K. R. Brown, lr.
G. W. Johnson

Rapid Computation of Optimal Trajectories'

Abstract: A generalized “indirect” method of solving two-point boundary value problems is discussed in application to the problem
of computing optimal trajectories in a vacuum. Improved numerical techniques make the method extremely fast when a good initial
estimate of the solution is available, but it also converges, more slowly, from initial estimates that are far from the solution. Transver-
sality conditions are combined with final-value constraints enabling the method to solve directly problems defined by constraints on
arbitrary functions of final state.

Section 1 defines the differential equations and initial and terminal conditions for optimal rocket trajectories in a central gravitational
field. The differential equations are given a particularly simple form and transversality conditions are formulated analytically for typical
orbital injection missions. Section 2 defines efficient numerical procedures for solving the initial value problem of optimal trajectories
and so reduces the boundary value problem to a multidimensional zero-finding problem. Section 3 describes the generalized version of
Newton’s method used to solve this multidimensional zero-finding problem. Section 4 summarizes the results of an IBM 7094 imple-

mentation, giving execution times and convergence properties.

Introduction

It is well known that the problem of optimal trajectory
determination comes down ultimately to a two-point
boundary-value problem in ordinary differential equa-
tions.""> Normally there is no question of obtaining in
closed form even a part of the solution to such a problem.
Sometimes ingenious alterations to the differential equa-
tions can lead to an approximately equivalent problem
that is partly tractable so that only a simple iterative
process is required,®~® but with such an approach, accuracy
and flexibility are definitely limited. The speed needed
for real-time applications has been a primary motivation
for efforts in that direction.

General approaches to two-point boundary-value prob-
lems, in principle capable of achieving arbitrary accuracy,
can be thought of under two main headings: ‘“‘direct”
methods and “indirect” methods.® Roughly speaking,
direct methods search over the space of functions satisfying
the boundary value requirements for a function satisfying
the differential equations; indirect methods search over
the space of functions satisfying the differential equations
for a function satisfying the boundary-value requirements.
This partitioning of methods is not exhaustive; several
hybrid methods have been proposed in which successive
iterates satisfy neither the boundary conditions nor the
differential equations. However, direct and indirect

methods do represent the principal approaches to numer-
ical solution of two-point boundary-value problems.*

Different factors may favor direct or indirect methods
in different applications. There may, for example, be a
trade-off between the ultimate speed of convergence of
an indirect method and the reliability of convergence of
a direct method. But such factors usually have more to do
with the special features of each individual method than
with whether its approach is basically direct or indirect.

There is one application, however—that of real-time
guidance—that seems to offer a clear choice between
direct and indirect methods as such. Until recently, general
methods, both direct and indirect, were considered too
time consuming for real-time use, so the question of their
relative suitability did not arise. But once raised, the
question is easily answered in favor of indirect methods,
for successive control policies generated in real time can be
viewed as successive iterates in an indirect method. Each
tentative control policy generated by a real-time guidance
algorithm needs to be replaced by its successor, not

T The work reported in this paper was performed under NASA
contract NAS 8-14000.

* A different and less precise distinction between direct and indirect
methods is sometimes based on whether the method ‘‘directly” at-
tempts to reduce the cost functional or “indirectly” finds the optimum
by incorporating derived necessary conditions.

373

IBM JOURNAL - JULY 1967

374

because it fails to satisfy the differential equations, but
because the initial (and perhaps also terminal) conditions
upon which it was based have been revised.

Even in an adaptive system that revises in real time
some of the parameters in the equation of motion, the
revision can easily be translated into a change in terminal
conditions so that an indirect method is still appropriate
for obtaining a revised control policy. But there is no
corresponding way of translating revised initial and termi-
nal conditions into revised equations of motion to enable
a direct method to handle the revision.

The indirect method reported here grew out of the
development of a flexible real-time optimal guidance
scheme.”*® But it has proved very valuable as a general-
purpose tool in non-real-time optimal trajectory deter-
mination, particularly when no good initial estimate of
the solution is available.

Indirect methods have been applied to the rocket
steering problem with varying degrees of success and have
received considerable attention in the published literature.
A recent survey paper by Paiewonsky’ contains a
comprehensive summary of prior work. The algorithm
described in this paper for the computation of non-
atmospheric trajectories utilizes the same theoretical
principles embodied in these previous efforts in com-
bination with improved numerical techniques to yield a
substantial improvement in both speed and flexibility.
The principle sources of improvement include (1) an
integration algorithm with adaptive step size that is tailored
to the combination of optimal trajectory equations and
associated initial value equations of the initial value
problem, (2) the use of terminal constraint functions
(including transversality conditions) which are relatively
smooth as functions of the free initial variables, and (3)
a generalization of Newton’s method that extends the
region of convergence of the boundary value search.

