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Abstract: Two  new  results  in  two-point boundary value problems are presented.  The first is a modified  method of adjoints which, 
under  certain  circumstances,  will  solve  numerically two-point  boundary value problems  faster than the standard  method of adjoints. 
The  second  result  shows that Friedrichs'  solution of the  operator  equation P ( x )  = 0 is  really the modified  Newton  method. Kantoro- 
vich's  sufficiency conditions for the convergence of the modified  Newton's  method are compared  with  Friedrichs'  sufficiency conditions ; 
it appears that, for  most applications,  the  former  conditions  allow  more  leeway. 

1. Introduction 

Many  problems in  optimal  control theory eventually re- 
duce to  the numerical  solution of two-point boundary 
value problems for non-linear ordinary differential equa- 
tions. In view of this and  in view of their  inherent  interest, 
we present here two results on  the solution of two-point 
boundary value problems. 

In  order  to present our findings briefly, we assume that 
the  reader is familiar with the work of Goodman  and 
Lance,' Roberts  and Shipman?  Kantorovich? and Fried- 
r i c h ~ . ~  

Kantorovich3 has developed the sufficient conditions 
for the convergence of the Newton  method and  the mod- 
ified Newton  method for  the solution of the  operator 
equation P(x) = 0 by the successive approximations 
x , , ~  = x ,  - (P;")-' P(x,). In  the Newton  method the 
operator Pln is evaluated  for  each  step of the process 
n = 0, 1, 2, . . . , while in the modified Newton  method 
the  operator PLn is evaluated once at  the initial guess x .  
(and thus really should  be  written P l , )  and is used for  all 
iterations. The equivalence of the  Goodman  and Lance 
method of adjoints and  the Newton  method for  the 
solution of two-point boundary value problems shown 
by Roberts  and Shipman' suggests a modified method 
in which the Jacobian  matrix equivalent to PLn is evaluated 
once at  the initial guess x,, and is used for all iterations. 

Our first result, presented in Section 2, includes some 
numerical experiments with the modified method of ad- 
joints. The  rate of convergence and  the computer  time 
required for  the modified method of adjoints was com- 
pared  with that for the method of adjoints, and a  com- 
parison of the actual error with the  error predicted by 
Kantorovich's  theorem was also made. As expected, the 
modified method required more  iteration steps, but less 

computer  time per iteration. In  our example the  total 
computer  time required by the modified method of ad- 
joints was greater than  the time required by the  Goodman 
and Lance  method of adjoints;  this could be reversed for  a 
different problem. Kantorovich's error estimate  for the 
modified Newton  method gave order of magitude agree- 
ment  with the  actual  error,  but  not quite as good as we 
experienced in our earlier experiments with the  Goodman 
and Lance  method of adjoints. 

Friedrichs solves the  operator equation P(x)  = 0 by 
forming  a new operator, which turns  out  to  be a contrac- 
tion mapping  under  his  assumptions. Accordingly we were 
interested to see whether this, too, led to a new method 
for  the numerical  solution of two-point  boundary value 
problems. Our second result, Section 3, proves that Fried- 
richs' technique is in fact the modified Newton  method. 
In particular we demonstrate that Friedrichs' assumptions 
can be  subsumed  under the Kantorovich sufficiency 
theorem  for the modified Newton method;  that is to say 
that Kantorovich's  theorem implies Friedrichs'. 

2. Method of adjoints and the  modified  method 
of adjoints 

Let us first recall the two ways of carrying out  the solution 
of the  operator  equation 

P(x)  = 0 

by the Newton  method where P is  the mapping from a 
Banach space X to a Banach  space Y. The usual  Newton 
method is 

X,+' = x ,  - ( p l J - ' P ( x J ,  383 

IBM JOURNAL * JULY 1967 



Table 1 Example in which method of adjoints coverages but modified method of adjoints does not. 

