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Estimation of Temperature Rise 
in  Electron  Beam  Heating of Thin  Films 

Abstract: Expressions are given for estimating  the  transient  temperature  distribution  in a thin film  heated by an  electron  beam.  Graphical 
presentations  in  terms of dimensionless  (reduced)  variables are included to aid  in  specific  calculations for designing an  electron  beam for 
use  as a heating  tool. 
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total  heat flow per  unit  time 
a constant  related to emissivity and average tempera- 
ture of the target (definition following Eq. (4)) 
modified Bessel function of order zero 
Bessel function of order  zero 
Bessel function of order  one 
thermal conductivity of the  target 
heat supply per  unit  time  per unit volume 
heat supply per unit time  per unit  area 
maximum heat supply (see Figs. 2 and 3) 
distance from  the center of the beam to a  point (see 
Fig. 1) 
range of electron  penetration 
time 
temperature (in OK) 
ambient  temperature (in O K )  

heat loss per  unit  time  per  unit volume 
heat loss per  unit  time per unit  area 
Bessel function of the second kind of order zero 
Bessel function of the second kind of order  one 
distance in  the beam  direction (Fig. 1) 
thermal diffusivity of the  target 
Euler's constant = 0.5772 . . . 
density of the target 
angular variable (Fig. 1) 
excess temperature of target over the ambient 
dimensionless temperature (Section 4) 
dimensionless time (Section 4) 
dimensionless radial distance (Section 4) 
dimensionless radiation coefficient (Section 4) 

1. Introduction 
When an electron beam hits  a  target, part of its kinetic 
energy is converted into  thermal energy in the target. The 
conversion is almost  instantaneous,  compared to the time 
scale of heat conduction,' but is by no means complete. 
Some of the electrons are reflected and scattered away, and 
some are transmitted  through the target, if it consists of a 
very thin film. Kinetic energy is also changed into forms 
other  than thermal, e.g., into energies of secondary elec- 
trons, bremsstrahlung, X-rays, etc. The relative importance 
of each of these phenomena depends on  the accelerating 
voltage, as well as  on  the material of the target.  When the 
target is heated close to  its boiling point, still  another  mode 
of energy loss is caused by the scattering of electrons by the 
vapor molecules. 

Nevertheless, the electron beam stands  out  as a  heat 
source with the highest energy density yet avai1able.l The 
ease of controlling the intensity, shape and position of the 
electron beam, in  addition to its high energy density, makes 
electron beam drilling and welding  highly advantageous.'r2 
The possibility of heating an extremely small  area lends it- 
self also to many applications  in  microelectronic^.^^^ 

The temperature rise in  the  target depends not only on 
the heat capacity of the material but also on its  thermal 
conductivity and emissivity. References 1 and 2 include 
some simple calculations to estimate the maximum tem- 
perature rise under  steady-state  conditions (long heating 
times) and with no radiation loss. When the heating time is 
short, we need to estimate the temperature rise under tran- 
sient conditions, that is, the temperature as a function of 
time and space. Pittaway5  has  treated the case of transient 
temperature rise due to stationary and moving Gaussian 
sources on both thin films and semi-infinite targets with no 
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radiation loss. Steady-state temperature of heating semi- 
infinite targets with a  Gaussian  source  has been computed 
by Vine and Einstein,6 who included the effect of beam 
penetration  into the target.  Morrison and Morgan?  also 
calculated the steady-state temperature of heating thin 
films on highly conductive substrates assuming the  beam 
penetrates only within the film. Wells8 tried to estimate the 
heat-affected zone in a semi-infinite target. None of these 
calculations included radiation loss from  the surface. Radi- 
ation loss was treated by Leisegang? who computed the 
steady-state temperature of heating thin films with a uni- 
form circular source. To solve his nonlinear differential 
equation, he  had to make assumptions in  two  extreme cases 
and obtained  approximate solutions. 

In the present paper we try to calculate the transient 
temperature rise  of heating thin films with a stationary 
Gaussian or uniform circular source when radiation loss 
from  the surface is not neglected. A linearized Stefan-Boltz- 
mann law of black-body radiation is used to render the 
differential equation linear. When the temperature varia- 
tion is not extremely high, such an assumption is well justi- 
fied. Under the same conditions, one is justified to assume 
that  the thermal conductivity and  other physical properties 
of the target are coastants. In Section 4, formulae and 
graphs are given for the calculation of temperature as a 
function of time, space, heat supply rate, thermal  conduc- 
tivity, heat capacity, thickness, emissivity, etc. In Sections 
5 and 6, comparisons are made to  the results using other 
simplifying assumptions, and their relative errors  are dis- 
played against the rigorous solutions  obtained  in Section 
4. Section 7 extends the calculation to approximate an 
idealized model when phase  transition in the target  ma- 
terial occurs. Finally, examples are given to show numerical 
calculations. 

