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Some Results in Two-Point Boundary

Value Problems

Abstract: Two new results in two-point boundary value problems are presented. The first is a modified method of adjoints which,
under certain circumstances, will solve numerically two-point boundary value problems faster than the standard method of adjoints.
The second result shows that Friedrichs’ solution of the operator equation P(x) = 0 is really the modified Newton method. Kantoro-
vich’s sufficiency conditions for the convergence of the modified Newton’s method are compared with Friedrichs’ sufficiency conditions;
it appears that, for most applications, the former conditions allow more leeway.

1. Introduction

Many problems in optimal control theory eventually re-
duce to the numerical solution of two-point boundary
value problems for non-linear ordinary differential equa-
tions. In view of this and in view of their inherent interest,
we present here two results on the solution of two-point
boundary value problems.

In order to present our findings briefly, we assume that
the reader is familiar with the work of Goodman and
Lance,! Roberts and Shipman,” Kantorovich,® and Fried-
richs.*

Kantorovich® has developed the sufficient conditions
for the convergence of the Newton method and the mod-
ified Newton method for the solution of the operator
equation P(x) = 0 by the successive approximations
Xpi1 = X, — (P.)"' P(x,). In the Newton method the
operator P! is evaluated for each step of the process
n=0,1,2, ..., while in the modified Newton method
the operator P, is evaluated once at the initial guess x,
(and thus really should be written P/ ) and is used for all
iterations. The equivalence of the Goodman and Lance
method of adjoints and the Newton method for the
solution of two-point boundary value problems shown
by Roberts and Shipman® suggests a modified method
in which the Jacobian matrix equivalent to P/_is evaluated
once at the initial guess x, and is used for all iterations.

Our first result, presented in Section 2, includes some
numerical experiments with the modified method of ad-
joints. The rate of convergence and the computer time
required for the modified method of adjoints was com-
pared with that for the method of adjoints, and a com-
parison of the actual error with the error predicted by
Kantorovich’s theorem was also made. As expected, the
modified method required more iteration steps, but less

computer time per iteration. In our example the total
computer time required by the modified method of ad-
joints was greater than the time required by the Goodman
and Lance method of adjoints; this could be reversed for a
different problem. Kantorovich’s error estimate for the
modified Newton method gave order of magitude agree-
ment with the actual error, but not quite as good as we
experienced in our earlier experiments with the Goodman
and Lance method of adjoints.

Friedrichs solves the operator equation P(x) = 0 by
forming a new operator, which turns out to be a contrac-
tion mapping under his assumptions. Accordingly we were
interested to see whether this, too, led to a new method
for the numerical solution of two-point boundary value
problems. Our second result, Section 3, proves that Fried-
richs’ technique is in fact the modified Newton method.
In particular we demonstrate that Friedrichs’ assumptions
can be subsumed under the Kantorovich sufficiency
theorem for the modified Newton method; that is to say
that Kantorovich’s theorem implies Friedrichs’.

2. Method of adjoints and the modified method
of adjoints

Let us first recall the two ways of carrying out the solution
of the operator equation

P(x) =0

by the Newton method where P is the mapping from a
Banach space X to a Banach space Y. The usual Newton
method is

Xpr1 = X, — (PLY'P(x,),
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Table 1 Example in which method of adjoints coverages but modified method of adjoints does not.

A. Method of Adjoints

Kantorovich Norms

Iteration No. hi Bi i K;
0 6.763579(102) 3.659561 1.069325 1.728374(10%)
1 6.536509(101) 3.444090 1.663449 1.140937(10Y)
2 5.233003(1071) 7.149846(1071) 2.365853(10™) 3.093615
3 8.472580(10™) 1.124802 3.827557(107?) 1.967965(101)
4 3.273678(107%) 1.017268 2.250358(1079) 1.430042(101)
5 4.037952(1075) 1.013542 2.822407(1078) 1.411560(10YH
6 4.537566(1078) 1.013534 3.171723(1079) 1.411526(10Y)

