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Design Principles for Sampled-Data Systems with
Application to Attitude Control of a

Large, Flexible Booster

Abstract: This paper reviews Z-transform and W-transform theory and discusses in detail its application to dynamic compensation
of linear sampled-data control systems. Both sampled-data (digital) and continuous-data (analog) compensator synthesis methods
are discussed. With respect to digital compensator design, w-plane closed-loop pole positions are related to time response characteristics,
analogous to the well known relationships between s-plane pole positions and time response parameters for continuous-data systems.
An example is given which illustrates the design technique wherein time and frequency response characteristics are compared. A
digital stabilization filter is derived for the attitude control system of a missile typical of the Saturn class.

Introduction

Fundamental digital filter theory has been well understood
for some time. Its application to the aerospace industry is,
however, of more recent origin, although digital controllers
of both the conventional and the adaptive types have been
considered extensively for flexible booster attitude con-
trol."? Nevertheless, existing attitude control systems are
essentially analog in nature. Although proven to be
reliable in their operation, the design/fabriaction dura-
tions have been extremely long and stand to curtail future
analog implementation. Detailed considerations are dis-
cussed herein which provide for efficient definition of digi-
tal stabilization filters. Digital programs have been written
for general application of the design techniques to linear
mixed-data systems characterized by “‘semi-slow,” as well
as fast, sampling and have been employed for the examples
of this paper.

Theoretical review

A sampled-data system is characterized by the presence
of one or more signals occurring at intermittent times.
Sampling in physical systems occurs essentially in the form
of signal sensing for a brief time interval, followed by a
longer interval of no signal sensing. In the case of systems
employing digital computers, sampling corresponds to the
repetitive occurrence of a number for processing in an
arithmetic fashion. Based on the fundamental assumption
that the sampling interval is small in comparison to the
time constants of the physical system under consideration,
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a convenient mathematical description of the sampling
process exists.® As is generally known, the sampler model
is referred to as an impulse modulator and establishes a
one-to-one correspondence between the weighting of a train
of impulse functions and the sequence of equally-spaced
values of the signal being sampled.

In conventional mathematical notation, a sampled
function of time may be expressed as

() = Z {nT) 8t — nT), 0

where f(¢) represents the signal being sampled. One form
of the Laplace transform of Eq. (1) is

L i F(s + jnw,), (2)

F*(s) = p

where w, = 2r/T is the sampling frequency. Equation (2)
exhibits a well known property of discrete transfer func-
tions. Since F*(s) is periodic in s with period jw,, the poles
and zeros of F*(s) are periodically distributed throughout
the s-plane. Viewed geometrically, this periodicity occurs
in the form of repeated strips in the s-plane, which are
parallel to the real axis and w, in width. This is shown in
Fig. 1, where the strip that is symmetrically oriented about
the real axis is customarily referred to as the primary strip.

An alternate form for the Laplace transform of Eq. (1) is

FHs) = ZO {nT)e™" . (3)




The change of variable z = ¢'T allows Eq. (3) to be written
as

F(z) = g f(nT)z", 4)

where F(z) = F*(1/T ln ).

Equations (3) and (4) define the operation known as the
Z-transform. A property of the change of variable z = 7
is that the primary strip in the s-plane maps into the entire
z-plane with the left-half primary strip mapping into the
interior of the z-plane unit circle. Furthermore, all other
s-plane strips map into the z-plane in exactly the same
manner. Although the apparent periodic pole-zero distri-
bution has been removed, uniqueness between F*(s) and
F(2) exists only if (—w,/2 + mw,) < 0 < (+w,/2 + mw,)
and (—r + m27) < arg z < (v + m2x) where m is an
integer. It may occur in practice that uniqueness is essenti-
ally preserved on the basis that the frequency range of
interest is less than w,/2. In this case, m is 0.

