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Rapid  Computation of Optimal Trajectories+ 

Abstract: A generalized “indirect”  method of  solving two-point  boundary  value  problems  is  discussed  in  application to the problem 
of  computing optimal  trajectories  in a vacuum.  Improved  numerical  techniques  make  the  method  extremely  fast  when a good initial 
estimate  of the solution is available,  but  it  also  converges,  more  slowly,  from  initial  estimates that are far  from  the  solution.  Transver- 
sality  conditions  are  combined  with  final-value  constraints  enabling  the  method to solve  directly  problems  defined by constraints on 
arbitrary  functions of  final state. 

Section 1 defines the  differential  equations  and  initial  and  terminal  conditions  for  optimal  rocket  trajectories in a central  gravitational 
field. The  differential  equations  are  given a particularly  simple  form and transversality  conditions are formulated  analytically  for  typical 
orbital  injection  missions.  Section 2 defines  efficient  numerical  procedures for solving the  initial value  problem of optimal  trajectories 
and so reduces  the  boundary  value  problem to a multidimensional  zero-finding  problem.  Section 3 describes the generalized  version of 
Newton’s  method  used to solve  this  multidimensional  zero-finding  problem.  Section 4 summarizes the results of an IBM 7094 imple- 
mentation, giving  execution  times  and  convergence  properties. 

introduction 

It is well known that  the problem of optimal  trajectory 
determination comes down ultimately to a two-point 
boundary-value  problem in ordinary differential equa- 
tions.’,’ Normally  there is no question of obtaining in 
closed form even a part of the solution to such a problem. 
Sometimes ingenious alterations to the differential equa- 
tions  can lead to an approximately equivalent problem 
that is partly tractable so that only a simple iterative 
process is but with such an  approach, accuracy 
and flexibility are definitely limited. The speed needed 
for real-time applications has been a primary  motivation 
for efforts in  that direction. 

General  approaches to two-point  boundary-value  prob- 
lems, in principle capable of achieving arbitrary accuracy, 
can  be  thought of under two main  headings:  “direct” 
methods and “indirect” methods: Roughly  speaking, 
direct methods  search over the space of functions satisfying 
the boundary value requirements for a function satisfying 
the differential equations; indirect methods  search over 
the space of functions satisfying the differential equations 
for a function satisfying the boundary-value requirements. 
This partitioning of methods is not exhaustive; several 
hybrid  methods have been proposed in which successive 
iterates satisfy neither the  boundary conditions nor  the 
differential equations. However, direct and indirect 

methods do represent the principal  approaches to numer- 
ical  solution of two-point  boundary-value problems.* 

Different factors may favor  direct or indirect  methods 
in different applications.  There  may, for example, be a 
trade-off between the ultimate speed of convergence of 
an indirect method  and  the reliability of convergence of 
a direct  method. But such  factors usually have more  to  do 
with the special features of each  individual method  than 
with whether its  approach is basically direct or indirect. 

There  is  one application, however-that  of real-time 
guidance-that seems to offer a clear choice between 
direct and indirect methods as such. Until recently, general 
methods, both direct and indirect, were considered too 
time  consuming for real-time use, so the question of their 
relative suitability did not arise. But once raised, the 
question is easily answered in  favor of indirect  methods, 
for successive control policies generated in real  time can be 
viewed as successive iterates in  an indirect method.  Each 
tentative  control policy generated by a real-time guidance 
algorithm needs to be replaced by its successor, not 
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methods is sometimes based on  whether  the  method  “directly”  at- 
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because it fails to satisfy the differential equations, but 
because the initial (and perhaps  also  terminal) conditions 
upon which it was based  have been  revised. 

Even in an adaptive system that revises in real  time 
some of the parameters in the equation of motion, the 
revision can easily be translated into a change  in terminal 
conditions so that an indirect  method  is  still appropriate 
for obtaining a revised control policy.  But there is no 
corresponding way  of translating revised initial and termi- 
nal conditions into revised equations of motion to enable 
a direct  method to handle the revision. 

The indirect  method reported here grew out of the 
development of a flexible  real-time optimal guidance 
~cheme.~" But it has proved very valuable as a general- 
purpose tool in non-real-time optimal trajectory deter- 
mmation,  particularly when no good initial estimate of 
the solution is  available. 

Indirect  methods  have  been  applied to  the rocket 
steering  problem  with  varying  degrees of  success and have 
received considerable attention in the published literature. 
A recent  survey  paper  by  Paiewonsky' contains a 
comprehensive  summary of prior work. The algorithm 
described  in this paper for the computation of non- 
atmospheric  trajectories  utilizes the same  theoretical 
principles  embodied in these  previous  efforts in com- 
bination with  improved  numerical  techniques to yield a 
substantial improvement in both speed and flexibility. 
The principle  sources of improvement  include (1) an 
integration algorithm  with  adaptive step size that is tailored 
to the combination of optimal trajectory equations and 
associated initial value equations of the initial value 
problem, (2) the use of terminal constraint functions 
(including  transversality  conditions) which are relatively 
smooth as functions of the free initial variables, and (3) 
a generalization of Newton's  method that extends the 
region of convergence of the boundary value  search. 

