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A Numerical  Integration  Technique for  Ordinary  Differential 
Equations  with  Widely  Separated  Eigenvalues 

Abtract: An  explicit  nonlinear  numerical integration  method  is  presented  for  the  solution of certain  large  systems of ordinary  differential 
equations in which there  is a large  spread of time  constants, the smallest  one  being  real.  The integration  formulas are derived and  some 
local truncation  error data given  for  small  step sizes. Some  applications  are  discussed  where  the new technique  saves  considerable  com- 
putation  time  over  classical  methods. 

1. Introduction 
In recent years numerous authors (see, for example, Refs. 
2, 6, 8, and 11 to 15, among others) have found  that  the 
numerical solution of certain systems of ordinary differen- 
tial  equations by means of classical explicit methods  may 
require excessively small  integration  steps to reproduce 
smooth  and apparently perfectly well-behaved functions. 

This  paper describes an explicit nonlinear numerical 
integration  method which substantially alleviates this  prob- 
lem in a large class of systems occurring in practice, namely 
those  in which there is a  large  spread of time  constants, the 
smallest one being real. 

Section 2 contains  a brief discussion of the origin of the 
difficulties. The new method and a  truncation-error analysis 
are presented in Sections 3 and 4. Section 5 is concerned 
with applications. 

2. Origin of difficulties 
Although most of the practical difficulties occur  in large 
nonlinear systems of equations, for purposes of illustration 
it suffices to consider linear systems. Most of the material  in 
this section is available in scattered form  in  the literature 
(e.g., Refs. 6,8,10,12,13). We shall be brief in what follows. 

In particular let A be an n X n matrix with real, distinct 
negative eigenvalues X 1  < X2 X, < 0, and let Z be the 
identity matrix. 

Consider the initial value problem 

where Y= ( y l ,  y2, . . , y J T .  Since all the eigenvalues of A 
are negative, the  true solution Y T ( ~ )  = eAtYT(0) of (1) goes 
to 0 with increasing t .  Let Y,  denote the computed  solution 
and let h be the stepsize (which is assumed constant  for 
simplicity). Then the very least that  one would want from 
Y, is that 

lim Y,(kh)  = 0 . 
k4 .o  

In  the next paragraph necessary and sufficient conditions 
are developed for this to hold. 

It is easy to show that if explicit Euler, Heun,  or  the 
usual 4th order  Runge-Kutta method (Ref. 9, p.  237) is 
used on Eq. (l), there results 

Y,(kh) = 

where 

M(x) = 

l + x  for  Euler's  method 
2 

1 + x + 5 for  Heun's  method 

for  the  Runge-Kutta  method. 

Since all the eigenvalues of A are distinct, there is a 
matrix P such that P-lAP = X = diag ( X l ,  X?, - . -, An), so 
that  the difference equation (2) becomes 

Y,(kh)  = P[M(hX)IkP"Y(O) . (3) 537 
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Since M(hX) is diagonal, [M(hX>lk and Y,(kh) go to 0 
with increasing k if and only if 

l ~ ( h X i ) I  < 1 for i = 1, 2, - a * ,  n .  (4) 

To see what  this “stability condition”  means in practice 
consider two specially constructed  initial value problems. 

L e t D  = diag(-1, - l ) ,  c = (2,2)T, 

z = ( Z l ,  z d T ,  Y = (Yl ,  YzIT 

and 

A = (-:;;:: 
consider 

dz - Dz + c 
dt 

dy - A y  + c 
dt 

- 499.5) 500.5 

” z ( 0 )  = 0 (5a) 

y ( 0 )  = ( - 0 . 1 , l y .  (5b) “ 

The solutions are given by zl(t) = zZ(t) = 2(1 - e-t) 
y1 = z1 + u, y~ = z1 - u where u(t) = -0.1 e-looot. Note 
that  for t greater than 0.02, u(t) in absolute value is  less 
than 0.25 X lop9, and  thus  for all practical  purposes y and 
z are identical beyond t = 0.02. 

