K. J. Astrém*

Computer Control of a Paper Machine—
an Application of Linear Stochastic Control Theory

Abstract: This paper describes an attempt to apply linear optimal control theory to computer control of an industrial process. The
applicability of the theory is discussed. Particular attention is given to the problem of obtaining a mathematical model of process
dynamics and disturbances. Results of actual measurements as well as results from on-line control experience are presented.

1. Introduction

The work presented in this paper was carried out at the
IBM Nordic Laboratory in connection with the installation
of an IBM 1710 system'*? in the Billerud Kraft Paper Mill
at Gruvon, Sweden. Its objectives were twofold: to solve
some specific control problems associated with the Billerud
installation and to derive systematic methods for design
of control laws for on-line computers. The second objective
was justified by the fact that a considerable amount of
systems work is required to install a control computer on
an industrial process. This work can be substantially re-
duced if systematic methods for the design of control
laws are available. Such a synthesis procedure has been
developed. The synthesis procedure consists of a few
theorems and a FORTRAN program which enables us to
obtain mathematical models and control strategies directly
from measured plant data. The existing identification
programs are limited to multiple-input, single-output sys-
tems. For such systems we can always find a canonical
form for the mathematical models and the identification
problem can then be solved by one computer program.
Although the mathematical solution of the identification
problem is directly applicable to multivariable systems,
the actual identification programs will differ with the
structure of the systems. For multivariable systems we
will thus need one program for each structure.

We have found the synthesis procedure to be a practical
and convenient tool to obtain on-line control strategies.
The procedure has been applied to design control al-
gorithms for several loops on the paper machine such as
basis weight, moisture content and refining.®'* In all cases
we have considered the systems simply as input-output

* Present address: Lund Institute of Technology, Lund, Sweden.

systems, and we have not exploited the particular char-
acteristics of the paper machine. So far we have extensive
practical experience only with single-input, single-output
systems.

There are many possible alternatives to the method
proposed in this paper. One possibility is a straightfor-
ward trial and error method: program a three-term control
algorithm in the control computer and adjust its param-
eters until acceptable performance is obtained. This
method has the decided advantage of being simple and has
also been applied to most of the control loops of the
Billerud system. However, in order to adjust a three-term
controller the performance of the control loop has to be
evaluated for a number of parameter combinations. This
evaluation may take considerable time if the process
dynamics are slow and if many parameter combinations
have to be tried. In our particular case evaluation of the
performance of the basis weight loop may take a few hours.
For the refiner loops the corresponding time is ten times
longer. Also, when using the trial and error approach
one always wonders whether still better results could be
achieved with a more complicated control law. When
using the systematic approach of this paper the results
of the process identifications show what can possibly be
achieved and what the limitations are. When the identifi-
cation programs are available the design of a control
loop can be made with little effort. Our present experience
indicates that in typical cases a control loop can be de-
signed with two identification experiments and two eval-
uation tests.

In this paper we will describe the synthesis procedure
and its application to one typical practical problem,
namely basis weight control. Basis weight fluctuations
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were investigated during a feasibility study before the sys-
tem was under computer control. The fluctuations had a
standard deviation of 1.3 g/m’. In the feasibility study
the target value for standard deviation of basis weight
under computer control was set to 0.7 g/m”.

The control computer was installed late in December
1964. Two experiments for determination of process dy-
namics were performed in March 1965 and the first oper-
ation of on-line basis weight control was done on April
28, 1965 covering a period of 10 hours. Since that date a
large number of tests have been performed and the basis
weight loop has been in continuous operation since the
beginning of 1966. In actual operation we can now con-
sistently achieve standard deviations of 0.5 g/m® wet
basis weight and 0.3 g/m® dry basis weight,

Important phases of the project are briefly discussed in
Section 2. In Section 3 we give a mathematical formulation
of the basis weight problem. The solution of the mathe-
matical problem and our synthesis procedure are given
in Section 4. Section 5 describes the practical experiments
that were performed in order to determine the process
dynamics and in Section 6 we give practical results from
on-line control operations.

2. Review of important phases of the project

The work described in this paper was initiated at an early
stage during the feasibility study undertaken from May to
September 1963. A great many of the tasks which might
be assigned a control computer were considered in order
to discover the common characteristics of the problems and
to select problems suitable for closer investigation. During
this phase we found that the problems were essentially
of two types: Those associated with controlling the process
during normal operation and during grade changes. The
feasibility study indicated that the solution of both these
problems and the production planning problem could
economically motivate the computer installation.

Grade-change control involves making the transition
from one grade to another in the shortest possible time,
subject to various constraints such as a given risk of paper
break and limitations of physical variables. The solution
of grade change problems using optimal control theory was
considered. To solve these problems we need accurate
dynamic models as well as accurate descriptions of the
constraints.

The problem of controlling the mill during normal
operation is essentially a regulation problem. The process
variables must be kept as close as possible to given refer-
ence values. Product specifications are usually set in terms
of upper and/or lower limits on the variables. Because of
disturbances, the set points have to be chosen well within
the specified limits in order to ensure that a given amount
of the production falls within the specifications. Closer
control makes it possible to decrease the magnitude of the
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fluctuations. The set points can then be chosen closer to
the specified limits with a given risk for production outside
the specifications.

Moving set points closer to the specifications either
reduces raw material and power consumption or increases
production. Even a moderate decrease in the variations of
process variables can thus realize considerable economic
gains. Control of basis weight and moisture content are
typical examples of normal-operation problems.

A large amount of powerful theoretical results are
available for the solution of both types of problems: opti-
mal control theory for the grade change problem and
linear stochastic control theory for the regulation problem.
In both cases application of these theoretical tools requires
the solution of identification problems.

We decided to concentrate on the normal-operation
problems rather than grade-change problems for the
following reasons:

e We believed that the results would be more general.

e The identification of the non-linear models required
for the application of optimal control theory is con-
siderably more difficult than the identification of the
linear model required for the steady state control.

e A solution of the regulation problem is a prerequisite
for solving more complex process control problems
including that of optimization.

It was thus decided to investigate the possibilities of
obtaining a systematic procedure to control the process
during normal operation based on linear stochastic con-
trol theory. Control of basis weight and moisture content
and refining were critical problems in the particular appli-
cation and it was therefore decided to use these as test
cases.