A.  Method 0.f Adjoints 
Iteration No. hi Bi  

Kantorovich Norms 
7 %  Ki 

0 
1 
2 
3 
4 
5 
6 

6.763579(102) 
6.536509(10') 
5.233003(10-9 
8.472580(10-1) 

4.037952(10-6) 
3.273678(10-2) 

4.537566(10-8) 

~~ 

3.659561 
3.444090 
7.149846(10-1) 

1.017268 
1.124802 

1.01 3542 
1.013534 

~ ~ 

1.069325 

2.365853(10-9 
1.663449 

2.250358(10-3) 
3.827557(10-2) 

2.822407(10-9 
3.171723(10-9) 

1.728374(102) 

3.093615 
1.140937(10~) 

1.430042(10') 
1.967965(10') 

1.411560(101) 
1.411526(10') 

i ( 0 )  
Calculated Missing Initial Conditions 

3(0) 
Calculated  Terminal  Conditions 

i(0) x(2) Y(2) z(2) 

0 -5.379999(10-9 2.879999(10-9 4.988299(10")  6.086336(10-1) -3.733722(10-9 -6.466988(10-9 
1 
2 

-1.376313 5.242722(10-1) 
3.236898(10-') 5.779965(10-9 

9.080641(10-') -2.218209 
1.001111 

--1.837729(10-') -3.183034(10") 
7.165604(10-9 9.196269(10-9 

3 8.720452(10-*) 4.489073 7.775289(10") -8.591061(10-2) 5.013211(1011)  8.683122(10") 
1.592828 

4 1.017630(10-~) 4.709831(10-9 
5 1.016559(10") 4.722822(10-9 

8.157667(10") -2.289911(10-3) 5.726597(10-9 9.918756(10-9 
8.180167(10-9 -9.427341(10-6) 5.759951(10-') 9.976526(10-9 

6 1.016587(10-1)  4.722833(10-1) 8.180185(10-') -7.212622(10-9) 5.759999(10")  9.976609(10") 

B. Modified  Method of 
Adjoints  Kantorovich Norms 

Iteration No. hi  Bi 7 i  Ki 

0 
1 
2 

4 
5 
6 

6.763579(102) 3.659561 1.069325 
6.536509(109 

1.728374(102) 
3.444090 

3.397647(102) 
1.663449 1.140937(101) 

2.991697(10-*) 8.161847(10-2) 1.391465(105) 
5.182107(10-1) 

2.688236(10') 2.106461 
3.235824 
2.846395 

8.855075(10-2) 
4.483515 

1.662440 
3.217605(101) 

6.269471(10-1) 
2.340128(10-2)  6.246358(10-2) 

1.432732 1.850759 
2.20123354(10)4 

3 1.484853( 10-1) 

20 3.275644(10-2) 5.000002(10-') 4.869078(10a)  1.345487(10-6) 

20 

i ( 0 )  
Calculated Missing Initial Conditions 

3(0) i(0) 

--5.3799999(10-1)  2.8799999(10") 4.9882999(10-') 
-1,3763137 
-9.7733935(10-2) 8.1932398(10-3 1.4190935(10-1) 

5.242722qlO-1) 9.0806412(10-9 

2.9456488 "1.0847001 
-2.9420842 

7.6721351(10-1) -4.8602507(10~1) -8.4151227(10") 
"1.0781199 5.8827505(10-2) 1.0269023(lO-l) 

- 1.8786805 
7.2204478(10-9 1.2508203 

- 1.2999610 -4.8687901(103) 2.8085323(103) 

x(2) 
Calculated Terminal Conditions 

Y(2) z(2) 

-2.2182091 
6.0863367(10") -3.7337224(10") 

-7.0690255 
-1.8377300(10~~) 

6.5937129 -2.1226356 
-4.2945087 

-5,2512476 3.9822786(10-9 
1.7326841 

-1.3777060(10') -3.6528749 
-8.4152145(10-') 

"1.5527118 -9.7375762(103) 

-6.4669886(10") 
-3.1830344(10") 
-7.4382167 
- 3.6763658 

- 1.4570249 
-6.3765168 

6.8986231(10-9 

5.6170623(103) 

in  which the inverse of the derivative operator is  reevalu- 
ated at each step of the process at x,. The modified 
Newton method is 

& + I  = x, - (p:,)-'P(xn), 
in which the inverse of the derivative operator is evaluated 
at the point x. and is  used for all iterations. In  an earlier 
paper' the  authors have shown that the Goodman-Lance 
method of adjoints (MA) applied to two-point boundary 
value problems with non-linear ordinary differential equa- 
tions is actually the Newton method, whose  convergence 
Kantorovich has studied. This identification suggests the 
idea of a modified method of adjoints (MMA), which, 

384 since it is a form of the modified Newton method, requires 
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evaluation of the inverse of the derivative operator only 
once. 