Now, since the eigenvalues of D are - 1 ,  - 1, respective- 
ly, the “stability condition” (inequality (4)) requires that 
for  the first case (sa)  the stepsize h be less than 2 when 
Euler’s and Heun’s methods are used and less than 2.78 for 
the Runge-Kutta method. 

However, since the eigenvalues of A are - 1, - 1000,  re- 
spectively, the “stability condition” requires that  in  the 
second case (5b), the stepsize h be 1000 times smaller than 
in the first case. 

To summarize what has been shown so far, let XM = 
max I x ~ I ,  X, = min lX i l  i = 1,2,  - a ,  n. If XM/X, is large 
[of the  order of 1000 or more) excessively small time steps 
are required to solve dY/dt = A Y by explicit Euler, Heun, 
and Runge-Kutta methods. 

The corresponding discussion for  other explicit methods 
such as Adams-Moulton, Milne and Hamming, and exten- 
sion to complex eigenvalues can be found in articles by 
Chase, Crane  and Klopfenstein, e t ~ . ~ ~ ~ ~ ~ ~ ~ J ~ .  

It is outside the scope of this  paper to enter into a  dis- 
cussion of the relative merits of explicit and implicit 
methods. 

3. Method 
To circumvent the difficulties described in Section 2, the 
following second-order exact method was developed. Al- 
though  the new technique is a  multistep method,  it is not a 
linear method.  This section describes the step-by-step pro- 
cedure. The next section is concerned with a  derivation of 
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Given the differential equation j = f(t,y) y(to) = yo, let y 
denote  the approximations  obtained at  the previous steps, 
y ,  the computed  solution, h the stepsize from t ,  = t to 
tn+l = t + h, and ho the stepsize from t,-1 = t - ho to 
t ,  = t .  

Computation proceeds by the following explicit step-by- 
step  procedure 

1) ,’A(t) = [At)  - Y(t - ho>l/ho 

2) dl = j ( t )  - j ~ ( t )  

3 )  y,(t + 6) = y(t) + 6j(t) where 6 5 h/4  

4) 3P(t + 6) = f [ t  + 6, y,(t + 6)l 
5 )  dz [jp(t  + 6) - P(t)l/S 

dz/dl, dl # 0 (ehh - 1)/Xh X < 0 ,  
X = {  

c o = {  1 + Ah 

0 d 1 = 0  1 + Xh/2 X 2 0 
6 )  

e X h  X < O  

X 2 0  

7) yc(t + h) = A t )  + h.+~(t) + h& 

8) 3& + h) = f [ t  + h, yc(t + h)l 

9) E = h[j,(t + h ) -  ( jA(t)  + coddl. 

The above  formulas easily generalize to systems of 
differential equations,  in which case y ,  dl, dz, X, c1, CO, etc., 
become vectors. Thus, for example, 

= (Yl( t ) ,  . . .I Y,(t)) 
E = (el, . -, e,) . 

The following comments explain some of the preceding 
steps. 
Step I :  To make  the method self-starting, ho and 

are initially set to 0 as in modification A, 
or ho set to 0 and $A set to j as  in modifica- 
tion C and modification D. 

Steps 3 & 4: These steps  constitute  Euler  integration with 
step size 6 which is held to less than h/4. 
(See discussion of step-size control  later  on 
in this section.) 

Step 5: dz represents an approximation to j(t). 
Throughout this paper it is assumed that f 
is of such a form  as  to  make  the calculation 
of y inconvenient. 

Step 6: The calculations of X, c1 and co as shown 
here will be referred to as rnodijication C. 
Two  other methods of calculation will be 
referred to as modification B and D, re- 
spectively. Modification B is discussed at  
the  end of Section 4. In  modification D, 
positive values of X are changed to negative 
values as follows : 



If X = d2/d1 is positive, replace X by --X 
and dl by -dl. Then use the new values 
of dl and X to compute respectively 

Step 8: j e ( t  + h) represents the derivative at  the end 
of the current step. If the  computed  solution 
yc(t + h) is accepted (see step 9) then 
j e ( t  + h )  becomes the derivative at  the  start 
of the new integration step. 