Having decided to attack the regulation problem we
investigated the applicability of linear stochastic control
theory. The essential assumptions for this theory are:

e The process dynamics can be characterized by linear
equations.

o Disturbances can be described as sample functions of
second-order random processes.

e The criterion for the operation is to minimize mathe-
matical expectation of a quadratic form in state var-
iables and control variables.

Admittedly, in practice there sometimes are “upsets,”
which give rise to large deviations. These upsets may
originate in many different ways; for example, from
equipment or instrument malfunctions, which all require
particular corrective actions. It is questionable whether
these types of disturbances can be described by proba-
bilistic models. In the following we disregard these upsets.

During the feasibility study we verified that during
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Figure 1 Simplified diagram of a kraft paper machine.

normal operation the probability distributions of the
fluctuations of the process variables were close to the
normal distribution. The problem of operating as close as
possible to the specifications with a given risk of paper-
break is then equivalent to controlling the process in such
a way that the variance of the output is as small as possible.

During the feasibility study and the initial phase of the
project we also performed experiments which indicated
that the disturbances occurring during normal operation
were so small that the system could be described by linear
equations, The indications obtained in these early exper-
iments were subsequently verified by experiments on the
computer-controlled system.

Linear stochastic control theory was found applicable.
The chief difficulty in the application of this theory to a
practical industrial problem is to obtain adequate models
of the process and its disturbances. Once the models are
obtained the optimal control algorithms are given by
known formulas.*™" Computer programs to generate the
algorithms from the coefficients of the mathematical model
are also available.” The mathematical models are obtained
from experiments on the process. The input variables are
systematically perturbed and the corresponding variations
in the output variables are observed. From this data we
obtain information about the process dynamics and the
distarbances.

In order to obtain mathematical models for the process
dynamics and the disturbances we have developed an
identification procedure,'*"** which has been programmed
in FORTRAN. The experimental data are entered into the
program and the computation results in a mathematical
model of the process and the disturbances.

We were able to test part of the solution, modelling of
disturbances and design of optimal filters, on a quality-
control problem' before the control computer was in-
stalled. This successful test weighed heavily in the decision
to continue work on real-time control. As work progressed
it was discovered'* that for the special case of steady-state
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control the optimal control algorithms could be derived
very simply from the results of the identification.

Our investigations have thus resulted in a procedure for
synthesizing control strategies for on-line control. This
procedure is based on linear stochastic control theory and
is particularly well suited for a situation where:

e The problem is to keep process variables close to fixed
operating points.

e The process is linear with time delay, but time invariant.

¢ Disturbances are unavoidable and can be characterized
as samples of stationary random processes with rational
power spectra.

e The process cannot be taken out of production but
process analyses have to be performed under normal
operating conditions.

3. Mathematical formulation of the basis weight
regulation problem

In Fig. 1 we show a simplified diagram of the parts of the
paper machine that are of interest for basis weight control.
Thick stock, i.e., a water fibre mixture with a fibre con-
centration of about 39, comes from the machine chest.
The thick stock is diluted with white water so that the
headbox concentration is reduced to 0.2 to 0.5%. On the
wire, the fibres are separated from the water and a web is
formed. Water is pressed out of the paper web in the
presses, and the paper is then dried on steam-heated
cylinders in the dryer section.

In this particular case it is possible to influence the
basis weight by varying the thick stock flow and/or the
thick stock consistency (fibre’concentration in thick stock).
Both these variables will directly influence the amount
of fibres flowing out of the headbox and thus also the
basis weight. The control variables are manipulated
via set points of analog regulators which control the
thick stock flow valve and the thick stock dilution valve
shown in Fig. 1.
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Basis weight is measured by a beta-ray gauge set at a
fixed position at the dry end. The output of this instrument
will be proportional to the mass of fibres and water per
unit area, i.e., the wet basis weight. This is because the
coefficient of absorption of beta rays in fibres and water is
approximatively the same. In order to obtain dry basis
weight, i.e., the mass of fibres per unit area, the beta-ray
gauge reading has to be compensated for the moisture in
the paper sheet. Moisture is measured by a capacitance
gauge. In our particular case this gauge can traverse the
paper web although it is normally set at a fixed position.

There is also a beta-ray gauge before the drying
section. Basis weight is also measured by the machine
tender and in the test-laboratories. When a reel of paper is
produced its weight and size are determined giving a very
accurate value of the average basis weight of the reel. This
information is used to calibrate the other gauges. An
analysis of the information sources for basis weight has
shown that:

e The reel weight and dimension information can be used
to compensate the drift in the beta-ray gauge.

o The high frequency fluctuations in the moisture gauge
and the beta-ray gauge signal have similar characteristics
and a good estimate of dry basis weight is

y = WSP (1 — MSP), (1)

where WSP is the calibrated beta-ray gauge signal and
MSP is the signal from the moisture gauge. The differ-
ence between dry basis weight and the estimate y of
Eq. (1) is essentially a stationary random process which
contains many high frequencies.

e The estimate of dry basis weight given by (1) is improved
very slightly when laboratory measurements are taken
into account.

Fluctuations in basis weight during normal operation
have been investigated. There are variations of weight in
both the machine direction and the cross direction of flow.
In our case it was found that the cross-direction profile is
stable if certain precautions are taken. The fluctuations
observed can be described as normal random processes.
There is a considerable amount of low-frequency variation.
Data in the records have been divided into samples
covering about five hours for analysis. Before carrying out
a time-series analysis the trend is removed. In Fig. 2 we
show the covariance function of basis weight variations
in a typical case. In all cases studied we found that the
variations in basis weight had a standard deviation equal
to or greater than 1.3 g/m’.

We investigated the possibilities of controlling the basis
weight by careful regulation of machine speed, thick stock
flow and consistency. Experiments have also been per-
formed to establish the correlation of fluctuations in basis
weight with fluctuations in thick stick flow and consistency.

K. J. ASTROM

()
|

0 1.0 2.0

7 in hours

Figure 2 Covariance function of fluctuations in wet basis
weight obtained during the feasibility study, before control
computer was installed.

The results of these investigations have shown that in
this particular application it is not possible to keep the basis
weight constant by careful regulation of machine speed and
fibre flow. It was therefore decided to control basis weight
by feedback from the measurements at the dry end of the
machine to thick stock flow or thick stock consistency.

