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On-Line Identification of Process Dynamics 

Abstract: Two  methods  similar  to  regression  analysis  are  applied to the  estimation  of  parameters  in a dynamic  process  equation.  One 
method  uses a residual  based  directly  on  the  differential  equation  for  the  process  model.  The  second  method  forms  the  residual  from 
the  integro-differential  equations  derived by integration of the  original  differential  equation  with  respect  to  time.  The  two  methods  are 
shown  to  be  complementary  in  their  sensitivity to process  and  measurement  disturbances  as  well  as  to  errors in the  estimate of the 
process  variable  reference  values.  Certain  parameters that  are very sensitive  with  one  method  are  shown  to  be  much  less  sensitive  with 
the  other  method. A combined  method  is  developed  which  utilizes  each  one  of  the  constituent  techniques to estimate  the  parameter  for 
which it has  the  highest  accuracy.  This  not  only  permits  identification  with  higher  overall  parameter  accuracy,  but  also  under  many 
practical  circumstances  gives a convergent  solution  when  one of the  constituent  methods  would  give a diverging  solution  having  no 
practical  value  for  updating  control  coefficients  in  an  adaptive  controller. It is shown that  the  estimate of the  magnitude  of a pole 
in a transfer  function  can be significantly  improved  by  prefiltering  the  process  input  and  output data with  the  same  lowpass  filter. 

The  paper  presents a theoretical  and  experimental  evaluation  of  the  identification  methods.  Formulas  are  derived  for  the  variances  of 
the  parameters  permitting  an  estimation  of  the  parameter  accuracy  in a particular  test.  The  test  data  used  has  been  collected  from 
different  control  loops  on  paper  machines.  The  disturbance  level  on  some  of  the  variables  is  very  strong  and a test  signal-to-noise  ratio 
as  low  as 0.5 can  be  encountered.  The  method  is  currently  used  in  routine  operation  in  adaptive  paper  machine  control. It is in use 
on four control  loops  and  has  been  tested  on  several  other  loops as well. 

Introduction 

This paper is concerned  with  methods for on-line  identifi- 
cation of industrial processes; that is, it discusses  methods 
of establishing and updating a dynamic  model of a process 
during normal operation of that process. The identification 
method  proposed  in this paper was  developed  specifically 
for on-line updating of the control-law parameters in a 
digital controller used for moisture and basis-weight 
regulation in paper-making  machines. The paper-making 
process is typical of those processes for which on-line 
identification  is appropriate in that: 

1. The process has time-varying  dynamics. The variation 
in dynamics is caused by such factors as changes in wire- 
drainage characteristics, degradation of dryer  felt, ambient 
air properties, and change of weight and composition 
from one paper grade to another. 
2. The accuracy  with which control parameters are selected 
for moisture and basis  weight has a strong influence on 
operating economy. 
3. Manual selection of control parameters by trial and error 
methods is not practical because  of the normal strong 
interaction between  moisture and basis-weight loops and 
because of the high disturbance level. 

The length of computation time  is a prime consideration 
in  the selection of an on-line  identification  method. For 
any  method this time  depends  upon the number and type of 
dynamic  parameters that need  estimation.  With  some 
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atively rapid solution of linear equations, while other 
parameters require the solution of non-linear  equations. 
For example,  with the least-squares criteria, estimation 
of a pole and process  gain can be  accomplished  by 
the solution of two  linear equations, whereas estimation 
of transport delay  requires a time-consuming  search pro- 
cedure. As a more drastic  example, if one is using a 
stochastic  process  model  (which  simultaneously  relates 
both  the manipulated and stochastic input signals to  the 
output), none of the parameters can be  estimated by the 
solution of linear equations in the least-squares  criteria 
unless the disturbance signals are stochastically  inde- 
pendent and represent  white random processes.  Some 
criteria in the maximum probability methods  have the 
same  effects on computation time as those just mentioned.' 

Clearly, then, one must  design the model structure for a 
particular application with an eye on computation time. 
Yet the model structure will also  depend to a considerable 
extent on the control law to be  used. A control law  selected 
for its ability to handle a variety of different spectral 
properties of noise will not need the identification of all 
the parameters in a stochastic  process  model. The opposite 
is true if the control law  is  designed for optimal control 
with  accurately  known disturbance properties. Without 
further elaboration, one can conclude that  the selection  of 
an on-line identification  method and a control law are 
highly interrelated and require an understanding of control 
loop sensitivity and the range and frequency of variation of 



the different  process  parameters. A general  discussion  of 
the needs for parameter  identification and the needs for 
adaptive control is found in  Ref. 2. 

The techniques  presented  in  Refs. 1,3 ,4 ,  5 all have  been 
applied to process control problems.  They share the com- 
mon characteristic that parameters  describing the process 
disturbances or their effects  on the output are identified 
simultaneously  with the parameters  relating  manipulated 
inputs to the process output. This  is a larger  task than that 
attempted by the method in this  paper  where  only the 
parameters of the latter category are identified. The relative 
merits of one approach versus another can  again  only  be 
judged by considering the identification  method in con- 
junction with a control law.  Reference 6 discusses  general 
concepts of the design of a digital controller/process 
identifier  pair. Astrom, in  this  issue,  presents a case 
history of the design  of a controller and identifier for the 
paper-making process.' 

Experimental  work on process  identification by fre- 
quency-domain  methods has been presented, for example, 
in  Refs. 7 and 8. It appears that these  methods  require 
much longer  periods of data collection than was felt  desir- 
able for the present application. Hence,  several  well-known 
time-domain  identification  methods were  examined for 
their applicability to on-line use  in a paper  machine.  These 
methods  utilize  maximum  probability  criteria3 '4  as well as 
least-squares error criteria, in  various formulations, as 
used  in  conventional  regression  analysis.  When  applied to 
a process  model  with  only  deterministic  process  variables, 
the latter methods are particularly attractive from a com- 
putational point of  view. However,  when  applied to typical 
paper  machine data that contained strong process  noise, the 
most  common of the least-squares criteria (described 
in  Refs. 9-13) was found to produce large estimation 
errors. In fact, for certain process data, such as those 
collected from a particular paper  machine  dryer, the least- 
squares criteria  consistently  failed to provide even the 
correct  polarity of the dominant  pole  in the transfer 
function. For other  processes,  such as a particular four- 
drinier  system  (basis  weight/stock flow  dynamics), the 
method  worked  quite well, but only if one selected  proper 
prefltering of the data. Since  filter  characteristics  have a 
critical effect  on the estimated  value of the pole,  one is 
faced  with the additional problem of filter  selection. 