Step 9: The stepsize h can be controlled by moni- 
toring the quantity E. Various strategies 
may be used, a simple and effective one be- 
ing as follows: 

where ul, uz, I I  and l2 are constants given  be- 
low. 
If lek1 > 1.5 u k  for some k ,  the integration 
step h is halved, the independent variable is 
restored from t + h to t and  the values of y 

and j are restored to their values at  the be- 
ginning of the step. 

If lek1 > 0.75 Uk for some k and lek I 5 1.5 
uk for all k ,  the results of the  current inte- 
gration  step are accepted, but the stepsize is 
halved for succeeding steps. 

If Lk 5 lekl 5 0.75 u k  for all k the step- 
size  is unaltered. 

If lek1 5 0.75 uk for all k and lek] < Lk 
for  at least one k ,  a  doubling  indicator is ac- 
tivated. Actual  doubling is delayed for seven 
integration steps. Halving always takes 
precedence over doubling. Thus anytime a 
halving signal is received, the stepsize is 
halved and doubling delayed for  at least sev- 
en steps. Similarly, after successful doubling 
another seven steps must elapse before the 
stepsize may be doubled again. 

For absolute error control set 

~1 = 0.0075 u2 = 0 
11 = 0.00005 12 = 0 

For relative error  control set 

~1 = 0.0005 uz = 0.0075 
11 = 0.00001 12 = 0.00005. 

In addition to  the stepsize h, the Euler step 
6 (Step 2) also needs to be controlled. The 

same general strategy as  for h is followed ex- 
cept that 

a) E, = 1 [ yP( t  + 6) - 3 ( t ) ]  6 .  

b) The values of u1, UZ, 11, h,  are half those 
used for control of h. 

c) The doubling  indicator is activated only if 
each lekI  is  less than  the corresponding 

d) If a), b), and c) permit 6 > h/4, then 6 is 
lLk1. 

forced to assume the value 6 = h/4. 

4. Derivation of the integration formulas 
The derivation to be given in  this section will show that for 
“small” step sizes h, the new method is locally second-order 
exact. Thus, for sufficiently small step sizes the new method 
has an accuracy comparable  in practice to Heun’s method. 

Although classical truncation  error analysis is useful in 
the derivation of integration  formulas,  in discussion of error 
for small step sizes, and in giving error estimates of the form 
O(hn), such analysis does not help in the prediction of the 
stability properties of the algorithm. To determine stability, 
methods such as those  outlined  for example in section 2 
must be applied. In general, for linear explicit single-step or 
multistep methods, such an analysis serves to establish 
stability regions for a  particular  method. 

The method presented in this  paper, however, is a non- 
linear explicit multistep method and  the  nature of the 
stability regions remains at present an open question. 
Another open question concerns the degradation of ac- 
curacy as stepsizes are increased. Much  more research 
needs to be done in these areas. 

With these limitations in mind on  the following discus- 
sion, consider the differential equation j = f ( t ,  y) with solu- 
tion y ~ .  Since this section concerns the  nature of the local 
error only, y~ is assumed to be known. At each step, let y, 
be the computed  solution. y, is assumed to be the sum of 
two functions, yA, an “asymptotic part,” and y p ~ ,  a “per- 
turbation” from  the asymptote. y~ is to be determined from 
present and past values of y ~ ,  whereas y p ~  is to be deter- 
mined from  the local behavior of y ~ .  In practice, of course, 
y~ is not available and  the approximations y ,  obtained at  
the previous steps are used in the calculations instead of y ~ .  

Assume Y A  and y p ~  to be of the  form 
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Five conditions may now be imposed to determine the 
five constants yA(t), Y P E ( ~ ) ,  ) iA( f ) ,  j P E ( f ) ,  X,. 