MMA has the potential practical advantage of faster 
computation since the adjoint equations are integrated 
only once and since the Jacobian matrix corresponding to 
PLo (based on  the initial vector xo) is inverted only once and 
is used for all iterations. For the same order of accuracy 
attained, the relative merits of MA and MMA depend on 
the execution time, which  is the product of two factors: 
(1) the time per iteration and (2) the  total number of itera- 
tions. MMA (as a modified Newton method) requires 
more iterations than MA to achieve the same accuracy. 
When the initial vector x,, is such that  the sufficiency 
conditions of Kantorovich's theorem are fulfilled, both 



Table 2 Example in which  both the method of adjoints  and the modified  method of adjoints  converge.  Same  boundary 
conditions as for example in Table 1. 

A. Method of Adjoints 
Iteration No. hi P i  v i  Kr 

Kantorovich Norms 

4.2229972(10-1) 
1.987407410-2) 

2.2818950(10-8) 
1.8627939(10-6) 

1.8159086(10-~1) 
1.5110349(10-~~) 

1.0824180 
1.0151739 
1.0135362 
1.0135348 
1.01  35348 
1.0135348 

2.2228302(10-2) 
1.3795129(10-~) 
1.3020693(10-6) 
1.5950266(10-#) 
1.2693059( 10-11) 
1.0562014(10-16) 

1.7551712(109 
1.4191250(109 
1.4115341(10~) 
1.41  15265( 101) 
1.4115263(10~) 
1.4115265(101) 

i ( 0 )  
Calculated Missing Initial Conditions 

8(0) i(0) 

0 

4 
5 

8.6999999(10-3 4.4999999(10-9 7.9999999(10") -6.5145038(10-2) 5.1882565(10") 9.2235671(10-1) 
1.0182591(10-1) 4.7222478(10-1) 8.1663938(10-1) -7.6940894(10-4) 5.7518715(10-') 9.9469680(10-') 
1.0165788(10-') 4.7228206(10-3 8.1801915(10-') -2.5203506(10-9 5.7599766(10-9 9.9766041(10-1) 
1.0165880(10-~) 4.7228336(10-9 8.1801856(10-') -1.4735255(10-9) 5.7599999(10-9 9.9766099(10-1) 
1.0165880(10-~) 4.7228336(10-1) 8.1801856(10-1) --1.8980234(10-~~) 5.7599999(10-9 9.9766099(10-9 
I.0165880(10-~) 4.722833q10-9 8.1801856(10-9 -1.1379786(10-16) 5.7599999(10-9 9.9766099(10-1) 

B. Modified Meti.od of 
Adjoints Kantorovich Norms 

Iteralion No. hi P i  v i  Ki 

4.2229972(10-1) 
1.9874074(10-3 
5.912436.5(10-4) 
5.2390109(10-~) 
1.9951430(10-~) 
1.4947761(10-') 
6.6473046(10-9) 
4.4217505(10-'0) 

1.08241 80 
1.0151739 
1.01  36209 
1.0135392 
1.0135350 
1.0135348 
1.0135348 
1.0135348 

2.2228302(10-*) 
1.3795129(1o-a) 
4.l3lI284(lO-~) 
3.6619598(10-9 
I .  3945877(10-7) 
1.0448366( IO-*) 
4.6464135(10-19 
3.0907688(10-19 

1.4119594(10') 
1.4191250(10l) 

1.4115277(10') 
1.41  l5463(10') 

1.4ll5266(lOl) 
1.4115265(10') 
1.4115264(101) 

*(O) 
Calculated Missing Initial Conditions 

8(0) i(0) 
Calculated Terminal Conditions 

A21 .7(2) 

0 
1 
2 
3 

5 
6 

S.6999999(10-2) 4.4999999(10") 7.9999999(10") -6.5145038(10-9 5.1882565(10-9 9.2235671(10-1) 
1.0182591(10-1) 4.7222478(10-1) 8.1663938(10") -7.6940894(10-4) 5.75l8715(10-1) 9.9469680(10-') 
1.0164567(10-1) 4.7224205(10") 8.1798921(10-1) -7.9355623(10-6) 5.7590793(10-1) 9.9755301(10-1) 
1.0165895(10") 4.7228369(10-1) 8.1801490(10-1) -2.5247112(10-9 5.7599841(10-9 9.9765308(10-1) 

