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Design Principles for Sampled-Data  Systems  with 
Application to Attitude Control of a 
Large, Flexible  Booster 

Abstract: This  paper  reviews 2-transform and W-transform  theory and discusses  in detail  its  application to dynamic  compensation 
of  linear sampled-data  control systems.  Both sampled-data  (digital)  and  continuous-data  (analog)  compensator  synthesis  methods 
are discussed.  With  respect to digital  compensator  design,  w-plane  closed-loop  pole  positions are related  to  time  response  characteristics, 
analogous to the well  known relationships between s-plane pole  positions  and  time  response  parameters  for  continuous-data  systems. 
An  example  is  given  which illustrates  the design  technique  wherein  time  and  frequency  response  characteristics are compared. A 
digital  stabilization  filter  is  derived  for the attitude control system of a missile  typical of the  Saturn  class. 

Introduction 

Fundamental digital filter theory  has been well understood 
for some time. Its application to the aerospace  industry is, 
however, of more recent origin, although digital  controllers 
of both  the conventional and  the adaptive  types  have been 
considered extensively for flexible booster attitude con- 
trol.'" Nevertheless, existing attitude  control systems are 
essentially analog  in nature.  Although proven to be 
reliable in  their operation,  the design/fabriaction dura- 
tions  have been extremely long and  stand  to curtail future 
analog  implementation.  Detailed  considerations are dis- 
cussed herein which provide for efficient definition of digi- 
tal stabilization filters. Digital  programs have been written 
for general application of the design techniques to linear 
mixed-data systems characterized by "semi-slow," as well 
as fast, sampling and have been employed for  the examples 
of this paper. 

Theoretical review 

A sampled-data system is characterized by the presence 
of one or more signals occurring at intermittent times. 
Sampling in physical systems occurs essentially in the  form 
of signal sensing for a brief time  interval, followed by a 
longer interval of no signal sensing. In  the case of systems 
employing digital computers,  sampling  corresponds to the 
repetitive occurrence of a number for processing in an 
arithmetic fashion. Based on the fundamental  assumption 
that  the sampling  interval is small in comparison to  the 

442 time  constants of the physical system under  consideration, 

a convenient mathematical  description of the sampling 
process  exist^.^ As is generally known, the sampler model 
is referred to  as  an impulse modulator  and establishes a 
one-to-one correspondence between the weighting of a train 
of impulse functions and  the sequence of equally-spaced 
values of the signal being sampled. 

In conventional  mathematical notation, a sampled 
function of time may be expressed as 

W 

j * ( O  = c f b T )  s(t - n T )  7 (1) 
n=O 

where f(t) represents the signal being sampled. One  form 
of the Laplace  transform of Eq. (1) is 

F*(s) = c F(s + jnw,), 
1 

(2) 
n="m 

where w., = 27r/T is the sampling frequency. Equation (2) 
exhibits a well known property of discrete transfer func- 
tions. Since F*(s) is periodic in s with period jw,, the poles 
and zeros of F*(s) are periodically distributed throughout 
the s-plane. Viewed geometrically, this periodicity occurs 
in the  form of repeated  strips in  the s-plane, which are 
parallel to  the real axis and W. in width. This is shown  in 
Fig. 1, where the  strip  that is symmetrically oriented about 
the  real axis is customarily referred to as  the primary strip. 

An  alternate  form for the Laplace transform of Eq. (1) is 

F*(s) = f(nT)e-""T. ( 3) 
m 

n=O 
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The  change of variable z = eST allows  Eq. (3) to be  written 
as 

where  F(z) = F*(l /T  In z). 
Equations (3) and (4) define the operation known as the 

2-transform. A property of the change of variable z = e*' 
is that the primary strip in the s-plane  maps into the entire 
z-plane  with the left-half  primary strip mapping into the 
interior of the z-plane unit circle. Furthermore, all other 
s-plane strips map into  the z-plane in exactly the same 
manner.  Although the apparent periodic  pole-zero distri- 
bution has been  removed,  uniqueness  between F*(s) and 
F(z)  exists  only  if ( " 0 , / 2  + mu,) < u 5 (+u, /2  + mu,) 
and (-P + m 2 ~ )  < arg z 5 (T + m 2 ~ )  where m is an 
integer. It may  occur  in  practice that uniqueness is essenti- 
ally  preserved on the basis that  the frequency  range of 
interest is less than u . / 2 .  In this case, m is 0. 

