W. J. Budurka

Sensitivity Constrained Optimal Control Synthesis

Abstract: A constraint on the sensitivity to plant parameter uncertainties is introduced in the synthesis of optimal linear controls by
adding a sensitivity function to a quadratic form performance criterion. The synthesis is carried out in the frequency domain using
both conventional and Bode sensitivity functions; open-loop and closed-loop controls are of necessity treated separately because the
sensitivity functions are different for each case. The optimal control based on the closed-loop Bode sensitivity is shown to satisfy a
scalar Wiener-Hopf equation; the same type of equation is also satisfied by the optimal control based on the open-loop conventional
sensitivity, but the response characteristics are different. Using the conventional closed-loop sensitivity, the optimal control is shown to
satisfy an equation analogous to the Wiener-Hopf equation, but which is more difficult to solve because the control enters quadratically
rather than linearly. Examples illustrate the application of derived results.

Introduction

The mathematical model for a plant usually includes one
or more (constant) parameters whose values are subject
to some uncertainty. Therefore, when optimal control
synthesis is performed using a set of assigned nominal
values for the uncertain parameters, it becomes necessary
to consider the sensitivity of the optimal system to pertur-
bations of these parameters away from the assigned
nominal values. Of course, after the optimal control is
synthesized using the assumed nominal values for the
uncertain parameters, a sensitivity analysis can be per-
formed on the resulting system to determine whether the
sensitivity is “sufficiently small” and what modifications,
if any, are necessary. However, a more satisfactory ap-
proach consists of initially formulating the optimal control
synthesis problem such that an appropriate sensitivity
constraint relative to plant parameter uncertainties is
inherent in the derived control.

Although sensitivity to uncertainties in plant parameters
plays an essential role in classical control theory,' sensiti-
vity considerations have largely been ignored in optimal
control theory until relatively recently.””® In optimal
systems, the sensitivity of either the performance index,”*®
the system response,””’ or both can be constrained; the
choice depends on what is most meaningful relative to the
problem at hand. For example, in linear systems with a
quadratic performance index, the performance index
sensitivity is often of little interest compared to the re-
sponse sensitivity.

In this paper a linear, time-invariant plant with a single
control variable, and a quadratic performance index is
considered. A constraint on the sensitivity of the system
response (output sensitivity) to plant parameter uncer-
tainties is introduced in the optimal control synthesis by

including sensitivity functions in the quadratic performance
index. That is, the optimality of the control is defined
both with respect to sensitivity as well as to the error and
control action. Improvement of the system sensitivity is
obtained by increasing the sensitivity function weighting
factors. The use of sensitivity functions in a quadratic
performance index was independently proposed by Siljak
and Dorf,* and applied by Siljak and Burzio® to the prob-
lem of controller parameter optimization. The present
paper may be considered as an extension of that work to
the synthesis problem.

Two definitions of sensitivity are considered: the con-
ventional one in which the sensitivity is just the first partial
derivative of the system time response with respect to a
plant parameter, and the classical frequency domain
definition due to Bode. Because the sensitivity to a plant
parameter differs for open-loop and feedback systems
having the same nominal response, it is necessary to treat
the synthesis of optimal open-loop and feedback controls
separately. This is in contrast to the case without a sensiti-
vity constraint, where it is often more convenient to first
synthesize an open-loop control and then from it construct
an equivalent feedback system. The synthesis is carried out
entirely in the frequency domain, and the optimal controls
are shown to satisfy scalar equations of the transformed
Wiener-Hopf type.

When more general classes of systems with other types
of sensitivity constraints and performance criteria are to be
considered, it is necessary to formulate the sensitivity
constrained optimal control synthesis problem in the time
domain”*® rather than in the frequency domain. Although a
study of the more general problem is outside the scope of
the present paper, it is of interest to note that except for
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Figure 1 Linear control system; (a) open-loop control,
(b) closed-loop control.

the intermediate step of introducing sensitivity equations
to form an expanded state vector, optimization with
sensitivity constraints is similar to optimization with state
variable constraints.