The dynamics of the paper machine are such that there
is a coupling between dry basis weight and moisture con-
tent. An increase of thick stock flow or thick stock consis-
tency results in an increase in moisture content as well as
dry basis weight. A change of steam pressure in the drying
section will, however, influence the moisture content of
the paper but not the dry basis weight. This coupling was
not known to us initially but the first identification experi-
ment showed the effect clearly. The special character of the
coupling implies that the loop for controlling dry basis
weight can be considered as a single-input, single-output
system. The control actions of the basis weight loop (thick
stock flow) will, however, introduce disturbances in
moisture content. These disturbances can be eliminated
by using thick stock flow as an input to the moisture con-
trol loop. Control of dry basis weight can thus be con-
sidered as a system with one input, thick stock flow, and
one output, the variable y as given by Eq. (1). Notice, how-
ever, that the moisture control system must be considered
as a system with two inputs and one output. As long as
there is only one output there are no serious structural
problems and the basic identification algorithm can be
easily modified. See Ref. 12, p. 94, and Ref. 13.

It is explained in Section 2 why the variance of dry
basis weight is a good measure of the performance of
the basis weight control loop. Now if the estimate y, of




Eq. (1), differs from dry basis weight by a quantity which
is essentially high frequency noise, minimizing the variance
of dry basis weight is equivalent to minimizing the variance
of y. Notice that this reasoning fails if the deviation con-
tains low frequencies!

The criterion is thus to control the system in such a way
that the variance of the output signal y is minimal. To
complete the formulation of the control problem we now
need a description of the process dynamics and the char-
acteristics of the disturbances.

The corrections that are required to control the process
during normal operation are so small that the system can
be described by linear differential equations with a delayed
input. The time-delay T, depends on the time it takes to
transport the fibres along the paper machine. The equations
determining the dynamics can be partly determined by
continuity equations for the flow. The degree of mixing in
the tanks is uncertain, however. There is also a rather
complicated mechanism that determines the amount of
fibres that pass through the wire. A direct derivation will
thus give a very uncertain model for the process dynam-
ics.21?

Since a digital computer is to be used to implement the
control law we will consider a discrete time model directly.
If it is assumed that the sampling interval T, is chosen so
that 7', is an integral multiple of T, and if we also assume
that the control signal is constant over the sampling inter-
val the process dynamics can be expressed by the general
linear model

v + aly(t — T,) + -+ + ajy(t — IT,)
= bu(t — Ty — T.) + -+
+ bi_u(t — T, — IT.). ?)

Now let the sampling interval T, be the time unit. Intro-
duce the shift operator

(1) =y + 1) (3)
and the polynomials

A =1+ az+ - + aiz'

B'(z) = by + bz + -+ + bji2 .

Equation (2) can now be written

_ BGT

w5 = yien) u(t — k), ©
where
T, = (k — DT,. (5)

Equation (4) would apply if there were no disturbances.
Because of linearity the disturbances can always be repre-
sented as an equivalent disturbance &(f) in the output:

s = B i -0+ aw. ©

If the disturbance d(¢) is a stationary* random process
with a rational power spectral density it can always be
represented as

C'(z’?)
D'(z)

dif) = A e(t), N
where {e(f), t = 0, &= 1, &= 2,...} is a sequence of inde-
pendent, equally distributed random variables. The poly-
nomials C'(z ") and D'(z"") can always be chosen so that
the functions z” C’(z™") and 7 D’(z™") have no zeros out-
side the unit circle.

Introducing (7) into (6) and writing the two terms on
common denominators we thus find that the input-output
relation can be described by the model

A = B Hu(t — k) + MCEe(), (®)

where {e(?)} is a sequence of normal equally distributed
random variables, e(¢) is independent of e(s) for s ¢ ¢t and
e(p) is also independent of y() and u(tr — k). Hence,

Az) =14+ az+ -+ + ad"
B(Z) = by + bz + -+ + bn—lzﬂ_!
C =1+cz+4 -+ + .

The polynomials 4, B and C of Eq. (8) are formally of
the n'® order. This is no loss in generality because we can
always put trailing coefficients equal to zero.

Equation (8) is thus the general model for a linear sampled
nth order system with a time-delay that is an integral
multiple of the sampling interval and which is subject to
disturbances that are stationary random processes with
rational power spectra.

4. Solution of the mathematical problem

We now consider the problem of controlling the system,
Eq. (8) in such a way that the variance of the output y(¢) is
as small as possible. If the coefficients of the polynomials
A(2), B(z) and C(z) are known this problem is a straight-
forward application of linear stochastic control theory.
In this particular case we can, however, derive the results
directly. The direct derivation is simple; it gives insight
into the problem and provides also a suitable algorithm
for computing the control strategy.

In a practical problem we also have the additional prob-
Iem of determining the coefficients of the model. The
problem can thus be conveniently divided into two sub-
problems:

e To determine a mathematical mode! of the process and
the disturbances (identification problem).

* If the disturbance is drifting we can often, in practice, take time differences
of d(r) until a stationary process is obtained.
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e To determine the minimum variance control law for a
system governed by the mathematical model (control
problem).

These two problems will be'discussed below.

o Process identification

As stated in Section 3, it is very difficult to derive the
mathematical model from first principles. Instead we
have determined the model (8) directly from measurements
on the process. When making the measurements, the
control variable of the process is perturbed and the re-
sulting variations in the output are observed. On the basis
of recorded input-output pairs {u(¥), y(), t =1,2, -+ , N}
we then determine a model (8) of the process and the
disturbances. Since the identification technique is discussed
elsewhere,’"*® we will not go into any details of the identi-
fication problem in this paper.

Let it suffice to say that the problem is solved by deter-
mining the maximum likelihood estimate of the parameters
0= (ay,as, *** 5 Qn bo, by, *+* y byu_y, €1, C, *+* , ) Of the
model based on a sequence of input-output pairs {u(2), ¥(9,
t=1,2,---, N}. It has been shown'” that maximizing the
likelihood function is equivalent to minimizing the loss
function

N
V(o) = ; €@, &)
where the numbers e(f) are related to the input-output
signal by the equation

C(z—l)e(t) = A(z—l)y(t) - B(an)”(t — k). (10)

The numbers «(f) can be interpreted as being one-step-
ahead prediction errors.