The response at the sample instants, c¢(nT), of a linear
continuous (time-invariant) system G(s) to the input F*(s)
is obtained from the inverse Z-transform as expressed by
the contour integral

c(nT) = 2—;_192 C(" " dz, (5

where the contour T' encloses all of the poles of C(z)
2", The derivation® of Eq. (5) results in a range of z for
which —7 < arg z < 7 or —w,/2 < w < w,/2. That is,
c(nT) is determined by the poles of C*(s) in the primary
strip. This is to be contrasted with the inverse Laplace
transform of C(s) as given by

ot) = ﬁ; f T PG ds. 6)

o—jo

It follows from the property that F*(s) is rational in
e'” (which is obtained from a closed form expression of
Eq. (3)) that ¢(¥) is determined by an infinite set of poles
throughout the s-plane.

Expressing z* ' as exp [(1/T In z) (n — 1) T] allows Eq.
(5) to be written as

1 -
c(nT) = gy fr C)e/ 2T g, (7

If nT is arbitrarily replaced by ¢, the integration will result
in a continuous response ¢,(f) which is exactly equal to the
time response c¢(f) at the sampling instants and approx-
imately equal to c¢(¢) at other than the sample instants.
The importance of this substitution lies in the fact that the
approximate response c¢;(f) may be readily characterized
by the pole position of the dominant modes of C*(s) in the

jo
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Figure 1 Periodic strips of width w, in the s-plane.

primary strip. The advantages of relating time and fre-
quency domain parameters are well appreciated for con-
tinuous-data systems and prompted Johnson, Lindorff,
and Nordling* to propose the above substitution of ¢ for
aT. In this manner, time and frequency parameters are
likewise related for the sampled-data problem. Johnson,
et al have shown that the substitution of ¢ for nT is justified
if the frequency range of the system’s dominant dynamics
is <w,/2. Methods employing the modified Z-transform
and the convolution summation provide an exact deter-
mination of intersample response but do not readily
permit the time-frequency domain correlation.

The W-transform has been proposed as a means to allow
the use of all continuous-data compensation methods for
sampled-data synthesis. The W-transform is defined by
the change of variable z = (1 + w)/(1 — w). Thus,

T2 T

z—1 sT
— = = h —. 8
w z _|._ 1 eaT/Z + e—sT/Z tan 2 ( )

This bilinear transformation maps the interior of the
z-plane unit circle into the entire left-half w-plane. This
fact allows application of linear continuous-data system
stability criteria to the corresponding sampled-data prob-
lem; i.e., Routh-Hurwitz, Nyquist, etc. Further, the
Z — W-transformation produces transfer functions which
are rational fractions in the variable of interest—frequency
in the case of Bode and Nyquist methods application—
thereby allowing use of asymptotic plotting techniques.
For s = jw, the complex variable w = u 4 jv of Eq. (8)
becomes # = 0 and

wT
v = tan 5 (9)

Equation (9) defines the scaling between the “‘real” fre-
quency w and the “fictitious” frequency v.
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R(s) + E(s) O/O E#(s) G.(s) C(s)
P

Figure 2 A basic sampled data control system.

Figure 3 Two methods of cascade compensation; (a) con-
tinuous-data compensation, (b) sampled-data compensation.
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Design principles for compensation of
sampled-data systems

A basic sampled-data control system with G,(s) repre-
senting the process to be controlled is shown in Fig. 2.
It often occurs in practice that the dynamic performance
of a given control system is inadequate and some means
of compensation must be employed in order to result in
acceptable system performance. In general, dynamic com-
pensation is obtainable through introduction of an element
either in series or in parallel with the given process. The
former is referred to as cascade compensation and the
latter as feedback compensation. Restricting attention to
single-degree-of-freedom systems,” there is no loss in
generality, in terms of providing desired closed loop poles,
by considering only cascade compensation. For sampled-
data systems, there are two methods of achieving cascade
compensation; either by continuous-data filters or discrete-
data filters. These two methods are shown in Figs. 3a and
3b, where, respectively, the sampled data is converted to
continuous-data form prior to being operated on by
the compensation filter G (s), and the sampled data is
operated on by a discrete filter G.(z) prior to data-form
conversion. In reality, the discrete filter may be a con-
tinuous-data filter with a post sampler or an operation
within a digital computer. In any event, the zers-order hold
is a simple model for digital-to-analog data conversion.