Evaluation of the conventional  least-squares  method as 
a potential technique for the paper-making  process  identi- 
fication  led to an investigation of a different  least-squares 
method in which observation errors or residuals are 
formed from a time-integrated  version of the original 
differential equation of the process. This method  is  equiv- 
alent to a special form of filtering  (namely, a pure inte- 
grator) but has the unique property that initial conditions 
never  cease to influence the filtered data. In estimating the 
pole  of a typical transfer function used to characterize a 

portion of the paper  machine, the method was found to be 
excellent, no matter what the filter  characteristics and 
even  if strong process  disturbances were present. The 
method thus seems to offer the means for determining 
a parameter that cannot always  be  determined  accurately 
by the conventional  method.  Since the two  methods of 
forming  residuals  have other valuable  complementary 
properties, a computation algorithm was  developed  which 
uses both methods in combination with  computer-selected 
filters. This algorithm  is  referred to as the hybrid  method. 

Later in the paper  some  typical  results obtained by the 
conventional  least-squares  method, by the integration 
method and by the hybrid  method are presented.  Since 
literature on identification  focuses on the asymptotic 
properties of the least-squares or maximum  probability 
estimators,  some formulas will be  presented for the param- 
eter  variance  with  finite  observation  time.  Such formulas 
are of considerable  practical  interest  because in many 
applications with  moderate  noise level one can successfully 
identify  dynamic parameters using a short observation 
time and a single step function as process  excitation. The 
derivations of these formulas are presented in a develop- 
ment  report.14 

The process model 

In typical  applications of on-line  identification,  processes 
having  multiple inputs and multiple outputs are encoun- 
tered. In paper  machine control, for example, one is parti- 
cularly  interested in the transfer functions  relating the 
stock-valve  signal to basis  weight and to the moisture of 
the sheet  leaving the dryer.  Equally important are the 
transfer functions  relating the set-point  signal of a steam 
pressure controller to basis weight and moisture.  While 
identification can be accomplished  from a knowledge 
of these four transfer functions, it can be done with  much 
higher  accuracy if one determines the transfer functions 
relating the set-point  signal to steam  pressure and relating 
dry  material flow to the stock-valve  signal. In Fig. 1 these 
two transfer functions are labelled G40 and Gz0, respec- 
tively. The output of Ga0 is related to basis weight through 

Figure 1 Process  model  partitioned  into  single-input, single- 
output  elements. 
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the transfer function Gll and to moisture through the 
function G2, ; the output of G40 is related to basis weight 
through G12 and to moisture through Gzz. Even though 
this method  converts the orginal  problem into a new one 
in which more transfer functions  have to be  analyzed, the 
new functions are of lower order and, hence, can be 
handled  with  more  accuracy.  An additional advantage is 
that  the method efficiently reduces the effects  of  dis- 
turbances. 

The individual transfer function to be  used in the 
following  analysis  is of first order and has three unknown 
parameters: gain,  pole, and transport delay.  Many in- 
dustrial processes can be  divided into elements  having 
transfer functions of this form, and the model  is therefore 
of significant practical importance. The six transfer 
functions  mentioned above for the paper  machine are of 
this category. 

The principles to be  described are applicable  also to 
other types of transfer functions. During identification 
experiments  using a double-pole transfer function for a 
process  without a transport delay, it was found preferable 
to use the transport delay term of the single-pole formula- 
tion as  an approximate description of the largest  pole (the 
one having the smallest  time constant). This led to longer 
computation time, but it had the advantage  over  solutions 
based on a double-pole  model of permitting  identification 
with data from  processes  having  high  disturbance  levels. 

The single-pole transfer function of interest in the present 
analysis is given in sampled-data  form by the equation 

1 
T - (Yi - Yi-1) + 4 Y i - 1  - Y,) 

+ B(xi-r-1 - X , )  = 0 ,  (1) 

where A is the pole, B is the gain, I' is the number of 
sampling  intervals equal to  the process transport delay 
time 7,  T is the length of the sampling  interval, yi and x i  
are the ith samples of the model output and input, respec- 
tively, and y ,  and x r  are reference  values for the output 
and input, respectively.  These  reference  values are the 
steady-state  values, which are, in  general, not known, 
but are estimated by a procedure separate from that used 
to estimate the parameters A,  B,  and 7. 

The same transfer function can  also  be  modeled  in a 
form  obtained by  summing the terms of Eq. (1) over the 
intervals from 1 to n: 

Y ,  - Y O  A T  b - 1  - Y,)  
2 = 1  

+ BT (xt-r-l  - X , )  = 0 ,  (2) 
1 = 1  

where yn and yo are the final and initial values of the model 
408 output, respectively. 
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Figure 2 Process and model variables. 

The formulations given  by (1) and (2)  have  different 
properties and both are used in complementary  fashion 
in the proposed  identification  scheme. It is worth noting 
here that both (1) and (2) are written  in a form, which, 
at a high  sampling rate, enables the parameters A, By and 7 

to retain the same physical  significance as they  would  in 
an equivalent continuous model of the system.  This  is 
convenient  since the corresponding  parameters in an 
actual continuous process  have  special  physical  signifi- 
cance. 

Now, in order to use the models of (1) and (2) for on-line 
identification, it is necessary to relate the input and output 
values of the model to those values that can actually  be 
observed  in the process. Note that the model output y 
would  have the same value as the measured output w 
if there were no errors in the model structure and parameter 
estimates and if no disturbance inputs and output measure- 
ment  noise  existed.  Also, the model input x would  have 
the same  value as the measured input u if the input meas- 
urement  noise  were  zero.  Hence, by definition, 

u = x + t  

w = Y + + ,  

where E is the input measurement  noise and q is a hypo- 
thetical disturbance signal  assumed to account for all the 
factors that produce a difference  between  model output 
and observed output. The relation between the process 
model and the observed  variables  is  illustrated in the 
structure shown in Fig. 2. 

Since a theoretical justification of the model structure 
is not strictly  necessary for process control applications, 
no details of the theoretical basis for the model are pre- 
sented in this paper. However, the author has performed a 



detailed  analysis of the dryer  dynamics  based on the 
physical  principles  involved, and the work in Ref. 15 gives 
a theoretical foundation for the basis  weight  dynamics. In 
each  case there seems to be a good  theoretical  justification 
for the simple  model structure used here.  Nevertheless, 
the decisive  engineering  proof  of the validity of an identi- 
fication  result is obviously to analyze the control system 
behavior when the controller is  designed  using that result. 
In other words, if the control system  behaves as expected, 
the identification  result  is, by definition,  satisfactory. In 
the author’s opinion, the second  best criterion for judging 
the validity of an identification  result  is to compare the 
actual process output to the model output when both 
process and model  have the same input. This  comparison 
can be done numerically and also graphically  by  super- 
imposing  plots of the two  sets of output data. This  paper 
relies  primarily upon the latter form of presentation, 
allowing the reader to judge for himself the validity of an 
identification  result. 