When we have found a 8 = # such that V(f) is minimal
we get the maximum likeihood estimate of \ from

[ SRR

. _ 2V(H)

A\ = " (11)
The identification problem is thus reduced to a problem
of finding the minimum of a function of several variables.

The function V is minimized recursively by a gradient
routine which involves computation of the gradient V' of
V with respect to the parameters as well as the matrix of
second partial derivatives V5. Due to the particular
choice of model structure the computation of the deriv-
atives of the loss function can be done very economically.
In fact for large N the computations increase only linearly
with the order of the model.

To obtain a starting value for the maximizing algorithm
we set ¢; = 0. The function V is then quadratic in a; and b,
and the algorithm converges in one step giving the least
squares or the Kalman estimate.'® This is then taken as the
starting point for the gradient routine. To investigate
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whether V(6) has local minima we also choose
several other starting points. FORTRAN programs for the
identification procedure are available.'

It is shown in Ref. 12 that the maximum likeihood esti-
mate is consistent, asymptotically normal, and efficient
under mild conditions. The conditions are closely related
to the information matrix. An estimate of this matrix is
provided by
j = )\_2 Veo. ' (12)

The matrix ¥, which was computed in order to get a
fast convergence for the gradient routine will thus have a
physical interpretation.

o Minimum variance control strategy

We will now consider the control problem; i.e., we will
find a control algorithm, expressing u(f) as a function of
the observed outputs up to time ¢, y(f), y(t — 1), --- and
the previous control signals u(t — 1), u(t — 2), ---, such
that the variance of the output y(¢) of the system (8) is as
small as possible.

Theorem

The minimum variance control algorithm for the system
() is given by

u(t) = _—Wﬁ()zl:?(—i“—‘j ¥, (13)

where E(z) and F(z) are polynomials

EQ) =1+ez+ed + - +ead

F@ = fot fe+ f:d + - + fud™,

which satisfy the identity

C) = ARER) + " F(). (14)

The control error with the optimal strategy is a moving
average

y(1) = NE@)e(?)
Me(® +ee(t — 1) + -

+ erse(t — k + 1)} (15)
and the minimum variance of y is
Min var y(f) = N{1 + ¢ + ¢ + -+ +eia]. (16)
Proof
The system equation (8) gives
y(&) = ATETHBE Vu(t — k) + A A7 HC De(d).
Using the identity (14) we find
y(#) = NE@e(?)

+ €T FET ()

+ BE)EGR ()} (17)

i




The first term of the right member of this equation is
ME(z Ve(t) = Me(t) +ee(t — 1) + ---

+ eroie(t — k + 1)1,
and the last term of the equation is a function of
ye—k), ye—k—1), -,
ult — k), ut —k—1), - .

Now it was postulated that the control law must be such
that u(?) is a function of y(9), y(¢ — 1), -+, u(t — 1),
u(t — 2), - - - . Because of the assumption of independence
of e(?) and e(s) for 1 5= s, the two terms of the right member
of (17) are now independent and we get

var y(f) > var {AE(z De(t)}’
=N{1+e+ - el

Equality is obtained for the control law (13) which proves
the first part of the theorem. Introducing the control law
(13) into (8) we find

(&) = NE@Z e(s),

and the second part of the theorem is also proven. Q.E.D.

Remark 1

Notice that the theorem still holds true if it is assumed
only that e(t) and e(s) are uncorrelated for ¢ # s but a
linear control law is postulated.

Remark 2

Notice that the last term of the right member of (17),
i.e., the quantity

gt |t — k) = CEH{F "yt — k)
+ B )ER Du(t — k)},

can be interpreted as the k-step-ahead prediction of y(¢)
basedon y(t — k), y¢ — k— 1), -~ u(t — k), u(t — k —
1), - - and that

g(t | t — k) = NEz De(d)

is the k-step-ahead prediction error. The equation (17)
is thus a Wold decomposition. It generalizes the well-
known formula for autoregressions to processes with
rational spectral densities. The theorem thus states that
the minimum variance equals the variance of the & step-
ahead prediction error, and the optimal control law is
obtained simply by requiring that the prediction of the
output k steps ahead should equal the desired output.

Notice the crucial importance of the number k. Back-
tracking we find that & physically corresponds to the sum of
the transportation delay T, and one sampling interval T,.
We thus find that what could possibly be achieved is limited
by the transportation delay of the process T';, the sampling

interval T, and the characteristics of the disturbance.
Hence the minimal variance of the output equals the var-
iance of the error when predicting the output over an
interval which equals the sum of the transportation delay
T, and one sampling interval T,. This result is important
from a practical point of view because it gives the in-
fluence of the sampling interval on the results and can thus
serve as a guideline for the choice of the sampling interval.

Remark 3

Notice that the control error (15) is a moving average of
order k. The correlation function for the control error will
thus vanish for lags greater than k — 1. If k£ is known this
fact can be exploited to test whether the system is optimally
controlled simply by computing the correlation function
for the control variable. The observation can be also used
for on-line tuning of the control loops.

o Sensitivity

It is well-known that optimal solutions under special
circumstances may be very sensitive to parameter var-
iations. We shall therefore investigate this matter in our
particular case. To do so we shall assume that the system
is actually governed by the equation

A" )y(8) = 2 B @ u() + N C(2 elr), (18)

but that the control law is calculated under the assumption
that the system model is

A Yy(@) = 27"BE Nu(t) + AC(Z He(s), (19)
where the coefficients of 4, B, and C differ slightly from
those of 4°, B®, and C°.

Notice that the orders # of the models (18) and (19) are
the same. The minimal variance control strategy for the
model (19) is

Fz™"

u(t) = TBEHEH ¥(1), (20)

where E(z) and F(z) are given by the identity (14).

