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A Numerical Integration Technique for Ordinary Differential
Equations with Widely Separated Eigenvalues

Abstract : An explicit nonlinear numerical integration method is presented for the solution of certain large systems of ordinary differential
equations in which there is a large spread of time constants, the smallest one being real. The integration formulas are derived and some
local truncation error data given for small step sizes. Some applications are discussed where the new technique saves considerable com-

putation time over classical methods.

1. Introduction

In recent years numerous authors (see, for example, Refs.
2, 6, 8, and 11 to 15, among others) have found that the
numerical solution of certain systems of ordinary differen-
tial equations by means of classical explicit methods may
require excessively small integration steps to reproduce
smooth and apparently perfectly well-behaved functions.

This paper describes an explicit nonlinear numerical
integration method which substantially alleviates this prob-
lem in a large class of systems occurring in practice, namely
those in which there is a large spread of time constants, the
smallest one being real.

Section 2 contains a brief discussion of the origin of the
difficulties. The new method and a truncation-error analysis
are presented in Sections 3 and 4. Section 5 is concerned
with applications.

2. Origin of difficulties
Although most of the practical difficulties occur in large
nonlinear systems of equations, for purposes of illustration
it suffices to consider linear systems. Most of the material in
this section is available in scattered form in the literature
(e.g.,Refs. 6, 8,10, 12, 13). We shall be brief in what follows.
In particular let 4 be an n X n matrix with real, distinct
negative eigenvalues Ay < A2 -+ - A, < 0, and let I be the
identity matrix.
Consider the initial value problem

9y,

where Y= (31, ¥s, - - -, ¥o)T. Since all the eigenvalues of 4
are negative, the true solution Yz(t) = e4tY1(0) of (1) goes
to 0 with increasing ¢. Let Y, denote the computed solution
and let / be the stepsize (which is assumed constant for
simplicity). Then the very least that one would want from
Y. is that

}cim Y.(kh) = 0.
In the next paragraph necessary and sufficient conditions
are developed for this to hold.

It is easy to show that if explicit Euler, Heun, or the
usual 4% order Runge-Kutta method (Ref. 9, p. 237) is
used on Eq. (1), there results

Y. (kh) = [M(hA4)]"¥(0) 2
where
14+ x for Euler’s method
2
M(x) = J 14+ x4 % for Heun’s method
) 14 x4 x_2 + x_3 X—4
t 276 T2
for the Runge-Kutta method.
Since all the eigenvalues of 4 are distinct, there is a
matrix P such that P714AP = X = diag (A, As, -+ - -, An), SO
that the difference equation (2) becomes
Y.(kh) = P[M(I\)] P Y(0) . (3)
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Since M(h)\) is diagonal, [M(AN)]* and Y. (kk) go to O
with increasing k if and only if

IM(I\;)] <1 for i=1,2,---,n. 4)

To see what this *““stability condition” means in practice
consider two specially constructed initial value problems.

Let D = diag(—1, —1), c=(2,27,

z = (23, 297, y = (1, ¥yt

and
e (—500.5 499.5)

- 499.5 —500.5
consider
d.
L o prte 2(0) = 0 (5a)
dt
d
= Ayt »(0) = (=0.1,1)7. (5b)

The solutions are given by zi(f) = z)(r) = 2(1 — e
i =21+ u,y» = z; — u whereu() = —0.1 e 190, Note

that for ¢ greater than 0.02, u(r) in absolute value is less
than 0.25 X 1079, and thus for all practical purposes y and
z are identical beyond ¢ = 0.02.

Now, since the eigenvalues of D are —1, —1, respective-
ly, the “stability condition” (inequality (4)) requires that
for the first case (5a) the stepsize 4 be less than 2 when
Euler’s and Heun’s methods are used and less than 2.78 for
the Runge-Kutta method.

However, since the eigenvalues of 4 are —1, —1000, re-
spectively, the “stability condition™ requires that in the
second case (5b), the stepsize & be 1000 times smaller than
in the first case.