2. Assumptions 
A )  A schematic representation of the electron beam con- 
figuration is shown in Fig. 1. Because of the repulsive force 
between electrons, the size of the focus spot can never be 
made vanishingly small, even with aberration-free lenses.lOJ1 
In addition, the current density within the  spot may not be 
uniform. If the origin of the coordinate system is chosen at  
the center of the  spot,  it is usually assumed that  the  current 
density J is independent of 4 (i.e., axially symmetrical), but 
J will be a function of r, being highest at  r = 0 and dimin- 
ishing to zero at  large r. 

B)  When the target is thick,  all  electrons are stopped with- 
in a region of roughly spherical shape. Its diameter is called 
the range of penetration R ,  and may be  estimated from 
Schonland's f o r m ~ l a , ~ ~ " ~  or  its modification (cf. Appen- 
dix). 

Kinetic energy is converted into thermal energy in this 
528 region. Therefore,  there is a distribution of heat sources of 
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Figure 1 Schematic representation of electron  beam  configuration. 

Figure 2 A gaussian distribution of heat supply. 
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varying strength.15-17 But when film thickness D is roughly 
equal  to  the range R, we may assume that heat is supplied 
uniformly along the z direction, so that  the  rate Q of heat 
supply per unit area is equal  to  the  product of the  rate q of 
heat supply per  unit volume and  the thickness D of the 
film. Therefore, we are assuming that q and Q are functions 
of r only, independent of C$ and z (Fig. 1). 

In this paper we shall discuss the following two types of 
heat  supply  distributions: 

Gaussian: (Fig. 2 )  Q = Q ,  exp (-rz/az) (1 1 



f 
Q 
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i 
”c 

Figure 3 A uniform  distribution of  heat supply. 

Uniform: (Fig. 3)  Q = 
( P o  o _<lrl< a 
o a l l r l  

Similarly, we shall  assume any heat loss (sink) w to be in- 
dependent of both + and z in thin films. 

C )  We  shall assume that  the  thermal conductivity K is 
constant, independent of both temperature T and position 
(r, +, z). The fundamental differential equation for  heat 
conduction18 is 

pc(dT/d t )  = KV2T + q - w ,  (3)  

where 

T = temperature (in OK) at  point (r, +, z )  (r, z in cm) and 

p = density of the solid (in gm/cm3) 
c = heat capacity (in cal/gm “C) 
K = thermal conductivity (cal/cm sec “C) 
q = heat supply (source) per unit  time per unit volume 

w = heat loss (sink) per unit  time per unit volume (cal/cm3 

time t (in seconds) 

(cal/cm3 sec) at  point (r, +, z )  and time t 

sec) at  point (r, 4, z )  and time t .  

D )  We  shall assume that there is radiation loss from both 
surfaces of the film. The linearized Stefan-Boltzmann law of 
black-body radiation’$ states: 

W = 2 H 0 ,   ( 4 )  

where 
W = heat loss per  second/cm2 
0 = T - To = excess temperature over the ambient (OK) 

H = a constant depending on  the emissivity and average 
temperature of the film = 1.37 X 10-l2E X 4 
Tav3 cal/cm2 - OK 

The factor 2 in  Eq. (4) comes from  the fact that there are 
two surfaces of radiation. 

The  heat loss w per  unit volume may be taken  as W I D  
= 2HO/D, where D is the thickness of the film. This 
assumption is justified because D is small and Tis large. 

E )  We  shall  assume the initial temperature  distribution is 
uniform and the same  as  ambient  temperature To. Thus, T 
is also  independent of 4 and Z. Equation (3) then reduces 
to : 

where a = - = thermal  diffusivity  (cm2/sec). 
K 
PC 

F )  We shall  also  assume that p and c are constant, inde- 
pendent of both temperature and position, and  that the 
film is infinite in  two  dimensions. 