1.0165880(10-~) 4.7228336(10-1) 8.1801854(10-1) -7.1454555(10-9 5.7599999(10-1) 9.9766097(10-1) 
1.0165880(10-1) 4.7228336(10-9 8.180l856(10-') --5.5531839(10-~0) 5.7599999(10-9 9.9766099(10-1) 

4 1.0165877(10-') 4.7228322(10-9 8.1801847(10-1) -2.0419541(10-') 5.7599971(10-1) 9.9766070(10-1) 

7 1.0165880(10") 4.7228336(10-9 8.180185qIO-1) --1.9003882(1O-l1) 5.7599999(10-9 9.9766099(10-1) 

methods will converge, so that  total computing  time is the 
measure of superiority of one method over the other. If, 
as frequently occurs  in practice, .xo is such that  Kantoro- 
vich's conditions are  not fulfilled, then it is felt that it is 
better to use MA rather  than MMA. There are, however, 
circumstances which do call for the modified method. For 
example, if the matrix PLn is near-singular or large, it may 
very  well pay to employ MMA. For large  problems one 
may want to use mixed strategy in which MA is used at 
first and  then once elements of the Jacobian  matrix  change 
only moderately from iteration to iteration, the program 
switches over to MMA. 

To illustrate  more or less typical behavior that might be 
encountered on comparing MA and MMA, let us consider 
the two-body equations 

where r = (xz + y2 + z ' ) ~ ' ~  and k = 1.0 for canonical 
units. 

The  data of the problem are: 
to = 0 t f  = 2 

x(0) = 1.076000 x(2)  = 0.000000 

y(O)~,= 0.000000 y(2) = 0.576000 

z(0) = 0.000000 z(2) = 0.997661. 
Table 1A illustrates a case where MA converges even 

though  the initial trial vector and  the next few iterates  did 
not satisfy the sufficiency conditions of the  Kantorovich 
theorem.  Table 1B illustrates for  the same  initial  conditions 
as Table 1A that MMA does not converge even after 20 
iterations. We therefore  have an example where MA works 
but MMA does  not. 

x = " k 4 t )  j j  = " ky( t )  z = "_ k d t )  In  the example given in  Table 2A and 2B (MA and 
r3 ' r3 ' r3 ' MMA,), both methods converge. MA converges in  about 385 
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Table 3 Comparison of theoretical  and  computed  error  bounds 
on the  initial velocity vector.*  The  bounds  are given by the 
norm of the  initial velocity  vector,  which  is  defined  as  Max 
{ Ii, - , i l l ,  l j ,  - ill, li, - ill ), where  subscript c means 
calculated  initial value and  subscript l means true velocity. The 
"true"  values  were obtained  from the tenth  iterate of the method 
of adjoints. 

Method of Norm of initial velocity uector 

Iteration No. Theoretical Computed 
Adjoints 

0 4.5(10-2) 2.2(10-2) 
1 1.6(10W) 1.4(10-3) 
2  3.8(10-3) 1.3(10V) 
3  4.6(10-4) 1.6(10-9) 
4 1.3(10-5) 6.0(10-13) 
5 2.2(10-8) 1.0(10-'~) 

Modified 
Method of Norm of initial velocity vector 
Adjoints 

Iteration No. Theoretical Computed 

0 2.9(10W) 2.2(10-2) 
1 1.3(1W2) 1.4(10-3) 
2  5.9(10-3) 4.0(10-5) 
3  2.7(10-3) 3.7(10V) 
4 1.2(10-3) 1.4(10V) 
5  5.4(10-4) 1.0(10-*) 

for ho. The ho in Table 2 was calculated from KO = 1.7551712(109, which is 
* This table was computed from data in Table 2 by using an adjusted value 

too high compared to other point estimates for K given in the table. Since a 
better estimate of the true K is given by 1.4115(109, a corrected value for 
ho is given by 4.2229972(10-1) (1.4115/1.7551712) = 3.4578(10-'). The value 
used for qo is 2.2228303(10-2). 

one-half as many  iterations as MMA, to  the same order of 
accuracy. Based on timing both methods  for a total of 11 
iterations we find that MA takes 6.2 sec/iteration and 
MMA takes 4.9 sec/iteration. For this example we may 
conclude that  the terminal  conditions were satisfied to 
single precision accuracy in 3 iterations and 18.6 sec by MA 
and in 6 iterations and 29.4 sec by MMA. In  this case MA 
procedure is superior to MMA. 

