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Sensitivity  Constrained  Optimal  Control  Synthesis 

Abstract: A constraint  on  the  sensitivity to plant  parameter  uncertainties  is  introduced  in  the  synthesis of optimal  linear  controls by 
adding a sensitivity  function to a quadratic  form  performance  criterion.  The  synthesis is carried  out  in the frequency  domain  using 
both  conventional and Bode  sensitivity functions;  open-loop  and  closed-loop  controls are of  necessity treated  separately  because the 
sensitivity  functions are different for  each  case.  The  optimal  control  based on the  closed-loop  Bode  sensitivity  is  shown to satisfy a 
scalar  Wiener-Hopf equation; the  same  type of equation is  also  satisfied  by the optimal  control  based on the open-loop  conventional 
sensitivity,  but  the  response  characteristics are different.  Using  the  conventional  closed-loop  sensitivity, the optimal control is  shown to 
satisfy an equation  analogous to the Wiener-Hopf equation, but which  is  more  difficult to solve  because the  control  enters  quadratically 
rather than linearly.  Examples  illustrate  the  application of  derived  results. 

Introduction 

The mathematical  model for a plant usually includes one 
or  more (constant)  parameters whose values are subject 
to some uncertainty. Therefore, when optimal  control 
synthesis is performed using a set of assigned nominal 
values for  the uncertain  parameters, it becomes necessary 
to consider the sensitivity of the  optimal system to pertur- 
bations of these parameters  away from  the assigned 
nominal values. Of course,  after the  optimal  control is 
synthesized using the assumed nominal values for  the 
uncertain  parameters, a sensitivity analysis can  be per- 
formed on  the resulting system to determine whether the 
sensitivity is “sufficiently small” and what modifications, 
if any, are necessary. However, a more satisfactory ap- 
proach consists of initially formulating the optimal control 
synthesis problem such that an appropriate sensitivity 
constraint relative to plant parameter  uncertainties is 
inherent  in the derived control. 

Although sensitivity to uncertainties in plant  parameters 
plays an essential role in classical control theory,’ sensiti- 
vity considerations  have largely been ignored  in  optimal 
control  theory until relatively recently.’-* In optimal 
systems, the sensitivity of either the performance 
the system resp0nse,4-~  or  both  can  be constrained; the 
choice depends on what is most meaningful relative to  the 
problem at hand. For example, in linear systems with a 
quadratic performance index, the performance index 
sensitivity is often of little interest compared to the re- 
sponse sensitivity. 

In this  paper a linear,  time-invariant  plant with a single 
control variable, and a quadratic performance index is 
considered. A constraint on  the sensitivity of the system 
response (output sensitivity) to plant  parameter uncer- 
tainties is introduced  in the optimal control synthesis by 

including sensitivity functions in the  quadratic performance 
index. That is, the optimality of the  control is defined 
both with respect to sensitivity as well as to the  error  and 
control action. Improvement of the system sensitivity is 
obtained  by increasing the sensitivity function weighting 
factors. The use of sensitivity functions  in a quadratic 
performance index was independently proposed  by Siljak 
and Dorf: and applied by Siljak and Burzio5 to the  prob- 
lem of controller  parameter  optimization. The present 
paper may be considered as  an extension of that work to 
the synthesis problem. 

Two definitions of sensitivity are considered: the con- 
ventional one in which the sensitivity is just  the first partial 
derivative of the system time response with respect to a 
plant  parameter, and  the classical frequency domain 
definition due  to Bode. Because the sensitivity to a plant 
parameter differs for open-loop and feedback systems 
having the same  nominal response, it is necessary to treat 
the synthesis of optimal open-loop and feedback controls 
separately. This is in contrast to the case without a sensiti- 
vity constraint, where it is often more convenient to first 
synthesize an open-loop control  and  then  from it construct 
an equivalent feedback system. The synthesis is carried out 
entirely in  the frequency domain,  and  the  optimal  controls 
are shown to satisfy scalar equations of the transformed 
Wiener-Hopf type. 