The response at the sample instants, c(nT), of a linear 
continuous (time-invariant)  system G(s) to the input F*(s) 
is obtained from the inverse 2-transform as expressed  by 
the contour integral 

. n  

c(nT) = g fr  C(Z)Z"" dz, 
I 

where the contour I? encloses all of the poles of  C(z) 
zn-'. The derivation4 of Eq. ( 5 )  results  in a range of z for 
which -P < arg z 5 P or " w , / 2  < u 5 w,/2 .  That is, 
c(nT) is  determined by the poles  of C*(s) in the primary 
strip. This  is to be contrasted with the inverse  Laplace 
transform of C(s) as given  by 

It follows from the property that F*(s) is rational in 
e*T (which  is  obtained from a closed form expression  of 
Eq. (3)) that c(t) is determined by an infinite set of  poles 
throughout the s-plane. 

Expressing zn-' as exp [(l/Tln z) (n - 1) TI allows  Eq. 
( 5 )  to be  written as 

. "  

If nT is arbitrarily replaced by t ,  the integration will result 
in a continuous response cl(t) which  is  exactly equal to the 
time  response c(t) at the sampling instants and approx- 
imately equal to c(t) at other than the sample instants. 
The importance of this substitution lies in the fact that  the 
approximate response cl(t) may be  readily  characterized 
by the pole  position of the dominant  modes of C*(s) in the 
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Figure 1 Periodic  strips of width wI in the s-plane. 

primary strip. The advantages of relating  time and fre- 
quency  domain  parameters are well appreciated for con- 
tinuous-data  systems and prompted Johnson, Lindorff, 
and Nordling4 to propose the above substitution of t for 
nT. In this manner,  time and frequency  parameters are 
likewise  related for the sampled-data  problem. Johnson, 
et a1 have  shown that the substitution of t for nT is  justified 
if the frequency  range of the system's dominant dynamics 
is < u , / 2 .  Methods  employing the modified 2-transform 
and the convolution  summation  provide an exact  deter- 
mination of intersample  response but do not readily 
permit the time-frequency  domain correlation. 

The W-transform has been  proposed as a means to allow 
the use of all continuous-data compensation methods for 
sampled-data synthesis. The W-transform is defined  by 
the change of variable z = (1 + w)/(l  - w). Thus, 

This  bilinear transformation maps the interior of the 
z-plane unit circle into the entire left-half  w-plane. This 
fact  allows  application of linear continuous-data system 
stability  criteria to the corresponding  sampled-data prob- 
lem; i.e., Routh-Hurwitz, Nyquist,  etc. Further, the 
2 -+ W-transformation  produces transfer functions which 
are rational fractions in the variable of  interest-frequency 
in the case of  Bode and Nyquist  methods  application- 
thereby  allowing  use of asymptotic  plotting  techniques. 
For s = ju, the complex  variable w = u + jv of Eq. (8) 
becomes u = 0 and 

v = tan-. UT 
2 

Equation (9) defines the scaling  between the "real" fre- 
quency w and the "fictitious"  frequency u. 443 
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Figure 2 A basic sampled  data  control system. 

Figure 3 Two methods of cascade  compensation; (a) con- 
tinuous-data compensation, (b) sampled-data  compensation. 

Design principles for compensation of 
sampled-data systems 

A basic  sampled-data control system  with G,(s) repre- 
senting the process to be  controlled is shown in Fig. 2. 
It often  occurs in practice that the dynamic  performance 
of a given control system is inadequate and some  means 
of compensation  must  be  employed in order to result in 
acceptable  system  performance. In general,  dynamic  com- 
pensation  is obtainable through introduction of an element 
either in series or in parallel  with the given  process. The 
former  is  referred to  as cascade  compensation and the 
latter as feedback  compensation.  Restricting attention to 
single-degree-of-freedom systems: there is no loss in 
generality, in terms of providing  desired  closed loop poles, 
by considering  only  cascade  compensation. For sampled- 
data systems, there are two methods of achieving  cascade 
compensation; either by continuous-data filters  or  discrete- 
data filters.  These  two  methods are shown in Figs. 3a and 
3b,  where,  respectively, the sampled data is  converted to 
continuous-data form prior to being operated on by 
the compensation  filter G,(s), and the sampled data is 
operated on by a discrete  filter  G,(z) prior to data-form 
conversion. In reality, the discrete  filter may be a con- 
tinuous-data filter  with a post sampler or  an operation 
within a digital  computer. In any  event, the zero-order  hold 
is a simple  model for digital-to-analog data conversion. 