3. General solution 
Under  the above  assumptions, the most  general  solution of 
differential Eq. (5) is given 

0(r ,  t )  = - 2 KD 

2H x exp [ - E a ( t  - t’)  - 

1 Q(r’ ,  t’> 

4 f f  r2 ( t  + - r’2 t ’ )  1 
r’dr’dt’ , 

where lo is the modified Bessel function of order zero. 
When Q is given as a function of r and t ,  Eq. (10) may be 

integrated (sometimes by numerical  methods only) to give 0 
as a function of r and t .  We shall discuss only the cases 
where Q is independent of time t and dependent on r ac- 
cording to Eq. (1) or (2). 

4. Steady  Gaussian  distribution 
In this section we shall assume that Q is  given  by Eq. (l), 
where 
Q o  = a constant,  independent of t (and r)  = maximum 

heat supply per unit time per unit  area 
a = “equivalent radius” of heat supply, i.e., the  total 

heat supply per second over a circular area of radius 
a with a uniform intensity Q o  (cf. Fig. 2)  is equal to 
that over the whole infinite plane with a Gaussian 
distribution Qo exp ( - r2 /a2) .  

The mathematical  formulae will appear much simpler in 
terms of the following dimensionless variables: 

“temperature” 8 = 4KDO(r, t ) /Qoa2 

“radial  distance” = r / a  

“time” 7 = 4at /a2  = 4Kt/pca2 

“radiation” -q = a 2 H / 2 K D  . 
Equation (6) then becomes 
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Noting that  the Laplace transform of Zo(2ad3 becomes 
exp [ (a2/s)] /s ,  we may carry out  one of the iterated integrals 
to  obtain: 

where u = 1/ ( r  - r' + 1). (7) 

Equation (7) gives the reduced temperature 8 as a function 
of 5, r, and 7 in an integral  form.  When  one or more of these 
variables is given special values, a closed-form expression is 
sometimes possible. The following is a partial list of the 
integrated forms, where 

is the "exponential integral" and is tabulated in  standard 
handbooks.23 

The discussion of individual cases will be given following 
the list of equations: 

e(0, r,  0) = ln(1 + T) (8) 

O ( ~ , T ,  0 )  = - Ei - __ ( y .> + E i ( - t 2 )  (9) 

+ "  ( 1 + 7  t2 ) " L ( q 2  2.2! 1 + 7  

++(">"- 3 3! 1 + 7  ... 

for  large 7 (1 2) 

8 ( 0 , r , q )  = 7 - ~ 11 + 1 72 + 
r12 + 211 + 273 

2! 3! 

for  small r (13) 
9 

for small 11 ( 1 4 )  

530 for large 17 ( 1  5 )  
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Figure 4 Temperature  as a function  of  distance  (with  no radiation 
loss). 

Figure 5 Temperature  rise  as a function  of  time  (with no  radiation 
loss). 
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A )  Results with no radiation loss assumed 
When N is  negligibly small  compared to other  terms  in Eq. 
( 9 ,  we may set 9 = a2H/2KD = 0. Equation (7) then re- 
duces to Eq. (9). Figure 4 shows the "temperature" distri- 
bution at  different "time" r. We see that the  temperature is 
highest at  the center and drops off quite rapidly as r in- 
creases, becoming negligible when r > 3a. 

Figure 5 shows the temperature rise at various locations. 
When = 0, Eq. (9) becomes Eq. (8). The simplicity of this 
equation makes it very  useful in estimating temperature 
rise in practical design. 

For small values of 7, the Taylor series expansion (1 1) is 
more helpful. When r is very large (at very long times), Eq. 



Figure 6 Temperature  rise as a function  of  time  (with no  radiation 
loss). 

(9) may be simplified with the  help of a series expansion of 
exponential integral to give Eq. (12), which may be  ap- 
proximated by 

e(t,T, 0 )  =: 1nT - y - Inlz + E i ( - t 2 )  , 
for  large 7 , 

where y = 0.5772 + . . = Euler's constant. 
The  graphs  are  straight lines when 8 is plotted against  ln7 

(Figure 6). For example, when E approaches zero as a limit, 

e(0, T ,  0 )  = lnT for  large T . (16) 

A quantity of practical  importance is the  total  heat flow 
F per second  through a circular cylindrical surface. This 
quantity is  given  by: 

F = 2arD (flux) = 2arD - - K - ( 3 
From Eq. (9), we find: 

