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Computer Control of a Paper Machine- 
an Application of Linear Stochastic Control Theory 

Abstract: This  paper  describes  an  attempt  to  apply  linear  optimal  control  theory  to  computer  control of an  industrial  process.  The 
applicability of the theory is discussed.  Particular  attention  is  given  to  the  problem of obtaining a mathematical  model of process 
dynamics  and  disturbances.  Results of actual  measurements  as  well  as  results from on-line  control  experience  are  presented. 

1 .  Introduction 

The work  presented in this paper was carried out at the 
IBM Nordic Laboratory in connection  with the installation 
of an IBM 1710 system',' in the Billerud Kraft Paper Mill 
at Gruvon, Sweden. Its objectives  were  twofold: to solve 
some specific control problems  associated  with the Billerud 
installation and to derive  systematic  methods for design 
of control laws for on-line  computers. The second  objective 
was  justified by the fact that a considerable amount of 
systems  work  is  required to install a control computer on 
an industrial process.  This  work can be  substantially  re- 
duced if systematic  methods for the design of control 
laws are available.  Such a synthesis  procedure has been 
developed. The synthesis  procedure  consists of a few 
theorems and a FORTRAN program which enables us to 
obtain mathematical  models and control strategies  directly 
from measured plant data. The existing  identification 
programs are limited to multiple-input,  single-output sys- 
tems. For such  systems we can always  find a canonical 
form for the mathematical  models and the identification 
problem can then  be  solved by one computer  program. 
Although the mathematical solution of the identification 
problem is directly  applicable to multivariable  systems, 
the actual identification  programs will  differ  with the 
structure of the systems. For multivariable  systems we 
will thus need one  program  for  each structure. 

We have  found the synthesis  procedure to be a practical 
and convenient tool to obtain on-line control strategies. 
The procedure has been  applied to design control al- 
gorithms for several loops on the paper  machine  such as 
basis  weight,  moisture  content and In all cases 
we have  considered the systems  simply as input-output 
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systems, and we have not exploited the particular char- 
acteristics of the paper  machine. So far we have  extensive 
practical  experience  only  with  single-input,  single-output 
systems. 

There are many  possible  alternatives to the method 
proposed in this paper.  One  possibility  is a straightfor- 
ward trial and error method: program a three-term control 
algorithm in the control computer and adjust its param- 
eters until acceptable  performance  is  obtained.  This 
method has the decided advantage of being  simple and has 
also been  applied to most of the control loops of the 
Billerud  system.  However, in order to adjust a three-term 
controller the performance of the control loop has to be 
evaluated for a number of parameter  combinations.  This 
evaluation may take considerable  time if the process 
dynamics are slow and if many  parameter  combinations 
have to be tried. In our particular case evaluation of the 
performance of the basis  weight loop may take a few hours. 
For the refiner loops the corresponding time is ten times 
longer. Also, when  using the trial and error approach 
one always  wonders  whether still better  results  could  be 
achieved  with a more complicated control law.  When 
using the systematic approach of this paper the results 
of the process  identifications  show  what can possibly  be 
achieved and what the limitations  are. When the identifi- 
cation programs are available the design of a control 
loop can  be  made  with little effort.  Our  present  experience 
indicates that in typical  cases a control loop can be  de- 
signed  with  two  identification  experiments and two  eval- 
uation tests. 

In this paper we  will describe the synthesis  procedure 
and its application to one typical  practical  problem, 
namely basis weight control. Basis  weight  fluctuations 
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were investigated during a feasibility study  before the sys- 
tem was under  computer  control. The fluctuations had a 
standard deviation of 1.3 g/mz. In  the feasibility study 
the target value for standard deviation of basis weight 
under  computer control was set to 0.7 g/m”. 

The  control computer was installed late  in December 
1964. Two experiments for  determination of process dy- 
namics were performed in  March 1965 and  the first oper- 
ation of on-line basis weight control was done  on April 
28, 1965 covering a period of 10  hours. Since that  date a 
large  number of tests have been performed and  the basis 
weight loop  has been in  continuous  operation since the 
beginning of 1966. In actual operation we can now con- 
sistently achieve standard deviations of 0.5 g/mz wet 
basis weight and 0.3 g/mz  dry basis weight. 

Important phases of the project are briefly discussed in 
Section 2.  In Section 3 we give a mathematical  formulation 
of the basis weight problem. The solution of the mathe- 
matical problem and  our synthesis procedure are given 
in Section 4. Section 5 describes the practical experiments 
that were performed in  order to determine the process 
dynamics and in Section 6 we  give practical results from 
on-line  control  operations. 

2. Review of important phases of the  project 

The work described in  this  paper was initiated at  an early 
stage  during the feasibility study  undertaken from May to 
September 1963. A great  many of the  tasks which might 
be assigned a control computer were considered in  order 
to discover the common characteristics of the problems and 
to select problems suitable  for closer investigation. During 
this phase we found that  the problems were essentially 
of two types:  Those associated with  controlling the process 
during normal operation and during grade changes. The 
feasibility study indicated that  the solution of both these 
problems and  the production  planning  problem  could 
economically motivate the computer  installation. 

Grade-change control involves making the transition 
from  one grade to another  in  the shortest possible time, 
subject to various  constraints  such as a given risk of paper 
break and limitations of physical variables. The solution 
of grade change problems using optimal  control theory was 
considered. To solve these  problems we need accurate 
dynamic models as well as accurate descriptions of the 
constraints. 

The problem of controlling the mill during normal 
operation  is essentially a regulation problem. The process 
variables must be  kept  as close as possible to given refer- 
ence values. Product specifications are usually set in terms 
of upper and/or lower limits on  the variables. Because of 
disturbances, the set points  have to be chosen well within 
the specified limits in order to ensure that a given amount 
of the production falls within the specifications. Closer 
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fluctuations. The set points can then  be chosen closer to 
the specified limits with a given risk for production  outside 
the specifications. 

Moving set points closer to  the specifications either 
reduces raw material and power consumption or increases 
production. Even a moderate decrease in  the variations of 
process variables can thus realize considerable economic 
gains. Control of basis weight and moisture content  are 
typical examples of normal-operation  problems. 

A large amount of powerful theoretical results are 
available for  the solution of both types of problems:  opti- 
mal  control theory  for the grade  change  problem and 
linear stochastic control theory  for the regulation problem. 
In  both cases application of these theoretical tools requires 
the solution of identification problems. 

We decided to concentrate on  the normal-operation 
problems rather  than grade-change problems for  the 
following reasons: 

We believed that  the results would be  more general. 
The identification of the non-linear models required 
for  the application of optimal control theory is con- 
siderably more difficult than  the identification of the 
linear  model required for the steady state control. 
A solution of the regulation  problem is a prerequisite 
for solving more complex process control problems 
including that of optimization. 

It was thus decided to investigate the possibilities of 
obtaining a systematic procedure to  control  the process 
during normal operation based on linear  stochastic  con- 
trol theory. Control of basis weight and moisture  content 
and refining were critical problems in the particular  appli- 
cation and  it was therefore decided to use these as test 
cases. 