1. Optimal rocket steering as a boundary-value
problem

In this section, typical optimal rocket steering problems
in a central gravitational field are formulated as two-point
boundary-value problems in a way that encourages in-
sight and facilitates numerical solution. This formulation
is in agreement with that used by others (e.g., Refs. 10
and 11), but is developed here for completeness of the
presentation.

Assume Newtonian two-body, point-mass motion in a
vacuum. Using a Cartesian coordinate system, the
unforced equations of motion can be written in vector
form as a second-order system

=2, (1)

where p is a gravitational constant and r is the position

K. R. BROWN, JR. AND G. W. JOHNSON

vector relative to an origin at the attracting mass. Assume
further that thrust furnishes an added acceleration a(f)
whose magnitude a(f) is prescribed and whose direction
cosines u/u are determined by control u. Then the equa-
tions of powered flight are

P= =t al))

In a Lagrange formulation the goal of the variational
problem is to choose the control history u(?) to minimize
the performance functional

Ju] = ‘/:” L(x, u, 1) dt, (3)

where L is the instantaneous rate of cost function and
may depend on state x as well as control and time. In
general there may be constraints on the initial and terminal
state, and the equations of motion furnish the dynamic
constraints

x = f(x,u, £). 4

Pontriagin’s maximum principle requires that at every
instant the optimum control u’ be chosen so that

v’ minimizes L(x, u, #) -+ p"f(x, u, #), (5)

where pT is costate, the gradient of the remaining cost
of the mission with respect to the current state, and
satisfies the Euler-Lagrange differential equations

7 _ 7 of(x,u,) 9L(x,u, t).
P ax ax

(6)

In the present case, state x is a six-vector made up of
two three-vectors, position r and velocity v = #, and
corresponding costate p can be thought of as a combination
of two three-vectors q and s. Moreover, the rate of cost
L is the rate of propellant expenditure which is assumed
to be independent of control and state, so the instantaneous
minimization of (5) becomes

u® minimizes L(¢) 4 q"v + ST[—% + a(®) %] @)
and the costate equations (6) become

$§ = —q; q=r(—3wr"s) + s(w™). (®

Now it is easy to verify that condition (7) is satisfied if
and only if the vector u points in the direction opposite to
that of s, that is, if and only if u = — ks for some positive
scalar k. Moreover, in view of (2), it makes no difference
which scalar k we choose, so for convenience let us choose
k = 1. Hence,

u= —s. (9)

Then, expressing (8) as a second-order system in s and
substituting (9), we obtain a simple differential equation
for optimal control

i = rGur ") + u(—w?). (10)

Together, Egs. (2) and (10) constitute a complete set of
differential equations for state and control.

Given an initial state x, at time f, and a thrust magnitude
history a(f), a unique maneuver satisfying (2) and (10) is
determined by selecting values for initial control u(),
control rate u(#) and cut-off ¢,. In fact, u(z,) and u(#y)
need only be defined to within a positive multiplicative
constant k. For, given functions u(r) and r(¢) satisfying
(2) and (10), u(?) can obviously be replaced by u*(¥) = ku(?)
without disturbing either (2) or (10), provided only that
k> 0.

Thus, given an initial state x, at t,, all time-optimal
rocket maneuvers having a given thrust acceleration
magnitude history a(f) can be specified by choosing ¢,
and the direction of the vector p = (&, ly, Uz, — Uy, — U,
—u;)" at 1,. Therefore, there are at most six degrees of
freedom (one in the choice of ¢, and five in the choice of
the direction of p,) in the determination of an optimal
maneuver. This corresponds exactly with the expected
six degrees of freedom in final state x,. As a result, the
necessary condition (10) of optimality turns out to be
locally sufficient, barring singularities, for missions in-
volving a complete set of six constraints on final state. Al-
though multiple solutions of the boundary value problem
are theoretically possible, no nonoptimal solutions have
arisen in the orbital transfer missions we have considered.

Accordingly, we can state the problem of optimal
steering to a prescribed final state as a boundary value
problem as follows. Given an initial state 1o, v, a final
state r,, v,, and a positive-valued function a(r), find a
scalar t; > 1, and find functions u(r) and r(s) satisfying
(2) and (10) such that r(t,) = 1o, #(ty) = v, and 1(¢;) = ry,
i(t) = v,

Similarly, the problem of optimal steering to orbital
rendezvous involves a complete set of six constraints on
final state, so we can express the problem of optimal
steering to rendezvous with an orbiting body as a boundary
value problem as follows. Given an initial state r,, vy, a
positive-valued function a(¢), and a function r,(¢) obeying
the unforced equation (1) find a scalar ¢, > ¢, and find
functions u(#) and x(¢) satisfying (2) and (10) such that
1(ty) = o, 1(t)) = Vo and 1(t)) = 1,(¢y), 1(t;) = #:()).

