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E. B. Dahlin

On-Line Identification of Process Dynamics

Abstract: Two methods similar to regression analysis are applied to the estimation of parameters in a dynamic process equation. One
method uses a residual based directly on the differential equation for the process model. The second method forms the residual from
the integro-differential equations derived by integration of the original differential equation with respect to time. The two methods are
shown to be complementary in their sensitivity to process and measurement disturbances as well as to errors in the estimate of the
process variable reference values, Certain parameters that are very sensitive with one method are shown to be much less sensitive with
the other method. A combined method is developed which utilizes each one of the constituent techniques to estimate the parameter for
which it has the highest accuracy. This not only permits identification with higher overall parameter accuracy, but also under many
practical circumstances gives a convergent solution when one of the constituent methods would give a diverging solution having no
practical value for updating control coefficients in an adaptive controller. It is shown that the estimate of the magnitude of a pole
in a transfer function can be significantly improved by prefiltering the process input and output data with the same lowpass filter.

The paper presents a theoretical and experimental evaluation of the identification methods. Formulas are derived for the variances of
the parameters permitting an estimation of the parameter accuracy in a particular test. The test data used has been collected from
different control loops on paper machines. The disturbance level on some of the variables is very strong and a test signal-to-noise ratio
as low as 0.5 can be encountered. The method is currently used in routine operation in adaptive paper machine control. It is in use

on four control loops and has been tested on several other loops as well,

Introduction

This paper is concerned with methods for on-line identifi-
cation of industrial processes; that is, it discusses methods
of establishing and updating a dynamic model of a process
during normal operation of that process. The identification
method proposed in this paper was developed specifically
for on-line updating of the control-law parameters in a
digital controller used for moisture and basis-weight
regulation in paper-making machines. The paper-making
process is typical of those processes for which on-line
identification is appropriate in that:

1. The process has time-varying dynamics. The variation
in dynamics is caused by such factors as changes in wire-
drainage characteristics, degradation of dryer felt, ambient
air properties, and change of weight and composition
from one paper grade to another.

2. The accuracy with which control parameters are selected
for moisture and basis weight has a strong influence on
operating economy.

3. Manual selection of control parameters by trial and error
methods is not practical because of the normal strong
interaction between moisture and basis-weight loops and
because of the high disturbance level.

The length of computation time is a prime consideration
in the selection of an on-line identification method. For
any method this time depends upon the number and type of
dynamic parameters that need estimation. With some
methods certain parameters can be estimated by the rel-
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atively rapid solution of linear equations, while other
parameters require the solution of non-linear equations.
For example, with the least-squares criteria, estimation
of a pole and process gain can be accomplished by
the solution of two linear equations, whereas estimation
of transport delay requires a time-consuming search pro-
cedure. As a more drastic example, if one is using a
stochastic process model (which simultaneously relates
both the manipulated and stochastic input signals to the
output), none of the parameters can be estimated by the
solution of linear equations in the least-squares criteria
unless the disturbance signals are stochastically inde-
pendent and represent white random processes. Some
criteria in the maximum probability methods have the
same effects on computation time as those just mentioned.’

Clearly, then, one must design the model structure for a
particular application with an eye on computation time.
Yet the model structure will also depend to a considerable
extent on the control law to be used. A control law selected
for its ability to handle a variety of different spectral
properties of noise will not need the identification of all
the parameters in a stochastic process model. The opposite
is true if the control law is designed for optimal control
with accurately known disturbance properties. Without
further elaboration, one can conclude that the selection of
an on-line identification method and a control law are
highly interrelated and require an understanding of control
loop sensitivity and the range and frequency of variation of




the different process parameters. A general discussion of
the needs for parameter identification and the needs for
adaptive control is found in Ref. 2.

The techniques presented in Refs. 1, 3, 4, 5 all have been
applied to process control problems. They share the com-
mon characteristic that parameters describing the process
disturbances or their effects on the output are identified
simultaneously with the parameters relating manipulated
inputs to the process output. This is a larger task than that
attempted by the method in this paper where only the
parameters of the latter category are identified. The relative
merits of one approach versus another can again only be
judged by considering the identification method in con-
junction with a control law. Reference 6 discusses general
concepts of the design of a digital controller/process
identifier pair. Astrém, in this issue, presents a case
history of the design of a controller and identifier for the
paper-making process."

Experimental work on process identification by fre-
quency-domain methods has been presented, for example,
in Refs. 7 and 8. It appears that these methods require
much longer periods of data collection than was felt desir-
able for the present application. Hence, several well-known
time-domain identification methods were examined for
their applicability to on-line use in a paper machine. These
methods utilize maximum probability criteria®** as well as
least-squares error criteria, in various formulations, as
used in conventional regression analysis. When applied to
a process model with only deterministic process variables,
the latter methods are particularly attractive from a com-
putational point of view. However, when applied to typical
paper machine data that contained strong process noise, the
most common of the least-squares criteria (described
in Refs. 9-13) was found to produce large estimation
errors. In fact, for certain process data, such as those
collected from a particular paper machine dryer, the least-
squares criteria consistently failed to provide even the
correct polarity of the dominant pole in the transfer
function. For other processes, such as a particular four-
drinier system (basis weight/stock flow dynamics), the
method worked quite well, but only if one selected proper
prefiltering of the data. Since filter characteristics have a
critical effect on the estimated value of the pole, one is
faced with the additional problem of filter selection.

Evaluation of the conventional least-squares method as
a potential technique for the paper-making process identi-
fication led to an investigation of a different least-squares
method in which observation errors or residuals are
formed from a time-integrated version of the original
differential equation of the process. This method is equiv-
alent to a special form of filtering (namely, a pure inte-
grator) but has the unique property that initial conditions
never cease to influence the filtered data. In estimating the
pole of a typical transfer function used to characterize a

portion of the paper machine, the method was found to be
excellent, no matter what the filter characteristics and
even if strong process disturbances were present. The
method thus seems to offer the means for determining
a parameter that cannot always be determined accurately
by the conventional method. Since the two methods of
forming residuals have other valuable complementary
properties, a computation algorithm was developed which
uses both methods in combination with computer-selected
filters. This algorithm is referred to as the hybrid method.