Having decided to attack  the regulation problem we 
investigated the applicability of linear  stochastic control 
theory. The essential assumptions  for  this  theory are: 

The process dynamics can be  characterized  by  linear 
equations. 
Disturbances  can  be described as sample  functions of 
second-order random processes. 
The criterion for  the  operation  is  to minimize mathe- 
matical expectation of a quadratic  form in state var- 
iables and  control variables. 

Admittedly, in practice there sometimes are “upsets,” 
which give rise to large deviations. These upsets may 
originate in many different ways; for example, from 
equipment or instrument  malfunctions, which all  require 
particular  corrective  actions. It is questionable whether 
these types of disturbances can be described by proba- 
bilistic models. In  the following we disregard these upsets. 

During the feasibility study we  verified that during 
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Figure 1 Simplified diagram of a kraft  paper  machine. 

normal operation the probability distributions of the 
fluctuations of the process  variables  were  close to the 
normal distribution. The problem of operating as close as 
possible to the specifications  with a given risk of paper- 
break  is then equivalent to controlling the process  in  such 
a way that the variance of the output is as small as possible. 

During the feasibility study and the initial phase of the 
project we also  performed  experiments which indicated 
that the disturbances  occurring during normal operation 
were so small that  the system  could  be  described by linear 
equations. The indications  obtained  in  these  early  exper- 
iments were subsequently verified  by  experiments on  the 
computer-controlled  system. 

Linear  stochastic control theory was found applicable. 
The chief  difficulty in the application of this theory to a 
practical industrial problem  is to obtain adequate models 
of the process and its disturbances.  Once the models are 
obtained the optimal control algorithms are given  by 
known  formulas.5-'' Computer programs to generate the 
algorithms  from the coefficients of the mathematical  model 
are also a~ailable.~ The mathematical  models are obtained 
from experiments on  the process. The input variables are 
systematically  perturbed and the corresponding variations 
in the output variables are observed. From this data we 
obtain information about  the process  dynamics and the 
disturbances. 

In order to obtain mathematical  models  for the process 
dynamics and the disturbances we have  developed an 
identification p r ~ c e d u r e ~ ~ ' ' ~  which has been programmed 
in FORTRAN. The experimental data are entered into the 
program and the computation results in a mathematical 
model of the process and the disturbances. 

We were able to test part of the solution, modelling of 
disturbances and design of optimal  filters, on a quality- 
control problem'  before the control computer  was  in- 
stalled.  This  successful  test weighed  heavily in the decision 
to continue work on real-time control. As work  progressed 
it was dis~overed'~  that for  the special  case of steady-state 
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control the optimal control algorithms  could be derived 
very  simply from the results of the identification. 

Our  investigations  have thus resulted in a procedure for 
synthesizing control strategies for on-line control. This 
procedure  is  based on linear  stochastic control theory and 
is particularly well suited for a situation where: 

The problem is to keep  process  variables  close to fixed 

The process is linear  with time delay, but time  invariant. 
Disturbances are unavoidable and can  be  characterized 
as samples of stationary random processes  with rational 
power  spectra. 
The process cannot be taken out of production but 
process  analyses  have to be performed under normal 
operating conditions. 

operating points. 

3. Mathematical formulation of  the  basis weight 
regulation  problem 

In Fig. 1 we show a simplified  diagram of the parts of the 
paper  machine that  are of interest for basis weight control. 
Thick  stock,  i.e., a water  fibre  mixture  with a fibre  con- 
centration of about 3y0 comes from the machine  chest. 
The thick stock is diluted  with  white  water so that  the 
headbox concentration is reduced to 0.2 to 0.5%. On the 
wire, the fibres are separated from the water and a web is 
formed.  Water is pressed out of the paper web  in the 
presses, and the paper  is then dried on steam-heated 
cylinders in the dryer  section. 

In this particular case it is  possible to influence the 
basis weight  by  varying the thick  stock flow and/or  the 
thick stock consistency  (fibre'concentration in thick stock). 
Both  these  variables will directly  influence the amount 
of  fibres  flowing out of the headbox and thus also the 
basis  weight. The control variables are manipulated 
via set points of analog regulators which control the 
thick stock flow  valve and the thick stock dilution valve 
shown in Fig. 1. 391 
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Basis  weight is measured by a beta-ray  gauge  set at a 
fixed position at the dry  end. The output of this instrument 
will  be proportional to the mass of fibres and water  per 
unit area, i.e., the wet basis weight. This is  because the 
coefficient  of absorption of beta  rays in fibres and water is 
approximatively the same. In order to obtain dry basis 
weight, i.e., the mass of fibres  per unit area, the beta-ray 
gauge  reading has to be  compensated for the moisture in 
the paper  sheet.  Moisture is measured by a capacitance 
gauge. In our particular case this gauge can traverse the 
paper web although it is  normally  set at a fixed position. 

There 1s also a beta-ray gauge  before the drying 
section.  Basis weight  is  also  measured  by the machine 
tender and in the test-laboratories. When a reel of paper  is 
produced its weight and size are determined giving a very 
accurate value of the average  basis weight  of the reel. This 
information is  used to calibrate the other gauges.  An 
analysis of the information sources for basis weight has 
shown that: 

0 The reel weight and dimension information can be  used 
to compensate the drift in the beta-ray gauge. 
The high  frequency  fluctuations in the moisture  gauge 
and the beta-ray  gauge  signal  have  similar  characteristics 
and a good  estimate of dry  basis weight  is 

JJ = WSP (1 - MSP), (1) 

where  WSP is the calibrated beta-ray  gauge  signal and 
MSP is the signal from the moisture gauge. The differ- 
ence  between  dry  basis  weight and the estimate y of 
Eq. (1) is  essentially a stationary random process  which 
contains many  high  frequencies. 

0 The estimate of dry basis  weight  given  by (1) is  improved 
very  slightly  when laboratory measurements are taken 
into account. 

Fluctuations in  basis  weight  during normal operation 
have  been  investigated. There are variations of  weight in 
both the machine  direction and the cross  direction of  flow. 
In our case it was found that the cross-direction  profile  is 
stable if certain precautions are taken. The fluctuations 
observed can be  described as normal random processes. 
There  is a considerable amount of low-frequency variation. 
Data in the records  have  been  divided into samples 
covering about five hours for analysis.  Before  carrying out 
a time-series  analysis the trend is  removed. In Fig. 2 we 
show the covariance function of basis weight variations 
in a typical case. In all cases  studied we found that the 
variations in basis weight had a standard deviation equal 
to or greater than 1.3 g/mz. 

We investigated the possibilities  of  controlling the basis 
weight  by careful  regulation of machine  speed, thick stock 
flow and consistency.  Experiments  have also been  per- 
formed to establish the correlation of fluctuations in basis 
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Figure 2 Covariance  function of fluctuations  in wet basis 
weight  obtained  during  the  feasibility  study,  before  control 
computer was installed. 

The results of these  investigations  have  shown that in 
this particular application it is not possible to keep the basis 
weight constant by careful  regulation of machine  speed and 
fibre flow. It was therefore  decided to control basis weight 
by  feedback from the measurements at the dry  end of the 
machine to thick stock flow or thick stock  consistency. 