We shall now investigate what happens if the system (18)
is controlled with the control law (20). Introducing (20)
into (18) we get

(A°BE + z7*FB’)y = \°C’BEe, (21)

where to facilitate writing, we have dropped the argument
7' of A°, B, B°, C°, E, F and the argument ¢ of y
and e. Using the identity (14), Eq. (21) can now be written
{B°’C + (A°B — B°A)E}y = \°BC’Ee. (21%)

The dynamical system represented by this equation thus
has a number of modes'” equal to the degree of the poly-
nomial

{B°C + (A°B — B"A)E}(). (22)
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Now if 4 = 4°, B = B° and C = C" this polynomial
reduces to B°C°. For small perturbations in the parameters
the modes of the system (21’) are thus close to the modes
associated with B°C°. Furthermore when the design
parameters equal the true parameters the factor B°C° can-
cels in (217). This fact implies that the modes associated
with B°C* are uncoupled to the input eif 4 = 4°, B= B’
and C = C° or that the corresponding state-variables
under the same conditions are not controllable from the in-
put e (See Refs. 17, 18). Now if the control law is calculated
from a model which deviates from the true model, the input
might excite all the modes associated with the polynomial
(22). This is not a serious matter if the modes are stable.
However, if some modes are unstable it is possible to get
infinitely large errors if the model used for designing the
control law deviates from the actual model by an arbitrarily
small amount. This situation will occur if the function

ZZnBo(z— 1) Co(z-— 1)

has zeros outside or on the unit circle. It follows from the
representation theorems for stationary random processes®
that z"C°(z"") can always be chosen to have zeros inside
or on the unit circle. As far as C° is concerned the only
critical case would be if C°(z™") had a zero on the unit
circle. The polynomial z"B°(z™") will have zeros outside
the unit circle if the system dynamics is nonminimum
phase. Hence, if either the dynamical system to be con-
trolled is nonminimum phase or if the numerator of the
spectral density of the disturbances has a zero on the unit
circle, the minimum variance control law will be extremely
sensitive to variations in the model parameters.

In these situations it is of great practical interest to
derive control laws which are insensitive to parameter
variations whose variances are close to the minimal var-
iances. This can be done as follows.

To fix the ideas we will assume that B(z) can be factored
as

B(z) = Bi(2)B,(2), (23

where z"'B,(z”") has all zeros inside the unit circle and
2 °By(z™") has all zeros outside the unit circle.

When resolving the identity (14) we impose the addi-
tional requirement that F(z) contain B,(z) as a factor; i.e.,
we use the identity

Clr) = ARE'() + *B,() F'(2). (24)

Going through the arguments used when deriving the
theorem we find the control law

F(zh

u(t) = TBEOEGCY y(®, (25)
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which gives the control error
y@ = NMe() +eet — 1) + ---

+oepe(t — k+ 1) +efe(t — k) + ---

+ efin,e(t — k — ny + 1} (26)
The control law (25) thus gives an error with the variance
Var y = Min (Var y) + N{ef* + -+ 4 ehin}.

The control law (25) is not extremely sensitive to variations
in system parameters. To realize this we assume again that
the system is governed by the model (4°, B°, C°, \°) but
that the control law is calculated from the model (4, B,
C, N) with slightly different parameters. The equation
describing the controlled system then becomes

(A°B.E' + 27 *B°F’)y = \C’B,Ele.

When the parameters equal the true parameters the char-
acteristic equation of the system becomes

BizHC(Z™") = 0,

and it now follows from the definition of B; and the
assumption made on C° that all modes are stable when
the design parameters equal the actual parameters. The
stability for small perturbations of the parameters now
follows by continuity.

o Calculation of minimal variance control strategies

The theorem stated earlier may be used conveniently for
the actual calculation of minimum variance control
strategies. Equating coefficients of different powers of z
in Eq. (14) we get the following set of equations for deter-
mining the coefficients e; and f,:

01=01+el

= ay + ae; + e,

o1 = @poy + ap_ser + ar_se; + -+ @l + ex-1
= ap + ape + ares + o0+ aer + fo
Cho1 = Gper + aer + a8 + 0+ @ + f

Co = At Guorer+ Anses + - - + Gu-pri€r-1 T facs

0 = ae; + @il + -+ + Aupi2€i1 + fo-ker

0 = ae + fau (27)




From these equations we can compute the coefficients of
the E and F polynomials, e, €, ***, €x-1, fo, fi, ** "5 fa1
recursively. Notice that these coefficients are independent
of B(z). When the polynomials E(z) and F(z) are known,
the minimum variance control strategy is then given
directly by (13).

We will now give some explicit examples of the cal-
culation of control algorithms.

Example 1

Consider the following system

o = 24.9¢7
M= =055 4 0202 9)(1 — 2 )

1 — 07727 + 0.35277°

Y u(t)

TA (1 — 055" +0.20z75)(1 — 2 )e(’)'
(28)
Hence,
A(z) = 1 — 1.55z + 0.752° — 0.207°
B(z) = 249
Cz) =1 — 0.77z + 0.3527.
Solving Eqgs. (27) recursively we find
e, = 078  f, = 0.90
e; = 0.81 fi = —0.49
e; = 0.87 fo = 0.17.
The minimum variance control law thus becomes
Y u(t)
0.91 — 049z + 0.1727°
T T249(1 + 07827 + 0.81z7 % + 0.877°) 0
_ 065 1 —055%" 4 0.19%" 0

7249 (1.4) 14 0.78z7" 4 0.81z 72 4 0.87z

where we have normalized the gain by the inverse of the
low-frequency gain of the system (28).
The minimum variance is

N{1 4 e + e + e} = 3.02\°.
Example 2

Consider the system

0 = 6.39 + 20.2;7"
M = T =064z " F 02271 — 27 )

Vu(t — 3)

1 — 0.8277' + 0.21772
(1 —0.64z" + 022751 — %)

e(t).
(29

+ A

Hence,

AR) = 1 — 1.64z + 0.86° — 0.227
B(z) = 6.39 + 20.2z |
Clr) =1 — 0.82z + 0.217°.

In this case the polynomial z B(z™") has a zero outside the
unit circle and the system is thus nonminimum phase.
Proceeding as in Example 1, we find

ep = 082  f, = 0.64
e; = 0.69  f, = —0.41
f» = 0.15.

The minimum variance control law is thus

Y u(t)
o 0.64 — 041z"" + 0152 * )
= 7639+ 2027 )(1 + 0.827 " + 0.69 5 7
0.58
= "266 49
1 — 0.64z7" + 0.2477°
X <+ 0.2% ®, (30)

1 £ 3977 + 326z ° + 2.16z° 7

where again we have normalized the gain by the inverse
of the static gain of the system. Notice in particular the
very high relative gain, 4.6, of the system.