Later in the paper some typical results obtained by the
conventional least-squares method, by the integration
method and by the hybrid method are presented. Since
literature on identification focuses on the asymptotic
properties of the least-squares or maximum probability
estimators, some formulas will be presented for the param-
eter variance with finite observation time. Such formulas
are of considerable practical interest because in many
applications with moderate noise level one can successfully
identify dynamic parameters using a short observation
time and a single step function as process excitation. The
derivations of these formulas are presented in a develop-
ment report.'*

The process model

In typical applications of on-line identification, processes
having muitiple inputs and multiple outputs are encoun-
tered. In paper machine control, for example, one is parti-
cularly interested in the transfer functions relating the
stock-valve signal to basis weight and to the moisture of
the sheet leaving the dryer. Equally important are the
transfer functions relating the set-point signal of a steam
pressure controller to basis weight and moisture. While
identification can be accomplished from a knowledge
of these four transfer functions, it can be done with much
higher accuracy if one determines the transfer functions
relating the set-point signal to steam pressure and relating
dry material flow to the stock-valve signal. In Fig. 1 these
two transfer functions are labelled G, and Gso, respec-
tively. The output of G, is related to basis weight through

Figure 1 Process model partitioned into single-input, single-
output elements.
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the transfer function G;,; and to moisture through the
function Gy, ; the output of G, is related to basis weight
through G,, and to moisture through G,,. Even though
this method converts the orginal problem into a new one
in which more transfer functions have to be analyzed, the
new functions are of lower order and, hence, can be
handled with more accuracy. An additional advantage is
that the method efficiently reduces the effects of dis-
turbances.

The individual transfer function to be used in the
following analysis is of first order and has three unknown
parameters: gain, pole, and transport delay. Many in-
dustrial processes can be divided into elements having
transfer functions of this form, and the model is therefore
of significant practical importance. The six transfer
functions mentioned above for the paper machine are of
this category.

The principles to be described are applicable also to
other types of transfer functions. During identification
experiments using a double-pole transfer function for a
process without a transport delay, it was found preferable
to use the transport delay term of the single-pole formula-
tion as an approximate description of the largest pole (the
one having the smallest time constant). This led to longer
computation time, but it had the advantage over solutions
based on a double-pole model of permitting identification
with data from processes having high disturbance levels.

The single-pole transfer function of interest in the present
analysis is given in sampled-data form by the equation

1
_71 (yi - y.'-1) + A(yi-l - J’r)

+ B(xi—l‘—l - xr) = O, (1)

where A is the pole, B is the gain, I' is the number of
sampling intervals equal to the process transport delay
time 7, T is the length of the sampling interval, y; and x;
are the it" samples of the model output and input, respec-
tively, and y, and x, are reference values for the output
and input, respectively. These reference values are the
steady-state values, which are, in general, not known,
but are estimated by a procedure separate from that used
to estimate the parameters 4, B, and 7.

The same transfer function can also be modeled in a
form obtained by summing the terms of Eq. (1) over the
intervals from 1 to n:

Yn — Do + AT Z (yivl - yr)
i=1

+ BT Z (x{fl‘~1 - xr) = 05 (2)

where y, and y, are the final and initial values of the model
output, respectively.
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Figure 2 Process and model variables.

The formulations given by (1) and (2) have different
properties and both are used in complementary fashion
in the proposed identification scheme. It is worth noting
here that both (1) and (2) are written in a form, which,
at a high sampling rate, enables the parameters 4, B, and 7
to retain the same physical significance as they would in
an equivalent continuous model of the system. This is
convenient since the corresponding parameters in an
actual continuous process have special physical signifi-
cance.

Now, in order to use the models of (1) and (2) for on-line
identification, it is necessary to relate the input and output
values of the model to those values that can actually be
observed in the process. Note that the model output y
would have the same value as the measured output w
if there were no errors in the model structure and parameter
estimates and if no disturbance inputs and output measure-
ment noise existed. Also, the model input x would have
the same value as the measured input v if the input meas-
urement noise were zero. Hence, by definition,

vExtE 3
w=y-+n,

where { is the input measurement noise and 7 is a hypo-
thetical disturbance signal assumed to account for all the
factors that produce a difference between model output
and observed output. The relation between the process
model and the observed variables is illustrated in the
structure shown in Fig. 2.

Since a theoretical justification of the model structure
is not strictly necessary for process control applications,
no details of the theoretical basis for the model are pre-
sented in this paper. However, the author has performed a




detailed analysis of the dryer dynamics based on the
physical principles involved, and the work in Ref. 15 gives
a theoretical foundation for the basis weight dynamics. In
each case there seems to be a good theoretical justification
for the simple model structure used here. Nevertheless,
the decisive engineering proof of the validity of an identi-
fication result is obviously to analyze the control system
behavior when the controller is designed using that resuit.
In other words, if the control system behaves as expected,
the identification result is, by definition, satisfactory. In
the author’s opinion, the second best criterion for judging
the validity of an identification result is to compare the
actual process output to the model output when both
process and model have the same input. This comparison
can be done numerically and also graphically by super-
imposing plots of the two sets of output data. This paper
relies primarily upon the latter form of presentation,
allowing the reader to judge for himself the validity of an
identification result.

The comparison of model and process output avoids a
difficulty often encountered when using a residual test
for validity analysis. The well-known necessary require-
ment for a valid identification result by residual methods
is that the residual have essentially a zero mean and be
essentially a white random process. The author’s experience
has been that in many cases these conditions may be met
but the identification result is nevertheless useless for
controller tuning purposes. (Figure 8g is an example of
one such case encountered in the paper machine study.)
A comparison of model and process output in each case
eliminated an acceptance of such erroneous estimates.

