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Estimation of Temperature Rise
in Electron Beam Heating of Thin Films

Abstract: Expressions are given for estimating the transient temperature distribution in a thin film heated by an electron beam. Graphical
presentations in terms of dimensionless (reduced) variables are included to aid in specific calculations for designing an electron beam for
use as a heating tool.
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radius (or equivalent radius) of the heat supply
(see Figs. 2 and 3)

heat capacity of the target

thickness of the film

exponential integral = / e“du/u  (x <0)

total heat flow per unit time

a constant related to emissivity and average tempera-
ture of the target (definition following Eq. (4))
modified Bessel function of order zero

Bessel function of order zero

Bessel function of order one

thermal conductivity of the target

heat supply per unit time per unit volume

heat supply per unit time per unit area
maximum heat supply (see Figs. 2 and 3)
distance from the center of the beam to a point (see
Fig. 1)

range of electron penetration

time

temperature (in °K)

ambient temperature (in °K)

heat loss per unit time per unit volume

heat loss per unit time per unit area

Bessel function of the second kind of order zero
Bessel function of the second kind of order one
distance in the beam direction (Fig. 1)

thermal diffusivity of the target

Euler’s constant = 0.5772 - - -

density of the target

angular variable (Fig. 1)

excess temperature of target over the ambient
dimensionless temperature (Section 4)
dimensionless time (Section 4)

dimensionless radial distance (Section 4)
dimensionless radiation coefficient (Section 4)

1. Introduction
When an electron beam hits a target, part of its kinetic

energy is converted into thermal energy in the target. The
conversion is almost instantaneous, compared to the time
scale of heat conduction,T but is by no means complete.
Some of the electrons are reflected and scattered away, and
some are transmitted through the target, if it consists of a
very thin film. Kinetic energy is also changed into forms
other than thermal, e.g., into energies of secondary elec-
trons, bremsstrahlung, X-rays, etc. The relative importance
of each of these phenomena depends on the accelerating
voltage, as well as on the material of the target. When the
target is heated close to its boiling point, still another mode
of energy loss is caused by the scattering of electrons by the
vapor molecules.

Nevertheless, the electron beam stands out as a heat
source with the highest energy density yet available.! The
ease of controlling the intensity, shape and position of the
electron beam, in addition to its high energy density, makes
electron beam drilling and welding highly advantageous.!'?
The possibility of heating an extremely small area lends it-
self also to many applications in microelectronics.?4

The temperature rise in the target depends not only on
the heat capacity of the material but also on its thermal
conductivity and emissivity. References 1 and 2 include
some simple calculations to estimate the maximum tem-
perature rise under steady-state conditions (long heating
times) and with no radiation loss. When the heating time is
short, we need to estimate the temperature rise under tran-
sient conditions, that is, the temperature as a function of
time and space. Pittaway® has treated the case of transient
temperature rise due to stationary and moving Gaussian
sources on both thin films and semi-infinite targets with no
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t An estimate of the time for conversion is given in the Appendix.
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radiation loss. Steady-state temperature of heating semi-
infinite targets with a Gaussian source has been computed
by Vine and Einstein,® who included the effect of beam
penetration into the target. Morrison and Morgan’ also
calculated the steady-state temperature of heating thin
films on highly conductive substrates assuming the beam
penetrates only within the film. Wells® tried to estimate the
heat-affected zone in a semi-infinite target. None of these
calculations included radiation loss from the surface. Radi-
ation loss was treated by Leisegang,’ who computed the
steady-state temperature of heating thin films with a uni-
form circular source. To solve his nonlinear differential
equation, he had to make assumptions in two extreme cases
and obtained approximate solutions.

In the present paper we try to calculate the transient
temperature rise of heating thin films with a stationary
Gaussian or uniform circular source when radiation loss
from the surface is not neglected. A linearized Stefan-Boltz-
mann law of black-body radiation is used to render the
differential equation linear. When the temperature varia-
tion is not extremely high, such an assumption is well justi-
fied. Under the same conditions, one is justified to assume
that the thermal conductivity and other physical properties
of the target are constants. In Section 4, formulae and
graphs are given for the calculation of temperature as a
function of time, space, heat supply rate, thermal conduc-
tivity, heat capacity, thickness, emissivity, etc. In Sections
5 and 6, comparisons are made to the results using other
simplifying assumptions, and their relative errors are dis-
played against the rigorous solutions obtained in Section
4. Section 7 extends the calculation to approximate an
idealized model when phase transition in the target ma-
terial occurs. Finally, examples are given to show numerical
calculations.