When more general classes of systems with other types 
of sensitivity constraints and performance  criteria are to be 
considered, it is necessary to formulate  the sensitivity 
constrained optimal  control synthesis problem in  the  time 
domain”’ rather  than  in  the frequency domain.  Although a 
study of the  more general problem is outside the scope of 
the present paper, it is of interest to  note  that except for 427 
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(6) 
Figure 1 Linear  control  system;  (a)  open-loop  control, 
(b) closed-loop  control. 

the intermediate step of introducing sensitivity equations 
to form an expanded state vector, optimization with 
sensitivity constraints is similar to optimization with state 
variable constraints. 

Problem statement 

Consider the linear control system shown in Fig. 1 where 
the plant transfer function is G(s, pl, . . . p N ) ,  and pl, . . . ,pN 
are  the values of the N constant plant parameters. These 
parameters are either the poles and zeros of G(s), the 
coefficients  of the numerator and denominator polynomials 
of G(s), or the values of other quantities, e.g., stability 
derivatives if G(s) is an airframe transfer function. If the 
values of these parameters are all known, the control 
u*(s) which optimizes the quadratic form performance 
index 

J = lm [ez(t) + kZu2(t)]  d t ;  k = constant, (1) 

is 

where 
e(t) = R(f )  -c( t )  is the  error, 

- 
G = G(s), G = G(- s), R = R(s), 

(.)- = factors of (-) with poles and zeros  in the right-half 
s-plane (RHP), 

(.)’ = factors of (.) with poles and zeros in  the left-half 
s-plane (LHP), 

[.I+ = that part of the partial fraction expansion of 
428 [ e ]  with  poles in  the left-half s-plane (LHP). 

However, if the plant parameters are subject to some 
uncertainty, the assumed nominal values  used to synthesize 
the optimal control, Eq. (2), may  differ from the  actual 
values. Therefore, as mentioned in the Introduction, it is 
desirable initially to reformulate the problem such that 
appropriate sensitivity constraints relative to plant para- 
meter uncertainties are inherent in the derived optimal 
control. The specific  means considered here for con- 
straining the sensitivity  is arrived at by the following rea- 
soning. For simplicity, assume initially that only one 
parameter, denoted here by p ,  is subject to uncertainty. 
Then if p o  is the assumed nominal parameter value and 
A p  the uncertainty, 

P 2 PO f A P .  (3) 
Also assume that a sensitivity function, Sz(t), can be 

defined  which provides a measure of the sensitivity of the 
response c ( f )  to a perturbation in the plant parameter, p .  
Then, if the  control u(t) is optimized so that among other 
things Sz(t) is made “sufficiently  small” (ideally, zero), 
the required type of sensitivity constraint will be incor- 
porated. To avoid the mathematical difficulties  involved in 
placing an explicit bound on Sz(f)  (i.e., ISz(t)l 5 So; So = 
constant), it appears more convenient to consider con- 
straining S;(t) indirectly by minimizing the integral square 

J = lm [Sz(t)12 d t .  (4) 

However, choosing the control u(t) to optimize Eq. (4) 
means that other important aspects of system response 
such as  error and control effort minimization, may be 
ignored. Therefore, a better approach is to choose u(t) to 
optimize the more general quadratic form 

J = lm {e2( t )  + k2u2(t) + g2[Sz(t)]’j dt ,  ( 5 4  

in which the constant weighting factors k,  CT are adjusted 
according to  the relative importance of the quantities they 
multiply. By applying Parseval’s theorem to (5a) the cor- 
responding frequency domain expression is 

{e(s)e(-s) + k2u(s)u(-s) 
1 i m  J = -  

2ai S_;, 

f c ~ ~ S ~ ( s ) S ~ ( - s ) )  ds. (5b) 

It can be  seen that  the performance functional (5 )  has  the 
same form as (1) except for the addition of the sensitivity 
function. As noted earlier, reduced sensitivity of the re- 
pome  to plant parameter variations is achieved by in- 
creasing the value of the sensitivity  weighting constant, CT. 