Problem statement

Consider the linear control system shown in Fig. 1 where
the plant transfer function is G(s, py, ...py),and p;, ...,py
are the values of the N constant plant parameters. These
parameters are either the poles and zeros of G(s), the
coefficients of the numerator and denominator polynomials
of G(s), or the values of other quantities, e.g., stability
derivatives if G(s) is an airframe transfer function. If the
values of these parameters are all known, the control
u*(s) which optimizes the quadratic form performance
index

J= fm [€*(¢) + K*W*(H)] dt; k = constant, (1)
is

« _ 1 7 RG

6= @ F 6o [(kz + Gc‘;)—l’ @
where

e(r) = R(t) —c(?) is the error,
G = G(s), G = G(— s5), R = R(s),

(-)” = factors of (-) with poles and zeros in the right-half
s-plane (RHP),
(-)" = factors of (-) with poles and zeros in the left-half

s-plane (LHP),

[-1, = that part of the partial fraction expansion of
[‘1 with poles in the left-half s-plane (LHP).
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However, if the plant parameters are subject to some
uncertainty, the assumed nominal values used to synthesize
the optimal control, Eq. (2), may differ from the actual
values. Therefore, as mentioned in the Introduction, it is
desirable initially to reformulate the problem such that
appropriate sensitivity constraints relative to plant para-
meter uncertainties are inherent in the derived optimal
control. The specific means considered here for con-
straining the sensitivity is arrived at by the following rea-
soning. For simplicity, assume initially that only one
parameter, denoted here by p, is subject to uncertainty.
Then if p, is the assumed nominal parameter value and
Ap the uncertainty,

p = po =% Ap. 3

Also assume that a sensitivity function, S;(f), can be
defined which provides a measure of the sensitivity of the
response ¢(¢) to a perturbation in the plant parameter, p.
Then, if the control u(?) is optimized so that among other
things S:(r) is made “sufficiently small” (ideally, zero),
the required type of sensitivity constraint will be incor-
porated. To avoid the mathematical difficulties involved in
placing an explicit bound on Si(¥) (i.e., [Si(D)| < So; 8o =
constant), it appears more convenient to consider con-
straining S;(¢) indirectly by minimizing the integral square

J = f TS OT dr, o)

However, choosing the control u(r) to optimize Eq. (4)
means that other important aspects of system response
such as error and control effort minimization, may be
ignored. Therefore, a better approach is to choose u(?) to
optimize the more general quadratic form

J = ‘/:o {ez(t) _|_ k2u2(t) + 0_2[S;(t)]2} dt, (Sa)

in which the constant weighting factors k, o are adjusted
according to the relative importance of the quantities they
multiply. By applying Parseval’s theorem to (5a) the cor-
responding frequency domain expression is

1

J ==

51 ] (=) + Kuu(=s)

+ o’ 55(5)S5(—9)} ds.  (5b)

It can be seen that the performance functional (5) has the
same form as (1) except for the addition of the sensitivity
function. As noted earlier, reduced sensitivity of the re-
ponse to plant parameter variations is achieved by in-
creasing the value of the sensitivity weighting constant, o.

If there are N uncertain plant parameters an equal
number of sensitivity functions and weighting factors
must be introduced, and the performance index becomes

J = f: () + KW’ + Z:; o[85, (01} dr.  (6)




Sensitivity functions

The control which optimizes (5) or (6) is derived using
two different sensitivity functions: a “conventional” sen-
sitivity function which is usually defined directly in the
time domain, and a Bode sensitivity function which is de-
fined in the frequency domain. These sensitivity functions
must be written in a form suitable for subsequent use in
performing the frequency domain synthesis. In addition,
it is important to understand the significance of using the
open-loop versus the closed-loop sensitivity function in
the synthesis of the sensitivity constrained optimal control.

o Conventional sensitivity

A conventional sensitivity function is defined ° directly in
the time domain by

()
Sy(t) = o (7
which, in the frequency domain, becomes

oy ac(t)J _dcls)

5i6s) = ;{—ap = %) = ¢,09. (®)

The first partial derivative, (7), is recognized as the coeffi-
cient of the linear term of a Taylor series expansion of the
perturbation in the response, Ac(?), due to a perturbation
in a plant parameter, p.