Performance criteria used for identification

It can be concluded from Fig. 2 that it is not possible to
distinguish between the individual effects of measurement
noise, model parameter errors, model structure errors,
and disturbance inputs by observation of v and w without
making special assumptions or other measurements.
Normally the input measurement noise £ is the least
significant of the various error sources in the parameter
estimation. Therefore, if one assumes { negligible, the
model output, y, can be computed from the observed
input time series v. It is then meaningful (and extremely
useful) in deciding between alternative model structures
and parameter values to determine the model output
error, ¢, by comparing the model output with the observed
output. This procedure is referred to as model output
comparison, and is an essential feature of the identification
method proposed in this paper.

The model output error is given at each sample time by
the expression

€. = w, — y¥ (4

The term y* is the model output, which is computed
under the assumption of negligible input measurement
noise by the expression

yi=1T Z gi—i(vir — v,)
=0

+ (WO - wr)e_iAT + Wy (5)

where g, is the model impulse response in sampled data
form, w, and v, are estimated reference values for their
respective series, and w, is the estimated initial value of the
process output. Actually, the model output is more simply
computed by solution of the difference equation corre-
sponding to the convolution equation (5) than by solution
of (5) itself. The difference equation is, of course, similar
to (1).

In certain circumstances, to be discussed, it is advanta-
geous to estimate parameters by using the criterion of min-
imum variance of model output error,

1 N
Y=N_IZ;6§, (6)

where N is the number of samples for each variable.

Criteria of a second type can be established by em-
ploying “residuals” derived from the process model
equations (1) and (2). Residuals derived from Eq. (1) are
used to formulate an estimation method to be called the
“derivative method,” (the name chosen because the resid-
ual has the same dimension as the time derivative of the
process output), and residuals from Eq. (2) are the basis for
an estimation method called the ““integral method.” The
form of the residuals for both methods is given by

Rﬂ = Aan + Bﬁn _I- ’Yn) (7)
where, for the derivative method
Ay = Wpoy — W,

Bn = Up-r—1 — Uy

Va %- (wn - wn—l): (8)

and for the integral method

o = T 2 (Wisy — w,)
i=1

Bn =T Z_; (Ui—l"—l - U,)

Yo = Wp = Wo. (9)

Minimizing the variance, J, of the residual provides a
criterion for parameter estimation; the variance is given by

1 N
J=N_12R?,. (10)

=1
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For any given 7 estimates of 4 and B can be obtained by
minimizing J with respect to 4 and B. Setting the partial
derivatives 9J/0A and dJ/dB equal to zero leads to the
familiar normal equation of least-squares analysis. Thus,
using either the derivative or the integral method, 4 and B
are computed from

N
~ > aw.T
H e (1)
N
- Zl BxyaT

where M1 is the pseudo-inverse of the matrix'®

N N
Z 2T Z o3, T
M — n;l n;l . (12)
2 BT 2 BT
n=1 n=1

The matrix M is a so-called gram-matrix, which is
invertible whenever o and 8 are linearly independent.”’
Since « refers to the process output and 8 to its input,
this linear independence is assured in the absence of noise
for any open-loop testing with any input perturbation
if the system has a finite pole (which is true for almost
any physical process). Experience has shown that a non-
invertible normal matrix M is seldom encountered even
in the presence of noise when open-loop data are used.
Therefore the methods in the following are developed on
the assumption that M exists. Discussions concerning
the inversion of M and its implication upon identification
methods can be found in Ref. 18.

Since the derivative of J with respect to 7 cannot be
determined, 7 is estimated by a search procedure rather
than analytically. In general, the search procedure involves
selecting a value for 7, calculating 4 and B from Eq. (11),
and determining whether the three values are located at
the global minimum of either J or Y. No problem with
local minima has ever appeared in this search and it ap-
pears that the starting value for 7 can be almost arbitrarily
selected.

1t will be shown in the experimental analysis that min-
imizing J with respect to 7 yields a good estimate for 7
only if 4 and B are calculated by the derivative method.
However if the derivative method diverges or gives a
7 = 0, the integral method must be used. In this case the
accuracy of the estimate for 7 is better if the model output
variance, Y, rather than the residual variance, J, is min-
imized with respect to r.

Accuracy of parameter estimation

Certain aspects of accuracy in parameter estimation with
the residual performance criteria will now be analyzed.
In particular, estimation accuracies obtained with the
derivative and integral methods will be compared. The
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following analysis is limited to the case where the dis-
turbance amplitudes and errors in the estimation of the
reference levels for x and y are small compared with the
process perturbations. The following inequalities are
assumed valid for almost any i:

0x, =x, — v, K 0x; = X;_r1 — X

i
Il

oy, =y, — w, < dy;

Vi1 = Vs (13)
8yo = yo — wo K 9y,

7K 8y, EK bx;, TR &1L

Considering that the true values of 4 and B are known,
one can derive expressions for the deviations from these
values which will be caused by disturbances and reference
errors. Defining parameter variation as 64 and 6B for 4
and B respectively, it can be shown'* that

b
dA) _ M a, (14)
4B ]

where, for the derivative method,

N
~T 2 op[A(nicy + 85,)

1=1

4= + B(fi—r—l + 5xr) -+ ("Ii - ﬂi—l)/T] (15)

N
—T Y ox[A(niey + 09,

i=1

L + B¢,_ro+ ox,) + (9, — m-l)/T]

and for the integral method,

r N i
—~T Zl’Yi ZTa.Vi

a= = , (16)

N i
—-T }E: Yi }E: T ij
i=1 i=1

where

v = A4 Z T(n; + 6y.)

i=1

+ B Z TE-r + 8x,) + n: + 8. (17)
From Egs. (14)~(17) it can be seen that derivative and
integral estimates of 4 and B are unbiased if the disturb-
ances and reference errors have zero mean. Consider now
the error sources &x, and 8y, alone and assume that
the noise sources are zero. Clearly, & = 0 for the deriv-

ative method if

N N
Zl oy = ., 8x; = 0, (18)

i=1
and for the integral method if
N

i N i
Zi;:ay,:;i;ax,:o. (19)

i=1




These results show that it is, in principle, simple to select
a test signal wave form so that the parameter estimation is
independent of errors in the reference values. If such a
wave form is not used, the integral method is the more
vulnerable to reference value errors, For a test signal
consisting of a single step with the amplitude £, one can
compute M and & and obtain the following result for the
derivative method:

6A 2 1
AV — 1)
and for the integral method:
64 2
| — 21
AV — 7)°
X 18 127 ’ (21)

"t uv =T Ar =
where ¥V = NT is the length of the test interval, and
K = B/A is the steady-state gain.