Both  sampled-data and continuous-data compensation 
444 methods are discussed in this paper. In the case of con- 
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tinuous-data compensator design, for the class of systems 
discussed in a later section, a sampled-data  compensator 
is  first  obtained. The following  discussion is, therefore, 
devoted to the subject of sampled-data compensation. 

Sampled-data compensation 

In general, the design of a sampled-data  compensator may 
be  performed for linear dynamical  systems  described in 
either the s, z, or w variables.  Frequency  response and/or 
root-locus  techniques are available in all three domains. 
As  previously  mentioned, absolute and relative  stability 
criteria are essentially the same for transfer functions  in s 
or w; therefore,  stability  properties may be  readily  evalu- 
ated in either  domain.  Frequency  response  methods for 
which s = j w  are, however,  based on finite term approx- 
imation of an infinite summation, Eq. (2). Evaluation of 
absolute stability is directly apparent from a z-plane root 
locus plot; however, a determination of relative  stability  is 
obtainable only from a root locus  analysis  wherein the 
s-plane constant { and w,  lines are mapped into the z-plane. 

The w-plane approach is,  therefore,  favored by the 
authors for the convenience it provides  in the form of fre- 
quency  response  locus  shaping  techniques, which are 
preferable for high-order  (complex)  systems  design. 
Further, efficient and accurate implementation of fre- 
quency  response  locus determination, in the form of 
digital  computer  programs, may be  constructed for systems 
described  in z. To determine the G*(jw) locus, a natural 
logarithm  must  be  evaluated  (or an infinite  series truncated 
for  s-domain  system  description);  whereas, to determine 
the G(ju) locus,  only an algebraic transformation is re- 
quired. 

For completeness of design  methods in the w-domain, 
a technique for estimating the frequency and damping 
characteristics of the system time response  is highly 
desirable. In the s-plane, a constant damping ratio { is 
represented by a straight line radiating from the orgin. 
The set of points in the w-plane  which  composes a constant 
{ curve ({ = {,) is defined from Eq. (8) by 

(U + j 4 r 1  = 
e s ~ w . T e i ( l - r , a ) l / l w , T  - 1 

e t lw.T 
i ( l - r l z ) ~ / ~ u * ~  e + I  

Figure 4 shows  how the constant { lines in the s-plane 
map into curves in the w-plane. Geometrically, the ficti- 
tious damping ratio C; represents in the w-plane the same 
quantity that { represents in the s-plane.  Thus, constant 
C; lines  emanate  radially from the origin in the w-plane, as 
shown in Fig. 4. Therefore, if the fictitious  frequency v 
and damping ratio 4' are known, actual damping { may  be 
obtained by inspection of Fig. 4, and real  frequency w ,  by 
direct transformation from u. 

Alternately,  Fig. 4 provides a means for determining 
the 5 value  corresponding to desired  damping ratio { of 
the cl(t) response. The .$ value is defined  by the C; line which 

(1 0) 



Figure 4 Mapping of constant { and  constant E curves in 
w-plane. 

intersects the desired j- curve at  the frequency, in u, of 
interest. Moreover, it is readily seen from  the u-w relation- 
ship that Fig. 4 provides a general design guide independent 
of the sample  period T, which only determines the fre- 
quency scaling along the  constant j- curve. 

If the M, criterion is used as a means for providing 
desired damping of a dominant quadratic mode, the system 
frequency response locus P(ju) should be reshaped  for 
tangency to the M,curvedefined6 by M ,  = 1/2E - E". 
Should  criteria other  than M, be employed for obtaining 
desired system relative stability via the w-plane synthesis, 
Fig. 4 provides equally useful information. For example, 
w-plane root locus plots can be used in  conjunction  with 
Fig. 4 to obtain a system design having desired damping 
and frequency of a particular  mode or modes. 

To illustrate  application of the above discussed techni- 
ques to a practical system of interest,  consideration is given 
to a missile attitude  control system design. 