B) Results when radiation losses are not negligible 
When H i s  not negligible, 8 is a function of three variables 
as given in Eq. (7), and  the relation is more complicated. 
To illustrate  the dependence of 0 on r], let us investigate the 
temperature rise at the center point ( E  = 0), since the tem- 
perature rise at all other points will follow a similar trend. 
Equation (10) gives 0 in the case of = 0. Figures 7, 8, and 
9 are plots of temperature rise at  various values of r]  on 
rectangular, log-log and semi-log scales, respectively. 
They  all show the property that, when t + a, 0 approaches 
a definite value. This is the steady-state temperature and is 

Figure 7 

- 1  
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r = 4 atla2 

Figure 8 

lr=4at/a2 

Figure 9 

Figures 7 , s  and 9 Temperature rise  of a function of time  with  dif- 
ferent  radiation loss. 531 
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Figure 10 Steady-state  temperature  as a function of radiation 
loss. 

given  by the first term on  the right-hand side of Eq. (10). 
This is the upper limit of attainable  temperature by electron 
beam heating, no  matter how long the film has been bom- 
barded.  Naturally, the smaller the radiation loss (i.e., the 
smaller q), the higher the steady-state  temperature.  Figure 
10 shows 8 (0, a,q) as a  function of q. For extreme values 
of 9,  Eqs. (14) and (15) are  more useful. 

When 9 + 0, there is no upper limit temperature, a fact 
more easily observed in  Fig. 9. 

When r is small, again the Taylor series expansion (13) 
is more helpful. In conclusion, we observe that a typical 
temperature rise curve 8 = e(0, T ,  q) may be approximated 
in three regions: 

e = r  for very small r (17) 
0 =: In(1 + r )  for  intermediate r (18) 
8 =: e?( -Ei(-q)} for very large r (19) 

We may call the first region the  “heat capacity limited 
region,” the second, “thermal  conduction limited region,” 
and  the third,  “radiation limited region.” 

5. Steady  uniform  distribution 
Although  Gaussian  distribution is probably closer to re- 
ality, many engineering calculations are based on  the sim- 
pler assumption of uniform circular distribution. In  this 
section, we compare  the results  obtained  in the  last section 
with those when the  heat supply rate Q(r, t )  is assumed to be 
steady (independent oft)  and uniform over a circular area, 
according to Eq. (2). 

Using the same dimensionless variables as before, Eq. (6) 
becomes 
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where eo denotes  “temperature” derived under uniform 
distribution  assumption. 

The integral 

p(z,  .) = ( 1  - e-””-’ e-(r2+sg)  i,’ ZO (2rs) 2sds 

is called a P-function and has been tabulated by Masters.24 
Equation (20) may then be written 

This  equation, corresponding to Eq. (7) above, gives 8 as 
a  function of 5,  r ,  q. We  shall discuss two special cases. 

A )  At  the center of beam, r = 5 = 0: Since the P-function 
is normalized such that P(z, 0) = 1, Eq. (21) reduces to 

B) When H = q = 0 and  at center: 

Equation (23) is plotted  in Figs. 11 and 12 together with 
other results. 

For  short times, the asymptotic expression for  an expo- 
nential integral 

may be used and Eq. (23) becomes 

e0(O, r ,  0 )  = r - (1!r2 - 2!r2 + . (24) 

For very short times, this  equation  again reduces to Eq. 
(1 7). This property is easily observed on Fig. 11.  

For long times, the use of a series expansion of the expo- 
nential integral results in 

For very long  times r ,  

which  differs from  the corresponding expression in Eq. (16) 
by only a constant number: 1 - y = 0.4228 . - . (Fig. 12). 
This means that  the time required to heat a film to a tem- 
perature 8 with a uniform circular heat supply is about 

= 65 of that with a  Gaussian  heat supply for any 
e > 3. 



I I I I I I I I I 
1 2 4 6 8 10 12 14 16 18 2 

r=4at /a2  

e=r, 
(Equation 17)  

10 - 

10-1 100 101 102 103 104 105 10 

Figures 11 and 12 Comparison of temperature  rise  under  various  assumptions  (from data in Carslaw and  Jaeger). 