Equation (21) shows that the relative error in the estima-
tion of A4 increases almost linearly with the length of the
test interval for the integral method, while Eq. (20) shows
that the error is almost independent of test interval length
for the derivative method.

It is also of great interest to determine the standard
deviation for the estimation of 4 when no reference errors
exist and, thus, the only error source is the disturbance 7.
This standard deviation has been computed by the author
in Ref. 14 for a test signal consisting of a single step
function. The results based on a single step have been
found to reflect the interesting properties quite well, even
when the identifier uses multiple steps with fairly large
separation (as is typically done with the on-line method).
When samples of the random variable » are uncorrelated,
one can derive the following result for the derivative
method:

4 1/2
14+ ——
g4 _ Oy —_ 3A(V — 1)
<= ks \V10AT —————1 N 5 (22)
AV — 1)
and for the integral method:
2 = 2 4T\/FF,
A X
4.8(V — T
X \/18 ( T)/12¢2 ’ (23)
1+

AV — 1 AV -1t

where F, and F,, which are near unity for large (V — 1),
are defined by

477 47

F=lt ey = " av =9 (24)
1.88 2.5

F2 =1 + A(V __ 7') + AZ(V _ T)4 H (25)

and where o, and ¢, are the standard deviations for 4
and 7, respectively.

It can be concluded from this theoretical analysis that
if the sampling rate is chosen so that AT << 1,and if ¥V — r
is not too large, the integral method will have higher
accuracy than the derivative method in defining the pole
A and the gain B. For typical paper machine data the
difference in accuracy is quite marked; if, for example,
T'=1,V=100,r=0,4=0.01,0,= 1,and K2 =1,
the theoretical variance o,/A4 will be 0.303 for the deriv-
ative method and 0.028 for the integral method.

Data prefiltering

It was shown in the previous section that random dis-
turbances can seriously affect the accuracy in estimating
the pole, especially with the derivative method. Is it
possible to prefilter the data in order to reduce this esti-
mation error?

Suppose the time series, » and w, are both filtered with
identical linear filters. Also assume the filtering to be such
that all the effects of measurement noise and process
disturbances are eliminated. One can easily see that the
time series obtained by filtering w will be the true process
output which would occur if the true process input were
the filtered version of v. Thus the fact that the time series
are distorted does not matter if a complete noise cancel-
lation occurs.

Of course, we cannot meet this requirement exactly,
but even by letting the filters make a partial cancellation
of the noise, one can achieve a very significant improve-
ment in the estimation, as will be shown with experimental
data.

What form of filter is most suitable for this purpose? A
useful filter can be derived heuristically without difficulty.
The purpose of the filter is to improve the estimate of the
parameter 4. In order to improve the estimate of 4 as
much as possible, the filter should improve the signal-to-
noise ratio on the time interval where the data is sensitive
to the magnitude of A. Since the typical excitation of the
process is a series of step functions, consider the response
of the model for a single step input. The data having
maximum sensitivity to a variation of 4 can be shown to
be collected at the time #, defined by:

= 1+ %. (26)
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The problem is now a familiar one. We want to select a
filter function so that the maximum signal-to-noise ratio
for a step input occurs at time ¢,.

The amount of distortion on the signal waveform is
immaterial. The solution to this problem is given by Daven-
port and Root,”® on page 244. Considering the special
case of white noise, the optimal filter impulse response is
the so-called matched filter. The impulse response for this
filter is the mirror image of the model output with the
mirror in the plane, ¢ = #,, and is defined by the following
function:

h(?) = K£(1 — e e*)[1 — u(1/ A)], (27)

where

P

£ = amplitude of the process input step function
(occurring at time, ¢ = 0),

u(f) = unit step function.

This filter is somewhat clumsy in practical use. Since it is
of lowpass character, an exponential filter is a reasonable
substitute and is simpler to apply. The exponential
filter, which is equivalent to the matched filter, is chosen by
matching the first and second moment of the impulse
response functions. On this basis the best exponential
filter is defined by the impulse response h,(f) given by

() = 30.e”*", (28)
where

3, = 0.915K% (29)
3, = 2.494.

Since the best filter requires prior knowledge of 4 an
iteration method is applied to find the best value of 3C,
in the method described in the next Section. The 3C, values
found experimentally agree closely with Eq. (29) and the
simple reasoning used here to justify the filter selection is
well supported by practical results.

The hybrid identification method

Theoretical and experimental analysis of the derivative
and integral methods conducted with numerous sets of
data demonstrated that the methods have complementary
properties. It was found furthermore that neither method
alone had sufficient reliability and accuracy to handle the
identification of all the transfer functions of main interest
in paper machine control. It was, however, possible to
combine the methods and use data filtering in such a
manner that these transfer functions could be safely
handled in routine on-line identification. This combination,
to be called the hybrid method, will be briefly described in
this Section. The properties of the derivative and integral
methods that were the basis for the chosen structure of the
hybrid method are summarized in Table 1.
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Table 1 Comparison of several features in derivative and
integral methods.

1. Divergence of solution
DERIV: Possible (Occurs for Series III experimental
data).
INTEG: Possible (Occurs for Series I experimental
data).

2. Errors in estimation of A and B
DERIV: Quite high in the presence of disturbance.
Independent of length of test pulses.
INTEG: Small if the test transients are not too far apart
and the pole is small. Errors increase with
length of test pulses.

3. Errors in estimation of r
DERIV: Very small, particularly if test pulses have fast
rise time and the process time constant is small.
INTEG: Large in the presence of disturbances.

4. Effect of errors in estimate of x, and y.
DERIV: Parameter errors are small and independent of
length of experiment.
INTEG: Parameter errors increase rapidly with length
of experiment.