The comparison of model and process output avoids a 
difficulty often  encountered when  using a residual  test 
for validity  analysis. The well-known  necessary  require- 
ment for a valid  identification  result by residual  methods 
is that the residual  have  essentially a zero  mean and be 
essentially a white random process. The author’s  experience 
has  been that in many  cases  these conditions may be  met 
but the identification  result is nevertheless  useless for 
controller tuning purposes.  (Figure 8g is an example of 
one such  case  encountered in the paper  machine  study.) 
A comparison of model and process output in each  case 
eliminated an acceptance of such erroneous estimates. 

Performance criteria used for identification 

It can be  concluded from Fig. 2 that  it is not possible to 
distinguish  between the individual  effects of measurement 
noise,  model  parameter errors, model structure errors, 
and disturbance inputs by observation of v and w without 
making  special assumptions or other measurements. 
Normally the input measurement  noise 5 is the least 
significant  of the various error sources in the parameter 
estimation.  Therefore, if one assumes  negligible, the 
model output, y ,  can be  computed  from the observed 
input time  series u. It is then  meaningful (and extremely 
useful) in deciding  between alternative model structures 
and parameter  values to determine the model output 
error, E ,  by comparing the model output with the observed 
output. This procedure is referred to  as model output 
comparison, and is an essential feature of the identification 
method  proposed in this paper. 

The model output error is  given at each  sample  time by 
the expression 

E ,  = w ,  - yT. (4) 

The term y :  is the model output, which is computed 
under the assumption of negligible input measurement 
noise  by the expression 

y: = T 2 gi-;(uj-r - u,) 
i = O  

+ ( w o  - w,>e + w,, ( 5 )  
- ( A T  

where gi is the model  impulse  response  in  sampled data 
form, w, and v, are estimated  reference  values for their 
respective  series, and wo is the estimated initial value of the 
process output. Actually, the model output is more  simply 
computed by solution of the difference equation corre- 
sponding to the convolution equation (5) than by solution 
of (5) itself. The difference equation is, of course,  similar 
to (1). 

In certain circumstances, to be  discussed, it is advanta- 
geous to estimate  parameters by using the criterion of min- 
imum  variance of model output error, 

l N  y = - ” -  e: ,  
N - 1 

where N is the number of samples for each  variable. 
Criteria of a second type can be  established by  em- 

ploying  “residuals”  derived from the process  model 
equations (1) and (2) .  Residuals  derived from Eq. (1) are 
used to formulate an estimation  method to be  called the 
“derivative  method,” (the name  chosen  because the resid- 
ual has the same dimension as the time  derivative of the 
process output), and residuals from Eq. (2 )  are the basis for 
an estimation  method  called the “integral method.” The 
form of the residuals for both methods  is given  by 

R n  = Aan 4- BPn Yn, (7) 

where, for the derivative  method 

a, = W,-l - wr 

and for the integral  method 

* 
a,, = T (wiVl - w,) 

i= l  

n 

Pn = T (ui-r-1 - u7) 
i = l  

yn = wn - wo. (9) 

Minimizing the variance, J,  of the residual  provides a 
criterion for parameter estimation; the variance is given  by 

N 
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For any given T estimates of A and B can  be  obtained by 
minimizing J with  respect to A and B. Setting the partial 
derivatives aJ/dA and dJ/dB equal to zero  leads to the 
familiar  normal  equation  of  least-squares  analysis.  Thus, 
using  either the derivative or the integral  method, A and B 
are computed  from 

1 

where MS is the pseudo-inverse of the matrixI6 
r~ N 1 

The matrix M is a so-called  gram-matrix, which is 
invertible whenever CY and p are linearly  independent.*' 
Since CY refers to the process output and to its input, 
this  linear  independence  is  assured  in the absence of noise 
for any  open-loop  testing  with  any input perturbation 
if the system has a fhite pole  (which  is true for almost 
any  physical  process).  Experience has shown that a non- 
invertible  normal  matrix M is seldom  encountered even 
in the presence  of  noise  when  open-loop data are used. 
Therefore the methods  in the following are developed on 
the assumption that M-' exists.  Discussions  concerning 
the inversion of M and its implication  upon  identification 
methods  can  be  found in Ref. 18. 

Since the derivative  of J with  respect to T cannot be 
determined, T is  estimated by a search  procedure rather 
than analytically. In general, the search  procedure  involves 
selecting a value for T, calculating A and B from Eq. (ll), 
and determining  whether the three values are located at 
the global  minimum of either J or Y. No problem  with 
local  minima has ever appeared  in this search and it ap- 
pears that the starting value for T can be almost arbitrarily 
selected. 

It will be  shown  in the experimental  analysis that min- 
imizing J with  respect to T yields a good  estimate for T 
only if A and B are calculated by the derivative  method. 
However  if the derivative  method  diverges or gives a 
T 6 0, the integral  method  must  be used. In this case the 
accuracy of the estimate  for T is better if the model output 
variance, Y, rather than the residual  variance, J, is min- 
imized  with  respect to T. 

Accuracy of parameter estimation 

Certain aspects of  accuracy in parameter  estimation  with 
the residual  performance  criteria  will  now  be  analyzed. 
In particular,  estimation  accuracies  obtained  with the 
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following  analysis  is  limited to the case  where the dis- 
turbance amplitudes and errors in the estimation of the 
reference  levels for x and y are small  compared  with the 
process  perturbations. The following  inequalities are 
assumed  valid  for  almost  any i: 

ax, 3 x ,  - u, << 6Xi = x $-r-1 ' - x , ,  

6Y,  = Y r  - w, << 6Yi = yi-1 - y , ,  

6Yo 3 yo - wo << 6 Y i ,  

11 << 6 y i ,  E << 6 x i ,  e - A T ( N - r )  << 1. 

Considering that the true values of A and B are known, 
one can  derive  expressions for the deviations  from  these 
values  which  will  be  caused  by  disturbances and reference 
errors. Defining parameter  variation as 6A and 6B for A 
and B respectively, it can  be shown14 that [:;I = 

where, for the derivative  method, 

- T yi 2 T 6yi 
N 

1 = 1  i = l  a =  
I N I 

From Eqs. (14)-(17) it can  be seen that derivative and 
integral  estimates of A and B are unbiased if the disturb- 
ances and reference errors have  zero  mean.  Consider  now 
the error sources ax,  and Sy , alone and assume that 
the noise sources are zero.  Clearly, iT = 0 for the deriv- 
ative  method if 
N N 

6yi = 6 X i  = 0, 
i= l  i - 1  

and for the integral  method if 



These  results show that  it is,  in  principle,  simple to select 
a test  signal wave form so that  the parameter  estimation  is 
independent of errors in the reference  values.  If  such a 
wave form is not used, the integral  method  is the more 
vulnerable to reference  value errors. For a test  signal 
consisting of a single step with the amplitude 2, one can 
compute M and ij and obtain the following  result for the 
derivative  method : 

6 A  2 1 
" 

A - - 6Y,  2 '  
l+" 

A ( V -  7) 

and for the integral method: 

6 A  2 
A - = - 6yr( v - 7) 

27 

where V = NT is the length of the test  interval, and 
K = B / A  is the steady-state gain. 