If the definition, (8), is applied to the open-loop system
Fig. 1, the open-loop sensitivity function written in terms
of the control, u(s), becomes

AG(s)

S,(s) = 6—61; (Gu(s)] = uls) o u(s$)G(s). (9

Similarly, if (8) is applied to the closed-loop system of
Fig. 1, the open-loop sensitivity function written in terms
of the control u(s) is

o 9| REOGL)G(s)
S = 3, [1 + Gc(s>G(s>}
_ |, Guls)
= [1 () }u(s)G,,(s). (10)

Thus, the control enters linearly in the case of the open-
loop sensitivity, but quadratically in the case of the closed-
loop sensitivity.

Because the sensitivities of the open- and closed-loop
systems are different, the approach usually taken in finding
the optimal control must be slightly modified when a
sensitivity constraint is imposed. The usual approach is to
first find the optimal open-loop control and then from it,
if possible, an equivalent (same response) closed-loop
law. If this same approach is taken when a sensitivity
constraint is imposed it might at first seem appropriate
to use the open-loop sensitivity to obtain initially the
open-loop control. However, although it would still be

possible to find a feedback law with the same nominal
response, the imposed sensitivity constraint would apply
explicitly only to the sensitivity of the open-loop system,
but not to the closed-loop one. Thus to have the desired
sensitivity constraint apply explicitly to the closed-loop
system, it is necessary to use the closed-loop sensitivity
function in the synthesis of the optimal control. The point
here is that because of the difference in open- and closed-
loop sensitivity, it is, strictly speaking, essential to know at
the outset of the synthesis whether an open- or closed-
loop control is required so that the correct corresponding
sensitivity function is employed. Of course, in many cases
it is likely that if a sensitivity constraint is formally im-
posed on the open-loop response, a corresponding re-
duction in closed-loop sensitivity would also result. The
solution found in this way would then represent a useful
approximation to the exact problem which, as will be
shown later, is difficult to solve when a conventional
definition of sensitivity is employed. In fact, this type of
approximate solution may be the only one available
whenever the form of the feedback law is unknown since,
in that event, an expression for the closed-loop sensitivity
could not be written.

e Bode sensitivity

Since the Bode definition of feedback system sensitivity
plays an important role in classical feedback theory, it is
of interest to consider it here in connection with the
optimization of the quadratic performance functional,
Eq. (5). A Bode type sensitivity function is defined directly
in the complex frequency domain by

3 In T(s)

T —
S,,(S) - 81np

) (11)
where p is a parameter of the plant transfer function, G(s)»
and T(s) is the closed-loop transfer function,

G.(9)G(s)
1 + G.(5)G(s)

(Actually, the Bode definition is the mverse of Eq. (11).)
Using (11), (12), and the fact that C(s) = T(s)R(s), it
follows that the Bode (closed-loop) sensitivity function
(11) can be written in terms of the control u(s) as

T(s) = (12)

$10 = | o5 — 29990 _ e orce, 0y
where C(s), and C,(s) denote the closed-loop response,
and closed-loop (response) sensitivity, respectively. Thus,
the Bode sensitivity is just the conventional closed-loop
sensitivity (8) normalized in the frequency domain with
respect to the response. Note further that in contrast to
the conventional closed-loop sensitivity, the control enters
only linearly in the Bode (closed-loop) sensitivity.
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Optimal control synthesis

The synthesis of the optimal control which minimizes the
quadratic performance index (5) or (6) is performed here
entirely in the frequency domain for three separate cases:
(a) '_optimal control using Bode (closed-loop) sensitivity,
(b) optimal control using conventional open-loop sen-
sitivity, and (c) optimal control using conventional closed-
loop sensitivity. Since the details of the method used are
well known, only the main steps of the derivation are
outlined. In the first two cases, the optimal control is
found to satisfy a transformed Wiener-Hopf equation
which is solved by the technique of spectral factorization.
In the last case the optimal control is found to satisfy an
equation which is analogous to the Wiener-Hopf equation,
but more difficult to solve because it involves the control
quadratically rather than linearly. In all three cases,
several significant properties of the optimal system are
investigated and compared with the solution (2) obtained
without sensitivity considerations. To simplify the no-
tation, the independent Laplace variable s is dropped in all
transfer functions whenever it is convenient to do so.