If there are N uncertain plant parameters an equal 
number of sensitivity functions and weighting factors 
must be introduced, and  the performance index  becomes 

J = lm { e 2 ( t )  + k2u2(t)  f r : [ S z i ( t ) ] 2 )  d t .  (6) 
N 

i = 1  
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Sensitivity  functions 

The  control which optimizes ( 5 )  or (6) is derived using 
two different sensitivity functions: a “conventional” sen- 
sitivity function which is usually defined directly in  the 
time  domain, and a Bode sensitivity function which is de- 
fined in  the frequency domain. These sensitivity functions 
must be written in a form suitable for subsequent use in 
performing the frequency domain synthesis. In addition, 
it is important to understand the significance of using the 
open-loop versus the closed-loop sensitivity function in 
the synthesis of the sensitivity constrained optimal control. 

0 Conventional sensitivity 

A  conventional sensitivity function is  defined directly in 
the time domain by 

which, in the frequency domain, becomes 

The first partial derivative, (7), is recognized as  the coeffi- 
cient of the linear term of a Taylor series expansion of the 
perturbation  in the response, Ac(t), due  to a perturbation 
in a  plant  parameter, p .  

If the definition, (8), is applied to the open-loop system 
Fig. 1, the open-loop sensitivity function  written  in  terms 
of the  control, u(s), becomes 

Similarly, if (8) is applied to  the closed-loop system of 
Fig. 1, the open-loop sensitivity function  written  in  terms 
of the  control u(s) is 

= [ 1 - F ] u ( s ) G , ( s ) .  

Thus, the  control enters linearly in the case of the open- 
loop sensitivity, but quadratically  in the case of the closed- 
loop sensitivity. 

Because the sensitivities of the open- and closed-loop 
systems are different, the  approach usually taken in finding 
the  optimal  control must  be slightly modified when a 
sensitivity constraint is imposed. The usual approach is to 
first find the optimal  open-loop control  and  then  from  it, 
if possible, an equivalent (same response) closed-loop 
law. If this  same approach is taken when a sensitivity 
constraint is imposed it might at first seem appropriate 
to use the open-loop sensitivity to  obtain initially the 
open-loop  control. However, although it would still be 

possible to find a feedback law with the  same nominal 
response, the imposed sensitivity constraint would apply 
explicitly only to the sensitivity of the open-loop system, 
but  not  to  the closed-loop one. Thus  to have the desired 
sensitivity constraint  apply explicitly to the closed-loop 
system, it is necessary to use the closed-loop sensitivity 
function  in the synthesis of the  optimal control. The point 
here is that because of the difference in  open- and closed- 
loop sensitivity, it is, strictly speaking, essential to know at 
the outset of the synthesis whether an open- or closed- 
loop  control is required so that  the correct  corresponding 
sensitivity function is employed. Of course, in many cases 
it is likely that if a sensitivity constraint is formally im- 
posed on  the open-loop response, a  corresponding re- 
duction  in closed-loop sensitivity would also result. The 
solution  found  in  this way would then represent a useful 
approximation to  the exact problem which, as will be 
shown  later, is difficult to solve when a  conventional 
definition of sensitivity is employed. In fact,  this  type of 
approximate  solution may be  the only one available 
whenever the  form of the feedback law is unknown since, 
in that event, an expression for  the closed-loop sensitivity 
could  not  be written. 

Bode sensitivity 

Since the Bode definition of feedback system sensitivity 
plays an  important role in classical feedback theory, it is 
of interest to consider it here in connection  with the 
optimization of the  quadratic performance functional, 
Eq. (5). A  Bode  type sensitivity function is defined directly 
in the complex frequency domain  by 

sT,(s) = 
d In T(s)  

d l n p  ’ 

where p is a  parameter of the plant  transfer  function, G(s), 
and T(s) is the closed-loop transfer  function, 

(Actually, the Bode definition is the inverse of Eq. (ll).) 
Using (ll),  (12), and  the fact that C(s) = T(s)R(s), it 
follows that  the Bode (closed-loop) sensitivity function 
(11) can  be  written  in  terms of the  control u(s) as 

where C(s), and CJs)  denote the closed-loop response, 
and closed-loop (response) sensitivity, respectively. Thus, 
the Bode sensitivity is  just  the conventional closed-loop 
sensitivity (8) normalized in  the frequency domain with 
respect to  the response. Note further that  in contrast to 
the conventional closed-loop sensitivity, the  control enters 
only linearly in the Bode (closed-loop) sensitivity. 429 
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Optimal control synthesis 