Certain functions of state g(x) are constant in time
whenever the state obeys the unforced equation (1). These
functions are orbital constants and include the geometrical
parameters defining an orbit such as the size and shape of
the conic, the orbital plane, and the orientation of the conic
within its plane. Such a function, if it reaches a desired
value g, at thrust termination ¢, will maintain that desired

value thereafter. Parking orbit injection missions normally
fall in the category of missions in which all constraints are
on such functions of final state. For purposes of this paper
we will consider an orbital injection mission to be defined
as one in which mission requirements consist of equality
constraints on functions of final state which are orbital
constants. Since the constraints defining orbital injection
missions are constraints on functions of state which are
constant in time, there can be at most five linearly inde-
pendent such constraints. Accordingly, the mission
definition cannot by itself provide the full complement of
six constraints needed to select an optimal maneuver. If
there are & constraints on final state (k¢ < 6), then the
best (in the sense of the performance index) final state x;
must be chosen from the (6 — k) degrees of freedom
available in final state.

It is known that an optimal maneuver to the best final
state x} in a manifold of final states x, satisfying & con-
straints g,(x;) = g.4, i = 1, ..., k satisfies the following
transversality conditions:

p?ai=0, i=k+15."’6s (11>

where p; is the limit, as 7 approaches 7,—, of the p vector
and the a; are a set of (6 — k) independent 6-vectors
lying in the hyperplane tangent to the terminal manifold.
Thus, in order to express a specific orbital injection
problem as a boundary value problem, it is necessary to
choose specific functions g,(x;) to be constrained and
determine the corresponding vectors a; needed in the
transversality condition.

The most fundamental orbital injection problem is the
five-constraint problem. This is the problem in which the
mission definition places constraints on five independent
functions g.(x;) of final state. There is considerable
freedom in the selection of the forms of the five functions
individually. However, since there can be at most five
independent functions of state which are constant in time,
any selection of five such functions to be constrained has
the effect of constraining all such functions. Therefore
it is valid to speak of the five-constraint orbital injection
problem.

For simplicity, we select as the five functions g; to be
constrained the components k,, h,, h;, e, and e, of the
following vectors:

hix) =1 x v

e(x)) "

It
I
<o
+

The vector h is the angular momentum of the orbiting
body and e is a vector whose magnitude is the orbital
eccentricity and whose direction is the direction of the
pericenter of the orbit. Except in the singular case /; = 0

375

OPTIMAL TRAJECTORIES

376

which can be accommodated by a redefinition of coordi-
nates, the five components mentioned are linearly inde-
pendent functions of state which are constant in time in the
absence of thrust.

In order to state the five-constraint orbital injection
problem as a boundary value problem, we need to express
a vector ag for use in the transversality condition (11).
The sole requirement on ag is that it lie in the tangent
hyperplane to the terminal manifold, which in this case is
a 1-dimensional manifold since X = 5. This requirement is
equivalent to the following: a, is orthogonal (in 6-space)
to the gradient with respect toxof g;, fori =1, ..., 5.
By definition, orbital injection constraint functions are
functions of state whose time derivatives are zero in the
absence of thrust, thus we have

%[gi(x)] = [(—;%:ix —0, i=1,.--5, (13)

where %, which we therefore adopt as a,, takes on the
unforced value given by Eq. (1). Hence,

T
My ury K3
as = <U1,Uz, Ugy =73 », ™73 , — 3> . (14)
r r r

We can now state the five-constraint orbital injection
problem as a boundary value problem. Given an initial
state 1y, v,, a positive-valued function a(r), and a set of
five desired values g,4,i =1, ..., 5, find a scalar ¢, > %,
and find functions u(¢) and r(f) such that

@) r(t) = 1o, ¥(t) = Vo,
(b) u(?) and r(r) satisfy Egs. (2) and (10),
(c) at x = x(¢,), the first five components of the h and e

vectors defined by (12) areequalto g,4, i =1, ..., 5,
and

(d) at ¢t = ¢,, Eq. (11) holds for aq as defined by Eq. (14),
ie.,

(ty) "H(ty) + o5 u(t) "x(e)) = 0. (15)

There is also a four-constraint orbital injection problem
which is of particular interest. This problem is like the
five-constraint problem except that the orientation of the
conic within its orbital plane is allowed to be arbitrary.
For this purpose, we have selected as the four constraint
functions, the three components of the h vector defined by
Eq. (12) and the orbital energy defined as follows