Both sampled-data and continuous-data compensation
methods are discussed in this paper. In the case of con-
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tinuous-data compensator design, for the class of systems
discussed in a later section, a sampled-data compensator
is first obtained. The following discussion is, therefore,
devoted to the subject of sampled-data compensation.

o Sampled-data compensation

In general, the design of a sampled-data compensator may
be performed for linear dynamical systems described in
either the s, z, or w variables. Frequency response and/or
root-locus techniques are available in all three domains.
As previously mentioned, absolute and relative stability
criteria are essentially the same for transfer functions in s
or w; therefore, stability properties may be readily evalu-
ated in either domain. Frequency response methods for
which s = jw are, however, based on finite term approx-
imation of an infinite summation, Eq. (2). Evaluation of
absolute stability is directly apparent from a z-plane root
locus plot; however, a determination of relative stability is
obtainable only from a root locus analysis wherein the
s-plane constant ¢ and w,, lines are mapped into the z-plane.

The w-plane approach is, therefore, favored by the
authors for the convenience it provides in the form of fre-
quency response locus shaping techniques, which are
preferable for high-order (complex) systems design.
Further, efficient and accurate implementation of fre-
quency response locus determination, in the form of
digital computer programs, may be constructed for systems
described in z. To determine the G*(jw) locus, a natural
logarithm must be evaluated (or an infinite series truncated
for s-domain system description); whereas, to determine
the G(jv) locus, only an algebraic transformation is re-
quired.

For completeness of design methods in the w-domain,
a technique for estimating the frequency and damping
characteristics of the system time response is highly
desirable. In the s-plane, a constant damping ratio { is
represented by a straight line radiating from the orgin.
The set of points in the w-plane which composes a constant
¢ curve (¢ = {;) is defined from Eqg. (8) by

rxw,.Tem—r.ﬂ)*/’wnT -1

(u + jo), = (10)

SronTpiA=Eani/Punl 1

Figure 4 shows how the constant { lines in the s-plane
map into curves in the w-plane. Geometrically, the ficti-
tious damping ratio £ represents in the w-plane the same
quantity that ¢ represents in the s-plane. Thus, constant
£ lines emanate radially from the origin in the w-plane, as
shown in Fig. 4. Therefore, if the fictitious frequency v
and damping ratio £ are known, actual damping { may be
obtained by inspection of Fig. 4, and real frequency w, by
direct transformation from v.

Alternately, Fig. 4 provides a means for determining
the £ value corresponding to desired damping ratio ¢ of
the ¢,(?) response. The £ value is defined by the £ line which
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Figure 4 Mapping of constant { and constant ¢ curves in
w-plane.

intersects the desired ¢ curve at the frequency, in v, of
interest. Moreover, it is readily seen from the v-w relation-
ship that Fig. 4 provides a general design guide independent
of the sample period T, which only determines the fre-
quency scaling along the constant { curve.

If the M, criterion is used as a means for providing
desired damping of a dominant quadratic mode, the system
frequency response locus P(jv) should be reshaped for
tangency to the M, curve defined® by M, = 1/28 /1 — £
Should criteria other than M, be employed for obtaining
desired system relative stability via the w-plane synthesis,
Fig. 4 provides equally useful information. For example,
w-plane root locus plots can be used in conjunction with
Fig. 4 to obtain a system design having desired damping
and frequency of a particular mode or modes.

To illustrate application of the above discussed techni-
ques to a practical system of interest, consideration is given
to a missile attitude control system design.

o Example 1

Assume that the missile is a rigid body; no significant
bending and sloshing dynamics. On the assumption that
the actuator transfer function is unity, G,(s) of Fig. 5
includes only rigid body dynamics in a single plane—either
pitch or yaw. The linear differential equations used to
define rigid body rotational motion are (refer to next
section): :

Moment equation:
$ —ca+cf =0, (11)
Angle relationship:

(12)

a=o, + P a,=

ﬂ%

R(s) + 6, _ 90)
s
2! G2 |—o
:
(a)
4.0 N
35
3.0
251+
20

{=03
Closed

~
S / Joop pole

—26.5 —20 15 —-10 —-05 O 05 1.0 15 20

4 — (b)
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L] 0 |
0 0.5 1.0 1.5 2.0

Time in scconds —» (C)
Figure 5 Example 1 system design; (a) block diagram,

(b) w-plane root-locus of compensated system, (c) time re-
sponse of system to step input.