Calculated Missing Initial Conditions Calculated Terminal Conditions
*(0) 3 (0) 2(0) x(2) »(2) 2(2)

0 —5.379999(107Y) 2.879999(101) 4.988299(10™1) 6.086336(107%) —3.733722(107) —6.466988(1071)
1 —1.376313 5.242722(107Y) 9.080641(10™1) —2.218209 —1.837729(1071) —3.183034(10™)
2 3.236898(1071) 5.779965(10~1) 1.001111 7.165604(1071) 9.196269(101) 1.592828
3 8.720452(1072) 4.489073 7.775289(10™1) —8.591061(1072) 5.013211(10~) 8.683122(10)
4 1.017630(107Y) 4.709831(107) 8.157667(1071) —2,289911(107%) 5.726597(1071) 9.918756(1071)
5 1.016559(107) 4.722822(10™) 8.180167(1071) —9.427341(107¢) 5.759951(107Y) 9.976526(107)
6 1.016587(1071) 4.722833(1071) 8.180185(1071) —7.212622(1079) 5.759999(10°1) 9.976609(1071)

B. Modified Method of
Adjoints

Kantorovich Norms

Iteration No. hi Bs i Ki
0 6.763579(10%) 3.659561 1.069325 1.728374(10?)
1 6.536509(101) 3.444090 1.663449 1.140937(10Y)
2 3.397647(10%) 2.991697(107%) 8.161847(10-%) 1.391465(10%)
3 1.484853(10™) 5.182107(107Y) 3.235824 8.855075(107%)
4 2.688236(101) 2.106461 2.846395 4.483515
5 1.662440 6.269471(1071) 1.432732 1.850759
6 3.217605(101) 2.340128(107%) 6.246358(107%) 2.20123354(10)*
20 3.275644(1072) 5.000002(1071) 4.869078(103%) 1.345487(107%)
Calculated Missing Initial Conditions Calculated Terminal Conditions
x(0) »(0) 2(0) x(2) (2 2(2)

0 —5.3799999(107Y) 2.8799999(10"1) 4.9882999(1071) 6.0863367(107Y) —3.7337224(10™) —6.4669886(1071)
1 —1.3763137 5.2427226(107Y) 9.0806412(1071) —2.2182091 —1.8377300(1071) —3.1830344(10™)
2 —9.7733935(107%) 8.1932398(107%) 1.4190935(1071) —7.0690255 —4.2945087 ~7.4382167
3 2.9456488 —1.0847001 —1.8786805 6.5937129 —2.1226356 —3.6763658
4 —2.9420842 7.2204478(1071) 1.2508203 —5.2512476 3.9822786(107Y) 6.8986231(1071)
5 7.6721351(10™1) —4.8602507(1071) —8.4151227(10-1) 1.7326841 —8.4152145(107Y) ~1.4570249
6 ~1.0781199 5.8827505(107%) 1.0269023(1071) —1.3777060(101) —3.6528749 ~6.3765168

20 —1.2999610 —4,8687901(10%) 2.8085323(10%) —1.5527118 —9.7375762(10%) 5.6170623(10%)

in which the inverse of the derivative operator is reevalu-
ated at each step of the process at x,. The modified
Newton method is

Xnsy = Xp (P;a)_lP(xn),

in which the inverse of the derivative operator is evaluated
at the point x, and is used for all iterations. In an earlier
paper” the authors have shown that the Goodman-Lance
method of adjoints (MA) applied to two-point boundary
value problems with non-linear ordinary differential equa-
tions is actually the Newton method, whose convergence
Kantorovich has studied. This identification suggests the
idea of a modified method of adjoints (MMA), which,
since it is a form of the modified Newton method, requires
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evaluation of the inverse of the derivative operator only
once.