The synthesis of the optimal control which  minimizes the 
quadratic performance  index ( 5 )  or (6) is performed here 
entirely in  the frequency  domain  for three separate cases: 
(a) :optimal control using  Bode  (closed-loop)  sensitivity, 
(b) optimal control using  conventional open-loop sen- 
sitivity, and (c) optimal control using  conventional  closed- 
loop sensitivity.  Since the details of the method used are 
well known, only the main  steps of the derivation are 
outlined. In  the first  two  cases, the optimal control is 
found to satisfy a transformed Wiener-Hopf equation 
which  is  solved  by the technique of spectral factorization. 
In the last case the optimal control is found to satisfy an 
equation which is analogous to the Wiener-Hopf equation, 
but more  difficult to solve  because it involves the control 
quadratically rather than linearly. In all three cases, 
several  significant  properties  of the optimal system are 
investigated and compared  with the solution (2) obtained 
without  sensitivity  considerations. To simplify the no- 
tation, the independent  Laplace  variable s is dropped in all 
transfer functions whenever it is  convenient to  do so. 

Optimal control using Bode (closed-loop) sensitivity 

For simplicity  assume  initially that there is  only  one un- 
certain plant parameter, p. Using the sensitivity function 
(13), and referring to Fig. 1, the performance  index (5) 
becomes 

J = / i m  [ ( R  - Gu)(l? - Gii) + k2 uii 2si - i m  

+ (pu)'(? - T ) ( ~  G,u - -k)] G n ds. (14) 

and the integrand of  (16)  is  of order l/s2 in the limit as 
s"+ a. Equation (17) is recognized as a transformed scalar 
Wiener-Hopf equation, and it can  be  shown that if (m - 
n + 1) 2 (u - q), where 

n, m = degree of numerator and denominator, respec- 
tively  of G ;  m > n,  

q, v = degree of numerator and denominator, respec- 
tively, of R ;  v > q, 

it can be  solved  by  spectral factorization to yield the 
optimal control 

1 
uB* = 

k 2  + GG + p2u2 -- 
R R  

To obtain the variation of J, let 

u = u* + eu1 
ii = ii* + e&, 
where u* and u, are the stable optimum control and 
some arbitrary control, respectively, and e is a constant 
parameter. Substituting (15) into (14) and then setting 
@J/de)>.=, = 0 gives the following  necessary condition 
for J to be stationary: 

- RG - p2g2  s]iil ds. (16) 

This equation is satisfied if the bracketed term of the inte- 
grand has all of its poles in the RPH, i.e.,  if 
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J+ 

where the notation is the same as  that defined in relation 
to (2), and the subscript B denotes the fact that the Bode 
definition of sensitivity  applies. Note that (18) has the 
same  form as (2) and reduces to the latter when u, the 
sensitivity  weighting factor, is  set equal to zero. If there 
are N uncertain plant parameters, the optimal control is 
found using the more  general  performance  index (6). The 
result  is 

To study the effect  of u, the sensitivity  weighting factor, on 
the closed-loop transfer characteristics  obtained  using 
ut,  it is  convenient to write  each of the transfer functions 
in (18) as a ratio of polynomials. If it is assumed that 
the uncertain  parameter  is a plant pole s i ,  or plant  zero z i  
(this pole or zero  being  denoted byp), the transfer functions 
of interest can be written as 

G = N G / D G ,  (204 

Inspection of (18) shows that for stable, minimum-phase 
plants, the poles of the term [ e ] +  are  the poles of the input 
R and the pole at s = - p (recall that p is  used to denote a 



plant  pole or zero).  Thus, for the case in which  only  one 
pole or zero  is  subject to uncertainty, the closed-loop 
transfer function TS = G@/R can be  written in the form 