Example I 

Assume that  the missile is a rigid body;  no significant 
bending and sloshing dynamics. On  the assumption that 
the  actuator transfer  function is unity, G,(s) of Fig. 5 
includes only rigid body dynamics in a single plane-either 
pitch or yaw. The linear differential equations used to 
define rigid body rotational  motion  are (refer to next 
section) : 

Moment equation: 

~- 

5 - c1CY + c2p = 0, (1   1 )  

Angle relationship : 

W 
V 

CY = CY, + a; CY, = -. (12) 

I T i m  in scconds (c )  

Figure 5 Example 1 system  design;  (a)  block  diagram, 
(b)  w-plane  root-locus of compensated  system,  (c)  time re- 
sponse of system to step  input. 

Block diagram  reduction of the above  equations yields 

for Fig. 5 where R(s) = (c,/c,)cY,(s). Values representative 
of a large  booster are c1 = 0.4187 and c2 = 0.9363. An 
open-loop pole exists at dz and  the  plant is, therefore, 
unstable. Physically interpreted,  this  corresponds to  the 
vehicle center of pressure being ahead of (with respect 
to  the engine gimbal plane) the center of gravity. It will 

~ 

I 
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be  shown that feedback  compensation, as illustrated  in 
Fig. 5a results in a conditionally stable system. 

A sampling  frequency of 10 samples/second was 
selected. A rigid  body  mode  damping of  0.3 < r < 0.4 at 
a damped natural frequency of approximately 12.75 
radians per  second (v = 0.74) was  desired. The w-plane 
root-locus technique  was used in conjunction  with  Fig. 4 
to design a lead  type  digital  compensator to stabilize the 
system. The following  digital  compensator  was obtained: 

113.6(- 0.45 + 1) 
GSw) = 

26.75 L + l  ' 

or 

352.85(~ - 0.3793) 
Gc(z) = (z + 0.928) 

The w-plane root locus of the compensated  system  is 
shown in Fig.  5b. The r = 0.3 and p = 0.4 lines are super- 
imposed on this plot to indicate  satisfaction of that design 
objective. The time  response of this system to a step input 
(r(t) = u(t); R(s) = l/s) is  presented in Fig. 5c. Inspection 
of the damping and frequency of this response  offers 
further verification that the design  objectives  have  been 
met. 

This  example  clearly  illustrates the relationship  be- 
tween  w-plane  pole  positions and time  response  properties. 

Continuous-data compensation 

From Fig.  3a, it is seen that  the open-loop  pulse transfer 
function is 

or equivalently 

Since [Gl(s)  G2(s)l* # G:(s) G*,(s), the basic  difficulty 
of continuous-data compensator  synthesis for sampled- 
data systems is that G,(s) is trapped within the operation 
of obtaining a pulse transfer function. Stated differently, 
although the poles of GIG,(s) are related to those of 
GIG,(z) by the relationship z = esT, there is no simple 
analytic relationship between the zeros of GIG,(s) and 
those of G,G,(z), except for the special  case  where  sampling 
is  sufficiently fast to validate the small  angle approx- 
imation of Eq. (8), yielding' z = (1 + w)/(l - w) E 
(1 4- sT/2)/(1 - sT/2). Thus, even though a deter- 

446 mination of relative  stability  may  be obtained from a root 
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locus or Nyquist  plot of P*,(s) = C*(s)/E*(s) of Eq. (17), 
the effect  of the compensator  is  dependent upon the 
parameters of G,(s). This  greatly  complicates the speci- 
fication of an acceptable G,(ju). In fact,  pursuing the 
problem in this manner amounts to synthesis on a trial- 
and-error 

The approach taken herein  generally  parallels that 
contained  in KUO;' without the introduction of the 
r-transform and allows a direct solution of the continuous- 
data compensator  problem for the class of systems  repre- 
sented by  Fig.  3a. Let P*(s) denote the open-loop  pulse 
transfer function of the uncompensated  system; that is 

P*(s) = (1  - e-aT )[ - G$)]* . 