2
=2 _ &
c=5=" (16)

Since the terminal manifold of the five-constraint problem
is included in the terminal manifold of the present four-
constraint problem, the vector a; defined by Eq. (14) can

K. R. BROWN, JR. AND G. W. JOHNSON

be used here. It remains to define a vector a; which is
independent of a; and which also lies in the terminal
manifold of the present four-constraint problem. As before,
the requirement that a; lie in the terminal manifold is
readily seen to be equivalent to the requirement that a; be
orthogonal to the gradient of ¢ and to the gradients of the
components of h. It is not difficult to verify that the vector
defined by

a = (22 (17

v X h

satisfies these requirements and is, moreover, independent
of the vector aq defined previously, provided e # 0.

We are now prepared to state the four-constraint
orbital injection problem as a boundary value problem.
Given an initial state 1o, vy, a positive-valued function
a(?), and desired values g,4, i = 1, ..., 4, for h and ¢,
find a scalar ¢, > £, and find functions u(#) and r(#) such
that

@) 1(ty) = 1o, 1(tp) = Vo,

(b) u(y) and r(¢) satisfy Egs. (2) and (10),

(c) at #;, the components of h and ¢ equal the g4,
i=1,...,4,and

(d) at t+ = 1, Eq. (11) is satisfied where a; and as are
defined by (14) and (17) i.e., Egs. (15) and (18) hold:

(1) [r(1) X h(tp)] — u(t) (i) X h(z)] = 0. (18)

Additional transversality vectors have been formulated
analytically corresponding to 2- and 3-constraint orbital
injection missions and are reported on in Ref. 8.

2. Numerical solution of the initial value problem

In Section 1, several optimal steering problems were
translated into equivalent boundary value problems. In
each case, the requirements on the solution functions
1(f) and u(?), or equivalently on x(#) and p(#), took the
form:

(@) x(t) = xo,

(b) x(¢) and p(?) satisfy (2) and (10),

(c) x(t,) and p(¢,) satisfy 6 conditions consisting of k
boundary value constraints and 6 — k transversality
conditions.

In the present section, these boundary value problems
are reduced to multi-dimensional zero-finding problems
by a numerical integration scheme tailored to special
features of the initial value problems.

More specifically, let the unknown initial vector p(z)
and the unknown final time ¢, be combined into a seven-
vector y of independent variables, and let the six con-
strained functions of x, and p; together with the (arbitrarily

constrained) magnitude of p(¢,) be considered as a seven-
vector z of dependent variables. Then the boundary value
problem is this: find the value of the independent variable
vector that causes the dependent variable vector to take
on its desired value. Or, if the dependence of z on y is
represented by

z = 1(y), (19)
find a value of y which is a vector zero of
z* — (y), (20)

where z* is the desired value of z.

The algorithm of Section 3 will accomplish this if
provided with a method of computing {(y) and the Jacobian
matrix [0f(y)/dy] of partial derivatives of f with respect
toy.

The problem of computing f(y) is plainly an initial
value problem. For, given X, f,, and y, that is, given
Xy, to, Do, and f;, it is an initial value problem to solve
(2) and (10) for the final values of x; and p; from which in
turn the components of z = f(y) can be computed.

To obtain also the matrix [3f(y)/dy], it will be sufficient,
by the chain rule, to compute the matrix [0(x;, p;)/d(Dos, t/)]
since z consists of functions of x, and p, and y is made up
of pe and ¢,. A part, [0(x;, py)/dt], of the latter matrix
can be computed at once since its elements are simply
those of x,; and p, available from (2) and (10).

The rest, [0(X;, P;)/9pol, can be obtained as the solution
to an additional initial value problem, for differential
equations and initial conditions can be derived for the
time-varying matrix [0x(¢), p(f)/dp.] whose value at ¢, is
the desired matrix.

In general, given a first-order system of differential
equations

w = w(w), 21
we can define a related set of matrix differential equations
. ow
M= [aw]M, (22)
which are satisfied by the matrix function M(f), where
_ [aw(}
M@ = [—aw(to) . (23)

The appropriate initial condition for the desired matrix
Mis
M(,) = 1. (24)

In the present case, let w be the 12-vector consisting of
the six components of state x and the six components of
the vector p. Then the basic differential equation (21)
corresponds to our equations (2) and (10). Since we are
interested only in the partial derivatives of x, and p, with
respect to p(%), we need only the right half of the M matrix

appearing in Egs. (22)—(24). More explicitly, we desire a
12 X 6 matrix Z defined by

z() = [aéx%%] (25)
Such a matrix will satisfy

. ow

Z= [GTJZ (26)
and

Z(t) = (01> 27

where O is the 6 X 6 zero submatrix and I, is the 6 X 6
identity submatrix.