2. Assumptions
A) A schematic representation of the electron beam con-

figuration is shown in Fig. 1. Because of the repulsive force
between electrons, the size of the focus spot can never be
made vanishingly small, even with aberration-free lenses.1%-1
In addition, the current density within the spot may not be
uniform. If the origin of the coordinate system is chosen at
the center of the spot, it is usually assumed that the current
density J is independent of ¢ (i.e., axially symmetrical), but
J will be a function of r, being highest at »r = 0 and dimin-
ishing to zero at large .

B) When the target is thick, all electrons are stopped with-
in a region of roughly spherical shape. Its diameter is called
the range of penetration R, and may be estimated from
Schonland’s formula,!?~!4 or its modification (cf. Appen-
dix).

Kinetic energy is converted into thermal energy in this
region. Therefore, there is a distribution of heat sources of
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Figure 1 Schematic representation of electron beam configuration.

Figure 2 A gaussian distribution of heat supply.

I —s

varying strength.'®=17 But when film thickness D is roughly
equal to the range R, we may assume that heat is supplied
uniformly along the z direction, so that the rate Q of heat
supply per unit area is equal to the product of the rate g of
heat supply per unit volume and the thickness D of the
film. Therefore, we are assuming that ¢ and Q are functions
of r only, independent of ¢ and z (Fig. 1).

In this paper we shall discuss the following two types of
heat supply distributions:

Gaussian: (Fig. 2) Q = Qoexp (—r’/a’) (1)




r—

Figure 3 A uniform distribution of heat supply.
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Uniform: (Fig. 3) Q =

Similarly, we shall assume any heat loss (sink) w to be in-
dependent of both ¢ and z in thin films.

C) We shall assume that the thermal conductivity X is
constant, independent of both temperature 7 and position
(r, ¢, z). The fundamental differential equation for heat
conduction!® is

0c(dT/3t) = KV’T+ g — w, (3)
where

T = temperature (in °K) at point (r, ¢, z) (r, z in cm) and
time 7 (in seconds)

p = density of the solid (in gm/cm?)

¢ = heat capacity (in cal/gm °C)

= thermal conductivity (cal/cm sec °C)

g = heat supply (source) per unit time per unit volume
(cal/cm? sec) at point (r, ¢, z) and time ¢

w = heat loss (sink) per unit time per unit volume (cal/cm?
sec) at point (r, ¢, z) and time ¢.

D) We shall assume that there is radiation loss from both
surfaces of the film. The linearized Stefan-Boltzmann law of
black-body radiation!® states:

W = 2H9, (4)
where

W = heat loss per second/cm?

§ = T — T, = excess temperature over the ambient (°K)

H = a constant depending on the emissivity and average
temperature of the film = 1.37 X 107RE X 4
T cal/cm? — °K

The factor 2 in Eq. (4) comes from the fact that there are
two surfaces of radiation.

The heat loss w per unit volume may be taken as W/D
= 2H6/D, where D is the thickness of the film. This
assumption is justified because D is small and 7 is large.

E) We shall assume the initial temperature distribution is
uniform and the same as ambient temperature T. Thus, T
is also independent of ¢ and z. Equation (3) then reduces
to:

e - (5)

where @ = — = thermal diffusivity (cm®/sec).

F) We shall also assume that p and ¢ are constant, inde-
pendent of both temperature and position, and that the
film is infinite in two dimensions.

3. General solution
Under the above assumptions, the most general solution of

differential Eq. (5) is given by:2°—22
-l / C[etln)
o) = 2KD 7y Jy 1=t
28 : ii]
X epr: XD a(t—1) Gl = 7

X Io<2 “ — t)) 'ar'dl’ , (6)

where I, is the modified Bessel function of order zero.

When Q is given as a function of r and ¢, Eq. (10) may be
integrated (sometimes by numerical methods only) to give 6
as a function of r and . We shall discuss only the cases
where Q is independent of time ¢ and dependent on r ac-
cording to Eq. (1) or (2).

4. Steady Gaussian distribution

In this section we shall assume that Q is given by Eq. (1),

where

Qo = a constant, independent of 7 (and ) = maximum
heat supply per unit time per unit area

a = “equivalent radius” of heat supply, i.e., the total
heat supply per second over a circular area of radius
a with a uniform intensity Q (cf. Fig. 2) is equal to
that over the whole infinite plane with a Gaussian
distribution Q4 exp (—r2/a?).