It is  assumed that  an adequately  compensated  system loop 
transmission P*,(s) may be  defined through application of 
frequency  response  locus  shaping or root locus  techniques 
as previously  discussed.  Recognition that a zero-order 
hold  precedes the compensator G,(s) in  Fig.  3(a)  suggests 
rewriting P: (1/T In z) = P,(z)  as 

r 

From a partial fraction expansion of P,(z)/(z - l), there 
results 

It is known  from  basic Z-transform theory that 

where Z[Zi (k , ) / ( s  + ai)]  denotes the Z-transform opera- 
tion and ai = exp (--aiT). From Eqs. (17),  (19), and (20), 
it follows that 

From Eqs. (21) and (22), one obtains 

If the frequency range of interest  does not exceed 0,/2, 
it may  be  assumed that ai = (-lnai)/T with the imaginary 
part of ai in the interval from - r / T  to T / T .  By this as- 
sumption, a unique  compensator  is  determined from 
solution of Eq. (23) for G,(s). In  the event that G,(s) 
should  prove to have a higher order numerator than 
denominator, physical  realizability  may  be  established by 
addition of a pole(s)  with  sufficiently large real part. 
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Figure 6 Dynamics of a large,  flexible  booster; (a) force a 
graph of  rigid-body  dynamics, (c) bending  variables. 

Booster attitude control 

The approach taken to design of an ascent-to-orbit 
attitude  control system entails linear time invariant system 
analysis  referenced to a number of flight time operating 
points, followed by analog (and digital) simulation studies 
for final design and evaluation purposes. This requires the 
derivation of linear (perturbation) differential equations 
describing the dynamical properties of the missile in  the 
neighborhood of expected  flight conditions. Such mathe- 
matical models, to various degrees of sophistication, have 
long been  in  existence;""2  however, the development of a 
basic set of equations will  now be concisely  summarized 
as a prelude to statement of a control system  design prob- 
lem for which a digital controller is required. 

Figure 6a illustrates the aerodynamic and  thrust forces 
acting on a rigid  missile in atmospheric flight along with the 
pertinent orientation variables. As shown, the illustration 
actually pertains to lateral, or yaw, motion. As such, yaw 
component of attitude error is represented by cp and the 
wind W is the lateral component of total wind. Further, 
V represents the missile inertial velocity and FN and FA 
are  the normal and axial aerodynamic forces acting on the 
vehicle through the center of pressure.  On the assumption 
that pitch, yaw and roll motions are uncoupled, the linear 
perturbation (subject to small angle approximation) 

I Translational 
Inputs  Moment  dynamics  dynamics 

nd angle variables of rigid-bo 

(C) 

missile in 

equations of motion are seen to be 

Moment equation : 

fligh sign a1  flow 

Force equation : 

Z = K,p + K2P i- K3a (25) 

Angular relationship: 

z 
" - cp - a + a,; cy, = -. V W V 

In these equations, a denotes the missile angle of attack 
and 0 represents the thrust deflection of an equivalent 
single control engine. The Ki's are  thrust to mass ratios; 
I,, is the yaw moment of inertia;  and I ,  and Io are moment 
arms. A signal flow graph of the rigid body equations is 
shown in Fig. 6b. It is  seen that as z / V +  0, the feedback 
from Z to a is  essentially open. In this case, the rotational 
motion affects the translational motion, but is  unaffected 
by it. The translational motion is often referred to as the 
path  root mode and is  generally ignored in  attitude  control 
system  design and stability analyses on  the premise that 
i / V r  0. (The equations of motion in the pitch plane are 447 
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Tail-wags-dog Rigid body 

I , I 

Elastic body 

Figure 7 Block diagram of system  dynamics. 

identical due to missile  symmetry about  its longitudinal, 
or roll, axis.) 

A derivation of body bending dynamics will now  be 
summarized.12 The elastic body deformation Z,(x, t),  
shown in Fig. 6c as being superimposed on  the rigid body 
motion, is  defined  by 

subject to the boundary conditions 

based on the approximation that the integral over the 
length of the missile  of Fz,(x, s) Y,(x) is  zero. With respect 
to Eq. (32) 

M ,  = lL m(x) Y:(x) dx ( 3  3) 

is  defined as  the generalized  mass of the nth bending mode. 
The net  result  is the transfer function from control thrust 
to vehicle attitude, due to body bending, of 

In practice, a slight amount of structural damping is 
assigned to each bending  mode-usually  of the order of 
ln = 0.01 to 0.05. 