TS = NaFB/((p + S) (P  - s) N R   m x ( k 2 D a B a  

+ N G ~ G )  + u ~ P ~ D R B ~ N ~ ~ ~ ) ’ ,  (21) 

where FB is the numerator of the term [e]+ in (18). The 
(closed-loop)  poles of Tg are the left  half s-plane roots of 
( a )  = 0 which can be  written as 

Reference to (2) shows that the LHP roots of the term 
( k 2 D a b a  + Numa) are poles of the optimal system 
obtained when  sensitivity is ignored,  i.e., when u = 0. 
When u # 0 and p = zi (a  plant  zero), the factors ( p  =t s) 
are cancelled by identical factors of NGmG, and it follows 
that the number of  poles  of the optimal closed-loop  system 
obtained  with a sensitivity term in (5)  is the same as that 
obtained  ignoring  sensitivity (u = 0); however, the pole 
locations are different in each  case.  When u # 0 and p = si 
(a  plant  pole), the factors ( p  f s) are not cancelled, and the 
optimal system  found by including a sensitivity term in 
(5) has one additional pole  compared to the optimal  system 
found by ignoring  sensitivity. 

It is  useful to consider the behavior of Tg obtained 
when the sensitivity  weighting  factor is increased to obtain 
reduced  sensitivity to a plant  pole or zero  uncertainty. 
From (22) it can  be seen that in the limiting case as u -+ m , 
(rn - n + q - u + 1) poles of TT, tend to infinity  along 
straight line asymptotes; the remainder approach plant 
zeros, and zeros  due to the roots of DR (e.g., the poles of 
the input R). Thus, for sufficiently large u, the poles 
approaching the plant  zeros  (which are also  zeros of TZ) 
will have  small  residues, and it would at first appear that 
the poles of TZ that approach the roots of DR become the 
dominant closed-loop  poles.  However,  before the dom- 
inance of these  poles can be  established it is necessary to 
consider the location of the zeros of FB which also  depend 
on u and, in certain cases,  may  be  very  close to the poles 
approaching DR. 

If the input is taken to be a unit step function, NR = 1 
and DR = s. Thus Tg will  have a pole on the negative 
real  axis at s = - y, and by the previous  analysis y + 0 
as u -+ a. The term [- I+  in (18) has LHP poles at s = 0, 
s = - p and therefore can be  written 

r 1 

which indicates that for this case FB has only  one  zero 
determined by the ratio of the residues rl ,  r,. If (20) is 
substituted into the term [-I+ in (18), an evaluation of the 
residues  gives 

rl = u P N ~ - P ) / ( * ) L - ~  

and 

2 3 -  
(244 

rz = P~~V~(O)/(.)~=~. (24b) 

The previous  analysis  also  indicates that  as u -+ 03, the 
term ( a ) -  is given approximately by 

(.)- X N ~ ( s  - y)Pm, (25) 

where P denotes the product of those factors of (e)- 

whose roots approach infinity as u -+ a. By substituting 
(25) into (24) the approximation obtained for the ratio of 
the residues as u -+ 03 is 

Since y satisfies the equation ( e )  = 0, and it is  known that 
y -+ 0 as u increases, it follows that the approximate form 
for the variation of y as a function of u for u + 03 can be 
obtained by approximating (.) = 0 with the two  lowest 
order terms in s (i.e., the s2 and so terms).  Then  since the 
s2 term is  multiplied by p2u2 + a constant (independent 
of a), setting s = y and solving  leads to the result that 
y -+ l/pu as u + m . This  implies,  see  (26), that rl /rz  -+ 0 
as u -+ and so the zero of FB given in (23) approaches 
zero as u + m . That is, when the input is a step function 
DR = s and one  pole of TT, approaches the origin as 
u -+ ; however, this pole  is  approximately  cancelled by 
the zero of TT, due to Fs which also approaches the origin 
as u -+ and will not be the dominant pole as an analysis 
ignoring the zero of FB might  indicate.  Thus, when u is 
increased to a sufficiently large  value (to obtain reduced 
sensitivity to a plant pole or zero  uncertainty) the closed- 
loop bandwidth tends to increase; for “intermediate” 
values  of u the residues at  the poles of TZ approaching 
the plant zeros and the origin will be  larger and contribute 
more significantly to the response. 