o Optimal control using Bode (closed-loop) sensitivity

For simplicity assume initially that there is only one un-
certain plant parameter, p. Using the sensitivity function
(13), and referring to Fig. 1, the performance index (5)
becomes

1 i
= il [(R — Gu)(R — Ga) + ¥’
+ (po>2<% — G—;;” G Q—ﬂ ] . (1)

To obtain the variation of J, let

u=u* -+ eu (15a)
i = a* + e, (15b)

where u* and u, are the stable optimum control and
some arbitrary control, respectively, and ¢ is a constant
parameter. Substituting (15) into (14) and then setting
(0J/9€)—o = 0 gives the following necessary condition
for J to be stationary:

0=—1, [(k + GG + 22C;G>u*

2mi

— RG — p’o? GGFIGQP:Ial ds. (16)

This equation is satisfied if the bracketed term of the inte-
grand has all of its poles in the RPH, i.e., if

G,,Gp> .
RR

_ - 2 2 GpGp> =
<RG + p'o oR) =% (17)

(k2 + GG + p’o’?
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and the integrand of (16) is of order 1 /s2 in the limit as
s—> o, Equation (17) is recognized as a transformed scalar
Wiener-Hopf equation, and it can be shown that if (m —
n+ 1) > (v — q), where

n, m = degree of numerator and denominator, respec-
tively of G; m > n,

q,v = degree of numerator and denominator, respec-
tively, of R; v > ¢,

it can be solved by spectral factorization to yield the
optimal control

1

(kz + GG + p’s° 5@)

uf =

X (18)

where the notation is the same as that defined in relation
to (2), and the subscript B denotes the fact that the Bode
definition of sensitivity applies. Note that (18) has the
same form as (2) and reduces to the latter when o, the
sensitivity weighting factor, is set equal to zero. If there
are N uncertain plant parameters, the optimal control is
found using the more general performance index (6). The
result is

1
uf = a0\
<k + GG + Zoyp, %#)
¥ -
RG + Y op? G2ilei
="' GR
X " GG . (19
2 ~ 2_2 PivYPp]
(k -{—GG—I—;o,p, RR) .

To study the effect of ¢, the sensitivity weighting factor, on
the closed-loop transfer characteristics obtained using
u%, it is convenient to write each of the transfer functions
in (18) as a ratio of polynomials. If it is assumed that
the uncertain parameter is a plant pole s;, or plant zero z;
(this pole or zero being denoted by p), the transfer functions
of interest can be written as

G = Ng/Dg, (20a)
R = Np/Dp, (20b)
G, = —Ng/Do(s +p); bp=s;, or (20¢)
G, = +N¢/Do(s +p); p=2z;. (20d)

Inspection of (18) shows that for stable, minimum-phase
plants, the poles of the term [-], are the poles of the input
R and the pole at s = — p (recall that p is used to denote a




plant pole or zero). Thus, for the case in which only one
pole or zero is subject to uncertainty, the closed-loop
transfer function 7% = Gu%/R can be written in the form

T} = NoFz/((0 + 9)(p — s) Ne Nz(k* Do Do
+ Ngﬁg) "I“ UZPZDRERN0N0)+, (21)

where Fjp is the numerator of the term [-], in (18). The
(closed-loop) poles of T'% are the left half s-plane roots of
(+) = 0 which can be written as

1+ p20'2NGNGDRBR —
(kzDaD_o + NGIVG)(p + s)(p - S)NRNR

0.

(22)

Reference to (2) shows that the LHP roots of the term
(K’DgDy; + NyNg) are poles of the optimal system
obtained when sensitivity is ignored, i.e., when ¢ = 0,
When ¢ 7 0 and p = z; (a plant zero), the factors (p & )
are cancelled by identical factors of NgNg, and it follows
that the number of poles of the optimal closed-loop system
obtained with a sensitivity term in (5) is the same as that
obtained ignoring sensitivity (¢ = 0); however, the pole
locations are different in each case. Wheno # Oand p = s;
(a plant pole), the factors (p &= s) are not cancelled, and the
optimal system found by including a sensitivity term in
(5) has one additional pole compared to the optimal system
found by ignoring sensitivity.