The minimum variance is

N1+ e +ei} = 2.14\%,

Because the function z B(z™Y) has a zero, z = — 3.15
outside the unit circle. It follows from the discussion on
sensitivity in the previous section that the minimum var-
iance control law is useless in practice because if the design
parameters only vary slightly we will get an exponentially
increasing error.

We will now show how to obtain a non-optimal control
law which is less sensitive to parameter variations. Pro-
ceeding as in the section on sensitivity we now use the
identity (24), i.e.,

1 — 0.82z + 0.217°
= (1 — 1.64z + 0.867° — 0.227)
X (1 + ez + ez + eid’)
+ 206 + fiz + #5251 + 3.15).

Equating coefficients of equal powers of z of both members
we get

er = 0.82  f, = 0.16
e; = 0.69 = —0.096
e, = 0.49  f, = 0.035.
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Figure 3 Results of an experiment for determination of
process dynamics showing response of wet basis weight,
moisture content and dry basis weight to perturbation in
thick stock flow.

Notice that e, and e, are the same as before. We then obtain
the control law (25), i.e.,

V u(t)
_ 0.16 — 0.096z™" + 0.035.”" (
6.39{1 + 0.822 " + 0.697 % + 0.49 °} ¥ 0
0.58
= 266 069
1 — 0.6277" 22777
% z  + 0.227 ¥@). (31)

14 0.82277 + 0.692 2 + 0.4977°

Notice in particular the drastic decrease of the normalized
gain as compared with (30). The variance associated with
the control strategy (31) is

N1 4 el + e + ef?) = 2.38)\%.

This should be compared with the minimum variance
2.14\* and the variance of the four-step-ahead predictor
2.55\%. Hence, in this particular case we can find a control
law which is insensitive to parameter variations at the cost
of a 109, increase in the variance.
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5. Practical experiments to determine process
dynamics

Our identification procedure was described briefly in the
previous section. The procedure has been applied ex-
tensively in connection with the Billerud project for quality
control, basis weight control, moisture content control
and refiner control. In this section we will present some of
the practical results obtained. The examples are taken
from basis weight regulation.

The control computer is used to perform the exper-
iments. The input signal used in the experiment is repre-
sented as a sequence of numbers stored in the control
computer. The numbers of the sequence are read period-
ically and converted to analog signals by the D/A con-
verter and the regular D/A conversion subroutines. The
output signals from the process are converted to digital
numbers using the control computer’s A/D converter.
In this way we represent both the input and output signals
by numbers that appear in the control computer in pre-
cisely the way they occur when the computer is controlling
the process. The dynamics of signal transducers, trans-
mission lines, and A/D and D/A converters are thus
included in the model. Disturbances in transducers and
signal converters, as well as round-off errors, are thus
also included in the disturbances of the model. The whole
experiment is executed by a program. The result of a
typical identification experiment is illustrated in Fig. 3.

& Choosing the input signal

The choice of the input signal involves certain consider-
ations. That is, it is desirable to have large signal ampli-
tudes in order to get good estimates. Large input signals
may, however, drive the system outside the linear region
and may also cause unacceptably large variations in the
process variables. In our particular case we had to make
all experiments during normal production. This was one
major reason for using a fairly sophisticated identification
procedure. Notice that in order to obtain a specified
accuracy it is possible to compromise between signal
amplitude and length of the sample. In the identifi-
cation of models required for the design of basis weight
control laws we usually used samples 1 to 5 hours in length.
The amplitudes of the signals shown in Fig. 3 correspond-
ing to 1.7 g/m’ peak-to-peak are typical. This number
was a suitable compromise. Notice that the standard devi-
ation during normal operation with no control is typically
1.3 g/n’.

The input signal must also be chosen so that it is per-
sistently exciting.'**® This is always the case if the input
signal has constant spectral density. Pseudo-random binary
signals have been used successfully. We have found, how-
ever, that if some knowledge of the process is available,
it is desirable to tailor the test signals to the specific
purpose.




Table 1 Successive parameter iterates for a first-order model relating dry basis weight to thick stock flow; &k = 4, N = 101,

Step [431 by C1 14 %/ X 108 z—lz/ X 105 % X 108
0 0 0 0 6.7350 91683 39509 —91683
1 —0.0122 13.0054 0 4,1603 0 0 193777
2 —0.3924 13.9356 —0.6320 3.3764 —178727 1190 51707
3 —0.3492 14.6689 —0.6542 3.3360 1339 —69 2575
4 —0.3502 14.6468 —0.6572 3.3360 106 -3 - 165
5 —0.3500 14.6468 —0.6569

o Examples of numerical identification

We will now present some examples which illustrate the
numerical identification procedure. These examples are
based on the data shown in Fig. 3. Mathematical models
which relate changes in dry basis weight (WSPO) and wet
basis weight (WSP) to changes in (the set point of the)
thick stock flow (regulator) will be discussed. Figure 3
shows that the output is drifting. The drift is even more
pronounced in test experiments of longer duration. To
take care of this drift we have used models which relate
changes in the output to changes in the input; i.e.,

b+ bzt + oo 4 bz

VI = T =T T e Yt = k)
14ez !+ - +ez™
T +az'+ - Faz” e, (32)

where V is the backward shift operator:
V (@) = y(0) — ¥t — 1).
Rewriting the equation we find

-1 -—n+1
oo =2 t bz _+ T busz u(t — k)

l+az 4+ - +az"

L+ecz '+ - Fez™
A=z 4+ az '+ -+ az ™

+ X e(t).

(33)

The time interval in all cases has been 0.01 hour. All
examples are based on data of Fig. 3 in the time interval
21.53 to 22.58 hours.

As stated previously, the identification procedure is
carried out recursively starting with a first-order system,
continuing with a second order system, etc. To obtain the
value of k for a fixed order, the identification is also re-
peated with the input signal shifted.

Example 1—Model relating dry basis weight to thick stock
flow

The first numerical example will be a model relating dry
basis weight to thick stock flow. First we shall identify a

first order model having the structure (32). Applying our
numerical identification algorithm we get the results shown
in Table 1.

Starting with the initial parameter estimate § = 0, the
first step of the identification algorithm gives the Kalman
estimate'®"*® of the parameters and this estimate is then
successively improved until the loss function ¥(6) of Eq.
(32) is minimized and the maximum likelihood estimate
obtained. Notice in particular the significant difference
between the Kalman estimate (step 1) and the maximum
likelihood estimate.

