the Fourier coefficients for the
parameters « and iy, of a microwave diode of the type
1N21E and for the characteristic impedance of the trans-
mission path of 50 ohms.

There is very close agreement between the power meas-
ured at the intermodulation frequencies in the microwave
band and the power that was computed from equations
derived for a low-frequency equivalent circuit. The close
agreement confirms the validity of our assumption that re-
actances need not be considered in the analysis. Even the
shunt capacitance of the nonlinear resistor can be neglected.

We had assumed that the shunt capacitance may be dis-
regarded for the following reason. The power at the inter-
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Figure 7 Power at frequencies fi — 2, i — f2 + f3, and f; — 23
for high values of incident power at fj. Same circuit parameter
values as for Fig. 3.

modulation frequencies in Eq. (16) is directly related to
the distortions in the voltage waveform across the nonlinear
resistor in Eq. (7). The distortions occur in the forward
conduction region, where the instantaneous impedance of
the nonlinear resistor is small. In this region the shunt
capacitance is actually least effective.

Figures 6 and 7 give the power at the intermodulation
frequencies measured at higher power levels in the incident
waves. These measurements were performed to confirm the
characteristics of the power at the intermodulation frequen-
cies that were extrapolated from the computed data.

In Fig. 6 we show an extension of the measured values in
Fig. 5 to higher power in the incident wave at the frequency
/f1. In Fig. 7 we present measured values of the power at the
intermodulation frequencies fi — fe, fi — f: + f3 and
J1 — 2f3. The power level of the incident waves is approxi-

mately one order of magnitude above the power level in
Fig. 6.

We can observe that the power at the low order inter-
modulation frequencies is higher than the power at the
higher order intermodulation frequencies. Furthermore,
power at frequencies f; — f;continues to increase as power in
the incident wave at f; becomes larger, while the power at
1 — fo + fsand at i &£ 2f; reaches maximum values and
then decreases. Thus, the measured characteristics are in
agreement with the characteristics of the power at the inter-
modulation frequencies that were extrapolated from the
analytical results for lower power levels.

Conclusions
From the analysis presented in this paper we derived the

characteristics of the power at the intermodulation frequen-
cies that were generated in a nonlinear resistive element in
series with linear resistors. We found that the power at the
lower order intermodulation frequencies is always higher
than the power at the higher order intermodulation fre-
quencies. When the power in the incident waves is small,
the power at the intermodulation frequencies is small.
When the power carried by the larger of the incident waves
increases, the powers at the intermodulation frequencies
increase, reach maximal values, and decrease. The maxi-
mum power at the low order intermodulation frequencies is
obtained at a higher power level for the incident waves than
the maximum power at the higher order intermodulation
frequencies.

These characteristics are significant when we evaluate
interferences between radiating systems on ships and other
vehicles. Obviously, the power at the intermodulation fre-
quencies, generated in a nonlinear resistive element in an
actual circuit, can become smaller aithough the power in
some of the incident waves increases. Furthermore, the
power at the low order intermodulation frequencies can in-
crease, while the power at the higher order intermodulation
frequencies is decreasing.
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Appendix

Fourier coefficients of the current components I ¢,035 10,1,03
Io,0,1; I1,1,0 and I1,0,2 when the generator voltage is given
by Eq. (5). (First terms only.)

11,0,0

I:Hl(z)a + %!Ha(z) (% a* + % ab® + %ac2>

bo]

1
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