The mathematical formulae will appear much simpler in
terms of the following dimensionless variables:

4KDO(r,1)/Qoa’

“radial distance” ¢ = r/a

“temperature” O

“time” r = 4dat/a" = 4Kt/pca’
“radiation” n = a H/2KD .

Equation (6) then becomes

T o 9 )2
G(E, 7 77) = / / exp [_U(T _ T,) . éiET
o "o T—T

pu— E/Q] I ( ES >2$Idg ’T
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Noting that the Laplace transform of Io(2a+v 7) becomes
exp [(a%/s)]/s, we may carry out one of the iterated integrals

/ 12
to obtain:
1 1.0
d
G(E,T,n)=e”/ exp[ E'u — ] =,
1/(147) ul u 0.8
6( 1,0
whereu = 1/(r — 7 +1). (7 &0
Equation (7) gives the reduced temperature O as a function 061
of &, 7, and 5 in an integral form. When one or more of these abl

variables is given special values, a closed-form expression is
sometimes possible. The following is a partial list of the
integrated forms, where

4KD6/Q a2
o
»
T

o
=

x
du 5 4 4
Ei(x) = ] e — (x < 0)
—w U ti/a
is the “exponential integral” and is tabulated in standard Figure 4 Temperature as a function of distance (with no radiation
handbooks.? loss).

The discussion of individual cases will be given following
the list of equations:

6(0,7,0) = In(1 8 .
(0,7, 0) n(t +7) (8) Figure 5 Temperature rise as a function of time (with no radiation
B . 52 ) ) 5 loss).
e(E,T’O) - El< 1 +T + EI( E) (9) 3
. ) 0(0,7,0) = In(1+7)
00,7, 1) = €' —Ei(—n) + Eil—n(1 + )| (10) e
1
01, 0) = [r+5 =
2 —
+ £ ——‘;ﬁ T2 5, ., ] 5(1,7,0)
) O=7
for smallz  (11)
1L
0 7 0) = In(1 4+ 17) — Ing’ — v + Ei(—£") 62,70
2 2 9 [e]
1 =
+<g )- -—<f ;) :
1 + T 2! TI-
< > or 0 ] 1 1 I ]
0 2 4 6 8 10 1z 14 16 18 20
3 3I'\1 47
for large 7 (12) Tedat/el
1 2 2
00,rm) = = TEL b2
o Sy 3+ 6+ 6 A A) Results with no radiation loss assumed
4 When H is negligibly small compared to other terms in Eq.
(5), we may set y = q®H/2KD = 0. Equation (7) then re-
fi 11 13 . L
of smj T (13) duces to Eq. (9). Figure 4 shows the “temperature” distri-
6(0, ©,n) = ¢ |: vy — Inp + ‘——, — 77_' b}ltion at different ““time” 7. We see that the temperature is
-1 2.21 highest at the center and drops off quite rapidly as r in-
7’ creases, becoming negligible when r > 3a.
T3y | T YT Iny Figure 5 shows the temperature rise at various locations.
for small 5 (14) When‘ £ =0,Eq. .(9) becomes Eq (8). '_l"he §1mphclty of this
equation makes it very useful in estimating temperature
0(0, w,q) = o L; + 2_; _ il e 1 rise in practical design.
n ] ] n U For small values of 7, the Taylor series expansion (11) is
530 for large n (15) more helpful. When 7 is very large (at very long times), Eq.
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Figure 6 Temperature rise as a function of time (with no radiation
loss).

(9) may be simplified with the help of a series expansion of
exponential integral to give Eq. (12), which may be ap-
proximated by

0(t,7,0) = Inr — v — Ing* + Ei(—£),
for large 7,

where v = 0.5772 . - - = Euler’s constant.
The graphs are straight lines when © is plotted against Inr
(Figure 6). For example, when £ approaches zero as a limit,

0(0,7,0) = Inr

A quantity of practical importance is the total heat flow
F per second through a circular cylindrical surface. This
quantity is given by:

forlarger . (16)

F = 27rD + (flux) = 277D - <—K@)
dr

L)

I

From Eq. (9), we find:

F(E’T: 0) = raZQo[exp <_ i i_7_> — €Xp (—52)] .