To summarize what has been shown so far, let \yy =
max (A, A, = min |[N;] i = 1,2, -+, n. If Agr/N,, is large
(of the order of 1000 or more) excessively small time steps
are required to solve dY/dr = AY by explicit Euler, Heun,
and Runge-Kutta methods.

The corresponding discussion for other explicit methods
such as Adams-Moulton, Milne and Hamming, and exten-
sion to complex eigenvalues can be found in articles by
Chase, Crane and Klopfenstein, etc,!-3-8.7,10,

It is outside the scope of this paper to enter into a dis-
cussion of the relative merits of explicit and implicit
methods.

3. Method
To circumvent the difficulties described in Section 2, the

following second-order exact method was developed. Al-

though the new technique is 2 multistep method, it is nor a

linear method. This section describes the step-by-step pro-

cedure. The next section is concerned with a derivation of
538 the formulas given here.
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Given the differential equation y = f(t,y) y(to) = yq, let y
denote the approximations obtained at the previous steps,
y. the computed solution, / the stepsize from 7, = ¢ to
t.+1 = ¢+ h, and A, the stepsize from ¢, = t — hy to
t, = L

Computation proceeds by the following explicit step-by-
step procedure

1) ya@®) = (&) — ¥t — ho)l/ho
2) dv = ) — ya®

3) yp(t 4 8) = ¥(1) + ()

4) yt + 8) = fIt 4 8, ¥t + 9)]
5) dy = [yt + 8) — ¥(0)/8

where 6 < £/4

do/dy, dy # 0 e —1D/\ A <0,
A= =
0 d=0 14 M2 A>0
6)
eM A<LO0
Cog =
14N A0

7 vkt + k) = ¥ + hyald) + herds
8) vyt + h) = flt + h,y(t + W]
9) E = Wyt + h)— al) + cody)].
The above formulas easily generalize to systems of

differential equations, in which case y, di, dz, \, ¢, ¢y, etc.,
become vectors. Thus, for example,

y(t) = (yl(t)9 ot '5yn(t))

E = (e], ""en)-

The following comments explain some of the preceding
steps.
Step 1: To make the method self-starting, 4, and

¥4 are initially set to 0 as in modification A,
or iy set to 0 and y4 set to y as in modifica-
tion C and modification D.

Steps 3 & 4: These steps constitute Euler integration with
step size 6 which is held to less than 2/4.
(See discussion of step-size control later on
in this section.)

Step 5: d, represents an approximation to j(r).
Throughout this paper it is assumed that f
is of such a form as to make the calculation
of » inconvenient.

Step 6: The calculations of A, ¢; and ¢y as shown

here will be referred to as modification C.
Two other methods of calculation will be
referred to as modification B and D, re-
spectively. Modification B is discussed at
the end of Section 4. In modification D,
positive values of \ are changed to negative
values as follows:




Step 8:

Step 9:

If A\ = dy/d, is positive, replace A by —\
and dy by —di. Then use the new values
of d; and \ to compute respectively

ya®) = y —dy, c1 = (eM — /N
and ¢y = e*~,

Yt + h) represents the derivative at the end
of the current step. If the computed solution
vt + h) is accepted (see step 9) then
vyt + k) becomes the derivative at the start
of the new integration step.

The stepsize & can be controlled by moni-
toring the quantity E. Various strategies
may be used, a simple and effective one be-
ing as follows:

Let Uy =u+ M2I_Vck(t + h)[
Ly,=5hL+ lzlyck(t + h)l ’

Il

where u;, us, I; and /; are constants given be-
low.

If |ex| > 1.5 Uy for some k, the integration
step 4 is halved, the independent variable is
restored from ¢ + 4 to ¢ and the values of y
and y are restored to their values at the be-
ginning of the step.

If |ex| > 0.75 Uy for some k and |e; | < 1.5
U, for all k, the results of the current inte-
gration step are accepted, but the stepsize is
halved for succeeding steps.

If L, < lex] < 0.75 U, for all & the step-
size is unaltered.