6. Comparison  to  the  heating of underground cable 
The heating of underground cable is very similar to this 
case, except the  thermal conductivity inside r = a is much 
greater than  that of the material outside. An idealized case 
where a is assumed to be infinity inside r = a is solved by 
Carslaw and Jaeger.25 In terms of our notation,  their  Eq. 
(8) on page 344 is 

0 ( 0 +  1,7,0)  = 7 32 r 
a 

[l - e-ru”4]d~ 
x U 3 [ U J 0 ( U )  - 2 J l ( u ) ] 2  + U 3 [ U Y O ( U )  - 2YI(U)y 

(27) 
Note in our present case, S = ?ra2pc, KV/Q = 0/4r ,  Kt/a2 

= r/4. Note also that  the temperature inside the cable will 
be uniform at all times. That is why f = 0 -+ 1 (from  zero 
to one) is put in  the  left-hand side of Eq. (27). Radiation 
loss in this case is zero. The curve on page 343 of their  book 
is replotted  in Figs. 11 and 12 to facilitate comparison.  At 
large r, their curve seems to approach 0 = lnr - 0.65. 

7. Phase  transition 
In  the above discussion, we assume that all  temperatures 
are below the melting point T‘, of the film. When 0 > Om 
(where 0, = (4KD/Qa2)Om = (4KD/Qa2)(Tm - TO), 
there is a phase change. The molten  phase may be assumed 
to be in  the form of a circular disk of  the  same thickness D 
as  the film and of increasing radius rm (in cm). The latent 
heat of melting Hm(cal/gm) may  then be regarded as 
a moving negative surface heat  source of strength: 
- H,pD(dr,/dt)cal/cm . sec, where r, is the radius of the 
phase boundary at time t. The function  Q(r,  t)  in Eq. (6) 
must then  be replaced by 

Q(r,  t) = Qoe - H Dd’-OS[r - rm(t)] 

where 6(x) is the  Dirac delta  function. Hence, 

im Q2nrdr = Qoaa2 - HmpD - 2nr, 

-9 /as 

mP dt 

drm 
dt 

d 2  

dt = eo=a2 - H,~D - (arm) . 
Assuming that p, c, K are  the same for  both liquid 

and solid phases, Eq. (6) becomes then (for r > rm) 

dr ‘ 
x T - r ’ + l  

where 

H,  = latent  heat of melting (cal/gm) 
T, = melting point in O K  

P = rm(t)/a 

L m  = (~KDH~/Qou’c) 

@(.) = - = - - dM a dr, 
dr 4a  dt 

The quantity rm is the “time” T at which the center melts, 
that is, r, is  the solution of 

e’{ - ~ i ( - q )  + E ~ [ - V ( I  + r ) ] )  = 0, (29) 

(See Eq. 10). 533 
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Equation (28) involves a function p ( ~ )  which must be de- 
termined by the condition that the  temperature at the 
boundary of the phase transition is the melting point. The 
leads to  an integral  equation 

~ [ P ( T > ,  7,771 = 8,. (30) 

Eqs. (28) and (30) may be  solved by numerical methods. 
Qualitatively, the  temperature distribution will look some- 
thing like the one shown in Fig. 13 where the dotted curve 
on  top is the distribution if there were no melting. For a 
first approximation of the heating time, we may proceed as 
follows: 

For T < T, let 8 = (4KD/Qoa2) ( T  - To)  

and  use  Eq.  (7) 

For T > T, let 8 = (4KD/Qou2) 

X [ T  + ( f f , / c )  - To] 

and  use Eq. (7) 

In  other words, we regard H,/c as a fictitious temperature 
rise. Such an approximation is equivalent to assuming a 
temperature distribution shown schematically in Fig. 14. 

When the central region of the spot is heated to a suf- 
ficiently  high temperature, so that the corresponding vapor 
pressure (and  thus the  rate of evaporation) becomes ap- 
preciable, a  term representing another type of heat sink 
(latent heat of evaporation)  should be added to the right- 
hand side of Eq. (28). However, in this case, the heat sink is 
strongly temperature dependent. Another complication is 
that when a hole is formed in the  central region of the spot 
there is no longer any  heat conduction or heat supply in 
that region. 

8. Numerical  examples 
To illustrate the usefulness of the above results, let us com- 
pare the time requirements for heating thin bismuth and 
aluminum films to their melting points. 

Assume : Beam power density Qo 106W/cm2 

Beam radius a = lpm = cm 
Film thickness D = 2pm = 2 X cm. 

= 2.39 X lo5 cal/sec.cm2 

Therefore, (4D/Qoa2) = 0.335 sec.cm/cal. 