B) Results when radiation losses are not negligible

When H is not negligible, O is a function of three variables
as given in Eq. (7), and the relation is more complicated.
To illustrate the dependence of © on 7, let us investigate the
temperature rise at the center point (¢ = 0), since the tem-
perature rise at all other points will follow a similar trend.
Equation (10) gives O in the case of £ = 0. Figures 7, 8, and
9 are plots of temperature rise at various values of 4 on
rectangular, log-log and semi-log scales, respectively.
They all show the property that, when s — o« , © approaches
a definite value. This is the steady-state temperature and is

= — 7't~
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Figures 7, 8 and 9 Temperature rise of a function of time with dif-
ferent radiation loss.
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Y\ ©(0,,7),
\\ (Equation 19)

\ O=1/y,
\ (Equation 15)

4KD6/Q a2

O=—In3—v,\
(Equatior?l4; \\ \\
I \
© 0 L 1 | \
0 10-3 10-2 10~1 *\100 101 102
0.562 =e—0.5772
n=a2H/2KD

Figure 10 Steady-state temperature as a function of radiation
loss.

given by the first term on the right-hand side of Eq. (10).
This is the upper limit of attainable temperature by electron
beam heating, no matter how long the film has been bom-
barded. Naturally, the smaller the radiation loss (i.e., the
smaller 7), the higher the steady-state temperature. Figure
10 shows © (0, «, 7) as a function of 5. For extreme values
of 9, Egs. (14) and (15) are more useful.

When n — 0, there is no upper limit temperature, a fact
more easily observed in Fig. 9.

When 7 is small, again the Taylor series expansion (13)
is more helpful. In conclusion, we observe that a typical
temperature rise curve © = 6(0, 7, 7) may be approximated
in three regions:

0O=r7 for very small 7 a7
O = In(1 4+ 7) for intermediate 7 18)
0 = e?{ —Ei(—n)} for very large 7 19)

We may call the first region the ‘“heat capacity limited
region,” the second, “thermal conduction limited region,”
and the third, “radiation limited region.”

5. Steady uniform distribution
Although Gaussian distribution is probably closer to re-
ality, many engineering calculations are based on the sim-
pler assumption of uniform circular distribution. In this
section, we compare the results obtained in the last section
with those when the heat supply rate Q(r, r) is assumed to be
steady (independent of ¢) and uniform over a circular area,
according to Eq. (2).

Using the same dimensionless variables as before, Eq. (6)
becomes

L 2 ,2
GO(E’ T 77) = [) /;) exp [—17(7- — T,) — u]

’
T—T

X 10< 248 >2s'ds'd—’, (20)
T —7T

!
T T
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where O° denotes “temperature” derived under uniform
distribution assumption.
The integral

Piz,r) = (1 — e‘z’)*/ e~ 1y(2rs) 2sds
]

is called a P-function and has been tabulated by Masters.2*
Equation (20) may then be written

O Ern) = [ O — )
0
1, ¢ > ,
P\ ———— ———= )d 21
X <\/T—T' VT —T1 ’ 21
This equation, corresponding to Eq. (7) above, gives O as
a function of £, 7, n. We shall discuss two special cases.

A) Atthe center of beam, r = £ = 0: Since the P-function
is normalized such that P(z, 0) = 1, Eq. (21) reduces to

00 rm = [ - M) ()
1/7

B) When H = 5 = 0 and at center:

8°(0,7,0) = r(1 — ") — Ei(—1/r). (23)

Equation (23) is plotted in Figs. 11 and 12 together with
other results. .

For short times, the asymptotic expression for an expo-
nential integral

—Ei(—1/r) = (r — 1" 4+ 27 — .. )"
may be used and Eq. (23) becomes

0°(0,7,0) =7 — (I = 202+ - ) V7. (24)

For very short times, this equation again reduces to Eq.
(17). This property is easily observed on Fig. 11.

For long times, the use of a series expansion of the expo-
nential integral results in

0 _ _ 11
o (0’7'9 0) - lnT + (l 'Y) + 1-2% 2.3!7-2
T (25)
3-417°
For very long times 7,
6°(0,7,0) = Inr + (1 — ), (26)

which differs from the corresponding expression in Eq. (16)
by only a constant number: 1 — y = 0.4228 - - - (Fig. 12).
This means that the time required to heat a film to a tem-
perature © with a uniform circular heat supply is about
e 04228 = 6597 of that with a Gaussian heat supply for any
0 > 3.




3 o 0(0.7,0),

E ,t' 7 (Equation 23)

(Equation 17) B0, 7,0) = In(1+1),
(Equation 8)

0(0~1,7,0),
(Equation 27)

4KD/Q a2

I

7=4at/a?