1. Optimal rocket steering as a boundary-value 

In this section,  typical optimal rocket  steering  problems 
in a central gravitational field are formulated as two-point 
boundary-value  problems in a way that encourages  in- 
sight and facilitates  numerical  solution.  This formulation 
is in agreement  with that used  by others (e.g.,  Refs. 10 
and 11), but is developed here for completeness of the 
presentation. 

Assume  Newtonian  two-body,  point-mass  motion in a 
vacuum.  Using a Cartesian coordinate system, the 
unforced equations of motion can be  written in vector 
form as a second-order  system 

problem 

- Pr f = -  
r3 ' (1) 

374 where p is a gravitational constant and r is the position 
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vector  relative to  an origin at  the attracting mass.  Assume 
further that thrust furnishes an added  acceleration a(t) 
whose  magnitude a(t)  is prescribed and whose  direction 
cosines u / u  are determined by control u. Then the equa- 
tions of powered  flight are 

In a Lagrange formulation the goal of the variational 
problem is to choose the control history u(t) to minimize 
the performance functional 

J[u] = t o  L(x, u, t )  d t ,  

where L is the instantaneous rate of cost function and 
may  depend on state x as well as control and time. In 
general there may be constraints on the initial and terminal 
state, and the equations of motion furnish the dynamic 
constraints 

x = f(x, u, t ) .  (4) 

Pontriagin's  maximum  principle  requires that at every 
instant the optimum control u0 be  chosen so that 

uo minimizes ~ ( x ,  u, t )  + pTf(x, U, t ) ,  ( 5 )  

where pT is costate, the gradient of the remaining  cost 
of the mission  with  respect to the current state, and 
satisfies the Euler-Lagrange  differential equations 

In the present  case, state x is a six-vector  made  up of 
two three-vectors,  position r and velocity v = k, and 
corresponding costate p can  be thought of as a combination 
of two  three-vectors q and s. Moreover, the rate of cost 
L is the rate of propellant  expenditure which is assumed 
to be  independent of control and state, so the instantaneous 
minimization of (5) becomes 

u o  minimizes L(t) + qTv + ST[ -5 + u(t) :] (7) 

and the costate equations (6) become 

s = - q; 4 = I-(- + s ( p r 3 .  (8) 

Now it is  easy to verify that condition (7) is satisfied if 
and only if the vector u points in the direction opposite to 
that of s, that is, if and only if u = - ks for some  positive 
scalar k. Moreover, in view  of (2), it makes no difference 
which scalar k we choose, so for convenience let US choose 
k = 1. Hence, 

u = "s. (9) 



Then, expressing (8) as a second-order system in s and 
substituting (9), we obtain a simple differential equation 
for  optimal control 

u = r ( 3 p r - Y ~ )  + u( - 4 7 .  (10) 

Together, Eqs. (2) and (10) constitute a complete set of 
differential equations for  state  and control. 

Given an initial state x. at time to and a thrust  magnitude 
history a(t), a unique maneuver satisfying (2) and (IO) is 
determined by selecting values for  initial control u(to), 
control  rate U(t,) and cut-off t,. In fact, u(to) and ;(to) 
need only be defined to within a positive multiplicative 
constant k. For, given functions u(t) and r(t) satisfying 
(2) and (IO), u(t) can obviously be replaced by u*(t) = ku(t) 
without  disturbing  either (2) or (lo), provided only that 
k >  0. 

Thus, given an initial state x. at to, all  time-optimal 
rocket maneuvers having a given thrust acceleration 
magnitude history a(t) can  be specified by choosing f ,  
and  the direction of the vector p = (c&, zi2, i,, - ul ,  - ut, 

at to. Therefore, there are  at most six degrees of 
freedom (one  in the choice of t ,  and five in the choice of 
the direction of po) in the determination of an  optimal 
maneuver. This  corresponds exactly with the expected 
six degrees of freedom in final state x,. As a result, the 
necessary condition (10) of optimality turns  out  to be 
locally sufficient, barring singularities, for missions in- 
volving a complete set of six constraints on final state. Al- 
though multiple  solutions of the  boundary value problem 
are theoretically possible, no nonoptimal  solutions  have 
arisen  in the orbital  transfer missions we have considered. 

Accordingly, we can state  the problem of optimal 
steering to a prescribed final state  as a boundary value 
problem as follows. Given an initial state To, vo, a final 
state r,, v,, and a positive-valued function u(t), find a 
scalar t ,  > to and find functions u(t) and r(t) satisfying 
(2) and (10) such that r(to) = r,, ?(to) = vo and r(t,) = r,, 

Similarly, the problem of optimal steering to orbital 
rendezvous involves a complete set of six constraints on 
final state, so we can express the problem of optimal 
steering to rendezvous with an orbiting  body as a boundary 
value problem  as follows. Given an initial state r,, vo, a 
positive-valued function a(r), and a function r,(t) obeying 
the unforced equation (1) find a scalar t ,  > to and find 
functions u(t) and r(t) satisfying (2) and (IO) such that 
r(to) = r,, i( to) = vo and r(t,) = rb(t,), i ( tr)  = kb( t f ) .  