Example I : To illustrate the application of (18), consider 
the case  where the plant transfer function is 

and the nominal  values of the plant parameters are 
a,, = bo = 1. Assuming the parameter a to be fixed, the 
plant  sensitivity to a perturbation in b is 

G&) = ____ 
- 1  

s(1 + s)5’ 43 1 
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Figure 2 Root-square locus of optimal system poles; Exam- 
ple 1. 

Setting k2 = 1 and R = l/s (unit  step  input), reference 
to (1 8) gives : 

+ 1 - u2s2)+/s(1 + s)2 = Y ,  (294 

+ 1 - uzs2)-/(-s)(l - s ) ~  = P, (29b) 

[ y  + u2- G b G b ]  = (1 - s2 - u 2 s 2 ) / ( s  + l)(s) 
G R  P 

x (-s6 + 2s4 - 2 2  + I - a ) - ,  (29c) 

where r1 and r, denote the residues at  the poles s = - 1, 
s = 0, respectively. 

Substituting (29) into (18) and evaluating the optimal 
closed-loop transfer function gives 

The optimal system poles, which are  the left-half s-plane 
roots of 

Y P  = s6 - 2s4 + 2s2 - I + = 0 ,  (32) 

are shown in the root-square locus diagram, Fig. 2, as a 
function of IS, the sensitivity weighting factor. When CT + 0, 
the  LHP-roots of  (32) lie on  the unit circle at  the points 
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When u is increased, the complex pair move away from 
the origin along the straight line asymptotes, but  the real 
pole moves toward the origin. As u + a the zero of TB 
is near the real pole and so the residue at  that pole tends to 
zero. Hence for sufficiently large u the  bandwidth of TB 
will tend to increase due to the complex poles approaching 
infinity along the asymptotes. 

Optimal control using conventional open-loop sensitioity 

When the conventional open-loop sensitivity definition 
(8) is used, the performance functional ( 5 )  becomes 

J = - / [ ( R  - Gu)(R - Gu) + k2uG 
1 i m  

27ri - i m  

+ ~ * G , ~ ~ u i i ]  ds. (34) 

A necessary condition  for J in (34) to be stationary is the 
transformed Wiener-Hopf equation 

(k2 + GG + u2G,GD)u* - RG = 3,  (35) 

which can  be solved by spectral factorization to yield the 
optimal  control 

1 u* - 

c o  - (k2  + GG + U2GPGJ+ 

RG 
x [ (k2 + GG + u2GpG,)- --] + *  (36) 

The  notation used in (36) is  again the same as that defined 
in relation to (2) and  the subscript c0 denotes the fact 
that  the conventional open-loop sensitivity function (8) 
applies. The form of  (36) is also the same as (2) and reduces 
to  the latter when u = 0. For  the case of N uncertain 
plant parameters, the corresponding optimal control found 
using (6) is 

Although u s  was obtained using the open-loop sensi- 
tivity function, it is still possible to consider obtaining 
u$ by means of a feedback structure as pointed out earlier 
in  the paper. The closed-loop transfer function T$ = 
G u z / R  can be examined as a function of u using the no- 
tation defined in (20). 

Inspection of (36) shows that  the only poles of the term 
[ e ] +  are  the poles of R. Thus,  for the case with only one 
pole, or zero perturbation, the closed-loop transfer 



function T,* can be written in  the form 

wherep = si or zi and FCo denotes the numerator of [ a ] ,  in 
(36). Note that the uncertain plant pole or zero  is  always 
a zero of T,*. The closed-loop  poles are determined by 
the zeros of the  input R,  and  the left-half s-plane roots of 
(.) = 0, which can be written in the form 

Noting again the fact that the roots of the term (k2DcBG + 
Nene) are  the poles of the optimal system obtained 
without a sensitivity term (a = 0) in (5 ) ,  it follows that 
when u # 0 and p = zi the factors (p =!C s) are cancelled 
by corresponding factors of N G N G ,  and the number of 
closed-loop poles  is the same with or without the sensitivity 
term in ( 5 ) ;  when u # 0, andp = si the factors (p &s) are 
not cancelled, and  the optimal system found by including 
the sensitivity term in (5) has one more pole than the 
optimal system found by ignoring sensitivity. 