Carrying out by means of (2) and (10), the partial
differentiation needed to obtain explicit expressions for
the components of the matrix [dw/dw], it turns out that
(26) can be expressed in terms of 3 X 3 submatrices thus:

Zy Zy) [0e L 0s 0s |[Zu Zi)
. . of af
Zy Zy 5; O; . O "51; Zy Zy,
= . (28
. . aii aii
Zy Zsz 6_r O; Os "‘5& Zy Zy
\241 'Z42J \03 03 "‘13 03 ,\Z41 Z42J
Hence, if we make the following definitions
W = [Wn le} - Zy Zi, ,
W21 W22 Z41 Z42 (29)
of of
By; By, g "'a
B = = ,
Jail ail
B, B, L ar I

we obtain from (28) the second order 6 X 6 matrix equa-
tion,

W = BW,

where

W — {Wll WlZ} — le 222 (30)

W21 W22 _Z31 _Zsz

and from (27) the initial conditions:
0, O . 0; O

Wity = | * 7%; W(ty) = R IR)
0, I —1I; O

Thus, in order to obtain the desired partial derivatives
of x; and p, with respect to p(), it is sufficient to perform
a numerical integration of the second order system (30)

377

OPTIMAL TRAJECTORIES

378

with the initial condition (31). A basic requirement is that
the nontrivial 3 X 3 submatrices dt/dr, 9t /0u, dii/dr, and
dii/du of the matrix B which appears as coefficient in (30),
be available as needed. Since these submatrices are readily
computable functions of r, £, u, and @, this requirement
will be met if the integration of the variational equations
(30) is performed concurrently with the integration of the
basic equations (2) and (10).

We turn now to the problem of solving Egs. (2), (10) and
(30) forward in time from £, to ¢, subject to the initial
conditions X = X,, p = po, and (31). This component of
the optimal guidance algorithm will account for the bulk
of the computations required by the algorithm as a whole,
and efficiency is therefore a primary consideration in
devising a numerical integration scheme for the solution
of the initial value problem.

Many schemes are known for integrating a first-order
scalar differential equation. Integration of a system of
simultaneous differential equations is normally accom-
plished by applying a particular such numerical integration
scheme simultaneously to all equations in the system.
Thus all the differential equations are evaluated equally
often, and the amount of computation required to solve the
system of equations depends on the sum of the amounts
of computation required to evaluate the individual equa-
tions.

In the case of the present system of differential equations,
however, not all of the integrands need to be treated
uniformly. In particular, Egs. (2) and (10) do not depend
on the matrix W involved in Egs. (30). Thus it is possible
1o evaluate (30) less frequently than (2) and (10) without
disrupting the integration process.

In fact, integration of (30) using a larger step size than
that used in integrating (2) and (10) can greatly improve the
efficiency of the integration as a whole. This is because the
right-hand side of (30) requires considerably more compu-
tation than the right-hand sides of (2) and (10), and at the
same time the matrix of partial derivatives resulting from
the integration of (30) requires less accuracy than the
final values of x, and p, resulting from the integration of
(2) and (10).

More explicitly, it turns out that we can save con-
siderable computation by adopting the following scheme
of combination steps. Each combination step consists of a
sequence of three steps of size # of integration of (2) and
(10) followed by a single overlapping step of size 3/ of inte-
gration of (30). Since the step size for (30) is three times the
step size for (2) and (10), the expected truncation error is
correspondingly 3™*" times as great, where n is the order of
the integration scheme used in carrying out all individual
steps.

A rough count of the arithmetic operations involved
shows that evaluation of (30) requires nearly an order of
magnitude more computation than evaluation of (2) and

K. R. BROWN, JR. AND G. W. JOHNSON

(10). Hence we can add to the combination step, at negli-
gible cost, a redundant step of size 34 of integration of
(2) and (10) spanning the same interval as in the three
steps of size h. Because of its redundancy, this added step
makes possible an estimate of the error involved in the
sequence of three steps in (2) and (10) by means of a
technique called the “Richardson extrapolation.”

The Richardson extrapolation assumes that the error
resulting from a single integration step of size 4 is approx-
imately proportional to ™' where n is the order of the

integration method. Thus, if y () is the result of integrating

from y; in 3 steps of size &, and y*") is the result of inte-

grating from y; in one step of size 34, then approximately
= v+ e

vl = via + aBR)".