Block diagram reduction of the above equations yields

Gl = w2 (13)
for Fig. 5 where R(s) = (¢1/cs)a,(s). Values representative
of a large booster are ¢; = 0.4187 and ¢, = 0.9363. An
open-loop pole exists at \/;1 and the plant is, therefore,
unstable. Physically interpreted, this corresponds to the
vehicle center of pressure being ahead of (with respect
to the engine gimbal plane) the center of gravity. It will
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be shown that feedback compensation, as illustrated in
Fig. 5a results in a conditionally stable system.

A sampling frequency of 10 samples/second was
selected. A rigid body mode damping of 0.3 < ¢ < 0.4 at
a damped natural frequency of approximately 12.75
radians per second (v = 0.74) was desired. The w-plane
root-locus technique was used in conjunction with Fig. 4
to design a lead type digital compensator to stabilize the
system. The following digital compensator was obtained:

113.6(——“f— + 1)

0.45

G.(w) = ” , (14)
%675 T !

or

G = 3285 — 0.3793) (13

(z + 0.928)

The w-plane root locus of the compensated system is
shown in Fig. 5b. The { = 0.3 and { = 0.4 lines are super-
imposed on this plot to indicate satisfaction of that design
objective. The time response of this system to a step input
r(® = u(); R(s) = 1/s) is presented in Fig. 5c. Inspection
of the damping and frequency of this response offers
further verification that the design objectives have been
met.

This example clearly illustrates the relationship be-
tween w-plane pole positions and time response properties.

o Continuous-data compensation

From Fig. 3a, it is seen that the open-loop pulse transfer
function is

SO 1= a0 | (16
or equivalently

St~ oofesea].

(17)

Since [Gi(s) Go(s)]* # G*%(s) G*(s), the basic difficulty
of continuous-data compensator synthesis for sampled-
data systems is that G .(s) is trapped within the operation
of obtaining a pulse transfer function. Stated differently,
although the poles of G,G,(s) are related to those of
G,G.(2) by the relationship z = ¢°”, there is no simple
analytic relationship between the zeros of G,G,(s) and
those of G,G(2), except for the special case where sampling
is sufficiently fast to validate the small angle approx-
imation of Eq. (8), yielding’ z = (1 + w)/(1 — w) =
(1 + sT/2)/(1 — sT/2). Thus, even though a deter-
mination of relative stability may be obtained from a root
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locus or Nyquist plot of P*(s) = C*(s)/E*(s) of Eq. (17),
the effect of the compensator is dependent upon the
parameters of G,(s). This greatly complicates the speci-
fication of an acceptable G.(jw). In fact, pursuing the
problem in this manner amounts to synthesis on a trial-
and-error basis.®"*

The approach taken herein generally parallels that
contained in Kuo,'’ without the introduction of the
r-transform and allows a direct solution of the continuous-
data compensator problem for the class of systems repre-
sented by Fig. 3a. Let P*(s) denote the open-loop pulse
transfer function of the uncompensated system; that is

PHs) = (1 — )[G—”] (18)

It is assumed that an adequately compensated system loop
transmission P*(s) may be defined through application of
frequency response locus shaping or root locus techniques
as previously discussed. Recognition that a zero-order
hold precedes the compensator G .(s) in Fig. 3(a) suggests
rewriting P* (1/T'In z) = P(2) as

z— 1

Pc<z>=z—‘z—l[ : -m@]- (19)

From a partial fraction expansion of P.(z)/(z — 1), there
results

P, k;
. > A (20)
It is known from basic Z-transform theory that

z—"fz—=z[2 - ] (21)

i 2Ty s+ a;

where Z[Z; (k;)/(s + a.)] denotes the Z-transform opera-
tion and «; = exp (—a;T). From Egs. (17), (19), and (20),
it follows that

GG (s)]* kez
——r = ——— 22
[ N s=1/TInz Z Z — o (22)
From Egs. (21) and (22), one obtains
Go(8)G,(s) ks
TSI\ AT S 3
s Z s + a; (23)

If the frequency range of interest does not exceed w,/2,
it may be assumed that a; = (—Ina;)/ T with the imaginary
part of a; in the interval from —x/T to =/T. By this as-
sumption, a unique compensator is determined from
solution of Eq. (23) for G.(s). In the event that G .(s)
should prove to have a higher order numerator than
denominator, physical realizability may be established by
addition of a pole(s) with sufficiently large real part.
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(lies in down-range plane)

Center of pressure
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{a)

graph of rigid-body dynamics, (c) bending variables.