The value of the matrix of second partial derivatives at
the last step of the iteration is

19.28 —0.29 —8.86
Vee = | —0.29 0.04 0.06 |-
—8.86 0.06 12.05

Repeating the identification for different values of the
time-delay & we obtain the results given in Table 2.

Table 2 Results of identification of first-order models relat-
ing dry basis weight to thick stock flow for different time-
delays.

k a by 1 A V

3 —0.807 9.846 —0.994 0.297 4.491
4 —0.350 14.647 —0.657 0.257 3.336
5 —0.749 1.286 —0.958 0.351 6.152

We thus find that the loss function ¥ has its smallest
value for k = 4. To find the accuracy of the model param-
eters we proceed as follows:

An estimate of Fisher’s information matrix is obtained
from the matrix of second partial derivatives (Ref. 13,
Lemma 2),

i = )\—2 Vgg.

It is further shown in Ref. 13 (Theorem 4) that if ¥y, is non-
singular the estimate is asymptotically normal (6,, I77)
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and we thus have the following estimate of the covariance
of the asymptotic distribution:

0.006 0.042 0.004
IV = 2y, = 10.042 2202 0.020]-
0.004 0.020 0.008]

Summarizing, we thus find the following numerical values
for the best first-order model; where the computations are
based on 100 pairs of input-output data:

k=14 ¢ = —0.66 & 0.09
a= —0.35 4 0.08 A = 0.257 £ 0.017
b=146 1.5 V = 3.34 &4 0.44.

Proceeding to a second-order model the identification
algorithm gives the following results, based, again, on
100 pairs of input-output data:

k=3 ¢, = —0.73 4 0.18
a, = —0.46 & 0.14 ¢, = 0.12 4 0.16
a, = 0.04 &= 0.12 A = 0.249 £+ 0.017
by = 34416 V=315 4 0.43

by =123 422

The matrix of second partial derivatives at the minimum is:

0.36 —7.61 —1.87
13.82 22.47 —0.17 —0.08 —4.94 —7.59
-—-0.08 —0.17 0.04 0.02 0.05—0.05

0.36 —0.08 0.02 0.04 0.06 0.06
—7.61 —4.94 0.05 0.06 11.06 6.60
|—1.87 —7.59 —0.05 0.06 6.60 10.56]

[ 22.47 13.82 —0.08

Vo=

It now follows from Ref. 13 (Theorem’'4) that the param-
eter estimates for a large number of input-output pairs
is asymptotically normal N(8o, N*Vss "). Assuming that
asymptotic theory can be applied we can now solve various
statistical problems. We will, for example, test the hypoth-
esis that the model is of first order; i.e., our null hypoth-
esis is

H,:(a; = b, = c; = 0).
Using the asymptotic theory we find that the statistic

Vg - Vl’N‘ 6
Vs 3

3’::

has an F(3, N — 6) distribution under the null hypothesis.
The symbol V, denotes the minimal value of the loss
function for the second-order model; V7, the minimal value
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Figure 4 Illustration of the results of the identification of
first-order model relating dry basis weight to thick stock
flow. Notice in particular the relative magnitudes of the
output of the deterministic model, the error of the determi-
nistic model and the error of the one-step ahead predictor.
Also notice the trend in the error of the deterministic
model.

for the first-order model and N, the number of input-
output pairs. In this particular case we have £ = 1.9. At
a risk level of 109, we have F(3, 96) = 2.7 and the null-
hypothesis, that the system is of first order, thus has to be
accepted.

The results of the identification procedure are illustrated
in Fig. 4. In this figure we show

o the input u
e the output y
o the deterministic output y; defined by

by + blz_l + -0 4+ bn—lz_nﬂ
l4+az'+ - +az"

u(z)

yd(t) =




o the error of the deterministic model
elt) = y(&) — v«
o the one-step-ahead predictor § (|t — 1) of y(9)
o the one-step-ahead predictor error y(f) — (¢t — 1).

Figure 4 illustrates the properties of the identification
procedure. The deterministic output y,(f) shows how much
of the output y(f) can be explained by the input u(r).
The error e (f) thus represents the part of the output that
is caused by the disturbances. Notice in particular the
drifting character of the error e,. The one-step ahead pre-
dictor illustrates how well the output can be predicted
one-step ahead. Recall that the model was in fact construct-
ed so as to minimize the sum of squares of the one-step
ahead prediction error.

The identification procedure was based on the assump-
tion that the residuals were normal and uncorrelated.
Having performed the identification and calculated the
one-step ahead prediction errors, ¢(f), we thus have the
possibility of checking this assumption. In Fig. 5 we show

Figure 5 Sample covariance function for the residuals e(t)
of the first-order model for basis weight. According to the
assumptions made in the identification theoryi2 13 r(r)
should equal zero when r £ 0. The dashed line gives the
one sigma limit for r(7), = = 0.

0.10

0.05

0 0.05 0.10

7 in hours

the correlation function of the one-step ahead prediction
errors.

Example 2—Model relating wet basis weight to thick stock

Slow

As our second illustration of the numerical identification
procedure we will now use the data of Fig. 3 to find a
model relating wet basis weight to thick stock flow. In
this case we find that the minimum value of the loss
function for the first-order case occurs at £k = 4 and the
coefficients of the best first-order model are:

k=4 ¢, = —0.62 £ 0.10
a, = —0.38 £ 0.05 A = 0.364 = 0.025
by = 27.1 £ 2.1 V = 6.60 & 0.94.

Similarly, the best second-order model is given by the
coefficients:

k=13 ¢, = —0.82 4= 0.14
a = —0.64 £ 0.11 ¢, = 0.21 4= 0.14
a, = 0.22 -+ 0.09 A = 0.335 £ 0.024
by = 64120 V = 5.73 &= 0.80.

b, = 20.2 &£ 3.0
The matrix of second-order partial derivatives of the

minimal point is

79.24  53.37 —0.13 0.76 —12.68 —0.13 |
53.37  79.12 —0.40 —0.13 —5.93 —11.44
—0.13 —0.40 0.04 0.02 0.06 —0.07
0.76 —0.13 0.02 0.04 0.10 0.10

—12.68 —5.93 0.06 0.10 17.64 7.83

| —0.13 —11.44 —-0.07 0.10 7.83 15.12].