Equation (21) shows that the relative error in the estima- 
tion of A increases  almost  linearly  with the length of the 
test  interval for the integral method,  while  Eq. (20) shows 
that the error is almost  independent of test  interval  length 
for the derivative  method. 

It is also of great interest to determine the standard 
deviation for the estimation of A when no reference errors 
exist and, thus, the only error source  is the disturbance 7. 
This standard deviation has been computed by the author 
in  Ref. 14 for a test signal  consisting of a single step 
function. The results  based on a single step have  been 
found to reflect the interesting  properties quite well,  even 
when the identifier  uses  multiple  steps  with  fairly  large 
separation (as is  typically done with the on-line  method). 
When samples of the random variable q are uncorrelated, 
one can derive the following  result for the derivative 
method : 

rl I 4 11'2 

and for the integral method: 

X 
4 4 . 8 (  V - r ) / T  

18 1 2r2 2 (23)  ~~ ". 
-k A( V - r)  A'( V - T ) ~  

- -  

where Fl and F,, which are near  unity for large (V - r), 
are defined  by 

1 .ss 2.5  
Fz + A( v - .) + A2( v - 7)4 

' 

and where uA and u,, are the standard deviations for A 
and q, respectively. 

It can  be  concluded from this theoretical  analysis that 
if the sampling rate is  chosen so that AT<< 1, and if V - 7 

is not too large, the integral method will have  higher 
accuracy than the derivative  method  in  defining the pole 
A and the gain B. For typical  paper  machine data the 
difference in accuracy is quite marked; if, for example, 
T = 1 , V = 1 0 0 , r = 0 , A = 0 . 0 1 , a , = 1 , a n d K ~ = 1 ,  
the theoretical  variance u A / A  will be 0.303 for the deriv- 
ative  method and 0.028 for the integral method. 

Data prefiltering 

It was  shown in the previous  section that random dis- 
turbances can seriously  affect the accuracy in estimating 
the pole,  especially  with the derivative  method. Is it 
possible to prefilter the data in order to reduce this esti- 
mation error? 

Suppose the time  series, u and w, are both filtered  with 
identical  linear  filters. Also  assume the filtering to be  such 
that all the effects  of measurement  noise and process 
disturbances are eliminated.  One  can  easily see that the 
time  series  obtained  by  filtering w will  be the true process 
output which  would  occur  if the true process input were 
the filtered  version  of D. Thus the fact that the time  series 
are distorted does not matter if a complete  noise  cancel- 
lation occurs. 

Of course, we cannot meet this requirement  exactly, 
but even  by letting the filters  make a partial cancellation 
of the noise,  one can achieve a very  significant  improve- 
ment in the estimation, as will  be  shown  with  experimental 
data. 

What  form of filter  is  most suitable for this purpose? A 
useful  filter  can  be  derived  heuristically  without  difficulty. 
The purpose of the filter  is to improve the estimate of the 
parameter A.  In order to improve the estimate of A as 
much as possible, the filter  should  improve the signal-to- 
noise ratio on the time interval where the  data is  sensitive 
to  the magnitude of A.  Since the typical  excitation of the 
process  is a series  of step functions,  consider the response 
of the model for a single step input. The data having 
maximum  sensitivity to a variation of A can be  shown to 
be  collected at the time tl defined  by: 
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The problem is now a familiar  one. We want to select a 
filter function so that the maximum  signal-to-noise ratio 
for a step input occurs at time t,. 

The amount of distortion on  the signal  waveform  is 
immaterial. The solution to this problem is given  by Daven- 
port and Root," on page  244. Considering the special 
case of white  noise, the optimal filter  impulse  response is 
the so-called  matched  filter. The impulse  response for this 
filter is the mirror image of the model output with the 
mirror in the plane, t = tl, and is defined  by the following 
function : 

h(t)  = Kf(1 - e"eAt)[l  - u ( l / A ) ] ,  

where 

2 = amplitude of the process input step function 
(occurring at time, t = 0), 

u(t) = unit step function. 

This  filter is somewhat  clumsy in practical use.  Since it is 
of lowpass character, an exponential  filter  is a reasonable 
substitute and is simpler to apply. The exponential 
filter, which  is  equivalent to the matched  filter,  is  chosen by 
matching the first and second  moment of the impulse 
response  functions.  On this basis the best  exponential 
filter  is  defined  by the impulse  response hl(t)  given  by 

hl(t) = X,e-X", 

where 

X, = 0.915K2 

X, = 2 . 4 9 A .  

Since the best  filter  requires prior knowledge of A an 
iteration method  is  applied to find the best  value of Xz 
in the method  described  in the next  Section. The Xz values 
found experimentally  agree  closely  with  Eq.  (29) and the 
simple  reasoning used here to justify the filter  selection  is 
well supported by practical  results. 

The hybrid identification method 
Theoretical and experimental  analysis of the derivative 
and integral methods  conducted  with  numerous  sets of 
data demonstrated that  the methods have  complementary 
properties. It was found furthermore that neither  method 
alone had sufficient  reliability and accuracy to handle the 
identification of all the transfer functions of main  interest 
in paper  machine control. It was,  however,  possible to 
combine the methods and use data filtering in such a 
manner that these transfer functions  could  be safely 
handled in routine on-line  identification.  This combination, 
to be  called the hybrid method, will be briefly described in 
this Section. The properties of the derivative and integral 
methods that were the basis for the chosen structure of the 

412 hybrid  method are summarized in Table 1. 
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Table 1 Comparison  of  several features  in  derivative  and 
integral  methods. 

- 
1. Dicergence of solution 

DERIV:  Possible (Occurs for  Series  I11  experimental 

INTEG:  Possible  (Occurs for Series I experimental 
data). 

data). 
2. Errors in estimation of A and B 

DERIV:  Quite high in the presence  of  disturbance. 
Independent  of  length of test pulses. 

INTEG:  Small if the  test  transients  are  not  too far apart 
and  the  pole  is  small.  Errors  increase  with 
length of  test  pulses. 

3. Errors in estimation of r 
DERIV: Very small,  particularly if test  pulses  have  fast 

rise  time  and  the  process  time  constant  is  small. 
INTEG:  Large  in  the  presence  of  disturbances. 

4.  Effect of errors in estimate of x, and y ,  
DERIV:  Parameter  errors  are  small  and  independent  of 

INTEG:  Parameter  errors  increase  rapidly  with  length 
length  of  experiment. 

of  experiment. 
5.  Effect oj data  fillering 

DERIV:  Prefiltering  has  excellant  ability to improve 

INTEG:  Prefiltering is of  value. 
estimates  of A and B. 