Certain  functions of state g(x) are constant  in  time 
whenever the  state obeys the unforced equation (1). These 
functions are orbital  constants and include the geometrical 
parameters defining an  orbit such as  the size and  shape of 
the conic, the  orbital plane, and  the orientation of the conic 
within its plane. Such a function, if it reaches a desired 
value gd at  thrust termination t,, will maintain that desired 

i(t,) = v,. 

value thereafter.  Parking orbit injection missions normally 
fall in the category of missions in which all  constraints are 
on such  functions of final state. For purposes of this  paper 
we will consider an  orbital injection mission to be defined 
as  one in which mission requirements consist of equality 
constraints on functions of final state which are orbital 
constants. Since the constraints defining orbital injection 
missions are constraints on functions of state which are 
constant in time, there can be at most five linearly inde- 
pendent such constraints. Accordingly, the mission 
definition cannot by  itself provide the full complement of 
six constraints needed to select an optimal maneuver. If 
there are k constraints on final state ( k  < 6), then the 
best (in the sense of the performance index) final state X, 
must  be chosen from  the (6 - k )  degrees of freedom 
available in final state. 

It is known that  an  optimal maneuver to  the best final 
state x; in a manifold of final states x, satisfying k con- 
straints gi(x,) = gtd, i = 1, . . . , k satisfies the following 
transversality conditions: 

pTai = 0 ,  i = k + 1, * . .  , 6 ,  (1 1) 

where p, is the limit, as t approaches t,- , of the p vector 
and  the a; are a set of (6 - k )  independent 6-vectors 
lying in the hyperplane  tangent to  the terminal manifold. 
Thus,  in order  to express a specific orbital injection 
problem as a boundary value problem, it is necessary to 
choose specific functions g,(x,) to be  constrained and 
determine the corresponding vectors ai  needed in the 
transversality condition. 

The most  fundamental  orbital injection problem is the 
five-constraint problem. This is the problem  in which the 
mission definition places constraints on five independent 
functions gi(xr) of final state.  There is considerable 
freedom  in the selection of the forms of the five functions 
individually. However, since there  can be  at most five 
independent  functions of state which are constant  in time, 
any selection of five such  functions to be  constrained has 
the effect of constraining  all  such functions. Therefore 
it is valid to speak of the five-constraint orbital injection 
problem. 

For simplicity, we select as  the five functions gi to  be 
constrained the components h,, hp, ha, e, and e2 of the 
following vectors: 

h(x) = r x v 

t ," "). 
(12) 

e(.) = - - + - 
The vector h is the angular  momentum of the orbiting 
body and e is a vector whose magnitude is  the  orbital 
eccentricity and whose direction is the direction of the 
pericenter of the  orbit. Except in the singular case h, = 0 375 
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which can be accommodated by a redefinition of coordi- 
nates, the five components mentioned are linearly  inde- 
pendent functions of state which are constant in time in the 
absence of thrust. 

In order to state the five-constraint orbital injection 
problem as a boundary value problem, we  need to express 
a vector  a, for use  in the transversality condition (11). 
The sole requirement on a. is that  it lie  in the tangent 
hyperplane to the terminal manifold, which  in this case is 
a 1-dimensional manifold since k = 5. This requirement is 
equivalent to the following: a, is orthogonal (in  6-space) 
to the gradient with  respect to x of gi ,  for i = 1, . . . , 5. 
By definition, orbital injection constraint functions are 
functions of state whose time derivatives are zero in the 
absence of thrust,  thus we have 

where x, which we therefore adopt as  as, takes on  the 
unforced  value  given  by Eq. (1). Hence, 

We can now state  the five-constraint orbital injection 
problem as a boundary value problem. Given an initial 
state r,, vo, a positive-valued function a(& and a set of 
five desired  values g<dr i = 1, . . . , 5 ,  find a scalar t ,  > to 
and find functions u(t) and r(t) such that 

(a) r(to) = ro, k(t,) = vo, 
(b) u(t) and r(t) satisfy Eqs. (2) and (lo), 
(c) at x = x(t,), the first five components of the h and e 

vectors  defined  by  (12) are equal to g i d r  i = 1, . . . , 5, 
and 

(d) at t = t,, Eq.  (11) holds for a, as defined  by Eq. (14), 
I.e., 

There is also a four-constraint orbital injection problem 
which is of particular interest. This problem is like the 
five-constraint problem except that the orientation of the 
conic  within its  orbital plane is  allowed to be arbitrary. 
For this purpose, we have selected as  the four constraint 
functions, the three components of the h vector  defined by 
Eq. (12) and the orbital energy  defined as follows 

Since the terminal manifold of the five-constraint problem 
is included in the terminal manifold of the present four- 

376 constraint problem, the vector  a,  defined  by Eq. (14) can 
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be  used here. It remains to define a vector  a,  which is 
independent of a, and which also lies in the terminal 
manifold of the present four-constraint problem. As before, 
the requirement that a,  lie  in the terminal manifold is 
readily  seen to be equivalent to the requirement that a, be 
orthogonal to the gradient of c and to the gradients of the 
components of h. It is not difficult to verify that the vector 
defined  by 

satisfies these requirements and is, moreover, independent 
of the vector a6 defined  previously,  provided e # 0. 