The dynamics  of the paper  machine are such that there 
is a coupling  between  dry  basis  weight and moisture con- 
tent. An increase of thick stock flow or thick stock consis- 
tency  results in an increase in moisture content as well as 
dry basis weight. A change of steam pressure in the drying 
section  will,  however,  influence the moisture content of 
the paper but not the dry  basis  weight. This coupling was 
not known to us initially but the first  identification  experi- 
ment  showed the effect  clearly. The special character of the 
coupling  implies that the loop for controlling  dry  basis 
weight can be  considered as a single-input,  single-output 
system. The control actions of the basis weight loop (thick 
stock flow) will, however, introduce disturbances in 
moisture  content.  These  disturbances can be  eliminated 
by using thick stock flow as an input to the moisture  con- 
trol loop. Control of dry basis weight can thus be  con- 
sidered as a system  with one input, thick stock flow, and 
one output,  the variable y as given  by Eq. (1). Notice,  how- 
ever, that  the moisture control system  must  be  considered 
as a system  with  two inputs and one output. As long as 
there is  only one output there are no serious structural 
problems and the basic  identification algorithm can be 
easily  modified.  See  Ref. 12, p. 94, and Ref. 13. 

It is  explained in Section 2 why the variance of dry 
basis  weight is a good  measure of the performance of 
the basis  weight control loop. Now  if the estimate y ,  of 



Eq. (l), differs from dry  basis  weight by a quantity which 
is  essentially  high  frequency  noise,  minimizing the variance 
of dry  basis weight  is  equivalent to minimizing the variance 
of y .  Notice that this  reasoning  fails if the deviation  con- 
tains low frequencies! 

The criterion is thus to control the system in such a way 
that the variance of the output signal y is minimal. To 
complete the formulation of the control problem we  now 
need a description of the process  dynamics and the char- 
acteristics of the disturbances. 

The corrections that are required to control the process 
during normal operation are so small that the system  can 
be  described  by  linear  differential equations with a delayed 
input. The time-delay Td depends on the time it takes to 
transport the fibres along the paper  machine.  The equations 
determining the dynamics  can  be  partly  determined by 
continuity  equations  for the flow. The degree of mixing in 
the tanks is uncertain,  however.  There is also a rather 
complicated  mechanism that determines the amount of 
fibres that pass through the wire. A direct  derivation will 
thus give a very uncertain  model for the process  dynam- 
i c ~ . ~ . ' ~  

Since a digital  computer is to be used to implement the 
control law  we  will consider a discrete  time  model  directly. 
If it is assumed that  the sampling interval T.  is chosen so 
that Td is an integral  multiple of T,  and if  we also  assume 
that  the control signal is constant over the sampling inter- 
val the process  dynamics  can  be  expressed by the general 
linear  model 

d l )  + &(t - T,) -I- * * + &(t - IT,) 

= b;u(t - T d  - T.) + * 

+ b{-,u(t - T d  - lT8) .  (2) 

Now let the sampling  interval T. be the time  unit. Intro- 
duce the shift operator 

z d t )  = Y ( t  + 1) ( 3) 

A'(z) = 1 + a:z + * + a;zz 

and the polynomials 

B'(z) b; + b:z + * + b;-,z'-'. 

1 Equation (2) can now be  written 

y(t) = ~- ""'-') u(t - k )  , 
A'(z- ) (4) 

where 

T d  = (k - 1)T,. ( 5 )  

Equation (4) would  apply if there were no disturbances. 
Because of linearity the disturbances can always be repre- 
sented as an equivalent disturbance d(t) in the  output: 

(6) 

If the disturbance d(t) is a stationary* random process 
with a rational power spectral  density it can always  be 
represented as 

where { e(t), t = 0, =!= 1, =!= 2, . . .) is a sequence of inde- 
pendent,  equally  distributed random variables. The poly- 
nomials C'(2-l) and D'(z") can always be chosen so that 
the functions zm C'(z") and z" D'(z") have no zeros out- 
side the unit  circle. 

Introducing (7) into (6) and writing the two terms on 
common denominators we thus find that  the input-output 
relation  can  be  described by the model 

~ ( z - ' ) y ( t )  = ~ ( z - l ) u ( t  - k)  + XC(z")e(t), (8) 

where { e(t)} is a sequence of normal equally distributed 
random variables, e(t) is  independent of e(s) for s f t and 
e(t) is also independent of y(t) and u(t - k). Hence, 

A ( i )  = 1 + a1z + * * + a,z" 

B(z) = bo + b1z + * * * 4- b,-lzn" 

C(Z) = 1 + C l Z  + * -  + c i .  

The polynomials A,  B and C of Eq. (8) are formally of 
the nth order. This  is no loss in generality  because we can 
always put trailing coefficients equal to zero. 

Equation (8) is thus the general  model for a linear  sampled 
nth order system  with a time-delay that is an integral 
multiple of the sampling interval and which is subject to 
disturbances that are stationary random processes  with 
rational power spectra. 

4. Solution of the mathematical problem 

We  now consider the problem of controlling the system, 
Eq. (8) in  such a way that the variance of the output y( t )  is 
as small as possible. If the coefficients  of the polynomials 
A(z), B(z) and C(z) are known this problem  is a straight- 
forward application of linear  stochastic control theory. 
In this particular case we can, however,  derive the results 
directly. The direct  derivation  is  simple; it gives  insight 
into the problem and provides  also a suitable algorithm 
for computing  the control strategy. 

In a practical  problem we also  have the additional prob- 
lem  of determining the coefficients  of the model. The 
problem  can thus be  conveniently  divided into two sub- 
problems: 

To determine a mathematical  model of the process and 
the disturbances  (identification  problem). 

of d(t) until  a stationary process is obtained. 
* If the  disturbance is drifting we can often, in practice,  take  time  differences 

393 

CONTROL OF A PAPER MACHINE 



To determine the minimum  variance control law for a 
system  governed  by the mathematical  model (control 
problem). 

These two problems  will  be'discussed below. 

Process identijcation 

As stated in Section 3, it is  very  difficult to derive the 
mathematical  model from first  principles. Instead we 
have  determined the model (8) directly from measurements 
on the process.  When  making the measurements, the 
control variable of the process  is perturbed and the re- 
sulting  variations in the output are observed. On the basis 
of recorded input-output pairs { u(t), y(t),  t = 1,2, , N )  
we then  determine  a  model (8) of the process and the 
disturbances.  Since the identification  technique  is  discussed 
elsewhere,"13  we will not go into any  details of the identi- 
fication  problem in this paper. 

Let it suffice to say that the problem is solved  by deter- 
mining the maximum  likelihood  estimate of the parameters 
0 = (al, a2, - . , a,, bo, bl ,  - * , L 1 ,  cl, cz, - - , cn) of the 
model  based on a  sequence of input-output pairs { u(t), y(t), 
t = 1,2, - , N )  . It has been  shown" that maximizing the 
likelihood  function  is  equivalent to minimizing the loss 
function 

where the numbers a(t) are related to the input-output 
signal by the equation 

C(z")e(t) = A(z-l )y( t )  - B(z-l)u(t - k ) .  (10) 

The numbers c(t) can be interpreted as being  one-step- 
ahead prediction errors. 