Therefore, eliminating g, we have approximately

() (3h)
¢) Yivi T Vi1
YVirr = Vi + 1

of which the last term must be an estimate of the error in
y ff A

Just as it would be wasteful to assign the same inte-
gration step size to all integrands regardless of their
accuracy requirements, it would be wasteful to use the
same integration step size throughout the integration
regardless of variations in the physical situation. In the
case of many high thrust rockets, the thrust acceleration
magnitude function a(?) varies by an order of magnitude in
the space of a few minutes, and correspondingly serious
variations in the integration truncation error are to be
expected. For this reason it is desirable to use a numerical
integration scheme whose step size can be altered con-
veniently from step to step.

Runge-Kutta methods have the advantage of con-
tinuously variable step size. Moreover, they are self-
starting and have been widely wused in trajectory
calculations with very good results. Normally, the most
serious disadvantage of Runge-Kutta methods is that
there is no simple means of estimating the truncation
error, and therefore there is no simple criterion on which
to base changes in the integration step size. However, we
have already seen that in the present problem a redundant
step can be taken as part of each combination step without
significant extra computation, providing a good empirical
estimate of the local truncation error in the most critical
integrands.

By comparison with various multi-step methods, Runge-
Kutta methods are not usually considered to be efficient.
For example, a typical predictor-corrector method re-
quires two evaluations of the right-hand sides of the differ-
ential equations for each integration step, while the most
widely used Runge-Kutta method (fourth-order) requires

four evaluations. However, since the differential equations
under discussion can be written as a second-order system
whose right sides do not involve first derivatives, one of the
four evaluations needed in the Runge-Kutta scheme
becomes unnecessary. Thus the Runge-Kutta scheme
requires only 509, more computation than a typical
predictor-corrector method, and this disadvantage is out-
weighed by the advantage of the step size flexibility.
Accordingly, we have selected a fourth-order Runge-Kutta
numerical scheme for performing the individual steps
comprising the combination step described above.

The total integration from ¢, to 7, consists of a sequence
of combination steps whose sizes H,; are adjusted in
accordance with estimates of the local truncation errors
of the Runge-Kutta integration steps. The policy for the
adjustments of step sizes is based upon the assumption
that over a short period of time numerical integration
truncation error remains approximately proportional to
H""' where n is the order of the integration scheme (in this
case n = 4). In so far as this assumption is valid, one can
estimate the error E,.,, given the error E; and size H; of
step i. Thus,

H;.\\°
o ().

Hence, insofar as the assumption is valid, one can compute
the step size H,,, which will cause the error E,,, to take
on a desired value E:

ENYS
H;,,, = Hi('Ej') .

Since this procedure for controlling local truncation
error is only approximate, one cannot expect the local
truncation error as estimated by the Richardson extra-
polation technique to maintain precisely the desired level
E,. However, minor fluctuations in this error level do no
harm, and, in the rare event of a sudden and substantial
increase in the error level, the current numerical integration
step may be sacrificed and the step size reduced for an
additional attempt.

3. A generalized Newton’s method

In the previous section, a method was developed for
computing a vector function z = f(y) and also its Jacobian
matrix [0f(y)/dy] of partial derivatives. These are the
requisites for applying Newton’s method to compute the
value of y that gives rise to a desired value z* of the
function. But there is also a large family of other techniques
making use of the same capability of computing f and its
partials, and Newton’s method may be viewed as a
special—even degenerate—case of this more general
family of methods. In this section the general family of
methods is introduced and discussed. Similar but less

adaptive methods have been suggested before, e.g., by
N. B. Hemesath,"” although without discussion of stability,
error estimation, and step-size control.

First recall that Newton’s method is an iterative method
for finding a vector zero of

z* — f(y). (32)

Starting from an initial estimate y, of the solution, each
successive estimate y.,, is computed from its predecessor
y: by solving the linear system

ety = | M0, g, 3)
y:

Theoretically, the method will converge quadratically

provided y, is sufficiently close to the solution.

The chief drawback of Newton’s method is that in many
applications sufficiently close initial estimates are not
available. In such cases some other method must be used
in a preliminary search to obtain an approximate solution.
This limitation is due to the limited “range of linearity”
within which the linear approximation,

Az = [%%J Ay, (34)

upon which Eq. (33) is based, remains valid. If the incre-
ment from y; to y,,; far exceeds the range of linearity,
there is no reason for the resulting change to z to cor-
respond to it according to Eq. (34).

A widely used remedy for this difficulty is to scale the
y-increment and z-increment by a scalar factor R that is
less than unity. Thus instead of solving Eq. (33) to obtain
¥:+1, One solves

R - 2) = | 0] g, (35)
y

By choosing R sufficiently small, the resulting increments

can be made to agree arbitrarily well with (34) provided

the Jacobian matrix is continuous and non-singular.