Additional dynamics exist due to nonzero engine  mass 
for gimballed  engines. A simple summation of forces 
normal to the missile  axis for the engine free body yields 
the transfer function. 

tJ 

The normal force distribution on  the missile, in  the 
attitude plane of interest, is  assumed to consist of a control 
force concentrated at the base of the missile (x = 0)  and a 
distributed aerodynamic force FzN. Thus 

Fz(x, t> = FzT(~) 6(x) + FzN(X, t ) ,  (29) 

where 6(x) is the unit dirac-delta function. 

yields the ordinary differential equation 
The Laplace transform of Eq. (27) with respect to t 

(30) 

The homogenous form of Eq. 30, Fz(x, s) = 0, has a 
nontrivial solution consisting of an infinite  set of orthog- 
onal eigenfunctions Y,(x, X,) with a corresponding set 
of eigenvalues X,. The general solution of Eq. (30) is, 
therefore, 

m 

ZB(X, s) = Ads) Y A X ,  = 5 w n ) ,  (3 1) 
n=l 

where w, = dx. The functions Y ,  are  the body bending 
mode shapes and w,  are  the bending frequencies. Upon 
substitution of the general solution into Eq.  30, man- 
ipulation, and integration over the body length, there 
results 

where the anti-resonance factor is commonly referred to 
as  the tail-wags-dog term. Equation (33, wherein S. 
denotes the engine mass moment, represents a simplified 
form of tail-wags-dog  which  is common to both rigid and 
elastic body dynamics. 

Figure 7 shows a block diagram of dominant missile 
dynamics; translational and liquid fuel slosh dynamics 
have been ignored. 

Attitude control system design 

Having defined the linear differential equation description 
of the dynamics of a large booster, consider now the appli- 
cation of the aforementioned w-plane techniques to the 
design of the digital compensator. Many present con- 
trol schemes  basically consist of  attitude and attitude 
rate feedback with continuous-data compensators in  both 
the attitude  rate and attitude  error channels. Sensed 
vehicle attitude is sampled prior to comparison with com- 
manded heading; i.e., attitude  error is defined  in discrete 
form prior to digital-to-analog conversion. It is, therefore, 
realistic to consider employing a single digital controller 
in the attitude error channel, as illustrated in Fig. 8. 

Assume the vehicle  dynamics to consist of tail-wags-dog, 
rigid body, and six bending modes. In addition, a third- 
order linear actuator model is included, resulting in an 
uncompensated system of order 14/17. For  the purpose 
of  specifically illustrating the digital compensator design 
technique, consider a sampling frequency of 12.5 cps. 

The over-all  objective of the design is to obtain a digital 
compensator G,(z)  which,  when  implemented as shown in 
Fig. 8, will assure the desired performance of the system 
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Figure 8 Attitude control system  using  digital attitude 
error-channel compensation. 

plant just described. For  the classical second-order con- 
tinuous-data system, the stability margins necessary to 
achieve the desired time response characteristics are deter- 
mined from known  relationships which exist between time 
response and frequency response phase and gain margins. 
However, for high-order systems, no simple relationships 
exist between time and frequency response characteristics. 
For systems of this complexity, familiarity  with the 
problem indicates the stability margins necessary for 
acceptable system performance. The exact analogous  sit- 
uation exists for  the design in  the w-domain; Fig. 4 defines 
the design requirements for low-order systems; problem 
familiarity is required for high-order systems. For  the 
sake of design illustration, the following design objectives 
are given: 

1. f 6  dB of gain margin on  the conditionally  stable 
rigid body mode. 

2. A  minimum of 30 degrees phase  margin on the rigid 
body mode. 

3. The  control  or rigid body  natural frequency should  be 
0.2 to 0.4 cps. 

4. Phase  stabilization  (stable regardless of gain) of the 
lowest frequency bending  mode with minimum  phase 
margins of f60  degrees. (Phase  stabilization of the 
first bending  mode facilitates maximizing system band- 
width.) 

5. Gain stabilization  (stable regardless of phase) of the 
remaining bending modes  with  a  minimum of 12 dB 
attenuation. 

The (uncompensated) open loop frequency response, 
@/Pc( ju ) ,  for vehicle parameters typical of a  large  booster 
at a critical flight time are presented in Figs. 9a and 
9b. The corresponding Nyquist plot is shown in Fig. 10. 
Detailed  examination of these responses indicates: 

1. There is one clockwise encirclement of - 1.0 point. 
Based on  the Nyquist  criterion, one counterclockwise 
encirclement is required for closed loop stability due 
to the unstable rigid body  mode discussed in Example 1. 