MMA has the potential practical advantage of faster
computation since the adjoint equations are integrated
only once and since the Jacobian matrix corresponding to
P! (based on the initial vector x,) is inverted only once and
is used for all iterations. For the same order of accuracy
attained, the relative merits of MA and MMA depend on
the execution time, which is the product of two factors:
(1) the time per iteration and (2) the total number of itera-
tions. MMA (as a modified Newton method) requires
more iterations than MA to achieve the same accuracy.
When the initial vector x, is such that the sufficiency
conditions of Kantorovich’s theorem are fulfilled, both




Table 2 Example in which both the method of adjoints and the modified method of adjoints converge. Same boundary
conditions as for example in Table 1.

A. Method of Adjoints Kantorovich Norms

Iteration No. hi B ni Ki
0 4.2229972(1071) 1.0824180 2.2228302(1072) 1.7551712(10Y)
1 1.9874074/1072) 1.0151739 1.3795129(1079) 1.4191250(10)
2 1.8627939(107%) 1.0135362 1.3020693(107¢) 1.4115341(10Y)
3 2.2818950(1078) 1.0135348 1.5950266(10~9%) 1.4115265(101)
4 1.8159086(10-11) 1.0135348 1.2693059(10712) 1.4115263(107)
5 1.5110349(10714) 1.0135348 1.0562014(10-15) 1.4115265(10Y)
Calculated Missing Initial Conditions Calculated Terminal Conditions
2(0) 0) #0) x(2) 2(2)

.6999999(10-%) 4.4999999(1071)

.0182591(101)
.0165788(107Y)
.0165880(1071)
.0165880(10-1)
.0165880(10 1)

A WN—=O
—— 00

4.,7222478(10™)
4.7228206(1071)
4.7228336(1071)
4.7228336(1071)
4.7228336(10™)

7.9999999(10™1)
8.1663938(107H)
8.1801915(10-1)
8.1801856(107Y)
8.1801856(10™)
8.1801856(10-1)

—6.5145038(1072)
—~7.6940894(1079)
—2.5203506(10-%)
—1.4735255(107%)
—1.8980234(10712)
—1.1379786(10-15)

5.1882565(10~1)
5.7518715(107)
5.7599766(10°1)
5.7599999(10-1)
5.7599999(1071)
5.7599999(1071)

9.2235671(107Y)
9.9469680(1071)
9.9766041(1077)
9.9766099(107Y)
9.9766099(10-1)
9.9766099(10~1)

B. Modified Meti.od of

Adjoints Kantorovich Norms
Tteration No. hi B 'H K;
0 4.2229972(107) 1.0824180 2.2228302(1072) 1,.7551712(10Y)
1 1.9874074(1079) 1.0151739 1.3795129(107%) 1.4191250(10Y)
2 5.9124365(10%) 1.0136209 4.1311284(107%) 1.4119594(10v)
3 5.2390109(107%) 1.0135392 3.6619598(10-%) 1.4115463(10Y)
4 1.9951430(1079) 1.0135350 1.3945877(10-7) 1.4115277(10D
5 1.4947761(10°7) 1.0135348 1.0448366(1073%) 1.4115266(10Y)
6 6.6473046(1079%) 1.0135348 4.6464135(10710) 1.4115265(10Y)
7 4.4217505(10-10) 1.0135348 3.0907688(10711) 1.4115264(109)
Calculated Missing Initial Conditions Calculated Terminal Conditions
#(0) ¥ (0) £(0) x(2) 2(2)
0 8.6999999(10-2) 4.4999999(10-1) 7.9999999(10"1) —6.5145038(107) 5.1882565(1071) 9.2235671(1071)
1 1.0182591(1071) 4.7222478(10™) 8.1663938(1071) —7.6940894(1074) 5.7518715(101) 9.9469680(1071)
2 1.0164567(10™1) 4.7224205(10°Y) 8.1798921(1071) —7.9355623(1075) 5.7590793(10™Y) 9.9755301(10™)
3 1.0165895(10-1) 4.7228369(10~1) 8.1801490(10™) —2.5247112(107%) 5.7599841(1071) 9.9765308(1071)
4 1.0165877(10™) 4.7228322(1071) 8.1801847(1071) —2.0419541(1077) 5.7599971(107Y) 9.9766070(1071)
5 1.0165880(1071) 4.7228336(10™1) 8.1801854(1071) —7.1454555(1079) 5.7599999(1071) 9.9766097(10-1)
6 1.0165880(10™1) 4.7228336(10™) 8.1801856(1071) —5.5531839(1019) 5.7599999(10™1) 9.9766099(10™1)
7 1.0165880(10-1) 4.7228336(10°1) 8.1801856(1071) —1.9003882(10711) 5.7599999(10~1) 9.9766099(101)