Booster attitude control

The approach taken to design of an ascent-to-orbit
attitude control system entails linear time invariant system
analysis referenced to a number of flight time operating
points, followed by analog (and digital) simulation studies
for final design and evaluation purposes. This requires the
derivation of linear (perturbation) differential equations
describing the dynamical properties of the missile in the
neighborhood of expected flight conditions. Such mathe-
matical models, to various degrees of sophistication, have
long been in existence;'*"** however, the development of a
basic set of equations will now be concisely summarized
as a prelude to statement of a control system design prob-
lem for which a digital controller is required.

Figure 6a illustrates the aerodynamic and thrust forces
acting on a rigid missile in atmospheric flight along with the
pertinent orientation variables. As shown, the illustration
actually pertains to lateral, or yaw, motion. As such, yaw
component of attitude error is represented by ¢ and the
wind W is the lateral component of total wind. Further,
V represents the missile inertial velocity and Fy and F,
are the normal and axial aerodynamic forces acting on the
vehicle through the center of pressure. On the assumption
that pitch, yaw and roll motions are uncoupled, the linear
perturbation (subject to small angle approximation)

1 1/(sV) i

‘ Translational

Moment dynamics dynamics

()

Elastic
bady
axis

Rigid /\
body

axis

{e)

Figure 6 Dynamics of a large, flexible booster; (a) force and angle variables of rigid-body missile in flight, (b) signal flow

equations of motion are seen to be

Moment equation:

. Fy l, Tl
¢ = cila — ¢,0; ¢ = ~Hae s Cy = 2 (24)
]yll I’IHI
Force equation:
Z = Ko+ K + K (25)
Angular relationship:
W
V—qo—oz-i-aw, @ = (26)

In these equations, a denotes the missile angle of attack
and B represents the thrust deflection of an equivalent
single control engine. The K;’s are thrust to mass ratios;
I,, is the yaw moment of inertia; and /, and /g are moment
arms. A signal flow graph of the rigid body equations is
shown in Fig. 6b. It is seen that as Z/¥ — 0, the feedback
from Z to « is essentially open. In this case, the rotational
motion affects the translational motion, but is unaffected
by it. The translational motion is often referred to as the
path root mode and is generally ignored in attitude control
system design and stability analyses on the premise that
Z/V = 0. (The equations of motion in the pitch plane are
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M (s +a,)

Elastic body
Figure 7 Block diagram of system dynamics.

identical due to missile symmetry about its longitudinal,
or roll, axis.)

A derivation of body bending dynamics will now be
summarized.'” The elastic body deformation Z.(x, 7),
shown in Fig. 6¢ as being superimposed on the rigid body
motion, is defined by

3 [ azzd} 9°Z

— | EI(x) =53¢ = , ),

3%’ () % + m(x) a5 Fz(x, 1) (27
subject to the boundary conditions

8°z, d°z,

e =k = O for x =0, x = L. (28)

The normal force distribution on the missile, in the
attitude plane of interest, is assumed to consist of a control
force concentrated at the base of the missile (x = 0)and a
distributed aerodynamic force F . Thus

Fa(x, ) = Fz,(8) 8(x) + Fz,(x, 9), (29)

where 8(x) is the unit dirac-delta function.