The first  three are imposed to make the method second- 
order exact. To this end expand (ez - 1) /x  in a Taylor 
series and rewrite (6) as follows : 

Y c ( t  + {) = [ y A ( t )  + YPE(t)l + E [ j A ( t )  + j P E ( t ) l  

+ 2 X p ) i p E ( t )  + 6 X i j P E ( f )  + o(t4) . t2  F 3  

Then  the first three  conditions are: 

1) yA(t)  + yPE(t) = Y d t )  

2) j A ( t >  + ) i P E ( f )  = ) i T ( t )  

3) XpjPE(t) = y T ( t ) .  

The next two  conditions serve to determine the constants 
uniquely. 

4) Y A M  = Y T W  

5 )  j A ( t )  = [ Y T ( t )  - Y T ( t  - ho)l/ho 3 

where t - ho is the last point computed. 

putations yield j+(t) to  order h. 
In  caseyT(t) is not available explicitly, the following com- 

Specifically, let 0 < 6 I h. Then set 

Y P ( t  + 6) = m ( t )  + &(t )  

j P ( t  + 6) = f ( t  + 6, Y,(t + 6) )  

Condition 3) is then replaced by the condition 

3’) Xp)iPE(t) = j j p ( t )  . 
Note  that 

Then  the  truncation  error yT(t  + 5 )  - yc(t + 4) equals 

+ 0 ( t4) * 

Hence the method is locally second-order exact. 
From  the preceding analysis it follows that  the  method 

remains locally second-order exact if (ex,( - l)/X,t is re- 
placed by 1 + (X,C;/2). In practice, this is done (modifica- 
tion C) whenever X, 2 0. 

We turn next to stepsize control. Ideally, step control 
should  be based on  the expression 

Eo = [ [ j T ( t  + t )  - j e ( t  + t ) l d t  

and Eo should  be  compared with yT(t). In this expression 
540 j e  is obtained from y,(t f 6) by differentiation. (This differs 
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Figure 1 Basis for modification B in truncation  error  analysis. 

from Ye(t + (), which is obtained by substitution in  the 
differential equation). However, j ~ ( t  + 5 )  is not available 
except at = 0. Hence we make use of the  fact  that 

j c ( t  t E )  = f { t + t ,  Y T ( f  + 0 + b,(t + 0 - YT(t + a }  
= j T ( t  + D + 

to obtain 

EO = ( [ 3 c ( t  + (1 - j e ( t  + C;)Idt + [ [ j ~ ( t  + E )  

- i , ( t  + t)I& 

= [ [ j c ( t  + E )  - 3 e ( t  + [)Id5 + O(h4) . 

Hence if j j T ( t  + E )  - jj,(t + E )  does not change sign for 
0 < 5 I h ,  

lEol I hljT(t + h)  - + h)l 
I hlJ;,(t + h) - + h)l + 1o(h4)1 

Hence, for h small enough, 

E = h[)ie(t + h) - j e ( t  + h)l 

yields an estimate of the truncation error. 
It is easily seen that  the method described in  the preced- 

ing pages is not exact for  the  equation j = Xy + b. The 
following (modification B) tries to remedy this  situation. 

Referring to Fig. 1 ,  we see that if j = ay + b, then 
y, and j p ~  = j~ - j~ have the same sign. Moreover, 
j jp / jT  reproduces X exactly. Hence when jj, and j p ~  have 
the same sign, j~ is set to 0, j p ~  is set  equal to j~ and com- 
putation proceeds from there. The  other cases are handled 
as  in modification C .  

5. Applications 
This section is concerned with the question: Under what 
circumstances should the method described here  be used in 
preference to  standard classical methods? 