Let us call this version of Newton’s method, in which
a scale factor less than one is used, the “modified Newton’s
method.” The modified Newton’s method has been applied
with varying degrees of success to a number of practical
problems. When it fails, the trouble is usually that R needs
to be so small for good agreement with (34) that the
number of iterations required is prohibitive.

This suggests the possibility of a limiting process as R
goes to zero that always reaches the solution. The limiting
relationship between successive values of z would be
simply, by (33) and (35),

Ziw — Z; = R(z¥ — z,),

a difference equation whose solution is a sequence of points
on a straight line from z, to z*. It is natural then to pass
from this difference equation to a differential equation

379

OPTIMAL TRAJECTORIES

380

for z as a function of a parameter ¢ whose solution is a
straight line segment to z*. The simplest such is

Z = z* — z,

whose solution, given the initial value z(0) = z,, is

2(t) = zee™t + z¥(1 — 7).

This solution approaches z* only asymptotically as
time becomes infinite because the magnitude of Z decreases
with the distance to go. In order to reach z* in finite time,
the magnitude of z can be made uniform by normalizing.
Thus,

z¥ — z

Z = 36
12 — 2] (36)
whose solution, given the initial condition z(0) = z,, is

z* — z,

z() = z, + M ¢ (37)

reaching z* at r = ||z* — z||.

If there is a function y(¢) corresponding to the solution
z(¢) of (36) in the sense that fly (2)] = z(¢), then, by the
chain rule,
. [of].
z= 9y y, (38)
so by (36), y(¢) satisfies

_g__l z* — z

v = e D 39
V= Layd Tiem = (39)
that is, since z = £(y), y(?) satisfies
. "af“‘[z* — £(y)]

== |7 —axT | 40
= Loyl LTl =50 (40)

It follows that given any initial value y,, the solution of (40)
@Gf it exists and is unique) is an arc in y-space that cor-
responds in z-space to the straight line segment from
1(yo) to z*.

So in order to obtain a solution of z* = f(y), we need
only solve (40) as an initial value problem starting at
t = 0 from any initial condition y(0) = y, and stopping
at r = [|z* — £(yo)||. The word “only” may seem uncalled
for since usually initial value problems are reckoned
more difficult than zero-finding problems. But the relative
difficulty in practice varies widely for different zero-finding
problems and different initial value problems.

To propose numerical solution of (40) in order to obtain
a zero of z* — £(y) is not to offer a specific zero-finding
algorithm but simply to reformulate the zero-finding
problem in such a way that we are bringing to bear a great
deal of methodology on solving initial value problems.
There remain the questions, what difference equations
shall we use to approximate the solution to (40) and what
step sizes shall we use?

K. R. BROWN, JR. AND G. W. JOHNSON

There are many answers to these questions. The very
simplest difference equations, those of Euler’s integration
method, used with a policy of choosing the step size to be
the total distance to go ||z* — z|| give what amounts to
Newton’s method. The same difference equations used
with a more flexible step-size policy give the equivalent of
the modified Newton’s method. More sophisticated dif-
ference equations such as Runge-Kutta equations, can be
used to achieve larger step sizes for a given error level.

Newton’s method and the modified Newton’s method
thus emerge as only the simplest members of a large
family of methods aimed at solving (40). Different choices
of difference equations or step-size adjustment policy
give rise to different methods. In fact, the family of methods
can be enlarged still further by multiplying the right-hand
side of (40) by an arbitrary positive-valued scalar function
provided it does not grow or approach zero too rapidly.
Such a multiplication has the effect of stretching or com-
pressing the time scale of (40) without changing the locus
of the solution.

The problem of solving (40) is distinguished from most
initial value problems by the fact that if time to go is
recomputed after each step, then even very large errors in
integration do not damage the final solution Equation (36)
and therefore also (40) steer z to z* from any initial condi-
tions (provided that (40) satisfies a Lipschitz condition);
the only effect of the initial condition z, is on the time to go
[|z* — 2o||. Thus, an error committed in the i** step may
delay the final solution or hasten it depending on its effect
on ||z* — Z;,4]|, but it can not affect the final value of y
unless there are multiple solutions to the zero-finding
problem or Eq. (40) becomes ill-conditioned.

A second peculiarity of the problem of integrating (40)
is that there is a built-in error indication. Since the solution
of the corresponding equation, (36), in z-space is known,
one can compare at the end of each step the value of z
actually reached and the value

z; + [(z* — z)/||z* — z]|]A

that would have resulted from following the solution of
(40) exactly. To be sure, this measured error in z cannot
readily be translated into an equivalent error in y, but,
after all, it is distance in z-space that determines time to go,
so z-error is entirely adequate for evaluating progress
toward a solution.