The Laplace transform of Eq. (27) with respect to ¢
yields the ordinary differential equation
a4 d*(x, s)

e I:El(x) Z-de] + m(x)Z(x,5) = Fz(x,s).
(30)

The homogenous form of Eq. 30, F,(x, s) = O, has a
nontrivial solution consisting of an infinite set of orthog-
onal eigenfunctions Y,(x, \,) with a corresponding set
of eigenvalues \,. The general solution of Eq. (30) is,
therefore,

Z(x,s) = Z 45) Yl i), (1)

where w,, = \/ )\_,, The functions Y, are the body bending
mode shapes and w, are the bending frequencies. Upon
substitution of the general solution into Egq. 30, man-
ipulation, and integration over the body length, there
results

Y (0) Fz,(s)

An(s) g Mn <s2 + wi) E

(32)
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based on the approximation that the integral over the
length of the missile of F,,(x, 5) Y (x) is zero. With respect
to Eq. (32)

M, = f m(x) Y(x) dx (33)

is defined as the generalized mass of the nth bending mode.
The net result is the transfer function from control thrust
to vehicle attitude, due to body bending, of

eox,8) s~ _Y(0) Yi(x) _ 4z,
Fz.(s) 2; MG+ T Tax (34)

In practice, a slight amount of structural damping is
assigned to each bending mode—usually of the order of
¢ = 0.01 to 0.05.

Additional dynamics exist due to nonzero engine mass
for gimballed engines. A simple summation of forces
normal to the missile axis for the engine free body yields
the transfer function.

% (s) = (52 + wZTWD); wZTWD = ’&7—; » (35>

where the anti-resonance factor is commonly referred to
as the tail-wags-dog term. Equation (35), wherein S,
denotes the engine mass moment, represents a simplified
form of tail-wags-dog which is common to both rigid and
elastic body dynamics.

Figure 7 shows a block diagram of dominant missile
dynamics; translational and liquid fuel slosh dynamics
have been ignored.

& Attitude control system design

Having defined the linear differential equation description
of the dynamics of a large booster, consider now the appli-
cation of the aforementioned w-plane techniques to the
design of the digital compensator. Many present con-
trol schemes basically consist of attitude and attitude
rate feedback with continuous-data compensators in both
the attitude rate and attitude error channels. Sensed
vehicle attitude is sampled prior to comparison with com-
manded heading; i.e., attitude error is defined in discrete
form prior to digital-to-analog conversion. It is, therefore,
realistic to consider employing a single digital controller
in the attitude error channel, as illustrated in Fig. 8.

Assume the vehicle dynamics to consist of tail-wags-dog,
rigid body, and six bending modes. In addition, a third-
order linear actuator model is included, resulting in an
uncompensated system of order 14/17. For the purpose
of specifically illustrating the digital compensator design
technique, consider a sampling frequency of 12.5 cps.

The over-all objective of the design is to obtain a digital
compensator G .(z) which, when implemented as shown in
Fig. 8, will assure the desired performance of the system
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Figure 8 Attitude control system using digital attitude
error-channel compensation.

plant just described. For the classical second-order con-
tinuous-data system, the stability margins necessary to
achieve the desired time response characteristics are deter-
mined from known relationships which exist between time
response and frequency response phase and gain margins.
However, for high-order systems, no simple relationships
exist between time and frequency response characteristics.
For systems of this complexity, familiarity with the
problem indicates the stability margins necessary for
acceptable system performance. The exact analogous sit-
uation exists for the design in the w-domain; Fig. 4 defines
the design requirements for low-order systems; problem
familiarity is required for high-order systems. For the
sake of design illustration, the following design objectives
are given:

1. 4=6 dB of gain margin on the conditionally stable
rigid body mode.

2. A minimum of 30 degrees phase margin on the rigid
body mode.

3. The control or rigid body natural frequency should be
0.2 to 0.4 cps.

4. Phase stabilization (stable regardless of gain) of the
lowest frequency bending mode with minimum phase
margins of 60 degrees. (Phase stabilization of the
first bending mode facilitates maximizing system band-
width.)

5. Gain stabilization (stable regardless of phase) of the
remaining bending modes with a minimum of 12 dB
attenuation.

The (uncompensated) open loop frequency response,
®/8.(jv), for vehicle parameters typical of a large booster
at a critical flight time are presented in Figs. 9a and
9b. The corresponding Nyquist plot is shown in Fig. 10.
Detailed examination of these responses indicates:

1. There is one clockwise encirclement of —1.0 point.
Based on the Nyquist criterion, one counterclockwise
encirclement is required for closed loop stability due
to the unstable rigid body mode discussed in Example 1.