Our experience with the method so far  has led to two 
conclusions : 

1. a)  In linear systems with constant coefficients, if 
XMax (the eigenvalue of largest modulus) is real, then the 
larger the spread 1 h a x  1 / I  XM in 1, the more of an improve- 
ment can be expected. 

b) If X M ~ ~  is complex, the performance of the present 
method is approximately reduced to  the performance of 
Heun’s method. Hence, in these cases the usual 4th  order 
Runge-Kutta method is to be preferred to the present 
method. 

2. In systems of differential equations which can be ap- 
proximated by piecewise linear systems with constant co- 
efficients, the above conclusions hold for each piece. 

The rest of this section will deal with some of the experi- 
mental evidence for  the preceding conclusions. 

In what follows, a “pass” will mean one evaluation of the 
system of differential equations. 

Example A 
The differential equations are 

dyJdt = -2000 ~1 + lOOOyz + 1 ~ 1 ( 0 )  = 0 

d ~ z / d t  = Y I  - YZ YZ(0) = 0 9 

where t runs  from 0 to 4. 
The eigenvalues are very nearly -2000.5, -0.5, so that 

the spread is approximately 4000. For this  problem,  sta- 
bility requirements of the usual 4th-order  Runge-Kutta 
method limit the maximum stepsize hlllax to less than 
2.78/2000 = 1.35. approximately. Thus  for the 
problem duration of 4 units of t ,  theory requires at least 
3000 steps or 12,000 passes. In confirmation of this, a run 
with variable step  Runge-Kutta  method took 12,350 passes. 

By contrast, only 480 passes were required with the new 
method (modification A), an improvement of 25 times. 

The preceding example is linear. A two-by-two nonlinear 
example follows: 

Example B (Modified Robertson equations) 
The differential equations solved are 

dZl/dt = 0.04(1 - ~ 1 )  - ( 1  - Z q ) Z 1  + O.OOOl(1 - 22)’ 

Zl(0) = 0 

zz(0) = 1 
dzz/dt = -lO,OOOd~l/dt + 3000(1 - ~ 2 ) ’  

These equations were derived from a system of equations 
investigated by H. H. Robertson (private communication 
from H.  H. R.  to H. P. Flatt). 

No closed-form solution seems to be known. Table 1A 
compares a variable-step Runge-Kutta  method run with 
the new method (modification A). Table 1 8  gives addi- 
tional  information on  the run  made with the new method. 

In each of the tables, the first column labeled t lists in- 
creasing values of the independent variable. For each 

Table 1A Comparison of variable-step Table 1B Additional 
Runge-Kutta  method  with  modifica- data on run in Table 
tion A.  (Example B.) 1A. (Example B.) 

Runge- New 
Kutta Method Method 

New 
Method 

t P A P  P AP t P AP 
.2 777 777 122 122 10 678  678 
.4 1505 728 135 13 
.6 2221 716 154 19 

20 1305 627 
30 1853 548 

.8  2953  732  167 13 40 2421  568 
1.0 3669 716  179 12 50 2969  548 
1.2 4401  742 192 13 60 3482 513 
1.4 5129  728  205 13 70 3982 500 
1.6 5845  716  217 12 80 4482 500 
1.8 6577  732  230 13 90 5077  595 
2.0 7309 732  242 12 100 5632 555 
2.2 8041 732 258 16 
2.4 8773 732 267 9 
2.6 9509 736 280 13 

Table 2A Comparison of Runge- Table 2B Additional 
Kutta method  with  modification D. data on run  in  Table 
(Example  C.) 2A. (Example C.) 

Runge- New New 
Kutta Method Method Method* 

t P A P P A P  I P AP 
5 8245  8245  1491  1491 

10 16349  8104  1649  158 
20 1959  1959 
40 2945 986 

15 24445  8096 1782 133 60 4284  1339 
80 5241 957 

100 6068 827 
120 7282 1114 
140 7960 678 
160 8426 466 
180 8924  498 
200 9255 341 

* Step size controlled by relative error only. 

method, two  columns labeled P and AP are given. The P 
column lists the cumulative number of passes up  to  and  as 
close to  the corresponding t value as possible. The AP 
column lists the number of passes between the preceding 
t value in the  table  and  the present one. From Table 1A it 
can be seen that  the number of passes per 0.2 units of t 
stabilizes for  both  the  Runge-Kutta method and the new 
method. The new method is seen to  run between 40 and 50 
times faster after  the number of passes has stabilized. 