The first property in Table 1 indicates that both methods 
may, under the influence of noise,  provide an answer which 
is said to diverge.  Divergence  of a set of parameter  values 
implies that the model output variance, Y, approaches 
infinity for large observation  intervals.  (Even when the 
values  diverge, the residual  variance, J ,  typically  remains 
finite and of reasonable magnitude; see  Figs. 8f and 8g, 
for example.) A divergent  answer is clearly  unusable for 
controller tuning purposes. It should be noted, though, 
that while  divergence can occur  with both methods, the 
experiments  showed that the data which  diverged  with the 
derivative  method  were from a different  process than the 
data which  diverged  with the integral method. 

The second feature in Table 1 indicates that the esti- 
mation of A and B is  normally done best  with the integral 
method.  However, the integral  method was found experi- 
mentally to be inaccurate in the estimation of T if this 
variable was chosen for minimum J .  A strong improvement 
in the estimation of T occurs if it is chosen for minimum Y 
when the integral method  is  used. The integral method 
requires more computation time, and it is therefore 
always  preferable to try to acquire the value of T by the 
derivative  method.  Table 1 also summarizes the sensitivity 
to errors in reference  values and the benefits of filtering. 

Figure 3 illustrates the basic  logic structure in a computer 
program for the hybrid  method. The first  block in the 



Figure 3 Hybrid identification method, basic flow chart. 
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Figure 4 Test problem; (a) input signal, (b) solution by integral method, (c) solution by hybrid  method.  (Pass 2 is equiva- 
lent to solution by derivative  method). In this,  as  well as subsequent  figures, the crosses, +, refer to observed  process 
output, while the smooth-line  curves refer to computed output from the process  model. 

program refers to the reading of input  data  from  the pro- process is maintained in open-loop operation  and  the 
cess. The  data to be used in the program are collected manipulated input variable, x ,  stays  constant as near to 
during two different time periods, the relaxation  period the steady-state value as possible. (The  controller that is 

414 and  the transient period. During  the relaxation  period the typically used in conjunction  with the identifier maintains 

E. B. DAHLIN 



and updates a good  estimate of this value.) During the 
transient, which  immediately  follows the relaxation  period, 
the value of x is  varied. 

After the input data have been read into the computer 
and converted to suitable  units, the signal-to-noise ratio 
of the data collected  during the transient period  is  com- 
puted  according to the definition: 

( S I N )  = dG2,t - aw7)/aw1-,  
2 2  

- 
(30) 

where 

a t  = the variance of the observed output, w, during the 

C T ~ ~  = the variance of w during the relaxation  period. 

The signal-to-noise ratio is  used to judge  whether or not 
the test transient is of acceptable  magnitude. 

In the next  block the program has entered a loop for 
iteration with  respect to the filter constant Xz. This 
parameter  is  varied in a monotonic  sequence starting with 
a very large value or zero  time constant (meaning there 
is no filtering) and changing to successively decreasing 
Xz (larger  time constant). The filter  chosen as best  is the 
one that provides the smallest fit-error, E,, defined  by 

EI = ( Y  - aiv)/a%v, (3 1) 

where a t I  has the same  meaning as above, but this time 
refers to the data from the relaxation  period after it has 
been filtered. 

Next the computer  estimates  reference  values for x ,  and 
yr,  which estimates  have  been defined as the observable 
variables, u ,  and w,. These  estimates are based on a 
formula  expressing the values at the end of the relaxation 
period of the best straight lines  fitted to the input and out- 
put data, respectively.  (“Best”  is  defined on a least-square 
error basis.)  This hod gives some  compensation for 
drift occurring  during the relaxation  period. 

After the noise  variance  is  computed, the program enters 
an intermediate loop where the derivative and integral 
methods are compared as prospective  means for solution, 
and an inner loop where the optimal value of r is found 
by an iterative search  procedure.  Each iteration in the 
intermediate loop is called a “pass.” In Pass 1, which has 
relatively  few iterations with  respect to r in the inner loop, 
the derivative  method  is  always used  in order to determine 
whether it is a good  prospect for solution. If Y does not 
diverge and if r is not equal to or less than zero, the 
derivative  method  is used again in Pass 2. In Pass 2, there 
are more iterations than in  Pass 1 with  respect to r,  and 
an accurate solution for r is  obtained. In Pass 3 the integral 
method  is used  with the value of r required  during the pre- 
vious  pass.  Finally, the fit errors computed  during  Pass 2 
and Pass 3 are compared and the values  of A and K (where 
K = B / A )  that give the smaller  fit error are selected as the 
best  parameter  set for the particular Xz value  used  in that 

transient period, and 

Table 2 Identification  results for test  problem. 

K A 7 

Parameters 

Runge-Fox  parameters 4.05 0.0114 65 .O 
Derivative  method  4.19 0.0094 56.3 

Integral  method  4.08  0.0113 60.0 

Integral  method  with  filter 
(40  sec  time  constant) 4.22 0.0083 80.0 
- 

outer loop iteration. However, if during  Pass 1, Y diverges 
or T is equal to  or less than zero, the derivative  method  is 
immediately  judged a poor prospect, and Pass 2 then uses 
the integral method  with  one or more iterations in the inner 
loop. In these iterations the value of Y is  computed for 
each  value  of and the optimum r is chosen as the one 
that minimizes Y. 

Test problem using data not  influenced by process 
disturbances  or measurement noise 

A special  test  problem  having a known  answer  was  created 
for evaluation of the identification  methods. The observed 
process input shown  in  Fig. 4a  was  used for the com- 
putation of the model output, y*,, for a particular set fo 
model  parameters. In subsequent  experiments the input 
data used here were considered to be the observed  process 
input and the computed  model output was considered to be 
the observed  process output. This  test  problem, then, has a 
typical  process input waveform and an ideal,  observed out- 
put time  series,  not  influenced by process disturbances or 
measurement  noise. The computation of y $  was done by a 
Runge-Fox2’ integration routine with the parameter  values 
shown in the first  row of Table 2. 

When the derivative and integral methods were applied 
to this test  problem, the parameter  values  shown  in the 
second and third rows of Table 2 were determined.  Slight 
parameter errors do exist, but they are probably  due to the 
size of the sampling interval (3.49  seconds).  Even so, 
Figs.  4b and 4c show that the identified  parameters  pro- 
vide a model output that closely  resembles the observed 
output. Note in Fig 4c that  the output obtained using the 
results of Pass 2 of the hybrid  method is the same as that 
obtained using the derivative  method alone Although  Pass 
3 gives the optimal solution for this problem, the result  is 
only  slightly better than that obtained from Pass 2 .  