We have compared the  error  bounds calculated from 
Kantorovich's formulas (Table 3) for MA and MMA 
with the  errors actually observed. As expected, the esti- 
mated errors  are  too large. However Kantorovich's esti- 
mates are fairly sharp, especially if we update  them by 
using later  iterates as  the initial vector x .  with associated 
parameters ho, v0. 

An interesting sidelight to  the Newton  method and  the 
modified Newton method is the evaluation of the two 
error  bounds of Kantorovich. The  error  bound  for  the 
Newton method is given by 
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and  the  error  bound estimate for  the modified Newton 
method is given by 

where x ,  is the nth iterate, x* is the value approached,  and 
ho, and v0 are  as defined in Ref. 3. While these bounds 
show that  the  Newton method converges faster than  the 
modified Newton method in general, it is interesting that 
for n = 0 and n = 1 the second formula gives smaller 
estimates over a wide range of h, < ho < 0.4) than 
the first, although x .  and x1 are identical for  the  two 
methods. 

3. Friedrich's solution of P(x) = 0 

The preceding section indicates that, generally speaking, 
any  method of approximating the solution to  the  abstract 
operator  equation P(x)  = 0 (where P maps the Banach 
space X into Banach space Y )  may be expected to lead to a 
concrete  method for solving the two-point  boundary value 
problem once the proper identifications have been made. 

Friedrichs4 is among  the  authors whose treatment of the 
solution of the  operator  equation P(x)  appear to be differ- 
ent  from  the Newton-Kantorovich  method, and we were 
therefore interested to see if his approach leads to another 
method of solving two-point boundary value problems. 
He assumes that P(x)  has a "first variation," that is, there 
is defined for  each X E  X a linear operator Pl(x,  h) from 
X to Y such that if 

R ( x ,  h) 

for h = 0, 

then I IR(x, h)l I 4 0 as 1 Ihl I "+ 0. Now if x.  is an approxi- 
mate solution of P(x)  = 0, put x = x,, + Ax. By (1) 

P ( x )  = P(xo) f Pl(x0,   AX) + I [ A x [  I R(xo,   AX) ,  ( 2 )  

so the  equation P(x)  = 0 takes the  form 

f',(xo, Ax)  = -P(xo)  - IlAxl I R(xo ,   AX) .  (3) 

If the linear operator Pl(xo,   Ax)  has a bounded inverse 
r0 y = r ( x o ,  y )  (which is necessarily linear), that is, 

the real  number I I > 0 is a bound  for ro, then r0 can 
be applied to Eq. (3) to give 

Ax = - r o P ( x o )  - I [Ax1 I r o R ( x 0 ,   A x ) .  (4)  

But Eq. (4)  is of the  form z = H(z), and for  such  equations 
it is known  that  the sequence { z,) , where z * + ~  E H(z,), 
converges to z provided H is a contraction  operator. 
Friedrichs then establishes conditions which guarantee 
that H(z) = - r P(xo) - I IzI I I'R(xo, z )  be a contraction 

rho, Pl(xo,  AX)] = Ax and l l r o ~ l l  I l l ro l l  Ilull, where 



operator with  contraction  constant 8, 0 < 8 < 1. Under 
these conditions, the sequence {Ax,), where 

Axn+1 = - r d x o )  - IIAxnlI I’oR(xo, Ax,) ( 5 )  

converges to the solution Ax of Eq. (4), which in  turn 
furnishes the solution x = xg + Ax of P(x) = 0. Ficken5 
in his investigation of the continuation  method for solving 
operator equations P(x, p)  = 0 takes Friedrichs’ approach 
as a point of departure. 

Friedrichs’ results may be summed up in the following 
theorem, which is a restatement of his Theorem 10.1. 

Theorem 

Let x. be an approximate  solution of P(x) = 0, and suppose 
the following assumptions hold : 
I. P(x) has a first variation Pl(x, 6x) throughout a certain 
sphere 1 Ix - xol I 5 A ,  and  for each E < 0 there exist 
numbers a( E ,  xo) < 0 and @ ( e ,  xn) < 0 such that : 

a .  IIx - X n l l  i xn) and 116xll 5 xn) 

imply 

l lNx, W I I  5 E ;  

b. IIx - xo( I i @ ( E ,  xo) 

implies 

IlPl(X, 6x1 - Pl(X0,  6x)II i E Il6xll. 