It is useful to consider the behavior of T% obtained
when the sensitivity weighting factor is increased to obtain
reduced sensitivity to a plant pole or zero uncertainty.
From (22) it can be seen that in the limiting case as ¢— =,
(m — n+ q— v+ 1) poles of T% tend to infinity along
straight line asymptotes; the remainder approach plant
zeros, and zeros due to the roots of Dy (e.g., the poles of
the input R). Thus, for sufficiently large &, the poles
approaching the plant zeros (which are also zeros of T%)
will have small residues, and it would at first appear that
the poles of T% that approach the roots of Dy become the
dominant closed-loop poles. However, before the dom-
inance of these poles can be established it is necessary to
consider the location of the zeros of Fz which also depend
on ¢ and, in certain cases, may be very close to the poles
approaching Dp.

If the input is taken to be a unit step function, N = 1
and Dp = s. Thus T% will have a pole on the negative

real axis at s = — v, and by the previous analysisy — 0
as ¢ — o, The term [-]; in (18) has LHP poles at s = 0,
s = — p and therefore can be written

- _n s
[ ]+ - s + p s

(rn + rz)[s + —p—}
- 14 71/"2 - Fg (23)
s(s + p) sts + p)°

which indicates that for this case Fz has only one zero
determined by the ratio of the residues ry, #,. If (20) is
substituted into the term [-]1, in (18), an evaluation of the
residues gives

ro= oo’ Ne(—p)/(-)i=ms (24a)
and
Fy = PZNG(O)/(‘);O- (24b)

The previous analysis also indicates that as ¢ — «, the
term (-) is given approximately by

()" & Ng(s — v)Pa, (25)

where P ., denotes the product of those factors of ()~
whose roots approach infinity as ¢ — . By substituting
(25) into (24) the approximation obtained for the ratio of
the residues as ¢ — o is

I ~ Pyo’. (26)
ra

Since +y satisfies the equation (+) = 0, and it is known that
v — 0 as ¢ increases, it follows that the approximate form
for the variation of v as a function of ¢ for ¢ — » can be
obtained by approximating (-) = 0 with the two lowest
order terms in s (i.e., the s° and s° terms). Then since the
5% term is multiplied by p’¢® + a constant (independent
of ¢), seiting s = v and solving leads to the result that
v— 1/po as ¢ — oo, This implies, see (26), that r,/r; — 0
as o — o and so the zero of Fy given in (23) approaches
zero as ¢ — o, That is, when the input is a step function
Dy = s and one pole of T% approaches the origin as
¢ — o ; however, this pole is approximately cancelled by
the zero of T% due to F which also approaches the origin
as ¢ — o and will not be the dominant pole as an analysis
ignoring the zero of Fp might indicate. Thus, when o is
increased to a sufficiently large value (to obtain reduced
sensitivity to a plant pole or zero uncertainty) the closed-
loop bandwidth tends to increase; for “intermediate”
values of ¢ the residues at the poles of T% approaching
the plant zeros and the origin will be larger and contribute
more significantly to the response.

Example 1: To illustrate the application of (18), consider
the case where the plant transfer function is

G(s) = (27

% .
s(s + b)
and the nominal values of the plant parameters are
a, = b, = 1. Assuming the parameter « to be fixed, the
plant sensitivity to a perturbation in b is

—1

T+ 5" 9

Gy(s) =
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Figure 2 Root-square locus of optimal system poles; Exam-
ple 1.