If |ex] < 075 U, forall k and |e;| < Ly
for at least one k, a doubling indicator is ac-
tivated. Actual doubling is delayed for seven
integration steps. Halving always takes
precedence over doubling. Thus anytime a
halving signal is received, the stepsize is
halved and doubling delayed for at least sev-
en steps. Similarly, after successful doubling
another seven steps must elapse before the
stepsize may be doubled again.

For absolute error control set

u; = 0.0075 u, = 0
11 = 000005 12 =0

For relative error control set

u; = 0.0005 uy = 0.0075
L 0.00001 I, = 0.00005.

I

In addition to the stepsize 4, the Euler step
& (Step 2) also needs to be controlled. The

same general strategy as for / is followed ex-
cept that

wa=%ma+m—mﬂ

b) The values of uy, us, 1, l», are half those
used for control of 4.

¢) The doubling indicator is activated only if
each |e,| is less than the corresponding
Ll

d) If a), b), and c) permit § > #/4, then § is
forced to assume the value § = 4/4.

4. Derivation of the integration formulas
The derivation to be given in this section will show that for

“small” step sizes /, the new method is locally second-order
exact. Thus, for sufficiently small step sizes the new method
has an accuracy comparable in practice to Heun’s method.

Although classical truncation error analysis is useful in
the derivation of integration formulas, in discussion of error
for small step sizes, and in giving error estimates of the form
O(h™), such analysis does not help in the prediction of the
stability properties of the algorithm. To determine stability,
methods such as those outlined for example in section 2
must be applied. In general, for linear explicit single-step or
multistep methods, such an analysis serves to establish
stability regions for a particular method.

The method presented in this paper, however, is a non-
linear explicit multistep method and the nature of the
stability regions remains at present an open question.
Another open question concerns the degradation of ac-
curacy as stepsizes are increased. Much more research
needs to be done in these areas.

With these limitations in mind on the following discus-
sion, consider the differential equation y = f(r, y) with solu-
tion y7. Since this section concerns the nature of the local
error only, yr is assumed to be known. At each step, let y,
be the computed solution. y, is assumed to be the sum of
two functions, y4, an “asymptotic part,” and ypg, a “per-
turbation” from the asymptote. y 4 is to be determined from
present and past values of yr, whereas ypg is to be deter-
mined from the local behavior of y. In practice, of course,
yr is not available and the approximations y, obtained at
the previous steps are used in the calculations instead of y.

Assume y, and ypg to be of the form

yat F &) = ya(t) + £94(2)
MpE
yee(t + &) = ype(t) + z 1

0<¢Lh, thus
ye(t + &) = yat + &) + ype(t + §)
= ya(t) + ypu(t) + £94(2)

Mt — 1,

+ N Vpe(t) . (6)

VrE(t)
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Five conditions may now be imposed to determine the
five constants y (2), ype(f), ya(1), yre(®), N,

The first three are imposed to make the method second-
order exact. To this end expand (¢ — 1)/x in a Taylor
series and rewrite (6) as follows:

ye(t + 8 = [yal®) + yee®)] + EPa(t) + yre(0)]
+ %xpm 0 + %Aiy'pE(t) +0(@) .
Then the first three conditions are:
D ya®) + ype(®) = y2(D)
2) ya@® + yee@® = yr(0)

3) Apypr(d) = yr(0).

The next two conditions serve to determine the constants
uniquely.

4) ya(t) = yr(®)
5) ya(d) = r(®) — yo(t — ho)l/ ko,
where ¢ — hy is the last point computed.
In case y7(f) is not available explicitly, the following com-
putations yield y7(¢) to order A.
Specifically, let 0 < § < A.
yo(t +8) = yr(t) + r(t)
J}p(t + 5) =f<t + 4, J’p(t + 6))
Vp(t +8) — ¥(t)
5 .

Then set

o (t ) =
Condition 3) is then replaced by the condition
3 Apypa(t) = $,(0) .
Note that

0 = 520 + 2 [500 = 520 2| + 06

Then the truncation error yp(t + §) — y/t + £ equals

£ 1500 — Wl = 5] 5200 = 32 2

+0 ).
Hence the method is locally second-order exact.