When  we have found a 0 = 8 such that V(8) is  minimal 
we  get the maximum  likeihood  estimate of X from 

2 v( e) 
x 2  = -. 

N 

The identification  problem is thus reduced to a  problem 
of finding the minimum of a function of several  variables. 

The function V is  minimized  recursively  by  a  gradient 
routine which  involves computation of the gradient V, of 
V with  respect to the parameters as well as the matrix of 
second partial derivatives Vee.  Due to the particular 
choice of model structure the computation of the deriv- 
atives of the loss function can be done very  economically. 
In fact for large N the computations increase  only  linearly 
with the order of the model. 

To obtain a starting value for the maximizing algorithm 
we set ci = 0. The function Vis then quadratic in ai and bi 
and the algorithm converges in one step giving the least 
squares or the Kalman estimate.16 This is then taken as the 
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whether V(0) has local minima we also choose 
several other starting points. FORTRAN programs for the 
identification  procedure are available." 

It is  shown in Ref. 12 that  the maximum  likeihood  esti- 
mate is consistent,  asymptotically  normal, and efficient 
under mild conditions. The conditions are closely related 
to the information matrix. An estimate of this matrix is 
provided by 

The matrix V e o  which  was  computed in order to get a 
fast convergence for the gradient routine will thus have a 
physical interpretation. 

Minimum variance control strategy 

We  will  now consider the control problem; i.e.,  we  will 
find  a control algorithm, expressing u(t) as a function of 
the observed outputs up to time t ,   y(t) ,  y(t - l), - and 
the previous control signals u(t - l), u(t - 2), - e ,  such 
that the variance of the output y ( t )  of the system (8) is as 
small  as  possible. 

Theorem 

The minimum  variance control algorithm for the system 
(8) is  given  by 

where E(z) and F(z) are polynomials 

~ ( z )  = 1 + elz + e,? + . + ek-,zk-' 

F(z) = fo  + f1z + f2zZ + * ' + fn-lz"-', 

which  satisfy the identity 

C(z) = A(z)  E(z) + zk F(z) . 
The control error with the optimal strategy is a moving 
average 

y ( t )  = XE(z-l)e(t) 

= A{e(t) + e,e(t - 1) + 
+ e k - d t  - k + 1)) 

and the minimum  variance of y is 

M i n v a r y ( t ) = X 2 { 1 + e ~ $ e ~ + . . . + e ~ - , } . ( 1 6 )  

Proof 

The system equation (8) gives 

y ( t )  = ~ - ' ( z " ) ~ ( z " ) u ( t  - k )  + XA-l(z")C(z")e(t). 

Using the identity (14)  we find 

y ( t )  = AE(z-')e(t) 

+ c- l ( z - l ) z -k{  F(z")y(t> 

+ B(z")E(z")u(t) 1 . 



The first term of the right  member of this equation is 

XE(z-')e(t) = i(e(t)  + e,e(t - 1) + . - a  

+ ek-dt - k + 1 )  1 ,  
and the last term of the equation is a function of 

~ ( t  - k), ~ ( t  - k - l ) ,  * e *  , 

~ ( t  - k), ~ ( t  - k - l) ,  a * *  . 
Now it was  postulated that the control law  must  be  such 
that u(t) is a function of y(t), y( t  - l), - - -, u(t - l), 
u(t - 2), . . Because  of the assumption of independence 
of e(t) and e(s) for t # s, the two terms of the right  member 
of  (17) are now independent and we  get 

var y( t )  2 var (XE(z")e(t))2 

= X'{I +e: + +e:-l}. 

Equality  is  obtained for the control law (13) which  proves 
the first part of the theorem. Introducing the control law 
(13) into (8) we find 

Y ( Z )  = XE(z")e(t), 

and the second part of the theorem is also proven. Q.E.D. 

Remark I 

Notice that the theorem  still holds true if it is assumed 
only that e(t) and e(s) are uncorrelated for t # s but a 
linear control law  is postulated. 

Remark 2 

Notice that the last term of the right  member of (17), 
i.e., the quantity 

g(Z I t - k) = C"(Z") (F(z-')y(t - k) 

-I- B(z")E(z")u(t - k) ) , 
can  be  interpreted as the k-step-ahead  prediction of y(t) 
based on y( t  - k), y( t  - k - l), - u(t - k), u(t - k - 
1), - and that 

#(t I t - k) = XE(z")e(t) 

is the k-step-ahead  prediction error. The equation (17) 
is thus a Wold decomposition. It generalizes the well- 
known  formula for autoregressions to processes  with 
rational spectral  densities. The theorem thus states that 
the minimum  variance equals the variance of the k step- 
ahead prediction error, and the optimal control law  is 
obtained simply  by  requiring that  the prediction of the 
output k steps ahead should equal the desired output. 

Notice the crucial importance of the number  k. Back- 
tracking we find that k physically corresponds to the sum of 
the transportation delay Td and one sampling interval T,. 
We thus find that what  could  possibly  be  achieved  is  limited 
by the transportation delay of the process Td, the sampling 

interval T ,  and the characteristics of the disturbance. 
Hence the minimal  variance of the output equals the var- 
iance of the error when predicting the output over an 
interval which equals the sum of the transportation delay 
Td and one sampling  interval T,. This  result  is important 
from a practical  point of  view  because it gives the in- 
fluence of the sampling  interval on  the results and can thus 
serve as a guideline for the choice of the sampling  interval. 

Remark 3 

Notice that the control error (15) is a moving  average of 
order k. The correlation function for the control error will 
thus vanish for lags  greater than k - 1. If k is known this 
fact can be  exploited to test  whether the system is optimally 
controlled  simply by computing the correlation function 
for the control variable. The observation  can  be  also used 
for on-line tuning of the control loops. 

Sensitivity 

It is well-known that optimal solutions  under  special 
circumstances may be very  sensitive to parameter  var- 
iations. We shall  therefore  investigate this matter in our 
particular case. To do so we shall  assume that the system 
is  actually  governed by the equation 

Ao(z-')y(t) = ~-~B"(z-')u(t) + X"C"(z-')e(t), (18) 

but that the control law is calculated  under the assumption 
that the system model is 

A(z-')y(t) = z-~B(z-')u(~) + ic(z")e(t), (19) 

where the coefficients  of A, By and C differ  slightly from 
those of  A", Bo, and C". 