2. All six bending modes are gain stabilized. The least
attenuated is the first bending mode which has a peak

(a)

1st bending mode

T T TTTTTTT

20d bending mode

5th
(reflected)
0.01

6th bending mode (reflected)

Tail-wags-dog

Magnitude, [Gp(jv) |

0.001 Lol [

(b)

~ 60+

—120 -

—180

~240

—300

Phasc in degrees

--360 Ll L1t

|
0.01 0.1 10

Frequency, v

Figure 9 Open-loop frequency response of booster atti-
tude control system; (a) magnitude vs frequency, (b) phase
vs frequency.

amplitude of 0.47; all of the remaining modes are
attenuated more than 20 dB. Although two high-
frequency bending modes were reflected into the
—w,/2 < w < w,/2 frequency range by the sampling
process, their effect on the system frequency response
is insignificant.

3. The tail-wags-dog anti-resonance occurs at a v frequency

of 0.65 for this particular plant.
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Based on these factors, the following modifications to
the system frequency response are necessary for satisfaction
of the aforementioned design specifications:

1. At least 35 degrees phase lead is necessary in the low-
frequency (rigid body) range. The associated increase
in system gain will result in the desired +6 dB gain
margin for the rigid body mode and also increase its
natural frequency, as seen from Fig. 9a. However, the
peak magnitude of the first bending mode will also be
amplified.

2. To prevent first bending mode resonance, sufficient
phase lag must be introduced in the vicinity of this
mode to attain phase stabilization—at least £=60 degrees
phase margin,

3. To suppress the effects of all higher bending modes,
increased attenuation is desirable in the high frequency
range.

In summary, compensator requirements are: phase lead
and amplification in the low frequency range; phase lag
in the first bending mode frequency range; and maximum
attenuation in the higher bending mode frequency range.
Figure 11 illustrates the frequency response of an accept-
able compensator, and Fig. 12a shows the w-plane Nyquist
of the compensated system. The w-plane and z-plane
response of the compensator are given, respectively, by

0.034 (0.28)

w w’ 2(0.26)
(1.365)(—— + 1)[ s + 0.28)

—270°

—210°,

—180°

—150°

Figure 10 w-plane Nyquist plot of open-loop system.

w—l—l:l

G.(w) = 2 2(0.42) 200.33) , and (37)
w w ) ” .
G.(2) = 1.246(z° — 1.50078z + 0.76186)(z — 0.93426)(z + 1.0) ' -

The time response of the compensated system to a step in
o, (wind disturbance) was obtained through digital
simulation and is shown in Fig. 12b. Further verification
of the design acceptability is evidenced in the character-
istics of this response.

The preceding design has served to illustrate the appli-
cation of W-plane frequency response techniques to digital
compensator definition for a complex system. This design
represents a first, but important, step in an over-all design
procedure. Simulation studies and implementation con-
siderations are necessary supplements to linear system
design. Pertinent system nonlinearities and the effects of
time varying parameters may be evaluated through
simulation. Compensator synthesis, desired signal condi-
tioning, and data form (discrete, continuous) conversion
characteristics require definition. For example: computer
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(ZZ — 1.31015z + 0.60702)(Z — 1.19947z + 0.63636)(z — 0.51685)

to minimal computing requirements; presampler low pass
filtering, as a means to eliminate the reflection of signifi-
cant high frequency dynamics, is an important practical
consideration.

Conclusions

Basic principles for efficient definition of stabilization
filters for sampled-data systems have been presented.
w-plane design techniques for sampled-data systems were
emphasized because of the resultant convenience they
afford for dynamic compensation of complex systems.
Important relationships between frequency (w = jv) and
time responses were presented. A technique which directly
defines a continuous-data compensator for a sampled-data
system was discussed.

Application of W-plane design techniques resulted in an
estimate of digital stabilization filter complexity for a
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Figure 11 Frequency response of compensator; (a) magni-
tude vs frequency, (b) phase vs frequency.

large booster vehicle. Although certain system imple-
mentation problems remain to be solved, the estimate
does provide a basis for determination of computing
requirements.
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