Equations (15)-(21) have  shown that errors in the esti- 
mation of x, and y ,  will, for a large observation  interval, 
cause  much  larger errors in the values of parameters 
estimated by the integral method than by the derivative 
method. This theoretical  conclusion  was  checked  experi- 
mentally on the test  problem. Errors in the reference 
values, u ,  and w,, were purposely introduced and the 415 
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Figure 5 Effect  of  reference  value  errors on model output;  (a) solution by integral  method  with  reference  error  of 0.01 
units, (b) solution by hybrid  method  with  reference  error of 0.02 units. (Pass 2 is equivalent to solution by derivative 
method.) 

model output as well as  the parameter  values were deter- 
mined as shown in Figs. 5 and 6. In Fig. 5a the integral 
method  was  used to compute the model output for a 
reference error, w, - y , ,  of 0.01 units. In Fig.  5b the re- 
ference error was 0.02 units and the model output was 
computed by the hybrid and derivative  methods (the 
derivative  method solution is  identical  with that of Pass 2 
of the hybrid  method). The Pass 2 solution is optimal and 
fits quite well. The variation of parameter  values for a 
range of reference errors is shown in Fig. 6. Note that  the 
derivative  method  provides a constant estimate for r 
regardless of the magnitude of the reference error. The 
other parameters are also much  less  influenced  by the 
reference error when estimated by the derivative  method 
rather than the integral method.  This test, as well as others, 

41 6 has confirmed that the derivative (and hybrid) method  is 

far less  sensitive than the integral method to reference 
errors. Using  Eqs. (20) and (21) with  numeric  values 
corresponding to the experimental data of Fig. 6 (average 
K2 = 0.65, A = 0.0114, Y - = 1000, T = 65), one 
obtains the theoretically  expected  results  shown as dashed 
lines in Fig. 6. The theoretical and experimental  results 
for the relative error in A agree  closely for the derivative 
method of estimation. 

The test  problem  was  also  used to check the effect  of 
data prefiltering. The fourth row in Table 2 shows that a 
relatively  heavy  filter  did not affect the result very  severely. 
However,  because  of  sampling  effects, the identification 
was not completely  independent of the filter. A filter  with 
a time constant (by  definition, the inverse of the parameter 
X,) of 40 seconds  was used for this and subsequent  exper- 
iments. 
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Figure 6 Effect of reference errors on the estimates of 
parameter  values. 

Experimental evaluation with process data 

Typical  results  from the experimental evaluation of the 
identification  methods  with actual process data are pre- 
sented in this Section. The methods  have so far been 
applied to eight  different transfer functions  involving  such 
variables as steam temperature, steam  pressure,  moisture, 
basis  weight, stock flow, consistency, and stock valve 
position. The total number of on-line and off-line  identifi- 
cations made to date exceeds 100. 

Some  results of experiments  with three series of data 
from different control loops will be  discussed.  Each  series 
contains the data from several  identification  experiments, 
or runs. The series  have  purposely  been  chosen from 
highly  disturbed control loops where the identification 
is  difficult. For these data the results  clearly  show the 
differences  between the derivative,  integral, and hybrid 
techniques. The disturbances for all three series  have a 
broad bandwidth, and the formulas  derived under the 
assumption of white  noise  should  be  well  applicable. A 
typical power spectrum is shown  in  Fig. 7. 

Series I of the experiments has basis weight as the out- 
put variable and dry material flow as the input. Series I1 
uses data taken from a different  paper  machine. It, also, 

L n 

IRadiansIsecond 

Figure 7 Power  spectrum for Series I process  output  with 
constant  manipulated input. 

has basis weight as the output variable, but uses the stock 
valve position  signal as the input. Series I11 data are taken 
from a paper  machine that was producing a grade of paper 
typically  having  very strong moisture disturbances; reel 
moisture is the output and dryer  steam  pressure is the 
input. The sampling time used in Series I is 3.49 seconds, 
and in  Series I1 and 111, 3.6 seconds. 

Series I ,  basis-weightldry-rnaterial-flow transfer function 

Table 3 summarizes  some  of the results  from the analysis 
of the Series I data. The signal-to-noise ratio varies signifi- 
cantly  between the several  runs. In Run 1 the test signal 
selected  was  very  large.  This  led to a loss of head  in the 
stock line,  which  gave the transient a strong droop, as 
can be  seen in the output graphs of Fig.  8a. Run 2 has a 
normal excitation; the input signal is shown in Fig.  8b 
and the output in Figs. 8c and 8d. Run 3 uses a signal 
having  only one pulse of relatively  low amplitude; in the 
output graphs for this run notice that Pass 3 of the hybrid 
method  diverged  (Fig.  8e), as did the integral  method. In 
Run 4, which has a very  low signal-to-noise ratio (OS), the 
integral  method  diverged  again.  (Fig. Sf). This is inter- 
esting  because if acceptance of the identification  were 
based on the residual  being normal with  zero  mean, as it 
is in this case,  (Fig.  8g), the model  would  give a response 
having  almost no similarity to the observed  process out- 
put. Divergence of the solution causes the identification 
by the integral  method to be  rejected.  However, the de- 
rivative  method  did not diverge in Run 4 (Fig.  8h) although 
the accuracy  was  low  when no filter  was  used  (Table 3). 

The values for K and r obtained by the derivative  method 
are in  excellent  agreement  among Runs 1-3. In spite of the 
spread of values for A among the Runs, the model output 
curves for the derivative  method  (these  curves are the same 
as the Pass 2 curves for the hybrid  method)  fit quite well 
to the observed output. 

The model output shown  in  Fig. 8d  was obtained with 
the integral  method,  where 7 was estimated by  minimizing 
the residual  variance, J .  Although the estimate for K was 
good, the values for A and 7 were notably small.  This 
result,  coupled  with the fact that the integral method 41 7 
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Figure 8 Series I 
2, hybrid solution. 
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Figure 8 (e)  Run 3, hybrid solution, ( f )  Run 4, integral solution,  (g)  Run 4, process residual  with  integral solution, (h) 
Run 4, derivative  solution. 
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Table 3 Identification  results  for  Series I experimental data. 