When u -+ co to obtain reduced  sensitivity, inspection 
of (39) indicates that (m - n + 1) poles of T,*, go to 
infinity along straight line asymptotes; the remaining  poles 
approach the plant zeros  (which are also zeros of T,*) 
and so the residues at these poles  become  small for suffic- 
iently large U.  To determine which  of the remaining  poles 
are dominant for large u it is  necessary to consider the 
location of the other zeros of T$ which include the zeros 
of F , ,  (which depend on a) and  the fixed zero at s = - p .  
If the  input is taken to be a unit step function as in the pre- 
vious section the term [.I+ in (36) is  simply ro / s  where y o  

is the residue of [ e ]  at s = 0. Thus, for this case F, ,  = ro 
and does not contribute any finite  zeros to T,*. This implies 
that by increasing u to obtain reduced  sensitivity to a plant 
pole or zero uncertainty the bandwidth of the closed-loop 
transfer function T,* is increased for sufficiently large u. 

Example 2 :  For  the same plant and other assumptions 
of Example 1, reference to (36) gives 

(k2  + GG + u2GbGb)+ = (s6 - 2s4 + 2s2 

- 1 - u2)'/s(1 + s)' = Y ,  (40a) 

( k 2  + CG + u2cbGb)- = (s6 - 2s4 + 2s2 

- 1 - u')-/s(l - s ) ~  = P, (40b) 

[RG/ 91 = - (1 - S)/S(Sfi - 2s4 

+ 2s2 - 1 - a"-, (404 

[ R e /  F]+ = ; yo = residue at  s = 0 .  (40d) 
S 

Figure 3 Root-square locus of optimal  system  poles;  Exam- 
ple 2. 

Substituting (40) into (36) and then evaluating Gu,*/R 
gives the optimal closed-loop transfer function, 

The optimal system  poles,  which are  the left-half 
s-plane roots of 

Y Y = (s6 - 2s4 + 2s2 - 1 - uz) = o (42) 

are shown in the root locus diagram in Fig. 3 as a function 
of the sensitivity  weighting factor, u. When u --$ 0, the 
LHP-roots of  (42)  lie on  the unit circle and have the same 
values  given  by (33). When u is  increased to obtain reduced 
sensitivity, the poles  move  away from the origin with the 
result that  the closed-loop system bandwidth is increased. 

Optimal control using  conventional  closed-loop  sen- 
sitivity 

The performance functional ( 5 )  obtained using the con- 
ventional closed-loop sensitivity function (10) is 

and the necessary condition for J to be stationary becomes : 

" G R  + (kZ + G ~ ) u  + u2G,Gnu 

The problem of finding u from (44) is analogous to the 
Wiener-Hopf problem, but more difficult because X in- 
volves u quadratically as well as linearly (and also involves 433 
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E). Although a general solution is not attempted, the form 
of the solution and certain significant  properties of it 
will be  described. For this purpose, it is convenient to 
introduce the abbreviations: 

H = (k2 + GG), (454 

w = G R / H - ,  (45b) 

A = GpGp(l - 2 i i c /R) /H- ,  (45 4 
B = G A / R ,  (454 

where the notation used  is the same as that used in (2). 
Substituting (45) into (44) and dividing by H -  gives 

-- + [ W ] -  = -[ W J ,  + H'u + ~ ' ( A u  - Bu'). (46) 2 
H- 

Since the left  side of this equation is regular  only in the 
LHP, the first  two terms on the right  side, which are regular 
only  in the RHP, cannot contribute to the left  side. The 
only term on  the right that can contribute to the left side 
is the last one which has singularities in both the LHP and 
the RHP. Since the last term is of order u', the left  side 
must  be of order ( r 2  also and so (46) can be  written as 

u'J = -[ W ] ,  + H'u + u'( AU - Bu'), (47) 

where p is  given  by 

J = [ A u  - Bu']- 

- - [ G$,( 1 - 2i ic /&)( l  - uG/R)u]  
H -  - (48) 