Notice that the orders n of the models (18) and (19) are 
the same. The minimal  variance control strategy  for the 
model (19) is 

where  E(z) and F(z) are given by the identity (14). 
We shall now investigate  what  happens if the system (1 8) 

is controlled  with the control law (20). Introducing (20) 
into (18) we  get 

( A"BE + z - ~ F B ' ) ~  = X'CBEe, (2 1) 

where to facilitate  writing, we have dropped the argument 
z-l of A ', By Bo, C", E, F and the argument t of y 
and e.  Using the identity (14), Eq. (21) can now be  written 

( B"C + ( A"B - Bo A)E}y = X"BC"Ee. ( 2  1') 

The dynamical  system  represented by this equation thus 
has a number of  modes" equal to the degree  of the poly- 
nomial 

(B"C + ( A " B  - B"A)EJ(z). (22)  395 
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Now if A = A",  B = B and C = C" this polynomial 
reduces to B "C". For small perturbations in the parameters 
the modes of the system (21') are thus close to the modes 
associated  with B"C". Furthermore when the design 
parameters equal the true parameters the factor B'C" can- 
cels in (21'). This fact implies that the modes  associated 
with B'C" are uncoupled to the input e if A = A", B = Bo 
and C = C" or that the corresponding  state-variables 
under the same conditions are not controllable from the in- 
put e (See  Refs. 17,18). Now  if the control law is calculated 
from a model which deviates from the true model, the input 
might  excite  all the modes  associated  with the polynomial 
(22). This is not a serious matter if the modes are stable. 
However, if some  modes are unstable it is possible to get 
infinitely  large errors if the model used for designing the 
control law  deviates from the actual model by an arbitrarily 
small amount. This situation will  occur  if the function 

has zeros  outside or on the unit circle. It follows  from the 
representation  theorems for stationary random processes1g 
that z"C"(z") can  always  be  chosen to have  zeros  inside 
or on the unit circle. As far as C" is concerned the only 
critical  case  would  be if C"(z-') had a zero on the unit 
circle. The polynomial z"B"(z-') will have  zeros outside 
the unit  circle if the system  dynamics is nonminimum 
phase.  Hence, if either the dynamical  system to be con- 
trolled  is  nonminimum  phase or if the numerator of the 
spectral  density of the disturbances has a zero on the unit 
circle, the minimum  variance control law  will  be  extremely 
sensitive to variations in the model  parameters. 

In these situations it is of great  practical  interest to 
derive control laws  which are insensitive to parameter 
variations whose  variances are close to  the minimal  var- 
iances. This can be done as follows. 

To fix the ideas we  will assume that B(z) can be factored 
as 

where znlB1(z-l) has all zeros  inside the unit circle and 
zn2BZ(z") has all zeros outside the unit circle. 

When  resolving the identity (14)  we impose the addi- 
tional requirement that F(z) contain B2(z) as a factor; i.e., 
we use the identity 

C(z) = A(z)  E'(z) + zkB2(z)  F'(z) . (24) 

Going through the arguments  used when deriving the 
theorem we find the control law 

K. J. ASTROM 

which  gives the control error 

y ( t )  = X{e(t) + e,e(t - 1) + - - 
+ eh-le(t - k + 1 )  + e:e(t - k)  + 
+ e:+,,-le(t - k - n2 + I ) } .  (26) 

The control law  (25) thus gives an error with the variance 

Var y = Min (Var y )  + X2(e:2 + - * + 
The control law  (25)  is not extremely  sensitive to variations 
in system  parameters. To realize this we assume  again that 
the system is governed by the model (A",  B o ,   C " ,  X") but 
that the control law  is  calculated from the model (A,  B, 
C ,  X) with  slightly  different  parameters. The equation 
describing the controlled  system then becomes 

(AoBIE' + z-~B"F').v = XCoBIE'e. 

When the parameters  equal the true parameters the char- 
acteristic equation of the system  becomes 

B:(z-')C"(z-') = 0, 

and it now  follows from the definition of BI and the 
assumption  made on C" that all modes are stable when 
the design  parameters equal the actual parameters. The 
stability for small perturbations of the parameters now 
follows  by  continuity. 

Calculation of minimal variance control strategies 

The theorem stated earlier may be used  conveniently for 
the actual calculation of minimum  variance control 
strategies.  Equating coefficients  of  different  powers of z 
in Eq. (14) we  get the following  set  of equations for deter- 
mining the coefficients e$ and f i  : 

c1 = a, + el 

c2  = a, + alel + e2 

ck-1 = ak-l + ah-zel + ak-3e2 + * . . + alek-2 + 
ck = ak + akWlel + ak-ze2 + . . + alek-l + fo  

ck+l = ak+l + akel + ak-lez + . . . + a2ek-l + f l  



From these equations we can compute the coefficients of 
the E and F polynomials, e,, e,, * *, f ~ ,  fl, , fn-, 

recursively.  Notice that these coefficients are independent 
of B(z). When the polynomials E(z) and F(z) are known, 
the minimum  variance control strategy  is then given 
directly  by (13). 

We  will  now  give some  explicit  examples of the cal- 
culation of control algorithms. 

Example I 

Consider the following  system 

2 4 . 9 ~ - ~  
(1 - 0.552" + 0 .20~-~) (1  - z-') 

y( t )  = 
" V u ( t )  

1 - 0.772" + 0.352~-'  
+ X (1 - 0.552" + 0.202-')(1 - 2' ) 4 .  

Hence, 

A(z) = 1 - 1.552 + 0 . 7 5 ~ ~  - 0.202' 

B(z) = 24.9 

C(z) = 1 - 0.772 + 0.3522'. 

Solving  Eqs. (27) recursively we find 

e, = 0.78 f o  = 0.90 

e2 = 0.81 f l  = -0.49 

e3 = 0.87 f ,  = 0.17. 

The minimum  variance control law thus becomes 

V l l ( t )  

0.91 - 0.492" + 0.17~-' 
~- y ( t )  = -  

24.9(1 + 0.782" + 0.81z-' + 0 . 8 7 ~ - ~ ]  

- 0.65 1 - 0.552" + 0.19~-* - -- 
24.9 1 + 0.782-1 + 0.81z-' + 0.872- (1.4) -__ - 

3 Y ( 4  

where we have  normalized the gain by the inverse of the 
low-frequency  gain of the system (28). 
The minimum  variance  is 

X2{1 + e: + e: f el} = 3.02X2. 

Example 2 

Consider the system 

y ( t )  = 6.39 + 20.2~" 
(1 - 0 . 6 6 '  + 0.22~-')(1 - z") V u ( t  - 3) 

1 - 0.822" + 0.21~-' 
-k 

(1 - 0 . 6 4 ~ " ~ 2 2 ~ - ' ) ( 1  2") - -- e( t )  . 

(29) 

Hence, 

~ ( z )  = 1 - 1.642 + 0.862' - 0 . m 3  

C(Z) = 1 - 0.822 + 0.21z2. 

In this case the polynomial z B(z") has a zero  outside the 
unit circle and the system  is thus nonminimum  phase. 
Proceeding as in Example 1, we find 

e, = 0.82 f o  = 0.64 

e, = 0.69 f l  = -0.41 

f2 = 0.15. 

The minimum  variance control law  is thus 

V4t)  

0.64 - 0.41~" + 0.15z-' 
(6.39 + 20.22")(1+0.82z" i- 0.692- ) 

" - 2- Y(t)  

1 - 0.642-1 f 0.24z-' 
1 + 3.972-1 + 3.26z-' + 2.162- x 3 A t ) .  (30) 

where  again we have  normalized the gain by the inverse 
of the static gain of the system.  Notice in particular the 
very  high  relative  gain, 4.6, of the system. 
The minimum  variance is 

X ' { l  + e: + e:}  = 2.14X2. 