From the preceding analysis it follows that the method
remains locally second-order exact if (e*,& — 1)/\,& is re-
placed by 1 + (N\;£/2). In practice, this is done (modifica-
tion C) whenever A\, > 0.

We turn next to stepsize control. Ideally, step control
should be based on the expression

E= [ D+ = 5.0+ 0l

and E, should be compared with y7(¢). In this expression
540 Ve is obtained from y.(z -+ £) by differentiation. (This differs
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Ya %

Figure 1 Basis for modification B in truncation error analysis.

from y(t + §£), which is obtained by substitution in the
differential equation). However, y1(¢ + £) is not available
except at £ = 0. Hence we make use of the fact that

vt +8 =flt+ &yt + 8+ Iyt + & — yr(t+ 5]}
=yt + & + O

to obtain

Ey = /0 Dot + &) — (e + )]t + /0 et + &)
— Vo(t + £)]dt
= /0 [Pe(t + &) — Fe(t + £)]dt + O(h") .

Hence if y(z + &) — y.(t + £) does not change sign for
0<£<hA,

|Eo| < hlya(t + B) — ylr + b))
< Alyde + B = ye + B + |0

Hence, for # small enough,

E = h[yt + h) — 3Lt + W)

yields an estimate of the truncation error.

It is easily seen that the method described in the preced-
ing pages is not exact for the equation y = Ay 4- b. The
following (modification B) tries to remedy this situation.

Referring to Fig. 1, we see that if y = ay 4~ b, then
Vp and ype = Pr — Ya have the same sign. Moreover,
¥p/yr reproduces X exactly. Hence when 3, and ypz have
the same sign, y4 is set to 0, ypg is set equal to y7 and com-
putation proceeds from there. The other cases are handled
as in modification C.

5. Applications

This section is concerned with the question: Under what
circumstances should the method described here be used in
preference to standard classical methods?




Our experience with the method so far has led to two
conclusions:

1. a) In linear systems with constant coefficients, if
Auax (the eigenvalue of largest modulus) is real, then the
larger the spread |Ayax|/|Aain], the more of an improve-
ment can be expected.

b) If Ayax is complex, the performance of the present
method is approximately reduced to the performance of
Heun’s method. Hence, in these cases the usual 4t order
Runge-Kutta method is to be preferred to the present
method.

2. In systems of differential equations which can be ap-
proximated by piecewise linear systems with constant co-
efficients, the above conclusions hold for each piece.

The rest of this section will deal with some of the experi-
mental evidence for the preceding conclusions.

In what follows, a ““pass’” will mean one evaluation of the
system of differential equations.

® Example A

The differential equations are

dyy/dt = —2000 y; -+ 1000y, + 1 »1(0) =0
dy,/dt = y1 — ya »(0) = 0,

where ¢ runs from 0 to 4.

The eigenvalues are very nearly —2000.5, —0.5, so that
the spread is approximately 4000. For this problem, sta-
bility requirements of the usual 4*P-order Runge-Kutta
method limit the maximum stepsize Ay, to less than
2.78/2000 = 1.35-1073%, approximately. Thus for the
problem duration of 4 units of ¢, theory requires at least
3000 steps or 12,000 passes. In confirmation of this, a run
with variable step Runge-Kutta method took 12,350 passes.

By contrast, only 480 passes were required with the new
method (modification A), an improvement of 25 times.

The preceding example is linear. A two-by-two nonlinear
example follows:

® Example B (Modified Robertson equations)
The differential equations solved are
dzi/dt = 0.04(1 — z1) — (1 — z2)z; + 0.0001(1 — z3)*
z1(0) = 0
dzs/dt = —10,000dz,/dr + 3000(1 — z5)?
22(0) =1

These equations were derived from a system of equations
investigated by H. H. Robertson (private communication
from H. H. R. to H. P. Flatt).