12
O=r,
(Equation 17)
10 6(0,7,0),
{Equation 23)
8-
0(0,7,0)=In(1+7),
6 (Equation 8)
4L 0(0~1,7,0),
'Z‘ga (Equation 27)
o]
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Figures 11 and 12 Comparison of temperature rise under various assumptions (from data in Carslaw and Jaeger).

6. Comparison to the heating of underground cable
The heating of underground cable is very similar to this
case, except the thermal conductivity inside r = ¢ is much
greater than that of the material outside. An idealized case
where « is assumed to be infinity inside » = a is solved by
Carslaw and Jaeger.®® In terms of our notation, their Eq.
(8) on page 344 is
32 (7

6(0—1,7,0) = ;2 ,

1 — e ™" du
WBluJo(u) — 2(0)* + wdluYo(u) — 2Y1(u)]?
(27)

Note in our present case, S = wa2pc, KV/Q = 0/4x, xt/a’
= 7/4. Note also that the temperature inside the cable will
be uniform at all times. That is why £ = 0 — 1 (from zero
to one) is put in the left-hand side of Eq. (27). Radiation
loss in this case is zero. The curve on page 343 of their book
is replotted in Figs. 11 and 12 to facilitate comparison. At
large 7, their curve seems to approach © = Inr — 0.65.

X

7. Phase transition
In the above discussion, we assume that all temperatures

are below the melting point 77, of the film, When © > 6,,
(where ©,, = (4KD/Qa®0,, = (4KD/Qa®>)Tn — To),
there is a phase change. The molten phase may be assumed
to be in the form of a circular disk of the same thickness D
as the film and of increasing radius r,, (in cm). The latent
heat of melting H,(cal/gm) may then be regarded as
a moving negative surface heat source of strength:
— H,pD(drn/df)cal/cm - sec, where r, is the radius of the
phase boundary at time z. The function Q(r, ©) in Eq. (6)
must then be replaced by

dra(t) o0 _
— H,pD ot 8[r — rn(?)]

where 8(x) is the Dirac delta function. Hence,

—rafga

Q(rs t) = QOe

drm
mp D i 2wty

/ Q2rrdr = Qera” —
0
2 d
= Q¢ra’ — HmpD—;t- (wry) .

Assuming that p, ¢, K are the same for both liquid
and solid phases, Eq. (6) becomes then (for = > 7,)

O, 1) = /0 exp [*n(r —7) = ;_—f,—_‘_—l:l
dr’
X r—7 +1
T 2 2
oo rtr -y - ]
< 10< iE;L_(T;’) > 2u (:/)ﬁ(:,,)dw (28)

where

Ln = (4KDH,,/ Qoa’c)

H,, = latent heat of melting (cal/gm)
T = melting point in °K

p=rn(t)/a

A = T ha a

The quantity ,, is the “time” 7 at which the center melts,
that is, 7,, is the solution of

e'{— Ei(—n) + Ei[—n(1 + )]} = On (29)
(See Eq. 10). 533
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Equation (28) involves a function u(r) which must be de-
termined by the condition that the temperature at the
boundary of the phase transition is the melting point. The
leads to an integral equation

e[:u'(T)’ T 77] = Op. (30)

Eqgs. (28) and (30) may be solved by numerical methods.
Qualitatively, the temperature distribution will look some-
thing like the one shown in Fig. 13 where the dotted curve
on top is the distribution if there were no melting. For a
first approximation of the heating time, we may proceed as
follows:

For T < T,let© = (4KD/Qoa”)(T — To)
and use Eq. (7)
For T > Tnlet © = (4KD/Qoa”)
X [T+ (Hn/c) — Tol
and use Eq. (7)

In other words, we regard H,,/c as a fictitious temperature
rise. Such an approximation is equivalent to assuming a
temperature distribution shown schematically in Fig. 14.

When the central region of the spot is heated to a suf-
ficiently high temperature, so that the corresponding vapor
pressure (and thus the rate of evaporation) becomes ap-
preciable, a term representing another type of heat sink
(latent heat of evaporation) should be added to the right-
hand side of Eq. (28). However, in this case, the heat sink is
strongly temperature dependent. Another complication is
that when a hole is formed in the central region of the spot
there is no longer any heat conduction or heat supply in
that region.

8. Numerical examples
To illustrate the usefulness of the above results, let us com-

pare the time requirements for heating thin bismuth and
aluminum films to their melting points.