For bismuth: Thermal conductivity K = 0.02 cal/sec 

Thermal diffusivity a = 0.07 cm2/sec 
Thermal emissivity E = 0.048 
Melting point T, = 271OC 

cm O C  

Therefore, 0, = 271 - 25 = 246'C 

Since 77 is of the  order of or less, from Fig. 8, we see 
that Eq. (8) is applicable. Thus  1 + T = = 5.21, and 
the time 

t = --T = 0.15 psec. 
U' 

4a 

If the analogous calculations were made for aluminum: 

Thermal conductivity K = 0.48 cal/sec. cm°C 
Thermal diffusivity a = 0.86 cm2/sec 
Thermal emissivity E = 0.1 1 (oxidized surface) 
Melting point T, = 66OoC, 

the time required to heat aluminum to 2OO0C (i.e., 175OC 
above  ambient) would be 4.8 X lo3 sec = 1 hr 20  min. 
Obviously, for such long time, the radiation effect r]  is no 
longer negligible. In fact, such an effect  will set an upper 
limit of attainable  temperature  for aluminum, according to 
Fig. 8 or 9. To calculate 7, we assume an average tempera- 
ture of  400'K. Thus, 

H = 1.37 X X 4 x (400)3 

X 0.11 = 3.858 X lo-' 

u2H lo-' X 3.858 X lo-' ' = 2% = 2 X 0.48 X 2 X 10- = 2.0 X lo-' 

From Fig. 10, we see that for such a small 7, Eq. (14) is 
applicable for estimating the steady-state temperature limi- 
tation. Hence, 

e = - 0 . ~ 7 7  - 2.303 ioglo (2.0 X lo-') = 19.46 

O=----- eoa2 e 19.46 - 
4 0  K 0.335 X 0.48 = 121 

or 

T = 121 + 25 = 146OC. 

Consequently, under such conditions, the aluminum film 
will  never be heated to melting, no matter how long it is 
bombarded by the beam. 

9. Conclusions 
Transient temperature rise has been calculated for  a  thin 
film heated by a stationary  Gaussian or uniform circular 
source when radiation loss from the surfaces is present. 
Graphical presentations in terms of dimensionless (reduced) 
variables are included to aid in specific calculations for de- 
signing. The linearized Stefan-Boltzmann law  of black body 
radiation is employed, which  is justified when the tempera- 
ture variation is not extremely high. It is found that the  for- 
mulas for calculating temperature rise can be reduced to 
very  simple formulas in each one of the following three 
regions : 

0, = 7 KO, = 1.65 
4 0  

Qoa 

(1) the heat-capacity-limited region (for very small T, Eq. 
(17)), 
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Figure 13 Temperature  distribution  above  melting  point.  (see 
text.) 

( 2 )  the thermal-conduction-limited region (for  intermediate 

(3j the radiation-limited-region (for very large 7, Eq. (la)). 
7, Eq. (18)), 

IO. Appendix 

Estimation of dwelling time 
The most  probable kinetic energy E of an electron beam 
after  penetrating  a distance z into  the target may be ex- 
pressed as 

E" = E: - bz , 
where 
Eo = initial kinetic energy of the electrons, 
b = a  constant,  proportional to  the density of the target, 
n = another constant. 

When n = 2, this is the classical Whiddington's law. But 
for kilovolt-range electrons, n is between 1.5 and 1.7. 

The range R of the electron may be defined as the distance 
z when the energy E of the electrons diminishes to zero. 
Therefore, R = Eo"/b. 

When n = 2 ,  this is the Schonland's formula.'2 
Thus we may write En = b(R - z). 
Since E = (m0/2)v2 = (m0/2) (dz /d t )~ ,  the above  equa- 

tion may be transformed into 

Integrating from z = 0 to z = R ,  we obtain  the time the 
electron spends inside the target before it is stopped com- 
pletely as: 

where v o  is the initial electron velocity. 

t 
e - 

,0", 

/ \ 
/ \ 

I 
1 \ )L7 \ 

Figure 14 Simplified temperature  distribution  above  melting 
point. 

For a 100 keV electron  hitting an iron or aluminum 
target, the dwelling times are of the  order of 2 to 6 X 
seconds. During this  time, the kinetic energy is transferred 
from  the beam  electrons to the target electrons. 

The  total  duration  for  the conversion of the kinetic 
energy of the electron into  the  thermal energy of the lattice 
is much longer than  the above dwelling time, because the 
process of transferring the energy of target electrons to the 
whole lattice is much slower. However, the  total  duration is 
still probably much shorter  compared to  the time scale of 
heat conduction. 
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