No closed-form solution seems to be known. Table 1A
compares a variable-step Runge-Kutta method run with
the new method (modification A). Table 1B gives addi-
tional information on the run made with the new method.

In each of the tables, the first column labeled ¢ lists in-
creasing values of the independent variable. For each

Table 1B Additional
data on run in Table
1A. (Example B.)

Table 1A Comparison of variable-step
Runge-Kutta method with modifica-
tion A. (Example B.)

Runge- New New
Kutta Method Method Method
t P AP P AP t P AP
20 71T 777 122 122 10 678 678
4 1505 728 135 13 20 1305 627
62221 716 154 19 30 1853 548
.8 2953 732 167 13 40 2421 568
1.0 3669 716 179 12 50 2969 548
1.2 4401 742 192 13 60 3482 513
1.4 5129 728 205 13 70 3982 500
1.6 5845 716 217 12 80 4482 500
1.8 6577 732 230 13 90 5077 595
2.0 7309 732 242 12 100 5632 555
2.2 8041 732 258 16
2.4 8773 732 267 9
2.6 9509 736 280 13

Table 2B Additional
data on run in Table
2A. (Example C.)

Table 2A Comparison of Runge-
Kutta method with modification D.
(Example C.)

Runge- New New
Kutta Method Method Merthod*
t P AP P AP t P AP
5 8245 8245 1491 1491 20 1959 1959
10 16349 8104 1649 158 40 2945 986
15 24445 8096 1782 133 60 4284 1339

80 5241 957
100 6068 827
120 7282 1114
140 7960 678
160 8426 466
180 8924 498
200 9255 341

* Step size controlled by relative error only.

method, two columns labeled P and AP are given. The P
column lists the cumulative number of passes up to and as
close to the corresponding ¢ value as possible. The AP
column lists the number of passes between the preceding
t value in the table and the present one. From Table 1A it
can be seen that the number of passes per 0.2 units of ¢
stabilizes for both the Runge-Kutta method and the new
method. The new method is seen to run between 40 and 50
times faster after the number of passes has stabilized.

® Example C
This example is due to Richards, Lanning and Torrey'?, It
consists of a system of sixteen nonlinear equations for
which a closed form solution is available. For further infor-
mation on the system, the reader is referred to the cited
reference.

In Tables 2A and 2B, the new method (modification D)
is compared with the Runge-Kutta method as in the pre-
ceding example.
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Table 3 Summary of results for example D.

A = —0.01 A = —10. A= —100 Ar = —1000
Runge- Runge- Runge- Runge-
Kutta New Kutta New Kutta New Kutta New
t  Method Method Method Method Method Method Method Method

P AP P AP P AP P AP P AP P AP P AP P AP
10 329 329 307 307 357 357 292 292 1717 1717 741 741 15645 15645 1352 1352
20 461 132 527 220 509 152 524 232 3341 1624 1368 627 30985 15340 2258 906
30 565 104 680 163 669 160 776 252 4973 1632 1790 422 46481 15496 2849 591
40 657 92 767 87 821 152 928 152 6613 1640 2083 293 61973 15492 3308 459
50 705 48 804 37 981 160 1024 96 8261 1648 2270 187 77317 15344 3617 309
60 745 40 845 41 1141 160 1102 78 9885 1624 2423 153 92809 15492 3848 231

70 777 32 876 31 1297 156 1158 36 11517 1632 2517 94 108301 15492 4009 161
80 797 20 903 27 1457 160 1196 38 13157 1640 2593 76 123637 15326 4163 154
90 817 20 928 25 1613 156 1238 42 14781 1624 2666 73 139125 15488 4310 147
100 837 20 956 28 1777 164 1272 34 16413 1632 2734 68

From the tables it is seen that if the first 5 seconds are
excluded, then the new method takes average steps of ap-

Table 4 Summary of results for example E.