Beam power density Q¢ 106W /cm?
= 2.39 X 105 cal/sec -cm?
Beam radius ¢ = 1lum = 10~*cm
Film thickness D = 2um = 2X 10~*cm.
Therefore, (4D/Qa? = 0.335 sec-cm/cal.

Assume:

For bismuth: Thermal conductivity X = 0.02 cal/sec
cm °C
Thermal diffusivity « = 0.07 cm?/sec
Thermal emissivity E = 0.048

Melting point Tm = 271°C
Therefore, 0, = 271 — 25 = 246°C
4D
On = o Kbn = 165
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Since 7 is of the order of 10~ or less, from Fig. 8, we see
that Eq. (8) is applicable. Thus 1 4 » = ¢!% = 5.21, and
the time

2
a

t=——7r=10. .
4aT 0.15 usec

If the analogous calculations were made for aluminum:

Thermal conductivity K = 0.48 cal/sec-cm°C
Thermal diffusivity « = 0.86 cm?2/sec

Thermal emissivity E = 0.11 (oxidized surface)
Melting point T = 660°C,

the time required to heat aluminum to 200°C (i.e., 175°C
above ambient) would be 4.8 X 10% sec = 1 hr 20 min.
Obviously, for such long time, the radiation effect 4 is no
longer negligible. In fact, such an effect will set an upper
limit of attainable temperature for aluminum, according to
Fig. 8 or 9. To calculate 5, we assume an average tempera-
ture of 400°K. Thus,

H = 137X 107" X 4 X (400)*
X 0.11 = 3.858 X 107°

2 8 _5
_d'H _ 107° %3858 X 1075 s
"= KD 2X 048 X 2x 10t 20X 10

From Fig. 10, we see that for such a small 4, Eq. (14) is
applicable for estimating the steady-state temperature limi-
tation. Hence,

6 = —0.577 — 2.303 logyo (2.0 X 107°) = 19.46

2
o 19.
_ou’e _ 1946 _

0= 4D K = 0335 X 0.48

or

T = 121 + 25 = 146°C.

Consequently, under such conditions, the aluminum film
will never be heated to melting, no matter how long it is
bombarded by the beam.

9. Conclusions
Transient temperature rise has been calculated for a thin

film heated by a stationary Gaussian or uniform circular
source when radiation loss from the surfaces is present.
Graphical presentations in terms of dimensionless (reduced)
variables are included to aid in specific calculations for de-
signing. The linearized Stefan-Boltzmann law of black body
radiation is employed, which is justified when the tempera-
ture variation is not extremely high. It is found that the for-
mulas for calculating temperature rise can be reduced to
very simple formulas in each one of the following three
regions:

(1) the heat-capacity-limited region (for very small 7, Eq.
a7,




t=

—_

L
a

Figure 13 Temperature distribution above melting point. (see
text.)

(2) the thermal-conduction-limited region (for intermediate

7, Eq. (18)),
(3} the radiation-limited-region (for very large =, Eq. (19)).

10. Appendix

® Estimation of dwelling time

The most probable kinetic energy E of an electron beam
after penetrating a distance z into the target may be ex-
pressed as

E"= E; — bz,

where

E, = initial kinetic energy of the electrons,

b = a constant, proportional to the density of the target,
n = another constant.

When n = 2, this is the classical Whiddington’s law. But
for kilovolt-range electrons, » is between 1.5 and 1.7.

The range R of the electron may be defined as the distance
z when the energy E of the electrons diminishes to zero.
Therefore, R = Eq*/b.

When n = 2, this is the Schonland’s formula.!2

Thus we may write E* = b(R — z).

Since E = (mo/20? = (mo/2)(dz/dt)?, the above equa-
tion may be transformed into

dt = V' mg/2 b—(R— ) #dz.

Integrating from z = O to z = R, we obtain the time the
electron spends inside the target before it is stopped com-
pletely as:

where v, is the initial electron velocity.

§—»

Figure 14 Simplified temperature distribution above melting
point,

For a 100 keV electron hitting an iron or aluminum
target, the dwelling times are of the order of 2to 6 X 10™13
seconds. During this time, the kinetic energy is transferred
from the beam electrons to the target electrons.

The total duration for the conversion of the kinetic
energy of the electron into the thermal energy of the lattice
is much longer than the above dwelling time, because the
process of transferring the energy of target electrons to the
whole lattice is much slower. However, the total duration is
still probably much shorter compared to the time scale of
heat conduction.
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