Because the function z B(z") has a zero, z = - 3.15 
outside the unit circle. It follows from the discussion on 
sensitivity in the previous  section that  the minimum  var- 
iance control law is useless in practice  because if the design 
parameters only  vary  slightly we  will  get an exponentially 
increasing error. 

We  will  now show  how to obtain a non-optimal control 
law  which  is  less  sensitive to parameter  variations. Pro- 
ceeding as in the section on sensitivity we now  use the 
identity (24), i.e., 

1 - 0.822 + 0.212' 

= (1 - 1.642 + 0.862' - 0 . 2 2 ~ ~ )  

X ( 1  + elz + ezz + eiz') 

+ Z3(f6 + f:z + fiz2)(1 + 3.152). 

Equating coefficients  of equal powers of z of both members 
we  get 

e ,  = 0.82 f 6  = 0.16 

e, = 0.69 f: = - 0.096 

e: = 0.49 f i  = 0.035. 397 
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Figure 3 Results of an  experiment for determination of 
process  dynamics  showing  response of wet  basis  weight, 
moisture  content  and dry basis weight to  perturbation  in 
thick stock flow. 

Notice that el and ez are the same as before. We then obtain 
the control law (25), i.e., 

v u(t)  

0.16 - 0.096~" + 0.035~? = -  ~_ 
6.39(1 + 0.822" + 0.69z-' 0 . 4 9 ~ ~ ~ )  - Y ( 4  

- " 0.58 
26.6 

- (0.64) 

Notice  in particular the drastic decrease of the normalized 
gain as compared  with (30). The variance  associated  with 
the control strategy (31) is 

X 2 ( 1  + e; + & + e;') = 2.38X2. 

This should be  compared  with the minimum  variance 
2.14X2 and the variance of the four-step-ahead  predictor 
2.55X2. Hence, in this particular case we can find a control 
law  which  is  insensitive to parameter  variations at the cost 

398 of a 10% increase in the variance. 

K. J. ASTROM 

5. Practical experiments to determine process 

Our  identification  procedure  was  described  briefly in the 
previous  section. The procedure has been  applied ex- 
tensively in connection  with the Billerud  project for quality 
control, basis weight control, moisture content control 
and refiner control. In this section we  will present  some of 
the practical  results  obtained. The examples are taken 
from basis weight regulation. 

The control computer is used to perform the exper- 
iments. The input signal used  in the experiment is repre- 
sented as a sequence of numbers  stored in the control 
computer. The numbers of the sequence are read period- 
ically and converted to analog  signals by the  D/A con- 
verter and the regular D/A conversion  subroutines. The 
output signals from the process are converted to digital 
numbers  using the control computer's A/D converter. 
In this way  we represent both the input and output signals 
by numbers that appear in the control computer in pre- 
cisely the way they  occur  when the computer is controlling 
the process. The dynamics of signal  transducers, trans- 
mission  lines, and A/D and D/A converters are thus 
included in the model.  Disturbances in transducers and 
signal  converters, as well as round-off errors, are thus 
also  included in the disturbances of the model. The whole 
experiment is executed by a program. The result of a 
typical  identification  experiment  is illustrated in Fig. 3. 

Choosing  the  input  signal 

The choice of the input signal  involves certain consider- 
ations. That is, it is desirable to have  large  signal  ampli- 
tudes in order to get  good  estimates.  Large input signals 
may,  however,  drive the system  outside the linear  region 
and may also  cause  unacceptably  large variations in the 
process  variables. In our particular case we had to make 
all experiments  during normal production. This was one 
major  reason for using a fairly  sophisticated  identification 
procedure.  Notice that in order to obtain a specified 
accuracy it is possible to compromise  between  signal 
amplitude and length of the sample. In the identifi- 
cation of models  required for the design of basis weight 
control laws we usually  used  samples 1 to 5 hours in length. 
The amplitudes of the signals  shown in Fig. 3 correspond- 
ing to 1.7 g/m2 peak-to-peak are typical. This number 
was a suitable  compromise.  Notice that the standard devi- 
ation during normal operation with no control is typically 
1.3 g/m". 

The input signal  must  also  be  chosen so that  it is per- 
sistently  exciting.lZ'la This is always the case if the input 
signal has constant spectral density.  Pseudo-random  binary 
signals  have  been used  successfully.  We have found, how- 
ever, that if some  knowledge of the process is available, 
it is desirable to tailor the test  signals to the specific 
purpose. 

dynamics 



Table 1 Successive parameter iterates for a first-order model relating dry basis weight to thick stock flow; k = 4, N x 101. 

Step c1 V 

0 0 0 0 6.7350 91683  39509 
1 -0.0122  13.0054 0 4.1603 0 193777 

-91683 

2 
0 

13.9356 -0.3924 
3 

-0.6320 3.3764 -78727 1190 5 1707 
14.6689 - 0.3492  -0.6542 

4 14.6468 
3.3360 1339 - 69  2575 

-0.3502  -0.6572  3.3360 106 
5 -0.3500 14.6468 

-3 - 165 
-0.6569 

Examples of numerical identgcation 

We  will now present  some  examples  which illustrate the 
numerical  identification  procedure.  These  examples are 
based on the data shown in Fig. 3. Mathematical  models 
which  relate  changes in dry basis weight (WSPO) and wet 
basis weight (WSP) to changes in (the set  point of the) 
thick stock flow (regulator) will be  discussed. Figure 3 
shows that  the output is drifting. The drift is even more 
pronounced in test  experiments of longer duration. To 
take care of this drift we have used  models  which relate 
changes in the output to changes in the input; i.e., 

+x"- 1 + clz-l + * .  . + C,Z- 

1 + a l Z - l  + . . . + e( t )*  (32) 

where V is the backward  shift operator : 

V Y ( 0  = Y ( 0  - Y(t - 1). 

Rewriting the equation we find 

(3 3) 

The tlme interval in all cases  has  been 0.01 hour.  All 
examples are based on data of  Fig. 3 in the time interval 
21.53 to 22.58 hours. 

As stated previously, the identification procedure is 
carried out recursively starting with a first-order  system, 
continuing  with a second order system,  etc. To obtain the 
value of k for a fixed order, the identification is also  re- 
peated  with the input signal  shifted. 

Example I-Model relating dry basis weight to thick stock 
flow 
The first  numerical  example will  be a model relating dry 
basis weight to thick stock flow. First we shall  identify a 

first order model  having the structure (32). Applying our 
numerical  identification algorithm we  get the results  shown 
in Table 1. 

Starting with the initial parameter  estimate 0 = 0, the 
first step of the identification algorithm gives the Kalman 
estimate'''''  of the parameters and this estimate is then 
successively improved until the loss function V(0) of Eq. 
(32) is  minimized and the maximum  likelihood  estimate 
obtained. Notice in particular the significant  difference 
between the Kalman estimate  (step 1) and the maximum 
likelihood  estimate. 