Runge- New

proximately 0.05. For the Runge-Kutta method the average Kutta Method Method
step is 10/4000 = 0.0025, so that the improvement with
respect to the number of passes is approximately a factor of 5t0 4 1}; o 4 1A31; 9 213317 2‘;;’7
40. Since the largest elgc?nvalue of this system is 997.0 100 62789 21420 3720 1403
(Ref. 13, p. 379), the maximum stable step for the Runge- 150 83849 21112 4907 1187
Kutta method is less than 0.00278, which checks with the 5(5)(0) }ggg; iig}é 3%3 ggg
above results. As far as accuracy is concerned, gt =150 300 210201 48724 11130 2336
the Runge-Kutta method and the new method differ by less 350 262505 52304 13378 2248
than 1.5 in every component, the Runge-Kutta method 400 316865 54360 15953 2575
being more accurate, differing from the exact solution b 450 372285 33420 18594 2641
& g g Y 500 429045 56760 21274 2680

less than 0.5%. The accuracy of the new method as meas-
ured by relative error rapidly deteriorates, and the com-
puted solution is much more damped than the exact solu-
tion. Thus the values computed at + = 200 are attained by
the exact solution at approximately 280, except for one
column as also observed by Richards, Lanning and Torrey.
How much of this is due to round-off error is not known.

Accuracy will be discussed in more detail in connection
with example E,

® Example D

This example is designed to test conclusion 1, i.e., the
larger the spread, the greater the improvement obtained by
using the new method. The system chosen consists of three
equations with one real and two complex conjugate roots.
The complex roots are —0.1 == 1.0 /. The real root A, takes
on values of —0.01, —10, —100, — 1000 in succession, de-
pending on the values of a, &, and c. Letting y = dy/dt, the
differential equations chosen are:

where a, b, and ¢ are determined by equating the coefficients
in the equations

A4 ar? -+ (b + 1000)ch +- abe = 0
and
N4 (M) 4 0222 4 (0.2|N] + 1.0DA 4+ 1.01|A,| = 0.

The results are summarized in Table 3. The case A, =
—0.01 confirms conclusion 1.b). Of particular interest for
this case is that as |)\,| is increased in turn from 10 to 100
to 1000, the number of Runge-Kutta passes taken increases
as predicted by theory by approximately a factor of 10 each
time. On the other hand, the number of passes taken by the
new method (modification B) after steady state has been

y1 = —ay1 —1000ys + ¢ 0)=1 ; i .

_1 ' e »©) reached (essentially after + = 50) increases by approxi-

Y2 = bys y:0) =0 mately a factor of 2 each time |),] is multiplied by a factor
542 y3=c1 — y9) y:(0) = .1, of 10. This confirms conclusion 1.a).
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Figure 2 Nonlinear system studied by Brayton, Gustavson and
Liniger (from Ref. 2, Fig. 3). See Example E in the text.

Table 5 Seven sample values of ¢ and vs compared for two
methods. (Example E.)

Runge- New
Kutta Method Method

t Vg t Vg
1) 31.2 .6857 31.3 .6862
2) 53.8 .6338 53.9 .6338
3) 82.1 .2516 82.5 .2514
4) 132.5 .5890 133.8 .5915

205. .3999 205. .4165

300. 1792 300. .1878

500. .2663.1072 500. .2769.102

® Example E

This is an example of a nonlinear system which was investi-
gated by Brayton, Gustavson and Liniger2. A full discussion
is given in the cited reference, to which the reader is re-
ferred for further information.

For our purposes it suffices to say that this system of six
equations can be approximated by a piecewise linear system
so that we are testing conclusion 2.

The Runge-Kutta method vs new method (modification
D) comparison is contained in Table 4, and it is seen that
the improvement runs to around a factor of 20.

For purposes of accuracy comparisons, Fig. 3 of the
cited reference is reproduced here (see Fig. 2).