5. Effect of data filtering
DERIV: Prefiltering has excellant ability to improve
estimates of A and B.
INTEG: Prefiltering is of value.

The first property in Table 1 indicates that both methods
may, under the influence of noise, provide an answer which
is said to diverge. Divergence of a set of parameter values
implies that the model output variance, Y, approaches
infinity for large observation intervals. (Even when the
values diverge, the residual variance, J, typically remains
finite and of reasonable magnitude; see Figs. 8f and 8g,
for example.) A divergent answer is clearly unusable for
controller tuning purposes. It should be noted, though,
that while divergence can occur with both methods, the
experiments showed that the data which diverged with the
derivative method were from a different process than the
data which diverged with the integral method.

The second feature in Table 1 indicates that the esti-
mation of A and B is normally done best with the integral
method. However, the integral method was found experi-
mentally to be inaccurate in the estimation of 7 if this
variable was chosen for minimum J. A strong improvement
in the estimation of r occurs if it is chosen for minimum Y
when the integral method is used. The integral method
requires more computation time, and it is therefore
always preferable to try to acquire the value of v by the
derivative method. Table 1 also summarizes the sensitivity
to errors in reference values and the benefits of filtering.

Figure 3 illustrates the basic logic structure in a computer
program for the hybrid method. The first block in the




Figure 3 Hybrid identification method, basic flow chart.
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Figure 4 Test problem; (a) input signal, (b) solution by integral method, (c) solution by hybrid method. (Pass 2 is equiva-
lent to solution by derivative method). In this, as well as subsequent figures, the crosses, -+, refer to observed process
output, while the smooth-line curves refer to computed output from the process model.

program refers to the reading of input data from the pro-
cess. The data to be used in the program are collected
during two different time periods, the relaxation period

414 and the transient period. During the relaxation period the
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process is maintained in open-loop operation and the
manipulated input variable, x, stays constant as near to
the steady-state value as possible. (The controller that is
typically used in conjunction with the identifier maintains




and updates a good estimate of this value.) During the
transient, which immediately follows the relaxation period,
the value of x is varied.

After the input data have been read into the computer
and converted to suitable units, the signal-to-noise ratio
of the data collected during the transient period is com-
puted according to the definition:

(S/N) = V(o2 — 02.)/0rs (30)

where

o., = the variance of the observed output, w, during the
transient period, and
o> = the variance of w during the relaxation period.

The signal-to-noise ratio is used to judge whether or not
the test transient is of acceptable magnitude.

In the next block the program has entered a loop for
iteration with respect to the filter constant 3C,. This
parameter is varied in a monotonic sequence starting with
a very large value or zero time constant (meaning there
is no filtering) and changing to successively decreasing
JC, (larger time constant). The filter chosen as best is the
one that provides the smallest fit-error, E,, defined by

Ef = (Y - 0-1207)/0'1201’ (31)

where o2, has the same meaning as above, but this time
refers to the data from the relaxation period after it has
been filtered.

Next the computer estimates reference values for x, and
¥, Which estimates have been defined as the observable
variables, v, and w,. These estimates are based on a
formula expressing the values at the end of the relaxation
period of the best straight lines fitted to the input and out-
put data, respectively. (‘“Best” is defined on a least-square
error basis.) This ®8hod gives some compensation for
drift occurring during the relaxation period.

After the noise variance is computed, the program enters
an intermediate loop where the derivative and integral
methods are compared as prospective means for solution,
and an inner loop where the optimal value of 7 is found
by an iterative search procedure. Each iteration in the
intermediate loop is called a “pass.” In Pass 1, which has
relatively few iterations with respect to 7 in the inner loop,
the derivative method is always used in order to determine
whether it is a good prospect for solution. If ¥ does not
diverge and if 7 is not equal to or less than zero, the
derivative method is used again in Pass 2. In Pass 2, there
are more iterations than in Pass 1 with respect to 7, and
an accurate solution for 7 is obtained. In Pass 3 the integral
method is used with the value of 7 required during the pre-
vious pass. Finally, the fit errors computed during Pass 2
and Pass 3 are compared and the values of 4 and K (where
K = B/ A) that give the smaller fit error are selected as the
best parameter set for the particular 3C, value used in that

Table 2 Identification results for test problem.

Parameters
K A T
Runge-Fox parameters 4.05 0.0114 65.0
Derivative method 4.19 0.0094 56.3
Integral method 4.08 0.0113 60.0
Integral method with filter
(40 sec time constant) 4.22 0.0083 80.0

outer loop iteration. However, if during Pass 1, Y diverges
or 7 is equal to or less than zero, the derivative method is
immediately judged a poor prospect, and Pass 2 then uses
the integral method with one or more iterations in the inner
loop. In these iterations the value of Y is computed for
each value of r and the optimum 7 is chosen as the one
that minimizes Y.

Test problem using data not influenced by process
disturbances or measurement noise

A special test problem having a known answer was created
for evaluation of the identification methods. The observed
process input shown in Fig. 4a was used for the com-
putation of the model output, y*, for a particular set fo
model parameters. In subsequent experiments the input
data used here were considered to be the observed process
input and the computed model output was considered to be
the observed process output. This test problem, then, has a
typical process input waveform and an ideal, observed out-
put time series, not influenced by process disturbances or
measurement noise. The computation of y% was done by a
Runge-Fox”® integration routine with the parameter values
shown in the first row of Table 2.

When the derivative and integral methods were applied
to this test problem, the parameter values shown in the
second and third rows of Table 2 were determined. Slight
parameter errors do exist, but they are probably due to the
size of the sampling interval (3.49 seconds). Even so,
Figs. 4b and 4c show that the identified parameters pro-
vide a model output that closely resembles the observed
output. Note in Fig 4c that the output obtained using the
results of Pass 2 of the hybrid method is the same as that
obtained using the derivative method alone Although Pass
3 gives the optimal solution for this problem, the result is
only slightly better than that obtained from Pass 2.