2. All six bending modes are gain stabilized. The least 
attenuated is the first bending mode which has a peak 

I Frcquency, v 

Figure 9 Open-loop frequency response  of booster atti- 
tude control system; (a) magnitude vs frequency, (b) phase 
vs frequency. 

amplitude of 0.47; all of the remaining modes are 
attenuated  more  than 20 dB. Although two high- 
frequency bending  modes were reflected into  the 
-w,/2 5 w 5 w./2 frequency range by the sampling 
process, their effect on  the system frequency response 
is insignificant. 

3. The tail-wags-dog anti-resonance  occurs at a u frequency 
of 0.65 for this  particular  plant. 449 
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Based on these factors, the following  modifications to 
the system  frequency  response are necessary for satisfaction 
of the aforementioned  design  specifications : 

1. At least 35 degrees  phase  lead is necessary in the low- 
frequency  (rigid  body)  range. The associated  increase 
in system  gain  will  result in the desired +6 dB  gain 
margin for the rigid  body  mode and also increase its 
natural frequency, as seen from Fig.  9a.  However, the 
peak  magnitude of the first  bending  mode will also  be 
amplified. 

2. To prevent  first  bending  mode  resonance,  sufficient 
phase  lag  must  be introduced in the vicinity of this 
mode to attain phase  stabilization-at  least =t60 degrees 
phase  margin. 

3. To suppress the effects of all higher  bending  modes, 
increased attenuation is desirable in the high  frequency 
range. 

In summary,  compensator  requirements are: phase  lead 
and amplification  in the low  frequency range; phase  lag 
in the first  bending  mode  frequency range; and maximum 
attenuation in the higher  bending  mode  frequency  range. 
Figure  11 illustrates the frequency  response of an accept- 
able compensator, and Fig.  12a  shows the w-plane Nyquist 
of the compensated  system.  The w-plane and z-plane 
response of the compensator are given,  respectively, by 

-270" 

\ -120" 

-90" 

Figure 10 w-plane Nyquist plot of open-loop system. 

1 .246(z2 - 1.500782 + 0.76186)(~ - 0.93426)(~ + 1.0)' 
(2' - 1.31015~ + 0.60702)(z2 - 1.19947~ + 0.63636)(~ - 0.51685)' G,(z) = - 

The time  response of the compensated  system to a step in 
a, (wind  disturbance) was obtained through digital 
simulation and is  shown  in  Fig.  12b. Further verification 
of the design  acceptability is evidenced in the character- 
istics of this response. 

The  preceding  design  has  served to illustrate the appli- 
cation of  W-plane  frequency response  techniques to digital 
compensator  definition for a complex  system. This design 
represents a first, but important, step in an over-all  design 
procedure.  Simulation  studies and implementation con- 
siderations are necessary  supplements to linear  system 
design.  Pertinent  system  nonlinearities and the effects of 
time  varying  parameters  may  be  evaluated through 
simulation.  Compensator  synthesis,  desired  signal  condi- 
tioning, and data form (discrete, continuous) conversion 
characteristics require definition. For example : computer 

450 programming of the digital  filter  must  generally  be  oriented 
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to minimal  computing requirements; presampler low  pass 
filtering, as a means to eliminate the reflection of signifi- 
cant high  frequency  dynamics,  is an important practical 
consideration. 

Conclusions 

Basic principles for efficient definition of stabilization 
filters for sampled-data  systems  have  been  presented. 
w-plane  design  techniques for sampled-data systems  were 
emphasized  because of the resultant convenience  they 
afford for dynamic  compensation of complex  systems. 
Important relationships  between  frequency (w = j u )  and 
time responses  were  presented. A technique which directly 
defines a continuous-data compensator for a sampled-data 
system  was  discussed. 

Application of  W-plane  design techniques  resulted  in an 
estimate of digital stabilization filter  complexity for a 



-60 - - 

I Frequency, Y 

Figure 11 Frequency response of compensator; (a)  magni- 
tude vs frequency, (b) phase vs frequency. 

large  booster vehicle. Although  certain  system  imple- 
mentation  problems  remain to be solved, the estimate 
does  provide a basis for  determination of computing 
requirements. 
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