We are now prepared to state the four-constraint 
orbital injection problem as a boundary value problem. 
Given an initial state r,, v,, a positive-valued function 
a(t), and desired  values gid, i = 1, . . . , 4, for h and c, 
find a scalar t ,  > to and find functions u(t) and r(t) such 
that 

( 4  r(to> = ro, ?(to) = vo, 
(b) u(t) and r(t) satisfy Eqs. (2) and (lo), 
(c) at t,, the components of h and c equal the g i d ,  

i =  1, ... ,4 ,and 
(d) at t = t,, Eq.  (11)  is  satisfied  where a5  and a, are 

defined  by  (14) and (17)  i.e., Eqs. (15) and (18) hold: 

u(t,)T[r(tf) X h(t,)] - u(t,)'[?(t,) X h(t,)] = 0.  (18) 

Additional transversality vectors have been formulated 
analytically corresponding to 2- and 3-constraint orbital 
injection  missions and  are reported on in  Ref. 8. 

2. Numerical solution af the initial value problem 

In Section 1, several optimal steering problems were 
translated into equivalent boundary value problems. In 
each case, the requirements on  the solution functions 
r(t) and u(t), or equivalently on x(t) and p(t), took  the 
form : 

(a) x(to) = XO, 
(b) x(t) and p(t) satisfy  (2) and (lo), 
(c) x(t,) and p ( t t )  satisfy 6 conditions consisting of k 

boundary value constraints and 6 - k transversality 
conditions. 

In the present section, these boundary value problems 
are reduced to multi-dimensional zero-finding problems 
by a numerical integration scheme tailored to special 
features of the initial value problems. 

More specifically, let the unknown initial vector p(to) 
and the unknown final time t, be combined into a seven- 
vector y of independent variables, and let the six con- 
strained functions of x, and p, together with the (arbitrarily 



constrained) magnitude of p(to) be considered as a seven- 
vector z of dependent variables. Then the boundary value 
problem is this: find the value of the independent variable 
vector that causes the dependent variable vector to  take 
on  its desired  value. Or, if the dependence of z on y is 
represented by 

z = f(Y), (19) 

find a value of y which  is a vector zero of 

z* - f(Y), (20) 

where z* is the desired  value of z. 
The algorithm of Section 3 will accomplish this if 

provided with a method of computing f(y) and the Jacobian 
matrix [df(y)/dy] of partial derivatives of f with  respect 
to y. 

The problem of computing f(y) is  plainly an initial 
value problem. For, given xo, to, and y, that is,  given 
xo, to, po, and t,, it is an initial value problem to solve 
(2) and (10) for  the final values of x, and p, from which  in 
turn  the components of z = f(y) can be computed. 

To obtain also the matrix [af(y)/dy], it will be sufficient, 
by the chain rule, to compute the matrix [d(x,, pf)/d(po, t,)] 
since z consists of functions of xf and pf and y is made up 
of po and t,. A part, [d(x,, p,)/atf], of the latter matrix 
can be computed at once since its elements are simply 
those of x, and p, available from (2) and (10). 

The rest, [d(x,, p,)/dpo], can be obtained as  the solution 
to  an additional initial value problem, for differential 
equations and initial conditions can be derived for the 
time-varying matrix [dx(t), p(t)/apo] whose  value at tf is 
the desired matrix. 

In general, given a first-order system of differential 
equations 

w = W(w), (21) 

we can define a related set of matrix differential equations 

it = [Z]M, 
which are satisfied by the matrix function M(t), where 

The appropriate initial condition for the desired matrix 
M is 

M(t0) = I .  (24) 

In the present case, let w be the 12-vector consisting of 
the six components of state x and  the six components of 
the vector p. Then the basic differential equation (21) 
corresponds to our equations (2) and (10). Since  we are 
interested only in  the partial derivatives of xf and p, with 
respect to p(to), we  need only the right half of the M matrix 

appearing in  Eqs.  (22)-(24). More explicitly, we desire a 
12 X 6 matrix 2 defined  by 

Such a matrix will satisfy 
" 

z = lg]z 
and 

where Os is the 6 X 6 zero submatrix and le is the 6 X 6 
identity submatrix. 