Example C 
This example is due  to Richards,  Lanning and Torrey13. It 
consists of a system of sixteen nonlinear  equations for 
which a closed form solution is available. For  further infor- 
mation on  the system, the reader is referred to  the cited 
reference. 

In Tables 2A and 2B, the new method (modification D) 
is compared with the  Runge-Kutta method as in the pre- 
ceding example. 
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Table 3 Summary of  results  for  example D. 

XI = -0.01 x, = -10. x< = -100 x, = -1000 
Runge- Runge- Runge- Runge- 
Kurta New  Kutta New  Kutta New  Kutta  New 

t  Method  Method Method Method  Method  Method Method Method 

P AP P AP P AP 
10 329 329 307 307 357 357 
20 461 132 527 220 509 152 
30  565 104 680 163 669 160 
40 657 92 767 87 821 152 
50 705 48 804 37 981 160 
60 745 40 845 41 1141 160 
70 777 32 876 31 1297 156 
80 797 20 903 27 1457 160 
90 817 20 928 25 1613 156 

100 837 20 956 28 1777 164 

P 
292 
524 
116 
928 

1024 
1102 
1158 
1196 
1238 
1272 

AP 
292 
232 
252 
152 
96 
78 
56 
38 
42 
34 

P 
1717 
3341 
4973 
661 3 
8261 
9885 

11517 
13157 
14781 
16413 

AP 
1717 
1624 
1632 
1640 
1648 
1624 
1632 
1640 
1624 
1632 

P 
74 1 

1368 
1790 
208  3 
2270 
2423 
2517 
2593 
2666 
2734 

AP 
741 
627 
422 
29  3 
187 
153 
94 
76 
73 
68 

P 
15645 
30985 
46481 
61973 
77317 
92809 

108301 
123637 
1391 25 

AP 
15645 
15340 
15496 
15492 
15344 
15492 
15492 
15326 
15488 

P 
1352 
2258 
2849 
3308 
3617 
3848 
4009 
4163 
4310 

AP 
1352 
906 
591 
459 
309 
23 1 
161 
154 
147 

From the tables it is  seen that if the first 5 seconds are Table 4 Summary of for E- 
excluded, then the new method takes average steps of ap- 
proximately 0.05. For  the Runge-Kutta method the average 

Runge- New 
Kutta  Method  Method 

step is 10/4000 = 0.0025, so that  the improvement with 
respect to the number of passes is approximately a factor of 
40. Since the largest “eigenvalue” of this system is 997.0 
(Ref. 13, p. 379), the maximum stable step for  the Runge- 
Kutta method is less than 0.00278, which checks with the 
above results. As far  as accuracy is concerned, a t  t = 15.0 
the Runge-Kutta method and the new method differ by  less 
than 1.5% in every component, the Runge-Kutta method 
being more accurate, differing from  the exact solution by 
less than 0.5%. The accuracy of the new method as meas- 

t 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 

P 
41369 
62789 
83849 

1 16661 
161577 
210201 
262505 
316865 
372285 
429045 

AP 
41369 
21420 
21112 
32812 
449 16 
48724 
52304 
54360 
55420 
56760 

P AP 
2317 2317 
3720 1403 
4907 1187 
6639 1732 
8794 2155 

11130 2336 
13378 2248 
15953 2575 
18594 2641 
21274 2680 

ured by relative error rapidly deteriorates, and  the com- 
puted solution is much more damped than the exact solu- 
tion. Thus the values computed at t = 200 are attained by 
the exact solution at approximately 280, except for one 
column as also observed by Richards, Lanning and Torrey. 
How much of this is due to round-off error is not known. where a, 6 ,  and c are determined by equating the coefficients 

with example E. 
Accuracy  will  be  discussed in more detail in connection in the equations 