Equation (47) can  be solved for u to give 

where the sign in front of the square-root is chosen to 
satisfy the requirement that u reduce to the known solution 
[WI,/H- given  by (2) when a' = 0. Although (49) holds 
everywhere it is expedient to make  use of it only in the 
LHP where p and ii are free of singularities. Thus u can be 
written 

W. J. BUDUFXA 

It is apparent from (50) that  the singularities of u may 
include branch points as well as poles. The branch points 
occur when 

which,  for  sufficiently  small  values  of u, reduces to 

The approximate locations of the branch points can be 
determined from (52) if the zero-th order approximation 
for u obtained from (2) is substituted into (45) to get 
A.  and Bo. Then if { is used to denote a LHP zero of H, 
expanding (52) about the point { and retaining  only the 
lowest order terms leads to 

Thus, the branch points are approximately given  by the 
equation 

which  shows that the pole of u(s) at { goes over into a 
short branch cut whose  length  is of order u, and whose 
direction  is  determined by 

which  may  be  real or complex.  An  exceptional  case  occurs 
if BoC) is zero; then a pole  of uo may  go  over into a pole 
of u even for u # 0. Other  possible LHP branch points 
may  occur  near  poles of A, B or [VI+, but the working 
out of these branch point locations will not be  considered 
further here. 

The possibility of the optimal control u which  satisfies 
(44) having branch cuts arises  because u enters the con- 
ventional  closed loop sensitivity function (10) quadratically 
rather than linearly.  Since the control enters the Bode 
closed-loop  sensitivity function (13) only  linearly, the 
corresponding optimal control u$ cannot have branch 
cuts and its singularities are restricted to poles. The fact 
that u may  have branch cuts has important physical 
significance  because it implies that u could not be  imple- 
mented by  means  of a lumped  parameter  network. Thus, 
even if an exact  analytical solution of (44) for u could  be 
found, a rational polynomial approximation to the result 
would  be  required for practical  implementation. Note that 
whenever the weighting factor u is sufficiently small for the 
iteration to converge, the optimal control can be found by 
solving  (48) and (50) iteratively starting with the zero-th 
order approximation to u given  by (2).  

It is of interest to consider  whether the problem of 
branch cuts would  be  eliminated by carrying out  the syn- 
thesis of u (i.e.  with a conventional  closed-loop  sensitivity 



function) in  the time  domain using a state-variable ap- 
proach rather  than  in  the frequency domain  considered 
here. A corresponding difficulty can  be expected in the  time 
domain since the possibility of u having branch  cuts 
implies that u cannot  be obtained as a solution to a finite 
set of ordinary differential equations. 

Conclusion 

In this  paper the synthesis of optimal  controls with reduced 
sensitivity to plant  parameter uncertainties is approached 
by adding sensitivity functions to a quadratic  form per- 
formance index. It is shown that  the synthesis results in 
optimal  controls of different forms  depending on  the de- 
finition used for  the sensitivity function. 

When the synthesis is based on a Bode (closed-loop) 
sensitivity or a conventional  open-loop sensitivity, the 
resulting optimal  control singularities are restricted to 
poles. The application to specific problems of the general 
solutions  obtained in  the paper  for  these two cases is 
straightforward. One useful procedure suggested by the 
form of these solutions consists of first solving for  the 
optimal  control without  regard to sensitivity consider- 
ations, and  then applying  graphical root-square locus 
techniques to determine the optimal control  as a function 
of the sensitivity weighting factors. Under certain  con- 
ditions it is shown that  the bandwidth of the  optimal 
closed-loop transfer  function increases as  the sensitivity 
weighting factor for a plant pole or zero sensitivity function 
is increased, but  further study is required to determine 
whether this result applies in general. 

When the synthesis is based on a conventional closed- 
loop sensitivity it is shown that  the  optimal  control singu- 
larities may in general include branch  cuts  as well as poles. 
Since the possible existence of branch cuts implies that  the 

optimal  control could not be implemented (except approx- 
imately) with a lumped  parameter  network, it is apparent 
that  future research should be directed at finding a general 
method  for approximating the solution  with a rational 
polynomial  function. 
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