Carrying out by means of (2) and (lo), the partial 
differentiation needed to obtain explicit  expressions for 
the components of the matrix [dW/dw], it turns  out that 
(26) can be  expressed in terms of 3 X 3 submatrices thus: 

Hence, if we make the following  definitions 

W =  1 

WZl w 2 2  z41 z 4 2  

- " d l  ai? 
ar du 

we obtain from (28) the second order 6 X 6 matrix equa- 
tion, 
.. 
W= BW, 

where 

Thus, in order to obtain  the desired partial derivatives 
of X, and pf with  respect to p(to), it is sufficient to perform 
a numerical integration of the second order system  (30) 377 
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with the initial condition (31). A basic requirement is that 
the nontrivial 3 X 3 submatrices ai/&, df/au, dii/ar, and 
dii/du of the matrix B which appears  as coefficient in (30), 
be available as needed. Since these submatrices are readily 
computable functions of r, i, u, and u, this  requirement 
will be  met if the integration of the variational equations 
(30) is performed concurrently  with the integration of the 
basic equations (2) and (10). 

We turn now to  the problem of solving Eqs. (2) ,  (10) and 
(30) forward in time  from to to t ,  subject to the initial 
conditions x = x,,, p = po, and (31). This  component of 
the  optimal guidance  algorithm will account for  the bulk 
of the computations  required by the algorithm as a whole, 
and efficiency is therefore a primary  consideration in 
devising a numerical  integration scheme for the solution 
of the initial value problem. 

Many schemes are  known for  integrating a first-order 
scalar differential equation.  Integration of a system of 
simultaneous differential equations is normally accom- 
plished by applying a particular such numerical integration 
scheme simultaneously to all  equations  in the system. 
Thus all the differential equations are evaluated equally 
often, and  the  amount of computation required to solve the 
system of equations  depends on  the  sum of the  amounts 
of computation required to evaluate the individual  equa- 
tions. 

In  the case of the present system of differential equations, 
however, not all of the integrands need to be  treated 
uniformly. In particular, Eqs. (2) and (10) do  not depend 
on  the matrix W involved in Eqs. (30). Thus  it is possible 
to evaluate (30) less frequently than (2) and (10) without 
disrupting the integration process. 

In fact,  integration of (30) using a larger step size than 
that used in integrating (2) and (10) can greatly improve the 
efficiency of the integration as a whole. This is because the 
right-hand  side of (30) requires considerably more compu- 
tation  than  the right-hand sides of (2) and  (lo),  and  at  the 
same time the matrix of partial derivatives resulting from 
the integration of (30) requires less accuracy than  the 
final values of x, and p, resulting from  the integration of 
(2) and (10). 

More explicitly, it turns  out  that we can save con- 
siderable computation by adopting  the following scheme 
of combination steps. Each  combination  step consists of a 
sequence of three  steps of size h of integration of (2) and 
(10) followed by a single overlapping step of size 3h of inte- 
gration of (30). Since the step size for (30) is three times the 
step size for (2) and  (lo),  the expected truncation  error is 
correspondingly 3 times as great, where n is the  order of 
the integration scheme used in carrying out all  individual 
steps. 

A rough count of the arithmetic  operations involved 
shows that evaluation of (30) requires nearly an  order of 

378 magnitude more computation than evaluation of (2) and 
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(10). Hence we can add  to  the combination  step, at negli- 
gible cost, a redundant step of size 3h of integration of 
(2) and (10) spanning the  same interval as in the three 
steps of size h. Because of its redundancy, this  added step 
makes possible an estimate of the  error involved in  the 
sequence of three steps in (2) and (10) by  means of a 
technique called the "Richardson  extrapolation." 

The Richardson  extrapolation assumes that  the  error 
resulting from a single integration  step of size h is approx- 
imately proportional to h"" where n is the  order of the 
integration  method. Thus, if y::; is the result of integrating 
from y i  in 3 steps of size h, and y',3!; is the result of inte- 
grating from y i  in  one  step of size 3h, then approximately 

Therefore, eliminating q, we have approximately 

of which the last term must  be an estimate of the  error in 
Y i 2 .  

Just  as  it would be wasteful to assign the same inte- 
gration step size to all  integrands regardless of their 
accuracy requirements, it would be wasteful to use the 
same  integration  step size throughout  the integration 
regardless of variations  in the physical situation. In  the 
case of many  high thrust rockets, the  thrust acceleration 
magnitude  function a( t )  varies by an order of magnitude in 
the space of a few minutes, and correspondingly serious 
variations in  the integration truncation  error  are  to  be 
expected. For this  reason it is desirable to use a numerical 
integration scheme whose step size can  be altered  con- 
veniently from step to step. 

Runge-Kutta methods have  the advantage of con- 
tinuously variable step size. Moreover,  they are self- 
starting and  have been widely used in trajectory 
calculations  with very good results. Normally, the most 
serious  disadvantage of Runge-Kutta  methods is that 
there is no simple means of estimating the  truncation 
error,  and therefore  there is  no simple criterion on which 
to base changes in  the integration  step size. However, we 
have  already seen that  in  the present problem a redundant 
step can be taken  as  part of each  combination  step  without 
significant extra  computation, providing a good empirical 
estimate of the local truncation  error in the most critical 
integrands. 