methods will converge, so that total computing time is the

where r = (x° 4+ »* + z9)* and k = 1.0 for canonical

measure of superiority of one method over the other. If, units,

as frequently occurs in practice, x, is such that Kantoro- The data of the problem are:

vich’s conditions are not fulfilled, then it is felt that it is fto =0 ;=2

better to use MA rather than MMA. There are, however,

circumstances which do call for the modified method. For x(2) = 0.000000

example, if the matrix P/_is near-singular or large, it may »(0).= 0.000000  y(2) = 0.576000

very well pay to employ MMA. For large problems one z(0) = 0.000000 z(2) = 0.997661.

g;az wzrithto use mixed s‘:rat;:gti/l 13 ‘::};Ch MA&S u;ed at Table 1A illustrates a case where MA converges even
St and then once elements of the Jacoblan matrix change though the initial trial vector and the next few iterates did

not satisfy the sufficiency conditions of the Kantorovich

only moderately from iteration to iteration, the program
theorem. Table 1B illustrates for the same initial conditions

switches over to MMA.
To illustrate more or 1 ess typical behavior that mlghjt be as Table 1A that MMA does not converge even after 20
encountered on comparing MA and MMA, let us consider . .
the two-bod tions iterations. We therefore have an example where MA works
€ two-body equation but MMA does not.
kx(t) ky() kz() In the example given in Table 2A and 2B (MA and
3 3 3 MMA,), both methods converge. MA converges in about

I

x(0) = 1.076000

r Y r r’
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Table 3 Comparison of theoretical and computed error bounds
on the initial velocity vector.* The bounds are given by the
norm of the initial velocity vector, which is defined as Max
{1xc — xi), |¥e — ¥il, 2. — z1]}, where subscript ¢ means
calculated initial value and subscript / means true velocity., The
“true” values were obtained from the tenth iterate of the method
of adjoints.

Method of Norm of initial velocity vector
Adjoints
Iteration No. Theoretical Computed
0 4,5(10-2) 2.2(10™%)
1 1.6(1072) 1.4(1073)
2 3.8(1073) 1.3(107%)
3 4.6(107%) 1.6(10—9)
4 1.3(10-%) 6.0(10713)
5 2.2(10-%) 1.0(10-16)
Modified
Method of Norm of initial velocity vector
Adjoints
Iteration No. Theoretical Computed
0 2.9(1072) 2.2(107%)
1 1.3(1072) 1.4(1073)
2 5.9(10-3) 4,0(107%)
3 2.7(1073) 3.7(10-7)
4 1.2(10-3) 1.4(10-7)
5 5.410—%) 1.0(10-8)

* This table was computed from data in Table 2 by using an adjusted value
for ho. The Ao in Table 2 was calculated from Ko = 1.7551712(10), which is
too high compared to other point estimates for K given in the table. Since a
better estimate of the true K is given by 1.4115(10Y), a corrected value for
ho is given by 4.2229972(1071) (1.4115/1.7551712) = 3.4578(1071). The value
used for ng is 2.2228303(1072).

one-half as many iterations as MMA, to the same order of
accuracy. Based on timing both methods for a total of 11
iterations we find that MA takes 6.2 sec/iteration and
MMA takes 4.9 sec/iteration. For this example we may
conclude that the terminal conditions were satisfied to
single precision accuracy in 3 iterations and 18.6 sec by MA
and in 6 iterations and 29.4 sec by MMA. In this case MA
procedure is superior to MMA.