We now test the null hypothesis that the system is of
first order; i.e.,

H :(a; = b, =cy, = 0)

Using the asymptotic results, we find ¢ = 4.8 and the
hypothesis thus has to be rejected. Increasing the order to
three does not give any significant improvements in the loss
function.

Hence if we consider dry basis weight as the output of
the system, we find'that the model is of first order, but if
we consider wet basis weight as the output, the model is
of second order. This also shows up very clearly in Fig. 6
where we illustrate the results of the identification of the
models for wet basis weight. There is a physical explanation
for this difference in behaviour. As mentioned previously
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Figure 6 Illustration of the results of the identification of models for wet basis weight. A first-order model is shown in (a)
and a second-order model in (b). Notice in particular the differences between the outputs of the deterministic models for

first- and second-order systems.

and as can be seen from Fig. 3, a change in thick stock
flow will influence dry basis weight as well as moisture
content., After an increase in thick stock flow, we find that
both dry basis weight and moisture content will increase.
The increase in moisture content will then be eliminated
by the moisture control feedback loop which controls the
set point of the fourth drying section by feedback from
the moisture gauge.
These two effects will explain the overshoot in the
402 response of the wet basis weight. It is also clear from
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this discussion that the response of the wet basis weight
will be influenced by the settings of the moisture control
loop. This fact is another argument for using dry basis
weight as the control variable, when the basis weight loop
is considered as a single-input, single-output system.

6. Practical experiences with on-line basis weight
control

We shall now summarize some of the practical results
achieved with on-line basis weight control. The experi-
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Figure 7 Results of test run with on-line control of basis

mental program that was carried out had a dual purpose:
to arrive at control strategies for the particular application
at hand and to test the general procedure developed for
steady-state control. This dual purpose led us to continue
some experiments, even though these particular loops
have been working satisfactorily. Several control schemes
have been investigated. We have chosen thick stock flow
as well as thick stock concentration as control variables.
We have regulated both wet and dry basis weight. In the
first experiments the concentration of the thick stock
was chosen as the control variable. This was later
changed to thick stock flow mainly for two reasons. We
found that the basis weight responds faster to changes
in the set point of the thick stock flow regulator than to
changes in the thick stock conceniration. We also found
that the dynamics of the concentration regulator changed
with operating conditions, thereby introducing variations
in the dynamics of the control loop.

In general it is very difficult to evaluate the performance
of the control loops in practice and in particular to com-
pare different control laws. The main reason for this is
that there are variations in the disturbance level. This
implies that in order to evaluate the different control loops
we need test periods of considerable length.

It is also very difficult to judge the improvements unless
reference values are available. In the case of basis weight
we had the results of the feasibility study. In all cases
studied before the control computer was installed, stand-
ard deviation of basis weight was greater or equal to 1.3
g/m’ and this value was therefore chosen as a conservative
reference value. In the feasibility study the target value
for basis weight fluctuations was set to 0.7 g/m’. In actual
operation we can now consistently achieve standard de-

weight.

viations of 0.5 g/m’ wet basis weight and 0.3 g/m’ dry
basis weight.

Basis weight was controlled sucessfully on-line on April
28, 1965 for a test period of 10 hours. The first experiments
showed that it was indeed possible to obtain the variances
predicted from the results of the process identification.
We could also show that the deviations for the controlied
system were moving averages of the appropriate order.
The basis weight control loop has been subject to extensive
investigations and has been in continuous operation since
the beginning of 1966.

Two types of experiments have been performed. In one,
the control loop is permitted to operate in the normal way
for several weeks. Some data are collected at comparatively
long sampling intervals (0.1 hour). The results are not
analyzed extensively and the performance of the control
system is evaluated on the basis of the maximum de-
viations of test laboratory data, inspection of strip-chart
recorders, and the judgement of machine tenders.

The other type of experiment is a controlled experiment
extending over periods of 30 to 100 hours. Important process
variables are logged at a sampling interval of 0.01 hour
and analyzed. When analyzing the data, we compute
covariance functions of the controlled variables and test
whether they are moving averages of appropriate order
(cf. Remark 3 of the Theorem of Section 3). Variances
are checked against reference values. In some cases we
also identify dynamic models, calculate minimum variance
control strategies and update the parameters of the control
algorithms if required.

In Fig. 7 we give a sample covering 24 hours of operation
of the basis weight control loop. In the diagram we show
wet basis weight, dry basis weight (the controlled output)
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Figure 8 Covariance function for fluctuations of dry basis
weight in the time interval 23.00 to 12.00 of Fig. 7. Com-
pare with Fig. 2 which shows the covariance function with-
out computer control.

and thick stock flow (the control signal). The scale for the
control signal, thick stock flow, is chosen as dry basis
weight. The magnitude of the control signal will thus
directly indicate how much of the fluctuations in dry basis
weight are removed by the control law. The con-
trol signal will thus approximately show the distur-
bances in the output of the system. Notice the different
characteristics of the disturbances at different times. The
large disturbances occurring at times 14.30 and 18.00 are
due to large fluctuations in thick stock consistency.

Also notice that there are two interrupts in the operation
of the system, one paper break and one interrupt to clear
the drying section. In these instances the basis weight
control loop is automatically switched off and the control
signal is kept constant until the disturbances are cured
when the loops are automatically switched on again.
Notice that a paper break does not introduce any serious
disturbances. Also notice that there are some grade changes
from which we can judge the response of the controlled
system to step changes in the references values.

Moisture content was controlled by feedback from the
moisture meter to the set point of the pressure regulator of
the fourth drying section. The standard deviation of
moisture content was 0.4%. In Fig. 8 we show the covar-
ance function of dry basis weight in the time interval. As is
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to be expected from the Theorem of Section 3 this is the
covariance function of a moving average of fourth order.

We have also made experiments to verify that the high
frequency fluctuations in moisture content and basis
weight have the same characteristics. This was one essential
assumption made in Section 3. If this was true, the variance
in dry basis weight would be independent of dry or wet
basis weight control, In the table below we give standard
deviations recorded during a 30 hour test, where alterna-
tively wet and dry basis weight was controlled.

Standard deviation

Wert Dry

basis basis

weight weight
Wet basis weight controlled 0.50 0.32
Dry basis weight controlled 0.52 0.28
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