The value  of the matrix of second partial derivatives at 
the last step of the iteration is 

VoS = [-0.29 0.04 0.061- 

Repeating the identification for different  values of the 
time-delay k we obtain the results given  in Table 2. 

19.28  -0.29 -8.86 

-8.86 0.06 12.05 

Table 2 Results of identification of first-order  models relat- 
ing dry basis weight to thick  stock  flow for different time- 
delays. 

k a1 bo c1 x V 

3  -0.807 9.846 -0.994 0.297 4.491 
4  -0.350 14.647 -0.657 0.257 3.336 
5  -0.749 1.286 -0.958 0.351 6.152 

We thus find that the loss function V has its smallest 
value for k = 4. To find the accuracy of the model  param- 
eters we proceed as follows : 
An estimate of Fisher's information matrix  is  obtained 
from the matrix of second partial derivatives  (Ref. 13, 
Lemma 2), 

i = x-2 Voe. 

It is further shown  in  Ref. 13 (Theorem 4) that if Vee is non- 
singular the estimate  is  asymptotically  normal (e,,, Z - l )  399 
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and we thus have the following  estimate oft  
of the asymptotic distribution : 

0.006  0.042  0.004 

0.042  2.202  0.020 

0.004  0.020  0.008l 
1 

.he  covariance 

Summarizing, we thus find the following  numerical  values 
for the best  first-order  model;  where the computations are 
based on 100 pairs of input-output data: 

k = 4  c = -0.66 f 0.09 

a = -0.35 f 0.08 X = 0.257 f 0.017 

b = 14.6 f 1.5 V = 3.34 f 0.44. 

Proceeding to a second-order  model the identification 
algorithm gives the following  results,  based, again, on 
100 pairs of input-output data: 

k = 3  ~1 = -0.73 f 0.18 

U ,  = -0.46 f 0.14 c2 = 0.12 f 0.16 

u2 = 0.04 f 0.12 X = 0.249 f 0.017 

bo = 3.4 f 1.6 V = 3 .15  f 0.43 

b, = 12.3 f 2.2 

The matrix of second partial derivatives at the minimum  is: 

22.47  13.82  "0.08  0.36  -7.61  -1.87 

13.82  22.47  -0.17  -0.08  -4.94  "7.59 

"0.08  -0.17  0.04  0.02 0.05 -0.05 

0.36  -0.08  0.02  0.04  0.06 
I 

-7.61  -4.94 0.05 0.06  11.06  6.60 

-1.87  -7.59 -0.05 0.06  6.60  10.56 

It now  follows from Ref. 13 (Theorem'4) that the param- 
eter  estimates for a large number of input-output pairs 
is asymptotically normal N(Bo, X2Vee-'). Assuming that 
asymptotic theory can be  applied we can now  solve various 
statistical problems.  We  will, for example, test the hypoth- 
esis that  the model  is of first order; i.e., our null hypoth- 
esis is 

Ho : (.E = b: = c," = 0). 

Using the asymptotic  theory we find that  the statistic 

V,- V. N " 6  

has an F(3, N - 6) distribution under the null  hypothesis. 
The symbol V, denotes the minimal  value of the loss 

400 function for the second-order model; V,, the minimal  value 
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Figure 4 Illustration of the  results of the  identification of 
first-order  model  relating  dry  basis  weight  to  thick  stock 
flow.  Notice  in  particular  the  relative  magnitudes of the 
output of the  deterministic  model,  the error of the  determi- 
nistic  model  and  the error of the  one-step  ahead  predictor. 
Also notice  the  trend  in  the error of the deterministic 
model. 

for the first-order  model and N,  the number of input- 
output pairs. In this particular case we have = 1.9. At 
a risk  level of 10% we have F(3, 96) = 2.7 and the null- 
hypothesis, that the system is of first order, thus has to be 
accepted. 

The results of the identification  procedure are illustrated 
in Fig. 4. In this figure we show 

the input u 
the output y 
the deterministic output y ,  defined by 
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the error of the deterministic  model 

the one-step-ahead  predictor 9 ( t l t  - 1) of y( t )  
the one-step-ahead  predictor error y( t )  - E(tlt - 1). 

Figure 4 illustrates the properties of the identification 
procedure. The deterministic output yd(t)  shows  how  much 
of the output y( t )  can be  explained by the input u(t). 
The error ed(t) thus represents the part of the output that 
is caused  by the disturbances.  Notice in particular the 
drifting character of the error ed. The one-step ahead pre- 
dictor illustrates  how well the output can be  predicted 
one-step  ahead.  Recall that  the model  was  in  fact construct- 
ed so as to minimize the sum of squares of the one-step 
ahead prediction error. 

The identification  procedure  was  based on the assump- 
tion that the residuals  were normal and uncorrelated. 
Having  performed the identification and calculated the 
one-step ahead prediction errors, e^(t), we thus have the 
possibility of checking this assumption. In Fig. 5 we show 

e d ( 0  = A t )  - Y d ( d  

Figure 5 Sample  covariance  function  for the residuals e(t) 
of the  first-order  model for basis weight. According  to  the 
assumptions  made  in  the  identification theoryl2. 13 r ( ~ )  
should  equal  zero when T # 0. The dashed line  gives  the 
one  sigma  limit  for Y ( T ) ,  T # 0. 

I 
I 0.05 0. 

in hours 

the correlation function of the one-step ahead prediction 
errors. 

Example  2-Model relating wet basis weight to thick stock 
flow 
As our second illustration of the numerical  identification 
procedure we  will  now  use the  data of Fig. 3 to find a 
model  relating wet basis weight to thick stock flow. In 
this case we find that  the minimum  value of the loss 
function for the first-order  case  occurs at k = 4 and the 
coefficients  of the best  first-order  model are: 

k = 4  c1 = -0.62 f 0.10 

a, = -0.38 f 0.05 X = 0.364 f 0.025 

b, = 27.1 f 2.1 V = 6.60 f 0.94. 

Similarly, the best  second-order  model is given  by the 
coefficients : 

k = 3  C I  = -0.82 f 0.14 

a, = -0.64 f 0.11 cZ 0.21 f 0.14 

a* = 0.22 f 0.09 X = 0.335 f 0.024 

bo = 6.4 f 2.0 V = 5.73 =t 0.80. 

6 ,  = 20.2 f 3.0 

The matrix of second-order partial derivatives of the 
minimal point is 

- 79.24 53.37  -0.13  0.76  -12.68  -0.13- 

53.37 79.12  -0.40  -0.13  -5.93  -11.44 

-0.13  -0.40  0.04  0.02  0.06  -0.07 
Ves = 

0.76  -0.13  0.02 0.04 0.10  0.10 

-12.68 -5.93  0.06  0.10  17.64  7.83 

- -0.13 -11.44 -0.07  0.10  7.83  15.12 

We  now test the null  hypothesis that the system is of 
first order; i.e., 

H : (a; = b: = c; = 0) 

Using the asymptotic  results, we  find E = 4.8 and the 
hypothesis thus has to be  rejected.  Increasing the order to 
three does not give any  significant  improvements in the loss 
function. 