Setting & = 1 and R = 1 /s (unit step input), reference
to (18) gives:

2 Gbi

<k2+GG—|—cr RR> = (—si3-|—2s4—2s2

+ 1 =) /s(1 + 5)° = 7, (29a)

<k2 + GG+ 4 G—I;—%>_ = (—s" 4+ 25" — 25"

+ 11— /(=1 — ) = 7, (29b)
RG . ., G,G, |
v T GrY

X (—s® 4+ 25" — 25" + 1 — %), (29¢)

=1 - =5/ 4+ Dis

—R_G 2 Gbi_ _ Iy 4]
L)_’+6GRI7_+_s—I-I s’ (294)
where r; and », denote the residues at the poles s = — 1,

s = 0, respectively.
Substituting (29) into (18) and evaluating the optimal
closed-loop transfer function gives

7% = 2% = (r - ro)s + 1, .
ETRYP T (=St -2 11— S

(31)

The optimal system poles, which are the left-half s-plane
roots of

YP=s"—2"+2" — 1465 =0, (32)

are shown in the root-square locus diagram, Fig. 2, as a
function of ¢, the sensitivity weighting factor. When ¢ — 0,
the LHP-roots of (32) lie on the unit circle at the points

5, = —1, (33a)
s2 = — (V34 ))/2, (33b)

W. J. BUDURKA

ss = —(V3 = j)/2. (33¢)

When ¢ is increased, the complex pair move away from
the origin along the straight line asymptotes, but the real
pole moves toward the origin. As ¢ — « the zero of T%
is near the real pole and so the residue at that pole tends to
zero. Hence for sufficiently large o the bandwidth of T%
will tend to increase due to the complex poles approaching
infinity along the asymptotes.

e Optimal control using conventional open-loop sensitivity

When the conventional open-loop sensitivity definition
(8) is used, the performance functional (5) becomes

1 [ _
J = —~f [(R — Gu)(R — Gi) + Kui
2wi —i®
+ ¢°G,G,ui) ds. (34)
A necessary condition for J in (34) to be stationary is the
transformed Wiener-Hopf equation
(k* + GG + ¢°G,G,)u* — RG = %, (35)
which can be solved by spectral factorization to yield the
optimal control

1
T K+ GG + GG,

RG
X [(/8 + GG + aQG,,G,,)_:lJ,' (36)

*
Uco

The notation used in (36) is again the same as that defined
in relation to (2) and the subscript c0 denotes the fact
that the conventional open-loop sensitivity function (8)
applies. The form of (36) is also the same as (2) and reduces
to the latter when ¢ = 0. For the case of N uncertain
plant parameters, the corresponding optimal control found
using (6) is

1
N +
(kz + GG + Z U?GMGD:)
im1

-
Uy =

RG
N

<k2 + GG+ X U?G,,,.GT,,.)
i=1

X (37

Although u% was obtained using the open-loop sensi-
tivity function, it is still possible to consider obtaining
u % by means of a feedback structure as pointed out earlier
in the paper. The closed-loop transfer function T} =
Gu %/R can be examined as a function of ¢ using the no-
tation defined in (20).

Inspection of (36) shows that the only poles of the term
[-1. are the poles of R. Thus, for the case with only one
pole, or zero perturbation, the closed-loop transfer




function T % can be written in the form

— NG(p+s)FCO
NR((P+S)(P—S)(k2DG 5G+ NGNG)+0'2 NGNG)+ ’

(38)

where p = s; or z; and F,, denotes the numerator of [ -], in
(36). Note that the uncertain plant pole or zero is always
a zero of T %. The closed-loop poles are determined by
the zeros of the input R, and the left-half s-plane roots of
(-) = 0, which can be written in the form

%
TcO

I+ a’N, G_IV ¢ _

(k*DsDg + NoNe)p + 5)(p — 5)
Noting again the fact that the roots of the term (,(*D, D -+
NgNg) are the poles of the optimal system obtained
without a sensitivity term (¢ = 0) in (5), it follows that
when ¢ 7% 0 and p = z; the factors (p &= s) are cancelled
by corresponding factors of NgNg, and the number of
closed-loop poles is the same with or without the sensitivity
term in (5); when o % 0, and p = s; the factors (p =) are
not cancelled, and the optimal system found by including
the sensitivity term in (5) has one more pole than the
optimal system found by ignoring sensitivity.