We have compared the error bounds calculated from
Kantorovich’s formulas (Table 3) for MA and MMA
with the errors actually observed. As expected, the esti-
mated errors are too large. However Kantorovich’s esti-
mates are fairly sharp, especially if we update them by
using later iterates as the initial vector x, with associated
parametets kg, 7.

An interesting sidelight to the Newton method and the
modified Newton method is the evaluation of the two
error bounds of Kantorovich. The error bound for the
Newton method is given by

Ha* = x|

1
< —— (2h)™"
70 —2/:0( o)
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and the error bound estimate for the modified Newton
method is given by

—ull < Ly o Ty,
Mo 0

where x,, is the nth iterate, x* is the value approached, and
ho, and 7, are as defined in Ref. 3. While these bounds
show that the Newton method converges faster than the
modified Newton method in general, it is interesting that
for n = 0 and r = 1 the second formula gives smaller
estimates over a wide range of #, (1077 < #, < 0.4) than
the first, although x, and x, are identical for the two
methods.

3. Friedrich’s solution of P(x) = 0

The preceding section indicates that, generally speaking,
any method of approximating the solution to the abstract
operator equation P(x) = 0 (where P maps the Banach
space X into Banach space Y) may be expected to lead to a
concrete method for solving the two-point boundary value
problem once the proper identifications have been made.

Friedrichs* is among the authors whose treatment of the
solution of the operator equation P(x) appear to be differ-
ent from the Newton-Kantorovich method, and we were
therefore interested to see if his approach leads to another
method of solving two-point boundary value problems.
He assumes that P(x) has a ““first variation,” that is, there
is defined for each xe X a linear operator P,(x, k) from
X to Y such that if

R(x, k)
P(x + h) — P(x) — Py(x, h)
_ 1]l for he X# 0 (1)
0 for h = 0,

then ||R(x, A)|| — 0 as ||A]| — 0. Now if x, is an approxi-
mate solution of P(x) = 0, put x = x, + Ax. By (1)

P(x) = P(xy) + Pi(x0, Ax) + |[Ax|| R(xo, Ax), (2
s0 the equation P(x) = 0 takes the form
Pi(x0, Ax) = —P(xo) — ||Ax]| R(x,, Ax). 3

If the linear operator P;(x,, Ax) has a bounded inverse
I's y = I'(xo, ¥) (which is necessarily linear), that is,
T[xo, Pi(xo, Ax)] = Ax and |[Toy|| < {|IT6]| ||¥|l, where
the real number ||T'y}| > 0 is a bound for T', then 'y can
be applied to Eq. (3) to give

Ax = —ToP(xo) — ||Ax|| ToR(xo, A%). (4)

But Eq. (4) is of the form z = H(z), and for such equations
it is known that the sequence {z,}, where z,.; = H(z,),
converges to z provided H is a contraction operator.
Friedrichs then establishes conditions which guarantee
that H(z) = — T P(x,) — ||z]] T'R(x,, z) be a contraction




operator with contraction constant 8, 0 < § < 1. Under
these conditions, the sequence {Ax,}, where

Ax,.y = —ToP(xy) — |[Ax,]| ToR(x0, Ax,) (5)

converges to the solution Ax of Eq. (4), which in turn
furnishes the solution x = x, 4+ Ax of P(x) = 0. Ficken®
in his investigation of the continuation method for solving
operator equations P(x, 1) = 0 takes Friedrichs’ approach
as a point of departure.

Friedrichs’ results may be summed up in the following
theorem, which is a restatement of his Theorem 10.1.

Theorem

Let x, be an approximate solution of P(x) =0, and suppose
the following assumptions hold:

I. P(x) has a first variation P,(x, éx) throughout a certain
sphere ||x — xo|| < A4, and for each ¢ < 0 there exist
numbers a(e, x,) < 0 and 8(e, x,) < 0 such that:

a. [lx = xol|| < ale, xo) and [[dx]| < 8(e, xo)
imply

[[R(x, &x)|| < €

b, [lx — xo|| < Ble, x0)

implies

[[Py(x, 6x) — Py(xo, 0x)[| < € [[6x]].