Equations (15)-(21) have shown that errors in the esti-
mation of x, and y, will, for a large observation interval,
cause much larger errors in the values of parameters
estimated by the integral method than by the derivative
method. This theoretical conclusion was checked experi-
mentally on the test problem. Errors in the reference
values, v, and w,, were purposely introduced and the
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Figure 5 Effect of reference value errors on model output; (a) solution by integral method with reference error of 0.01
units, (b) solution by hybrid method with reference error of 0.02 units. (Pass 2 is equivalent to solution by derivative

method.)

model output as well as the parameter values were deter-
mined as shown in Figs. 5 and 6. In Fig. 5a the integral
method was used to compute the model output for a
reference error, w, — y,, of 0.01 units. In Fig. 5b the re-
ference error was 0.02 units and the model output was
computed by the hybrid and derivative methods (the
derivative method solution is identical with that of Pass 2
of the hybrid method). The Pass 2 solution is optimal and
fits quite well. The variation of parameter values for a
range of reference errors is shown in Fig. 6. Note that the
derivative method provides a constant estimate for 7
regardless of the magnitude of the reference error. The
other parameters are also much less influenced by the
reference error when estimated by the derivative method
rather than the integral method. This test, as well as others,
416 has confirmed that the derivative (and hybrid) method is
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far less sensitive than the integral method to reference
errors. Using Egs. (20) and (21) with numeric values
corresponding to the experimental data of Fig. 6 (average
K% = 0.65, 4 = 0.0114, ¥V — 7 = 1000, 7 = 65), one
obtains the theoretically expected results shown as dashed
lines in Fig. 6. The theoretical and experimental results
for the relative error in A agree closely for the derivative
method of estimation.

The test problem was also used to check the effect of
data prefiltering. The fourth row in Table 2 shows that a
relatively heavy filter did not affect the result very severely.
However, because of sampling effects, the identification
was not completely independent of the filter. A filter with
a time constant (by definition, the inverse of the parameter
JC,) of 40 seconds was used for this and subsequent exper-
iments,
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Experimental evaluation with process data

Typical results from the experimental evaluation of the
identification methods with actual process data are pre-
sented in this Section. The methods have so far been
applied to eight different transfer functions involving such
variables as steam temperature, steam pressure, moisture,
basis weight, stock flow, consistency, and stock valve
position. The total number of on-line and off-line identifi-
cations made to date exceeds 100.

Some results of experiments with three series of data
from different control loops will be discussed. Each series
contains the data from several identification experiments,
or runs. The series have purposely been chosen from
highly disturbed control loops where the identification
is difficult. For these data the results clearly show the
differences between the derivative, integral, and hybrid
techniques. The disturbances for all three series have a
broad bandwidth, and the formulas derived under the
assumption of white noise should be well applicable. A
typical power spectrum is shown in Fig. 7.

Series 1 of the experiments has basis weight as the out-
put variable and dry material flow as the input. Series IT
uses data taken from a different paper machine. It, also,

0 0.05 0.10 0.15 020 0.25 0.30 0.35

Radians/second

Figure 7 Power spectrum for Series I process output with
constant manipulated input.

has basis weight as the output variable, but uses the stock
valve position signal as the input. Series III data are taken
from a paper machine that was producing a grade of paper
typically having very strong moisture disturbances; reel
moisture is the output and dryer steam pressure is the
input. The sampling time used in Series I is 3.49 seconds,
and in Series II and III, 3.6 seconds.

& Series I, basis-weight/dry-material-flow transfer function

Table 3 summarizes some of the results from the analysis
of the Series I data. The signal-to-noise ratio varies signifi-
cantly between the several runs. In Run 1 the test signal
selected was very large. This led to a loss of head in the
stock line, which gave the transient a strong droop, as
can be seen in the output graphs of Fig. 8a. Run 2 has a
normal excitation; the input signal is shown in Fig. 8b
and the output in Figs. 8¢ and 8d. Run 3 uses a signal
having only one pulse of relatively low amplitude; in the
output graphs for this run notice that Pass 3 of the hybrid
method diverged (Fig. 8e), as did the integral method. In
Run 4, which has a very low signal-to-noise ratio (0.55), the
integral method diverged again. (Fig. 8f). This is inter-
esting because if acceptance of the identification were
based on the residual being normal with zero mean, as it
is in this case, (Fig. 8g), the model would give a response
having almost no similarity to the observed process out-
put. Divergence of the solution causes the identification
by the integral method to be rejected. However, the de-
rivative method did not diverge in Run 4 (Fig. 8h) although
the accuracy was low when no filter was used (Table 3).

The values for K and 7 obtained by the derivative method
are in excellent agreement among Runs 1-3. In spite of the
spread of values for 4 among the Runs, the model output
curves for the derivative method (these curves are the same
as the Pass 2 curves for the hybrid method) fit quite well
to the observed output.

The model output shown in Fig. 8d was obtained with
the integral method, where T was estimated by minimizing
the residual variance, J. Although the estimate for K was
good, the values for 4 and 7 were notably small. This
result, coupled with the fact that the integral method
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Figure 8 Series I experiments; (a) Run 1, hybrid solution, (b) Run 2, process input, (c) Run 2, integral solution, (d) Run
2, hybrid solution.
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Figure 8 (e) Run 3, hybrid solution, (f) Run 4, integral solution, (g) Run 4, process residual with integral solution, (h)
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Table 3 Identification results for Series I experimental data.