X3 + nX2 + ( b  + 1OOO)cX + abc = 0 

Example D 
This example is  designed to test conclusion 1, i.e., the 
larger the spread, the greater the improvement obtained by 
using the new method. The system chosen consists of three 
equations with one real and two complex conjugate roots. 
The complex roots are -0.1 f 1.0 i. The real root X, takes 
on values of -0.01, - 10, - 100, - 1000 in succession, de- 
pending on the values  of a,  b, and c. Letting $ = dy/dt, the 
differential equations chosen are: 

$1 = - uy1 - 1oooy3 + t YdO) = 1 

Y z  = by3 YZ(0) = 0 

542 93 = 0 1  - Y2) YdO)  = .1 , 

and 

X3 + ( p b - 1  + 0.2)X2 + (0.21h4 + 1.01)X + l.OlIX?.l = 0 . 
The results are summarized in Table 3. The case X, = 

-0.01 confirms conclusion 1.b). Of particular interest for 
this case is that as IX,I is  increased in turn from 10 to 100 
to 1000, the number of Runge-Kutta passes taken increases 
as predicted by theory by approximately a factor of 10 each 
time. On the  other hand, the number of passes taken by the 
new method (modification B) after steady state has been 
reached (essentially after t = 50) increases by approxi- 
mately a factor of 2 each time IX,l is multiplied by a factor 
of 10. This confirms conclusion 1.a). 
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I Time in nsec 

Figure 2 Nonlinear  system  studied  by Brayton,  Gustavson  and 
Liniger  (from  Ref. 2, Fig. 3). See  Example E in the  text. 

Table 5 Seven  sample  values  of t and 0 6  compared for two 
methods.  (Example  E.) 

Runge- New 
Kutta Method Method 

t u6 t u6 

1) 31.2 .6857 31.3 .6862 
2) 53.8 .6338 53.9 .6338 
3) 82.1 .2516 82.5 .2514 
4) 132.5 .5890 133.8 .5915 

205. .3999 205. .4165 
300. .1792 300. .1878 
500. .2663. 500. .2769.10P 

Example E 
This is an example of a nonlinear system which was investi- 
gated by Brayton,  Gustavson and Liniger2. A full discussion 
is  given in the cited reference, to which the reader is re- 
ferred for further  information. 

For our purposes it suffices to say that this system of six 
equations  can be approximated by a piecewise linear system 
so that we are testing conclusion 2.  

The Runge-Kutta  method vs new method (modification 
D) comparison is contained in Table 4, and  it is seen that 
the improvement runs to around a factor of 20. 

For purposes of accuracy comparisons, Fig. 3 of the 
cited reference is reproduced here  (see Fig. 2). 

Table 5 contains seven sample values of t and W E  for the 
Runge-Kutta  method and the new method. Explanations 
of the entries are as follows: 
1) Values for t and 216 for  the first peak 
2) Representative values of 06 during the flat portion 
3) Values for t and V 6  for  the major dip 
4) Values for t and vfi for  the second maximum. 

The last  three  entries are representative values for  the 
remainder of the run.  One  other point in connection with 

the example may be of interest. Brayton et  al, (Ref. 2, p. 
296) observe that  the time-constant problems experienced 
by the Runge-Kutta  method  in this case are due to three 
small resistors. When these are removed, the response is 
virtually unchanged; however, the time-constant problems 
disappear and  the Runge-Kutta  method at  a fixed step of 
0.25 or 0.50 gave excellent results. 

One  thousand  integration  steps or 4000 passes are re- 
quired at a step of 0.50 and 8000 passes are required at a 
step of 0.25 to run  the three-dimensional system to 500. 
Contrasting  this with 21,274 passes for the new method on 
the six-dimensional system, it is seen that  the new method 
has  made up a large part of the difference. 
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