II. Further, P;(x,, ¥) has a bounded inverse T'(x,, ¥) = Ty
with bound |[T]| = w(x,) > 0.

1. Finally, x, is such that

PG| < 24 min (o, £).
I 2

Choose 0 such that 0 < ¢ < 1, and define € = 6/2 u(x,).

If assumptions I and IIT hold for x, and this value of e,

then the equation P(x) = 0 has a unique solution in the

sphere

Hx - xO” S min [0[(6, xO); %6(65 xo)],

to which the sequence {x,}, where x, = x, 4+ Ax, and
Ax, is given by Eq. (5), converges.

However, although it is not explicitly stated in Ref. 4,
it turns out that Friedrichs’ method for solving P(x) is
simply the modified Newton method, as can be easily
shown. If we recognize that in Eq. (1) the first variation
P;(x,, ) is the Frechet differential, we may write it in the
more usual notation P’(x,) 4. Then, using (1)

[[Ax,|| R(xo, Ax.) = P(xo -+ Ax,) — P(xo)
— P'(x0) Ax,, (6)
which when substituted into (5) gives

Axn+1 = Ax,, - PDP(xO + Axn); (7)

since I'y P'(x,) Ax, = Ax, by the definition of the operator
T',. Then adding x, to both sides of (7) and setting x, +
Ax, = x, we get the sequence {x,} where,

Xpi1 = X, — DoP(x,). (8)

Equation (8) is the modified Newton method for solving
the operator equation P(x) = 0.

A direct comparison between Kantorovich’s theorem
(Theorem 6 (1.XVIII) of Ref. 3) and Friedrichs’ theorem
on the convergence of {x,} to the solution x does not seem
possible, since Kantorovich requires that the second
derivative P"’(x) be uniformly bounded on a certain sphere
Q, containing the initial approximation x,, while Friedrichs
requires that the first derivative P'(x) satisfy a Lipschitz
condition in a (possibly different) sphere around x,. How-
ever, since a bound on the derivative of a function implies
a Lipschitz condition on the function itself, the bounded
derivative requirement is often made in theory, and is
sometimes the only practical way to guarantee that a
function satisfy a Lipschitz condition. Therefore let us
assume that the hypotheses of Kantorovich’s theorem are
satisfied and see what this implies with regard to Friedrichs’
theorem. We have then that an x, has been found such
that

() Tl < B,
@) Pl < o
@) @IS K

in a sphere S(r,, xo) of radius r, = 2B’ 5’ around X,
and # = K’ B” 5 < 1. Under these conditions the modified
Newton method will converge to the solution x of P(x) = 0
which, moreover, will be in S, x,).

Turning to Friedrichs’ theorem, assumption II is sat-
isfied with u(x,) = B’. Assume a @ (the contraction con-
stant) has been picked with 0 < # < 1, which then defines
e = (0/2B’). Assumption I is satisfied with 4 = 2By,
alx,, € = A = 2By, and B(x,, € = ¢/K’. Here the
bound on P’'(x) has been used to verify the Lipschitz con-
dition on the first derivative, Ib. Finally assumption III
requires that v’ < (2 — 6/2B") min 2B’ v, ¢/2K"). If
2B’ ¢’ is the minimum, the condition is essentially vacuous,
reducingto 1 < 2 — # or § < 1. So we may assume that
€/2K’ is the minimum, which leads to the requirement
(since e = 6/2B'):

' < g%__;zo)l_e
— 8B°K

This in turn implies that / be less than 1/8 instead of 3, as
Kantorovich requires. Moreover if it can be assumed that
K’ and B’ are the same in both theorems so that only the
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value of 5’ is open, then the implication is that Friedrichs’
theorem requires a better initial approximation x, in order
to guarantee convergence.

Our conclusion is thus that Friedrichs’ method is the
modified Newton’s method and that for those applications
where a bounded second derivative may be assumed, the
theorem of Kantorovich is stronger and more precise than
the corresponding theorem of Friedrichs.
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