Experimental conditions 
Run 

number Noise SIN Number of 
variance ratio data points 

1 0.00139 2.26 400 
2 0.00115 1.91 400 
3 0.00155 0.89 275 
4 0.00150 0.55 175 

Parameters 
Run - 

number K A T El 

Integral  method, no filter (T from  residual  variance) 
1 2.35 0.00964 50.0 
2 2.40 0.0168 50.0 
3*  2.29 -0.0174 135.0 
4* 2.42 -0.463 110.0 

Integral  method,  no  filter (T from model  output  variance) 
1 2.28 0.00692 100.0 
2 2.48 0.0169 49.2 
3 2.94 0.00751 78.1 

Integral  method, 20 sec  filter (T from residual  variance) 
1* 
2 

-0.0003 -0.00004 -135.0 
2.43 0.0171 50.0 

3 2.16 0.00915 10.0 
4 2.04 0.0233 60.0 

Derivative  method,  no  filter  (Pass 2 in  hybrid  method) 
1 2.34 0.0520 90.6 0.65 
2 2.33 0.0786 87.5 0.35 
3 2.34 0.0762 93.8 0.066 
4 1.83 0.0556 50.0 - 

Derivative  method, 20 sec  filter 
1 2.61 0.0193 85.0 
2 2.47  0.0301 80.0 - 
3 2.19 0.0179 
4 

85.0 
1.97 0.0498  87.5 

- 

- 
- 

Hybrid  method  Pass 3, no  filter 
(using  integral  method with assigned Tt) 
13 2.24 0.00928 90.6 2.05 
25 2.51 0.0288 87.5 0.30 
35 2.20 -0.0222 93.8 > l o 3 8  

Hybrid  method,  optimal  filter, 10 sec 
1$ 2.54 0.0288 87.5 
25 2.43 0.0329 84.4 
3$ 2.20 0.0274 56.25 

* Solution  diverged. 
7 Values  determined  in  Pass 2 

420 
3 Pass 2 gave  optimal  solution. 
$ Pass 3 gave  optimal  solution. 

- 
- 
- 
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diverged in both Runs 3 and 4, indicates the unreliability 
of this method for a process  having  high  noise,  large T ,  

and large A.  Even  when  used as part of the hybrid  method, 
which  assures a good estimate for T, the integral method 
improved the estimate of A only in Run 2, as can be seen 
in Table 3. Still, the fit error for hybrid  Pass 3 (integral 
method) was  only  slightly better than for Pass 2 (derivative 
method), i.e., 0.30 vs 0.35. Thus, the integral method did 
not contribute much to the value of the hybrid  technique 
in the Series I experiments, It will be shown that the Series 
I1 and I11 experiemnts are highly  different in this regard, 
however. 

Table 3 shows that the integral method  gave a much 
better estimate for T (Runs 1 and 3) when that parameter 
was estimated by  minimizing the model output variance 
rather than by  minimizing  residual  variance. 

Eqs. (22) and (23) are now applied to calculate the 
magnitude of the theoretical standard deviation for the 
estimated  value of A.  The following  values are used: 
u,, = 0.00115, T = 90, A = 0.03, Ki = 0.12, and 
(V - T )  = 400. The last two  values  apply for the first 
step of Run 2. The calculations give u A / A  = 0.260 and 
0.248 for the derivative and integral methods,  respectively. 
The observed standard deviation for all runs in Series I 
gave similar u A / A  values,  namely, 0.21 and 0.21 for the 
two  methods,  respectively. 

For  the large  pulsewidth  which  was  used in the identifi- 
cation experiments, the integral method thus has only 
slightly better theoretical  accuracy for the pole  estimate 
than the derivative  method. We can conclude that  it prob- 
ably  would  have  been better to use  much  narrower  pulses 
in which  case the hybrid  method  should  be able to provide 
higher  pole  accuracy than the derivative  method. 

Prefiltering of the data has no particular value for Series 
I data when the integral method  is  used  (Table 3). For  the 
derivative  method the opposite is true. Note that the 
inaccurate estimation of T for the low  signal in Run 4 is 
considerably  improved by  prefiltering. 

The effects of different  filter  time constants with the 
derivative method are shown in Figs. 9 and 10. Note that 
the minimum fit error in Fig.  9a  occurs  approximately at 
10 seconds  time constant (which then defines the experi- 
mentally  acquired optimal filter). The corresponding  value 
of A for Run 1 is 0.0288 at 10 seconds. The optimal filter 
by  Eq. (29) should  have 1/X, = 13.8 seconds.  This  is 
quite good  agreement  between the theoretical and experi- 
mental  filter  values  since the difference  is not much more 
than one sample interval (i.e., 3.49 seconds). 

The variation in K and T with the filter constant is 
shown in Figs. 9c and 9d. Run 3, which has the smallest 
signal-to-noise ratio among the runs illustrated, breaks the 
pattern of the T curves by producing an exceptionally  low 
value at 10 seconds.  Otherwise, the character of the filter 
influence on estimated  parameter  values is fairly  uniform 



~~ ~ 

among the runs. Only A is  strongly  affected by the filter. 
Fig. 9e shows that the function 2, defined  by 

2 = K / ( r  + l / A ) ,  (32) 

is approximately constant even for the largest  filter of 80 
seconds, for which r has changed  appreciably.  Invariance 
of Z is a valuable property, since Z has more  influence 
upon control loop characteristics than any one of the 
parameters K,  A and r alone.  (The  invariance in Z also 
was found to apply to the different  solutions  while  search- 
ing for the optimal 7.) 

The model output curves in Fig. 10 show  how  well the 
hybrid  method will  fit the data for the different  filters. 
Pass 3 is optimal when no filter  is  used and with a filter 
time constant of  20 seconds;  otherwise  Pass 2 has slightly 
lower  fit error. When a filter  with 80 seconds  time constant 
is used, the waveform is flattened out to the extent that 
even the derivative  method  loses its ability to recognize 
the length of the transport delay accurately. The most 
significant  conclusions for the Series I data analysis are: 

1. The hybrid  method  (with  filter iterations) is  usable at a 
signal-to-noise ratio as low as 0.5. 
2. The data prefiltering  technique is very  beneficial for the 
estimation of A.  
3. The filter  must  have an accurately  chosen  time constant, 
which is best  found by the iterative  scheme  proposed, 
unless A is approximately  known. In  that case, Eq. (29) 
will provide the needed  filter  time constant. 
4. The formulas for the standard deviation of the estimated 
value of A give approximately the same  result as the 
observed standard deviation  for both the derivative and 
integral method. 
5. Bias errors exist  which  make the integral  method give 
estimates for that are  too low  (with  residual  performance 
criterion) and  the derivative  method  (without  filtering) 
gives estimates of A that  are too large. 
6. The hybrid  method  eliminates  these  bias errors. For this 
series this is primarily done by selection of the best  filter 
and obtaining the answer  by the derivative  method. 

Series I I ,  basis-weightlstock-valve-position transfer func- 
tion 

Series I1 has the most  difficult data for identification 
purposes.  One  reason is that the signal-to-noise ratio is 
very  low.  Two runs having the highest  signal-to-noise 
ratios (1.05 and 0.74) among 12 identification runs made 
during  two  consecutive  weeks  will  be  illustrated. A second 
difficulty  was  caused by a nonpartitioned process  model. 
Rather than introducing dry material flow  measurement 
as shown in Fig. 1, only the stock valve position  signal 
as input and basis  weight as output were  measured.  This 
led to high  sensitivity of the results to valve  sticking and 
consistency  disturbances. The accuracy in the estimation 
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Figure 9 Effect of filter  time  constant on estimation of 
parameter  values for Series I data. 

undoubtedly was  decreased  by these  factors.  Nevertheless, 
Series I1 clearly illustrates many characteristic  features of 
the proposed  identification  method. 