When ¢ — o« to obtain reduced sensitivity, inspection
of (39) indicates that (m — n -+ 1) poles of T % go to
infinity along straight line asymptotes; the remaining poles
approach the plant zeros (which are also zeros of T %
and so the residues at these poles become small for suffic-
iently large . To determine which of the remaining poles
are dominant for large o it is necessary to consider the
location of the other zeros of T * which include the zeros
of F,, (which depend on ¢) and the fixed zero at s = — p.
If the input is taken to be a unit step function as in the pre-
vious section the term [-], in (36) is simply ro/s where r,
is the residue of [-] at s = 0. Thus, for this case F,, = 1o
and does not contribute any finite zeros to 7%, This implies
that by increasing ¢ to obtain reduced sensitivity to a plant
pole or zero uncertainty the bandwidth of the closed-loop
transfer function T is increased for sufficiently large o.

0. (39

Example 2: For the same plant and other assumptions
of Example 1, reference to (36) gives

(k> + GG + ¢°G:,Gy) " = (5" — 25* + 2¢
—1=0)/s(1 +5° =Y, (402
(K 4+ GG + ¢°G,Gy)™ = (5" — 25" + 25
—1 =) /sl — s’ = 7, (40b)
[RG/¥] = —(1 — 5)/s(s" — 25
+ 25— 11—, (40¢)

[RG/ Y], = fsﬁ ; 7o = residue at s = 0. (40d)

Figure 3 Root-square locus of optimal system poles; Exam-
ple 2.

Substituting (40) into (36) and then evaluating GuX/R
gives the optimal closed-loop transfer function,

G ro(s + 1)
¥ = — k= 0 .
TS R Uco (sG I - (41)

The optimal system poles, which are the Ieft-half
s-plane roots of

YP =G —2¢+2"—1—06)=0 (42)
are shown in the root locus diagram in Fig. 3 as a function
of the sensitivity weighting factor, ¢. When ¢ — 0, the
LHP-roots of (42) lie on the unit circle and have the same
values given by (33). When ¢ is increased to obtain reduced

sensitivity, the poles move away from the origin with the
result that the closed-loop system bandwidth is increased.

& Optimal control using conventional closed-loop sen-
sitivity

The performance functional (5) obtained using the con-

ventional closed-loop sensitivity function (10) is

Lo

27Ti —joo

+ 0'2(G,,u - % G,,u2><(;pu - %G‘pazﬂ ds (43)

J l:(R — Gu)(R — Gi) + K’ua

and the necessary condition for J to be stationary becomes:

—~GR + (K* + G&u + °G,G,u
X (1 - ﬁ‘—G)(l - ”—f—) —x (44)

The problem of finding u from (44) is analogous to the

Wiener-Hopf problem, but more difficult because % in-
volves u quadratically as well as linearly (and also involves
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). Although a general solution is not attempted, the form
of the solution and certain significant properties of it
will be described. For this purpose, it is convenient to
introduce the abbreviations:

H = (K + GG), (45a)
W = GR/H", (45b)
A = G,G,(1 — 2aG/R)/H ", (45¢)
B = GA/R, (45d)

where the notation used is the same as that used in (2).
Substituting (45) into (44) and dividing by H™ gives

;f: + [W). = —[W], + H'u + o*(Au — Bu®). (46)

Since the left side of this equation is regular only in the
LHP, the first two terms on the right side, which are regular
only in the RHP, cannot contribute to the left side. The
only term on the right that can contribute to the left side
is the last one which has singularities in both the LHP and
the RHP. Since the last term is of order ¢°, the left side
must be of order ¢ also and so (46) can be written as

o’y = —[W], + H'u + ¢*(4u — B), (47)

where 7 is given by

Il

[Au — Bu*]_

) [G,,Gpu —~ 20G/R)(1 ~ uG/RW] . (48)

y

H
Equation (47) can be solved for u to give

B 1
T 2¢°B
— V(H" 4+ 7 4)° — SB(W]" + o'5)} (49a)
_ 2([W].+o°p)
(H'+0* )+ (H +o* 4)— o’ B[ W], +3"p)
(49b)

{(H" + 6° 4)