11. Further, PI(x0, y )  has a  bounded inverse F(x0, y )  = To 
with bound I I = p(xo) > 0. 

111. Finally, X g  is such that 

Choose 0 such that 0 < 8 < 1, and define E = 8 / 2  p(xo). 
If assumptions I and I11 hold for x. and this value of E ,  

then the equation P(x) = 0 has a unique  solution  in the 
sphere 

IIx - xoll i min [a(€,  xo), + @ ( E ,  xJl ,  

to which the sequence {x,), where x, = x. f Ax, and 
Ax, is given by Eq. ( 9 ,  converges. 

However, although it is not explicitly stated in Ref. 4, 
it  turns  out  that Friedrichs’ method  for solving P(x) is 
simply the modified Newton  method, as can be easily 
shown. If we recognize that in  Eq. (1) the first variation 
P1(xo, h) is the Frechet differential, we may write it  in  the 
more  usual notation P’(xo) h. Then, using (1) 

I IAxnI I R ( ~ o ,  Ax%) = P ( ~ o  + Ax,) - P(XO) 

- P’(xn) Ax,, (6) 

which when substituted into ( 5 )  gives 

Axn+1 = AX- - roP(xo + Ax,), ( 7)  

since rn P’(xo) Ax, = Ax, by the definition of the  operator 
To. Then adding xg to both sides of (7) and setting xg f 
Axn = x, we get the sequence {x,) where, 

= x, - rOP(x,). ( 8) 

Equation (8) is  the modified Newton  method for solving 
the  operator equation P(x) = 0. 

A direct comparison between Kantorovich‘s theorem 
(Theorem 6 (1.XVIII) of Ref. 3) and Friedrichs’ theorem 
on  the convergence of {x,) to  the solution x does not seem 
possible, since Kantorovich requires that  the second 
derivative P”(x) be uniformly bounded on a certain  sphere 
Qo containing the initial  approximation xg, while Friedrichs 
requires that  the first derivative P’(x) satisfy a Lipschitz 
condition in a (possibly different) sphere around xo. How- 
ever, since a bound  on  the derivative of a function implies 
a Lipschitz condition on  the function itself, the bounded 
derivative requirement is often  made in theory, and is 
sometimes the only practical way to guarantee that a 
function satisfy a Lipschitz condition.  Therefore let us 
assume that  the hypotheses of Kantorovich‘s theorem are 
satisfied and see what  this implies with regard to Friedrichs’ 
theorem. We have  then that  an x g  has been found such 
that 

(1’) l l r o l l  5 B’, 

(2’) l lp (xn) l l  i 7’. 

(3‘) IIP”(x)II I K’ 

in a sphere S(ro, xo) of radius yo = 2B’ q’ around xo, 
and h = K‘ q 5 3. Under these conditions the modified 
Newton  method will converge to  the solution x of P(x)  = 0 
which, moreover, will be in S(ro, X n ) .  

Turning to Friedrichs’ theorem,  assumption I1 is sat- 
isfied with p(x,,) = B’. Assume a 8 (the  contraction  con- 
stant)  has been picked with 0 < 8 < 1, which then defines 
e = (8/2B’).  Assumption I is satisfied with A = 2B’q’, 
a(x,, e )  = A = 2B’q’, and @(xo, E )  = € / K t .  Here  the 
bound  on P”(x) has been used to verify the Lipschitz con- 
dition on the first derivative, Ib. Finally assumption I11 
requires that q’ _< (2 - 8/2B’) min (2B’ q’, E / ~ K ’ ) .  If 
2B’ q’ is the minimum, the condition is essentially vacuous, 
reducing to 1 5 2 - 8 or 8 5 1. So we may assume that 
E / ~ K ’  is the minimum, which leads to  the requirement 
(since E = 8/2B’): 

q’ 5 __-- or ( 2  - 8)8  
8 B’’ K’ 

This  in turn implies that h be less than 1/8 instead of 9, as 
Kantorovich requires. Moreover if it can  be assumed that 
K’ and B’ are  the same in  both theorems so that only the 387 
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value of 7’ is open, then the implication  is that Friedrichs’ 
theorem  requires a better initial approximation x. in order 
to guarantee convergence. 

Our conclusion  is thus that Friedrichs’  method is the 
modified  Newton’s  method and that for those applications 
where a bounded second  derivative may  be  assumed, the 
theorem of Kantorovich is stronger and more  precise than 
the corresponding  theorem of Friedrichs. 
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