Experimental conditions

Run

number Noise S/N Number of
variance ratio data points

1 0.00139 2.26 400

2 0.00115 1.91 400

3 0.00155 0.89 275

4 0.00150 0.55 175

Parameters
Run

number K A T E;

Integral method, no filter (+ from residual variance)

1 2.35 0.00964 50.0
2 2.40 0.0168 50.0
3* 2.29 —0.0174 135.0
4* 2.42 —0.463 110.0

Integral method, no filter (r from model output variance)

1 2.28 0.00692 100.0
2 2.48 0.0169 49.2
3 2.94 0.00751 78.1

Integral method, 20 sec filter (+ from residual variance)

1* —0.0003 —0.00004 -135.0
2 2.43 0.0171 50.0
3 2.16 0.00915 10.0
4 2.04 0.0233 60.0

Derivative method, no filter (Pass 2 in hybrid method)

1 2.34 0.0520 90.6 0.65
2 2.33 0.0786 87.5 0.35
3 2.34 0.0762 93.8 0.066
4 1.83 0.0556 50.0 —

Derivative method, 20 sec filter

1 2.61 0.0193 85.0 —
2 2.47 0.0301 80.0 —_
3 2.19 0.0179 85.0 —
4 1.97 0.0498 87.5 —

Hybrid method Pass 3, no filter
(using integral method with assigned =)

11 2.24 0.00928 90.6 2.05
2§ 2.51 0.0288 87.5 0.30
3§ 2.20 -0.0222 93.8 >103

Hybrid method, optimal filter, 10 sec

11 2.54 0.0288 87.5 -
2§ 2.43 0.0329 84.4 —
3% 2.20 0.0274 56.25 —

* Solution diverged.

+ Values determined in Pass 2
i Pass 2 gave optimal solution.
§ Pass 3 gave optimal solution.

E. B. DAHLIN

diverged in both Runs 3 and 4, indicates the unreliability
of this method for a process having high noise, large 7,
and large 4. Even when used as part of the hybrid method,
which assures a good estimate for 7, the integral method
improved the estimate of 4 only in Run 2, as can be seen
in Table 3. Still, the fit error for hybrid Pass 3 (integral
method) was only slightly better than for Pass 2 (derivative
method), i.e., 0.30 vs 0.35. Thus, the integral method did
not contribute much to the value of the hybrid technique
in the Series I experiments, It will be shown that the Series
II and III experiemnts are highly different in this regard,
however.

Table 3 shows that the integral method gave a much
better estimate for 7 (Runs 1 and 3) when that parameter
was estimated by minimizing the model output variance
rather than by minimizing residual variance.

Egs. (22) and (23) are now applied to calculate the
magnitude of the theoretical standard deviation for the
estimated value of A. The following values are used:
g, = 000115, + = 90, 4 = 0.03, K, = 0.12, and
(V — 1) = 400. The last two values apply for the first
step of Run 2. The calculations give ¢,/4 = 0.260 and
0.248 for the derivative and integral methods, respectively.
The observed standard deviation for all runs in Series I
gave similar o,/A values, namely, 0.21 and 0.21 for the
two methods, respectively.

For the large pulsewidth which was used in the identifi-
cation experiments, the integral method thus has only
slightly better theoretical accuracy for the pole estimate
than the derivative method. We can conclude that it prob-
ably would have been better to use much narrower pulses
in which case the hybrid method should be able to provide
higher pole accuracy than the derivative method.

Prefiltering of the data has no particular value for Series
I data when the integral method is used (Table 3). For the
derivative method the opposite is true. Note that the
inaccurate estimation of 7 for the low signal in Run 4 is
considerably improved by prefiltering.

The effects of different filter time constants with the
derivative method are shown in Figs. 9 and 10. Note that
the minimum fit error in Fig. 9a occurs approximately at
10 seconds time constant (which then defines the experi-
mentally acquired optimal filter). The corresponding value
of A for Run 1 is 0.0288 at 10 seconds. The optimal filter
by Eq. (29) should have 1/3¢, = 13.8 seconds. This is
quite good agreement between the theoretical and experi-
mental filter values since the difference is not much more
than one sample interval (i.e., 3.49 seconds).

The variation in K and 7 with the filter constant is
shown in Figs. 9¢ and 9d. Run 3, which has the smallest
signal-to-noise ratio among the runs illustrated, breaks the
pattern of the 7 curves by producing an exceptionally low
value at 10 seconds. Otherwise, the character of the filter
infiuence on estimated parameter values is fairly uniform




among the runs. Only A is strongly affected by the filter.
Fig. 9¢ shows that the function Z, defined by

Z=K/(r+1/4), (32)

is approximately constant even for the largest filter of 80
seconds, for which 7 has changed appreciably. Invariance
of Z is a valuable property, since Z has more influence
upon control loop characteristics than any one of the
parameters K, A and 7 alone. (The invariance in Z also
was found to apply to the different solutions while search-
ing for the optimal 7.)

The model output curves in Fig. 10 show how well the
hybrid method will fit the data for the different filters.
Pass 3 is optimal when no filter is used and with a filter
time constant of 20 seconds; otherwise Pass 2 has slightly
lower fit error. When a filter with 80 seconds time constant
is used, the waveform is flattened out to the extent that
even the derivative method loses its ability to recognize
the length of the transport delay accurately. The most
significant conclusions for the Series I data analysis are:

1. The hybrid method (with filter iterations) is usable at a
signal-to-noise ratio as low as 0.5.

2. The data prefiltering technique is very beneficial for the
estimation of A.

3. The filter must have an accurately chosen time constant,
which is best found by the iterative scheme proposed,
unless A4 is approximately known. In that case, Eq. (29)
will provide the needed filter time constant.

4. The formulas for the standard deviation of the estimated
value of 4 give approximately the same result as the
observed standard deviation for both the derivative and
integral method.

5. Bias errors exist which make the integral method give
estimates for 7 that are too low (with residual performance
criterion) and the derivative method (without filtering)
gives estimates of 4 that are too large.

6. The hybrid method eliminates these bias errors. For this
series this is primarily done by selection of the best filter
and obtaining the answer by the derivative method.

& Series 11, basis-weight/stock-valve-position transfer func-
tion

Series II has the most difficult data for identification
purposes. One reason is that the signal-to-noise ratio is
very low. Two runs having the highest signal-to-noise
ratios (1.05 and 0.74) among 12 identification runs made
during two consecutive weeks will be illustrated. A second
difficulty was caused by a nonpartitioned process model.
Rather than introducing dry material flow measurement
as shown in Fig. 1, only the stock valve position signal
as input and basis weight as output were measured. This
led to high sensitivity of the results to valve sticking and
consistency disturbances. The accuracy in the estimation
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Figure 9 Effect of filter time constant on estimation of
parameter values for Series I data.

undoubtedly was decreased by these factors. Nevertheless,
Series II clearly illustrates many characteristic features of
the proposed identification method.