U

where the sign in front of the square-root is chosen to
satisfy the requirement that 4 reduce to the known solution
[W1./H given by (2) when o° = 0. Although (49) holds
everywhere it is expedient to make use of it only in the
LHP where y and i are free of singularities. Thus u can be
written

1 + 2
= [MB (H" + o a)

— V(H 4+ *4)° + ’B(W], + 02)‘))}1- (50)

W. J. BUDURKA

It is apparent from (50) that the singularities of # may
include branch points as well as poles. The branch points
occur when

(H* + o*4)° = &*B([W]. + &), (51)
which, for sufficiently small values of &, reduces to
HX —¢’4 + c/[W].B. (52)

The approximate locations of the branch points can be
determined from (52) if the zero-th order approximation
for u obtained from (2) is substituted into (45) to get
A, and B,. Then if ¢ is used to denote a LHP zero of H,
expanding (52) about the point { and retaining only the
lowest order terms leads to

(s = OH'(Q) + " AR) £ o V[ W(D].B(F) = 0. (53)

Thus, the branch points are approximately given by the
equation

1
H'(¢)

[—0® 45(0) £ o[ W] Bo(9)],
(54)

sp.p. ¢+

which shows that the pole of u(s) at { goes over into a
short branch cut whose length is of order ¢, and whose
direction is determined by

VWO, B(0)/H'(§) (55)

which may be real or complex. An exceptional case occurs
if By(¢) is zero; then a pole of u, may go over into a pole
of u even for ¢ # 0. Other possible LHP branch points
may occur near poles of 4, B or [W],, but the working
out of these branch point locations will not be considered
further here.

The possibility of the optimal control # which satisfies
(44) having branch cuts arises because u enters the con-
ventional closed loop sensitivity function (10) quadratically
rather than linearly. Since the control enters the Bode
closed-loop sensitivity function (13) only linearly, the
corresponding optimal control u¥ cannot have branch
cuts and its singularities are restricted to poles. The fact
that # may have branch cuts has important physical
significance because it implies that u could not be imple-
mented by means of a lumped parameter network. Thus,
even if an exact analytical solution of (44) for u# could be
found, a rational polynomial approximation to the result
would be required for practical implementation. Note that
whenever the weighting factor ¢ is sufficiently small for the
iteration to converge, the optimal control can be found by
solving (48) and (50) iteratively starting with the zero-th
order approximation to u given by (2).

It is of interest to consider whether the problem of
branch cuts would be eliminated by carrying out the syn-
thesis of u (i.e. with a conventional closed-loop sensitivity




function) in the time domain using a state-variable ap-
proach rather than in the frequency domain considered
here. A corresponding difficulty can be expected in the time
domain since the possibility of u having branch cuts
implies that # cannot be obtained as a solution to a finite
set of ordinary differential equations.

Conclusion

In this paper the synthesis of optimal controls with reduced
sensitivity to plant parameter uncertainties is approached
by adding sensitivity functions to a quadratic form per-
formance index. It is shown that the synthesis results in
optimal controls of different forms depending on the de-
finition used for the sensitivity function.

When the synthesis is based on a Bode (closed-loop)
sensitivity or a conventional open-loop sensitivity, the
resulting optimal control singularities are restricted to
poles. The application to specific problems of the general
solutions obtained in the paper for these two cases is
straightforward. One useful procedure suggested by the
form of these solutions consists of first solving for the
optimal control without regard to sensitivity consider-
ations, and then applying graphical root-square locus
techniques to determine the optimal control as a function
of the sensitivity weighting factors. Under certain con-
ditions it is shown that the bandwidth of the optimal
closed-loop transfer function increases as the sensitivity
weighting factor for a plant pole or zero sensitivity function
is increased, but further study is required to determine
whether this result applies in general.

When the synthesis is based on a conventional closed-
loop sensitivity it is shown that the optimal control singu-
larities may in general include branch cuts as well as poles.
Since the possible existence of branch cuts implies that the

optimal control could not be implemented (except approx-
imately) with a lumped parameter network, it is apparent
that future research should be directed at finding a general
method for approximating the solution with a rational
polynomial function.
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