By comparison with various multi-step methods, Runge- 
Kutta methods are  not usually considered to be efficient. 
For example, a typical  predictor-corrector  method  re- 
quires two evaluations of the right-hand sides of the differ- 
ential  equations for each  integration  step, while the most 
widely used Runge-Kutta  method (fourth-order)  requires 



four evaluations. However, since the differential equations 
under discussion can  be  written as a second-order system 
whose right sides do  not involve first derivatives, one of the 
four  evaluations needed in the  Runge-Kutta scheme 
becomes unnecessary. Thus  the  Runge-Kutta scheme 
requires only 50y0 more  computation  than a typical 
predictor-corrector method,  and this  disadvantage is out- 
weighed by the advantage of the step size flexibility. 
Accordingly, we have selected a fourth-order  Runge-Kutta 
numerical scheme for performing the individual  steps 
comprising the combination  step described above. 

The  total integration from to to tf consists of a sequence 
of combination steps whose sizes Hi are adjusted in 
accordance  with estimates of the local truncation  errors 
of the Runge-Kutta  integration steps. The policy for  the 
adjustments of step sizes is based upon  the assumption 
that over a short period of time  numerical  integration 
truncation  error remains  approximately proportional  to 
H”” where n is the  order of the integration scheme (in  this 
case n = 4). In so far  as this  assumption is valid, one  can 
estimate the  error E;+, ,  given the  error Ei and size H i  of 
step i. Thus, 

E , , ,  M 

Hence, insofar as  the assumption is valid, one can  compute 
the step size Hi+1 which will cause the  error E,+1 to  take 
on a desired value Ed: 

Since this  procedure  for  controlling  local truncation 
error is only approximate, one  cannot expect the local 
truncation  error as estimated by the Richardson  extra- 
polation  technique to maintain precisely the desired level 
Ed. However, minor  fluctuations in this error level do  no 
harm,  and, in the  rare event of a sudden and substantial 
increase in the  error level, the current  numerical  integration 
step may be sacrificed and  the step size reduced for an 
additional  attempt. 

3. A generalized Newton’s  method 

In  the previous section, a method was developed for 
computing a vector function z = f(y) and also its Jacobian 
matrix [af(y)/ay] of partial derivatives. These are  the 
requisites for  applying Newton’s method  to  compute  the 
value of y that gives rise to a desired value z* of the 
function, But there is also a large family of other techniques 
making use of the  same capability of computing f and its 
partials, and Newton’s method may be viewed as a 
special-even degenerate-case of this more general 
family of methods. In  this section the general family of 
methods is introduced and discussed. Similar but less 

adaptive  methods  have been suggested before, e.g., by 
N. B. Hemesath,“ although  without discussion of stability, 
error estimation, and step-size control. 

First recall that Newton’s method is an iterative  method 
for finding a vector zero of 

z* - f(y). (32) 

Starting from  an initial  estimate yo of the solution,  each 
successive estimate yi+, is computed from its predecessor 
yi by solving the linear system 

r 

(33) 

Theoretically, the method will converge quadratically 
provided yo is sufficiently close to  the solution. 

The chief drawback of Newton’s method is that  in many 
applications sufficiently close initial  estimates are  not 
available. In such cases some other method  must be used 
in a preliminary search to  obtain  an approximate  solution. 
This  limitation is due  to  the limited “range of linearity” 
within which the linear  approximation, 

(34) 

upon which Eq. (33) is based, remains valid. If the incre- 
ment from  yi  to  yi+l  far exceeds the range of linearity, 
there is no reason for  the resulting change to z to cor- 
respond to it according to Eq. (34). 

A widely used remedy for this difficulty is to scale the 
y-increment and z-increment by a scalar factor R that is 
less than unity. Thus instead of solving Eq. (33) to obtain 
yi+l,  one solves 

R(Z* - z,) = [ % p ] ( y i + l  - y,). (35) 

By choosing R sufficiently small, the resulting increments 
can be  made to agree  arbitrarily well with (34) provided 
the Jacobian  matrix is continuous  and non-singular. 

Let us call this version of Newton’s method, in which 
a scale factor less than  one is used, the “modified Newton’s 
method.” The modified Newton’s method has been applied 
with varying degrees of success to a number of practical 
problems. When it fails, the  trouble is usually that R needs 
to be so small for good agreement with (34) that  the 
number of iterations  required is prohibitive. 

This suggests the possibility of a limiting process as R 
goes to zero that always reaches the solution. The limiting 
relationship between successive values of z would be 
simply, by (33) and (35), 

Z i + l  - zi = R(Z* - ZJ, 

a difference equation whose solution is a sequence of points 
on a straight line from zo to z*. It is natural  then to pass 
from  this difference equation  to a differential equation 379 
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for z as a function of a parameter t whose  solution is a 
straight line  segment to z*. The simplest  such is 

i = z* - z, 

whose solution, given the initial value  z(0) = zo, is 

z(t)  = zoe-t + z*(1 - e - t ) .  