Hence if  we consider  dry  basis weight as the output of 
the system, we find'that  the model  is of first order, but if 
we consider wet basis weight as the output, the model  is 
of second order. This also  shows up very  clearly in Fig. 6 
where we illustrate the results of the identification of the 
models for wet basis weight. There is a physical explanation 
for this difference in behaviour. As mentioned  previously 40 1 
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Figure 6 Illustration of the  results of the  identification of models for wet  basis  weight. A first-order  model is shown  in (a) 
and a  second-order  model  in (b).  Notice in particular the  differences  between  the  outputs of the  deterministic  models for 
first-  and  second-order  systems. 

and as can be seen from  Fig. 3, a  change  in  thick  stock 
flow  will  influence dry  basis weight as well as moisture 
content.  After an increase  in  thick  stock flow,  we  find that 
both dry  basis  weight and moisture  content will  increase. 
The increase  in  moisture content will then  be  eliminated 
by the moisture control feedback loop which controls the 
set  point of the fourth drying  section  by  feedback  from 
the moisture gauge. 

These  two  effects  will  explain the overshoot  in the 
402 response  of the wet basis  weight. It is also  clear  from 

this  discussion that the response  of the wet  basis  weight 
will be influenced  by the settings of the moisture control 
loop.  This fact is another argument  for using dry  basis 
weight as the control variable,  when the basis weight loop 
is  considered as a  single-input,  single-output  system. 

6. Practical  experiences with on-line basis weight 

We shall now  summarize  some of the practical  results 
achieved  with  on-line  basis  weight  control. The experi- 

control 
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Figure 7 Results of test  run  with  on-line  control of basis weight. 

mental  program that was carried out had a dual purpose: 
to arrive at control strategies for the particular application 
at hand and to test the general procedure developed for 
steady-state control. This dual purpose  led us to continue 
some  experiments, even though these particular loops 
have  been  working  satisfactorily.  Several control schemes 
have  been  investigated. We have  chosen  thick stock flow 
as well as thick  stock concentration as control variables. 
We have  regulated both wet and dry  basis  weight. In the 
first  experiments the concentration of the thick stock 
was  chosen as the control variable.  This  was later 
changed to thick stock flow  mainly for two reasons. We 
found that  the basis  weight  responds  faster to changes 
in the set  point of the thick stock flow regulator than to 
changes in the thick stock concentration. We also found 
that  the dynamics  of the concentration regulator  changed 
with operating conditions,  thereby introducing variations 
in the dynamics of the control loop. 

In general it is  very  difficult to evaluate the performance 
of the control loops in practice and in particular to com- 
pare different control laws. The main  reason for this is 
that there are variations in the disturbance level. This 
implies that in order to evaluate the different control loops 
we  need test  periods of considerable  length. 

It is also very  difficult to judge the improvements  unless 
reference  values are available. In  the case of basis weight 
we had the results of the feasibility  study. In all cases 
studied  before the control computer  was  installed, stand- 
ard deviation of basis weight  was greater or equal to 1.3 
g/mz and this value  was  therefore  chosen as a conservative 
reference  value. In the feasibility study the target value 
for basis weight fluctuations was  set to 0.7 g/m2. In actual 
operation we can now  consistently  achieve standard de- 

viations of 0.5 g/mz wet  basis  weight and 0.3 g/mz dry 
basis  weight. 

Basis  weight  was  controlled  sucessfully  on-line on April 
28, 1965 for a test  period of 10 hours. The first  experiments 
showed that  it was  indeed  possible to obtain the variances 
predicted  from the results of the process  identification. 
We could  also  show that  the deviations for the controlled 
system  were  moving  averages  of the appropriate order. 
The basis weight control loop has been  subject to extensive 
investigations and has been in continuous operation since 
the beginning of  1966. 

Two  types of experiments  have  been  performed. In one, 
the control loop is permitted to operate in the normal way 
for several  weeks.  Some data are collected at comparatively 
long  sampling  intervals (0.1 hour). The results are not 
analyzed extensively and the performance of the control 
system is evaluated on the basis of the maximum  de- 
viations of test laboratory data, inspection of strip-chart 
recorders, and the judgement of machine  tenders. 

The other type of experiment is a controlled experiment 
extending  over  periods of 30 to 100 hours. Important process 
variables are logged at a sampling interval of  0.01 hour 
and analyzed. When  analyzing the  data, we compute 
covariance  functions of the controlled  variables and test 
whether  they are moving  averages of appropriate order 
(cf. Remark 3 of the Theorem of  Section 3). Variances 
are checked  against  reference  values. In some  cases we 
also  identify  dynamic  models,  calculate  minimum  variance 
control strategies and update the parameters of the control 
algorithms if required. 

In Fig. 7 we  give a sample  covering 24 hours of operation 
of the basis weight control loop. In the diagram we show 
wet basis  weight, dry basis weight (the controlled output) 403 
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Figure 8 Covariance function for fluctuations of dry basis 
weight in the time interval 23.00 to 12.00 of Fig. 7. Com- 
pare with  Fig. 2 which  shows the covariance function with- 
out computer  control. 

and thick  stock flow (the  control signal). The scale for  the 
control signal, thick stock flow, is chosen as  dry basis 
weight. The magnitude of the  control signal will thus 
directly indicate  how  much of the fluctuations in  dry basis 
weight are removed by the  control law. The con- 
trol signal will thus approximately  show  the  distur- 
bances in  the  output of the system. Notice the different 
characteristics of the disturbances at different times. The 
large  disturbances  occurring at  times 14.30 and 18.00 are 
due to large  fluctuations in thick stock consistency. 

Also notice that  there  are  two  interrupts  in  the  operation 
of the system, one paper break  and  one  interrupt to clear 
the drying section. In these instances the basis weight 
control  loop is automatically switched off and  the  control 
signal is  kept  constant until the disturbances are cured 
when the  loops  are automatically switched on again. 
Notice that a paper break does not introduce  any  serious 
disturbances. Also notice that there are some  grade  changes 
from which we can judge the response of the controlled 
system to step  changes  in the references values. 

Moisture  content  was  controlled by feedback from  the 
moisture  meter to the set point of the pressure regulator of 
the  fourth drying section. The  standard deviation of 
moisture content was 0.4%. In Fig. 8 we show  the covar- 

404 ance  function of dry basis weight in the  time interval. As is 

to  be expected from  the Theorem of Section 3 this is the 
covariance function of a moving average of fourth order. 

We have also made experiments to verify that  the high 
frequency fluctuations  in  moisture content  and basis 
weight have  the same characteristics. This was one essential 
assumption made  in Section 3. If this was true, the variance 
in  dry basis weight would be independent of dry  or wet 
basis weight control. In  the  table below we give standard 
deviations  recorded  during a 30 hour test, where alterna- 
tively wet and  dry basis weight was controlled. 

Standard  deviation 
W e t  Dry 
basis basis 

weight weight 
Wet basis weight controlled 0 S O  0.32 
Dry basis weight controlled 0.52 0.28 
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