Figs. 11 and 12  show the results of identification by the 
derivative,  integral and hybrid  methods for two  runs  from 
Series 11. The curves  shown for the hybrid  method in Fig. 
11 are  the result of Pass 3 by this method  (Pass 2 is  identical 42 1 
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Figure 10 Effect of filter time constant with hybrid method used for Series I data; (a) filter time constant, 10 seconds 
(optimal value), (b) 20 seconds, (c) 40 seconds, (d)  80 seconds. 
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with the derivative method). Pass 3 is optimal (better than 
Pass 2) only for Run 1 at zero and 40 seconds time  con- 
stant. 

The theoretically best filter was determined by using 
A = 0.011 in Eq. (29). Fig. l la  shows that  in Series 11, as 
was the case in Series I, the filter value affects the estimate 
of A very strongly when the derivative method is used. 
Without filtering, that method gives an A-value which is 
far too large (Figs. 12b and c illustrate  how Pass 2 exag- 
gerates the steepness of the process response). Even with- 
out filtering, Pass 3 by the hybrid  method improved the A 
estimate considerably, however (Fig. 1 la). Figs. 1 la  and 
l l b  show how the answers for A and K by the integral, 
derivative and hybrid  methods all converge to nearly the 
same value for each  run when filter time  constant ap- 
proaches the theoretically best value. The pole estimate 
actually converges approximately to  the same value for 
both  Run 1 and 2, but K approaches different values for 
the  two runs. The latter effect is probably due to the non- 
linearities previously mentioned. The estimates of 7 also 
appear  to converge, although the effect is not so clear as 
for A and K .  The same  trends were seen in  the results on 
many more  runs in Series I1 besides those shown. 

The model response by the integral method  in Run 1 is 
shown in Fig. 12a. The response by the hybrid  method 
without filters for  Runs 1 and 2 are shown in 12b and 12c, 
respectively; and with nearly optimal filter value (40 
seconds) for Runs 1 and 2 in Figs. 12d and 12e, respec- 
tively. 

The analysis of the experiments lead to the following 
conclusions : 

1. The derivative technique  must  be backed up with the 
integral technique or else a filter must  be used to give an 
acceptable pole estimate. 
2. Not only the derivative technique but also  the integral 
technique is improved by the use of the theoretically 
optimal filter. 
3. The hybrid  method worked successfully for all runs in 
this series, one of which had a signal-to-noise ratio  as low 
as 0.35. 

Series I I I ,  reel-moistureldryer-steam-pressure transfer 
function 

Series I11 uses data  from a dryer having moisture as  the 
output signal and steam pressure as input.  This process 
has a long time constant and a relatively short  transport 
delay. The integral  method was tried on 17 identification 
experiments as well as  on normal on-line runs, and always 
gave a satisfactory answer. A typical result is shown  in 
Fig. 13. The derivative method and Pass 1 of the hybrid 
method (which uses the derivative technique) always 
diverged in the test on  four sets of data having the high- 
est signal-to-noise ratio  among  the 17 sets. The hybrid 
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Figure 11 Effect of filter  time constant on estimation of 
parameter values for Series II data. 

method  then  automatically selected the integral  method  in 
Pass 2 for  all  runs. Convergence and reasonable  parameter 
values were acquired for all runs. 

The conclusion from Series I11 is that  the integral 
method not only backs up  the pole estimate for  the deriv- 
ative  method  in the event a proper filter is not selected, 
but in certain  applications it is the only  workable tech- 
nique. 

The  runs in Series I, I1 and I11 typically utilized four 
iterations for 7 in  Pass 1, 12  iterations in Pass 2, and of 
course, one iteration  in Pass 3 by the hybrid  method. The 
solution  time per 7-iteration with 400 data points for each 
variable was about  two seconds on  the IBM 7094 com- 
puter, and three  minutes on  the IBM 1710 computer. 423 
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Figure 12 Series I1 experiments; (a) Run 1, integral solution, (b) Run 1 ,  hybrid solution with no filtering, (c) Run 2, 
hybrid solution with no filtering. 

Conclusions 

The hybrid  identification  technique has been  proven to of the test cases  have  had  a  signal-to-noise ratio as low 
work  reliably  on  several  different  processes  with strong as 0.5 and  occasionally  much  lower. 
disturbances. In the testing it has so far converged to a The  hybrid  method  proposed  here is far superior to its 
reasonable  answer every time it was  used  even though many consitituent  techniques, one of which (the derivative 
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Figure 12 (d) Run 1, hybrid  solution with optimal, 40-second  filter  time constant, (e)  Run 2 ,  hybrid  solution with optimal, 
40-second  filter  time constant. 
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Figure 13 Series I11 experiment, solution by integral method. 

method) has been much described in  literature. The advan- The critical weakness of the derivative method is its 
tage of the hybrid  method is most obvious from  the fact inaccuracy in estimation of poles in  the presence of strong 
that  it  alone could handle all the dynamic data presented process noise. This  fact was demonstrated experimentally 
in this  paper. and theoretically, as was the fact that  the integral  technique 425 
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is much better in this  regard if the time between the  trans- 
ients in the test signal is not chosen too long. 

The  formula derived for quasi-optimal data filtering in 
the presence of wide bandwidth  noise agrees very  well 
with the observed results. The formula  can,  therefore, be 
used for preselection of the filter value if the process 
pole is approximately known. In such cases one  can  then 
eliminate all or some of the  iterations  for  the filter time 
constant  beyond the first. 

The character of the parameter errors  due  to erroneous 
estimates of the reference values for  the  input  and  output 
variables was demonstrated theoretically and experi- 
mentally. Both approaches had  good agreement. It was 
shown that a test signal wave form  can  be chosen so that 
the effect  of such errors is small. If a single-direction 
process perturbation is used, these  conditions cannot  be 
satisfied. The  error in  parameter  estimation will increase 
proportionally to the length of the experiment for  the 

integral  method, but is independent of the same  factor 
for  the derivative method. 

The value of the process partitioning  technique was 
illustrated  by  non-linear  phenomena which occurred 
during collection of the  data shown here. Severe non- 
linear effects were cancelled out in the  data of Series I, 
which used a partitioned model, but relatively large  param- 
eter discrepancy, for gain in particular, resulted in the non- 
partitioned  case (Series 11). 

The hybrid  method can be  expanded simply to handle 
more  than three  parameters per transfer  function element 
by the same principles as shown here. Minor portions of 
the program are affected by such changes. 

Since the  hybrid  method requires only a fairly small 
amount of data, a simple experiment on  the process, which 
causes no loss of production,  has very modest  computer 
requirements, and  can handle processes with high  disturb- 
ance levels; it is ideally suited for process control. 
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