This solution approaches z*  only  asymptotically as 
time becomes infinite  because the magnitude of z decreases 
with the distance to go. In order to reach z* in finite  time, 
the magnitude of z can be  made  uniform by normalizing. 
Thus, 

z = ”~ 

z* - z 

llz* - Z I I  ’ 
whose solution, given the initial condition z(0) = zo,  is 

(37) 

reaching z* at t = I [z* - zoI I. 
If there is a function y(t) corresponding to the solution 

z(t) of (36) in the sense that f[JI (t)]  = z(t), then, by the 
chain rule, 

so by (36), y(t) satisfies 

that is,  since z = f(y), y(t) satisfies 

(39) 

It follows that given any initial value yo, the solution of (40) 
(if it exists and is  unique) is an arc in y-space that cor- 
responds in z-space to the straight line  segment from 
f(y0) to z*. 

So in order to obtain a solution of  z* = f(y), we  need 
only  solve (40) as an initial value  problem starting at 
t = 0 from any initial condition y(0) = yo and stopping 
at t = [ Iz* - f(y,)[ I. The word  “only” may  seem  uncalled 
for since  usually initial value  problems are reckoned 
more  difficult than zero-finding  problems.  But the relative 
difficulty  in practice  varies widely for different  zero-finding 
problems and different initial value  problems. 

To propose numerical solution of (40) in order to obtain 
a zero of  z* - f(y) is not to offer a specific  zero-finding 
algorithm but simply to reformulate the zero-finding 
problem in such a way that we are bringing to bear a great 
deal of methodology on solving initial value  problems. 
There remain the questions,  what  difference equations 
shall we use to approximate the solution to (40) and what 
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There are many  answers to these  questions. The very 
simplest  difference equations, those of Euler’s integration 
method, used  with a policy  of choosing the step size to be 
the total distance to go I Iz* - zI I give what amounts to 
Newton’s  method. The same  difference equations used 
with a more flexible step-size policy  give the equivalent of 
the modified  Newton’s  method. More sophisticated  dif- 
ference equations such as Runge-Kutta equations, can  be 
used to achieve  larger step sizes for a given error level. 

Newton’s  method and the modified  Newton’s  method 
thus emerge as only the simplest  members of a large 
family of methods  aimed at solving (40). Different  choices 
of difference equations or step-size adjustment policy 
give  rise to different  methods. In fact, the family  of methods 
can be  enlarged  still further by multiplying the right-hand 
side of (40) by an arbitrary positive-valued  scalar  function 
provided it does not grow or approach zero too rapidly. 
Such a multiplication has the effect  of stretching or com- 
pressing the time  scale of (40) without  changing the locus 
of the solution. 

The problem of solving (40) is distinguished  from  most 
initial value  problems by the fact that if time to go is 
recomputed after each  step, then even  very large errors in 
integration do not damage the final solution Equation (36) 
and therefore  also (40) steer z to z* from any initial condi- 
tions (provided that (40) satisfies a Lipschitz condition); 
the only  effect  of the initial condition zo  is on the time to go 
I [z* - zol[. Thus, an error committed in the i t h  step may 
delay the final  solution or hasten it depending on its effect 
on I [z* - zi+] I [ , but it can not affect the final  value of y 
unless there are multiple solutions to the zero-finding 
problem or Eq. (40) becomes ill-conditioned. 

A second  peculiarity of the problem of integrating (40) 
is that there is a built-in error indication.  Since the solution 
of the corresponding equation, (36), in  z-space  is  known, 
one can compare at the end of each step the value of z 
actually  reached and the value 

zi + [(z* - Zi)/llZ* - Z i l l l h  

that would  have  resulted from following the solution of 
(40) exactly. To be sure, this measured error in z cannot 
readily  be translated into an equivalent error in y, but, 
after all, it is distance in z-space that determines  time to go, 
so z-error is  entirely adequate for evaluating  progress 
toward a solution. 

An important feature of (36) that carries  over to (40) is 
its increasing  sensitivity to z as z approaches z*. In fact, 
the right-hand  sides of both equations are undefined at 
z = z*.  One can guarantee the existence and uniqueness 
of solutions to (36) by stipulating that the right-hand  side 
is 0 at z = z*, but this does not remove the discontinuity 
of z as a function of z or affect its sensitivity in the vicinity 
of z*. 



Each of these  special  features of the differential equations 
is important in the choice of a method for their numerical 
solution.  Consider  first the fact that integration error at 
each step does not affect the final solution but only the 
distance (= time) to go, 1 ]z* - z 11. If we  define progress 
as the reduction of this distance and if  we make the 
pessimistic  assumption that z-error is always  in the worst 
direction, -(z* - z i ) / l  lz* - z i  11, then the progress of 
one step can be  represented by I Iz* - z i  I I - I Iz* - zi+] I I; 
that is,  by 

llz* - zi(I 

if ei is the magnitude of the z-error. This reduces to simply 
hi - e;. 