Table 5 contains seven sample values of ¢ and v, for the
Runge-Kutta method and the new method. Explanations
of the entries are as follows:

1) Values for ¢ and ve for the first peak
2) Representative values of vs during the flat portion
3} Values for ¢ and v¢ for the major dip
4) Values for ¢ and vg for the second maximum.
The last three entries are representative values for the

the example may be of interest. Brayton et al, (Ref. 2, p.
296) observe that the time-constant problems experienced
by the Runge-Kutta method in this case are due to three
small resistors. When these are removed, the response is
virtually unchanged; however, the time-constant problems
disappear and the Runge-Kutta method at a fixed step of
0.25 or 0.50 gave excellent results.

One thousand integration steps or 4000 passes are re-
quired at a step of 0.50 and 8000 passes are required at a
step of 0.25 to run the three-dimensional system to 500.
Contrasting this with 21,274 passes for the new method on
the six-dimensional system, it is seen that the new method
has made up a large part of the difference.

References

1. Abbas I. Abdel Karim, “The Stability of the Fourth Order
Runge-Kutta Method for the Solution of Systems of Differ-
ential Equations,” Communications of the ACM 9, No. 2,
113-116 (Feb. 1966).

2. R. K. Brayton, F. G. Gustavson, W. Liniger, ‘A Numerical
Analysis of the Transient Behavior of a Transistor Circuit,”
IBM Journal 10, No. 4, 292-299 (July 1966).

3. R. R. Brown, J. D. Riley, M. M. Bennett, ‘‘Stability Proper-
ties of Adams-Moulton Type Methods,” Math. of Computa-
tion, 19, No. 89, 90-96 (January 1965).

4. J. Certaine, ““The Solution of ODE’s with Large Time Con-
stants,” Math. Methods for Digital Computers, Ralston &
Wilf, Wiley, 1960, pp. 128-132.

5. P. E. Chase, ‘“Stability Properties of Predictor-Corrector
Methods for Ordinary Differential Equations,” J. of the
ACM, 9, No. 4, 457-468 (October 1962).

6. E. R. Cohen and H. P. Flatt, “‘Numerical Solution of Quasi-
Linear Equations,” published in Codes for Reactor Comps.,
Proc. of the Seminar on Codes for Reactor Comps., Intl.
Atomic Energy Agency, Vienna, 1961, p. 461.

7. R.L. Crane and R. W. Klopfenstein,*“A Predictor-Corrector
Algorithm with an Increased Range of Absolute Stability,”
J. ACM 12, No. 2, 227-241 (April 1965).

8. G. Emanuel, “Numerical Analysis of Stiff Equations,” Re-
port No. TDR-269(4230-20)-3, Aerospace Corp., El Se-
gundo, Calif,

9. F. B. Hildebrand, Introduction to Numerical Analysis, Mc-
Graw-Hill, New York, 1956.

10. W. Liniger, “Zur Stabilitdt der numerischen Integrations-
methoden fiir Differentialgleichungen,” Thesis, University
of Lausanne, Switzerland, 1957.

11. W. W._ Little, Jr., K. F. Hansen, E. A. Mason, B. V. Koen,
“A Stable Numerical Solution of the Reactor Kinetics
Equations,” Trans. Amer. Nuclear Society (Philadelphia
meeting, June 1964), 7, No. 1, pp. 3.4.

12. G. Moretti, ““The Chemical Kinetics Problem in the Nu-
merical Analysis of Nonequilibrium Flows,” Proc. IBM Sci.
Comp. Symp., Large-Scale Problems in Physics, Dec. 9-11,
1963, pp. 167-182.

13. P. I. Richards, W. D. Lanning, M. D. Torrey, “Numerical
Integration of Large, Highly Damped, Nonlinear Systems,”
S14M Review 7, No. 3, 376-380 (July 1965).

14. R. W, Stineman, ‘‘Digital Time-Domain Analysis of Systems
with Widely Separated Poles,” J. of the ACM, 12, No. 2,
286-293 (April 1965).

15. C. E. Treanor, A Method for the Numerical Integration of
Coupled First-Order Differential Equations with Greatly
Different Time Constants,” Math. of Computation, 20, No.
93, 39-45 (January 1966).

remainder of the run. One other point in connection with Received March 6, 1967. 543

NUMERICAL INTEGRATION TECHNIQUE