Figs. 11 and 12 show the results of identification by the
derivative, integral and hybrid methods for two runs from
Series II. The curves shown for the hybrid method in Fig.
11 are the result of Pass 3 by this method (Pass 2 is identical

421

PROCESS IDENTIFICATION




Figure 10 Effect of filter time constant with hybrid method used for Series I data; (a) filter time constant, 10 seconds
(optimal value), (b) 20 seconds, (c) 40 seconds, (d) 80 seconds.
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with the derivative method). Pass 3 is optimal (better than
Pass 2) only for Run 1 at zero and 40 seconds time con-
stant.

The theoretically best filter was determined by using
A = 0.011 in Eq. (29). Fig. 11a shows that in Series II, as
was the case in Series I, the filter value affects the estimate
of A very strongly when the derivative method is used.
Without filtering, that method gives an A-value which is
far too large (Figs. 12b and c illustrate how Pass 2 exag-
gerates the steepness of the process response). Even with-
out filtering, Pass 3 by the hybrid method improved the 4
estimate considerably, however (Fig. 11a). Figs. 11a and
11b show how the answers for 4 and K by the integral,
derivative and hybrid methods all converge to nearly the
same value for each run when filter time constant ap-
proaches the theoretically best value. The pole estimate
actually converges approximately to the same value for
both Run 1 and 2, but X approaches different values for
the two runs. The latter effect is probably due to the non-
linearities previously mentioned. The estimates of = also
appear to converge, although the effect is not so clear as
for 4 and K. The same trends were seen in the results on
many more runs in Series I besides those shown.

The model response by the integral method in Run 1 is
shown in Fig. 12a. The response by the hybrid method
without filters for Runs 1 and 2 are shown in 12b and 12¢,
respectively; and with nearly optimal filter value (40
seconds) for Runs 1 and 2 in Figs. 12d and 12e, respec-
tively.

The analysis of the experiments lead to the following
conclusions:

1. The derivative technique must be backed up with the
integral technique or else a filter must be used to give an
acceptable pole estimate,

2. Not only the derivative technique but also the integral
technique is improved by the use of the theoretically
optimal filter.

3. The hybrid method worked successfully for all runs in
this series, one of which had a signal-to-noise ratio as low
as 0.35.

o Series IlI, reel-moisture/dryer-steam-pressure transfer
function

Series III uses data from a dryer having moisture as the
output signal and steam pressure as input. This process
has a long time constant and a relatively short transport
delay. The integral method was tried on 17 identification
experiments as well as on normal on-line runs, and always
gave a satisfactory answer. A typical result is shown in
Fig. 13. The derivative method and Pass 1 of the hybrid
method (which uses the derivative technique) always
diverged in the test on four sets of data having the high-
est signal-to-noise ratio among the 17 sets. The hybrid
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Figure 11 Effect of filter time constant on estimation of
parameter values for Series IT data.

method then automatically selected the integral method in
Pass 2 for all runs. Convergence and reasonable parameter
values were acquired for all runs,

The conclusion from Series III is that the integral
method not only backs up the pole estimate for the deriv-
ative method in the event a proper filter is not selected,
but in certain applications it is the only workable tech-
nique.

The runs in Series I, I and III typically utilized four
iterations for 7 in Pass 1, 12 iterations in Pass 2, and of
course, one iteration in Pass 3 by the hybrid method. The
solution time per r-iteration with 400 data points for each
variable was about two seconds on the IBM 7094 com-
puter, and three minutes on the IBM 1710 computer.
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Figure 12 Series II experiments; (a) Run 1, integral solution, (b) Run 1, hybrid solution with no filtering, (c) Run 2,

hybrid solution with no filtering.

Conclusions

The hybrid identification technique has been proven to
work reliably on several different processes with strong
disturbances. In the testing it has so far converged to a
424 reasonable answer every time it was used even though many
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of the test cases have had a signal-to-noise ratio as low
as 0.5 and occasionally much lower.

The hybrid method proposed here is far superior to its
consitituent techniques, one of which (the derivative
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Figure 13 Series III experiment, solution by integral method.

method) has been much described in literature. The advan-
tage of the hybrid method is most obvious from the fact
that it alone could handle a// the dynamic data presented
in this paper.

The critical weakness of the derivative method is its
inaccuracy in estimation of poles in the presence of strong
process noise. This fact was demonstrated experimentally
and theoretically, as was the fact that the integral technique 425
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is much better in this regard if the time between the trans-
ients in the test signal is not chosen too long.

The formula derived for quasi-optimal data filtering in
the presence of wide bandwidth noise agrees very well
with the observed results. The formula can, therefore, be
used for preselection of the filter value if the process
pole is approximately known. In such cases one can then
eliminate all or some of the iterations for the filter time
constant beyond the first.

The character of the parameter errors due to erroneous
estimates of the reference values for the input and output
variables was demonstrated theoretically and experi-
mentally. Both approaches had good agreement. It was
shown that a test signal wave form can be chosen so that
the effect of such errors is small. If a single-direction
process perturbation is used, these conditions cannot be
satisfied. The error in parameter estimation will increase
proportionally to the length of the experiment for the

integral method, but is independent of the same factor
for the derivative method.

The value of the process partitioning technique was
illustrated by non-linear phenomena which occurred
during collection of the data shown here. Severe non-
linear effects were cancelled out in the data of Series I,
which used a partitioned model, but relatively large param-
eter discrepancy, for gain in particular, resulted in the non-
partitioned case (Series II).

The hybrid method can be expanded simply to handle
more than three parameters per transfer function element
by the same principles as shown here. Minor portions of
the program are affected by such changes.

Since the hybrid method requires only a fairly small
amount of data, a simple experiment on the process, which
causes no loss of production, has very modest computer
requirements, and can handle processes with high disturb-
ance levels; it is ideally suited for process control.
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