A crude model for the error magnitude e as a function 
of the step size h is e = ch”” where c is a constant and n 
is the order of accuracy of the integration  formula. In 
terms of this model, we want to choose hi to maximize 
the progress, hi - e i ,  or 

hi = chin”. 

Setting to zero the derivative of (41) with  respect to hi 
yields 

1 
n + l  
” - ch:. 

But ch; is e i /h i ,  the relative error of the step, so the best 
strategy  according to this crude and pessimistic  model 
is to maintain a relathe error of l/(n + 1) at each  step. 

A simple way  of  achieving  approximately a desired 
relative error level e , ,  again using the model e = ch”, is to 
use the rule: 

(43) 

for updating step sizes. Numerical  experiments  using 
Euler’s method (n = 1) and a Runge-Kutta method 
(n = 4) have  confirmed that relative error levels  of 1/2 and 
1/5 are nearly  optimum  although  somewhat  conservative. 

A policy  of maintaining  such high relative error levels 
is not without  difficulties.  The  high-order  difference  equa- 
tions usually  used in predictor-corrector integration 
schemes are subject to “parasitic” solutions that can  easily 
dominate the intended solution unless error levels are 
kept very  low. Therefore,  such  methods are not  promising 
choices for integration of (40). Instead,  methods  using 
first-order  difference equations, the “single-step’’  methods, 
are suggested. Runge-Kutta schemes  can  be  used  success- 
fully at relatively  high error levels  with  large step sizes. 
Like all single-step  methods  they are self-starting and 

permit  readjustment  of step size after each step, for 
example by the rule (43). So the usual Runge-Kutta 
scheme  with fourth-order accuracy  is a natural choice for 
integration of (40) when large step size is a primary 
concern. 

But it should  be  noticed that near the end of the inte- 
gration the step size  will  be determined by time to go, not 
by error considerations. The capability of a fourth-order 
method to accept  large step sizes  will  be  wasted  when time 
to go is short compared to the allowable step size.  Euler’s 
first-order  method is then more appropriate since its 
computational burden per step is  much  smaller.  Moreover, 
usual Runge-Kutta schemes  involve  one  evaluation of the 
differential equation at the end of each  step, and because 
of the increasing  sensitivity of (40) already  noted, this 
last evaluation contributes almost  pure  noise to  the step 
when  time to go is short. Thus the added labor of a Runge- 
Kutta step as compared to  an Euler step would be a def- 
inite hindrance to convergence  near the end of the inte- 
gration. 

4. Implementation results 

The initial value algorithm of Section 2 was implemented 
in a computer  program for purposes of solving 3-, 4-, 5 ,  
and 6-constraint orbital injection  problems for the Saturn 
program. The IBM 7094 compilation  resulted in a program 
taking up about four thousand words of  memory and 
requiring  less than one-half  second  per solution of the 
initial value  problem  (including variational equations) 
to compute  typical  trajectories  lasting four to five hundred 
seconds. Integration accuracy  was  maintained at a level 
approximately  two orders of magnitude better than state- 
of-the-art navigation  equipment can achieve, and single 
precision  proved  sufficient  in all cases to avoid  ill-con- 
ditioning of the matrix of partial derivatives. 

The boundary value iteration has been  solved  using 
two  different  methods of integrating  Eq. (40). One  method 
uses the Euler equations so that  the boundary value 
iteration is  essentially the modified  Newton’s  method. 
The other is a combination method  employing a branching 
logic  such that Euler equations are used near the solution 
z = z* and the standard fourth-order Runge-Kutta equa- 
tions are used  when llz* - zI I is large in comparison 
with  current step size.  Since  each  evaluation of the right- 
hand side of (40) requires one complete solution of the 
initial value  problem-hence,  say,  one-half  second  of 7094 
time-a good  measure of cost of the boundary value 
search  is the number of right-hand side evaluations. As 
might  be  expected, the combination method  proved 
superior on the whole to the simple  Euler  method  despite 
the fact that a Runge-Kutta step requires four right-hand 
side  evaluations  instead of one, for the extra computation 
is usually  more than compensated by increased step sizes 
where I Iz* - zI I is large. 381 
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The number of right-hand  side  evaluations varied from 
2 to 5 in  the case of trajectories differing slightly from 
known trajectories  (for example, worst case perturbations 
of Saturn rocket performance) to 10, 20, or even 50 in 
cases where the solution differed radically from  the initial 
estimate (for example, initial thrust direction misaligned 
90 or 180 degrees). Nearly all cases of failure of conver- 
gence that have  arisen in practice proved attributable to 
gross mistakes in the  input  data. A tendency was observed 
for regions of practical convergence, i.e., convergence in 
less than, say, 50 right-hand  side  evaluations, to become 
smaller for extended missions. 
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