An important feature of (36) that carries over to (40) is
its increasing sensitivity to z as z approaches z*. In fact,
the right-hand sides of both equations are undefined at
z = z*. One can guarantee the existence and uniqueness
of solutions to (36) by stipulating that the right-hand side
is 0 at z = z*, but this does not remove the discontinuity
of z as a function of z or affect its sensitivity in the vicinity
of z*,

Each of these special features of the differential equations
is important in the choice of a method for their numerical
solution. Consider first the fact that integration error at
each step does not affect the final solution but only the
distance (= time) to go, ||z* — z;||. If we define progress
as the reduction of this distance and if we make the
pessimistic assumption that z-error is always in the worst
direction, —(z* — z,)/||z* — z:||, then the progress of
one step can be represented by ||z* — z.|| — |[z* — Z:ull;
that is, by

llz* — z]|

*_zI

z [z'“nz*—zu nz*—zu “

if e, is the magnitude of the z-error. This reduces to simply
h; — e;.

A crude model for the error magnitude ¢ as a function
of the step size k is e = ch™" where c is a constant and n
is the order of accuracy of the integration formula. In
terms of this model, we want to choose #; to maximize
the progress, #; — e;, OF

h,' = Ch,'"+l. (41)

Setting to zero the derivative of (41) with respect to A;
yields

1
n-+1

But ch? is e;/h;, the relative error of the step, so the best
strategy according to this crude and pessimistic model
is to maintain a relative error of 1/(n + 1) at each step.

A simple way of achieving approximately a desired
relative error level e,, again using the model e = ch”, is to
use the rule:

e 1/n
hiya = hi[ei//’i:' (43)

for updating step sizes. Numerical experiments using
Euler’s method (n = 1) and a Runge-Kutta method
(n = 4) have confirmed that relative error levels of 1/2 and
1/5 are nearly optimum although somewhat conservative.

A policy of maintaining such high relative error levels
is not without difficulties. The high-order difference equa-
tions usually used in predictor-corrector integration
schemes are subject to “parasitic” solutions that can easily
dominate the intended solution unless error levels are
kept very low. Therefore, such methods are not promising
choices for integration of (40). Instead, methods using
first-order difference equations, the “single-step” methods,
are suggested. Runge-Kutta schemes can be used success-
fully at relatively high error levels with large step sizes.
Like all single-step methods they are self-starting and

= chj. (42)

permit readjustment of step size after each step, for
example by the rule (43). So the usual Runge-Kutta
scheme with fourth-order accuracy is a natural choice for
integration of (40) when large step size is a primary
concern.

But it should be noticed that near the end of the inte-
gration the step size will be determined by time to go, not
by error considerations. The capability of a fourth-order
method to accept large step sizes will be wasted when time
to go is short compared to the allowable step size. Euler’s
first-order method is then more appropriate since its
computational burden per step is much smaller. Moreover,
usual Runge-Kutta schemes involve one evaluation of the
differential equation at the end of each step, and because
of the increasing sensitivity of (40) already noted, this
last evaluation contributes almost pure noise to the step
when time to go is short. Thus the added labor of a Runge-
Kutta step as compared to an Euler step would be a def-
inite hindrance to convergence near the end of the inte-
gration.

4. Implementation results

The initial value algorithm of Section 2 was implemented
in a computer program for purposes of solving 3-, 4-, 5-,
and 6-constraint orbital injection problems for the Saturn
program. The IBM 7094 compilation resulted in a program
taking up about four thousand words of memory and
requiring less than one-half second per solution of the
initial value problem (including variational equations)
to compute typical trajectories lasting four to five hundred
seconds. Integration accuracy was maintained at a level
approximately two orders of magnitude better than state-
of-the-art navigation equipment can achieve, and single
precision proved sufficient in all cases to avoid ill-con-
ditioning of the matrix of partial derivatives.

The boundary value iteration has been solved using
two different methods of integrating Eq. (40). One method
uses the Euler equations so that the boundary value
iteration is essentially the modified Newton’s method.
The other is a combination method employing a branching
logic such that Euler equations are used near the solution
z = z* and the standard fourth-order Runge-Kutta equa-
tions are used when ||z* — z|| is large in comparison
with current step size. Since each evaluation of the right-
hand side of (40) requires one complete solution of the
initial value problem—hence, say, one-half second of 7094
time—a good measure of cost of the boundary value
search is the number of right-hand side evaluations. As
might be expected, the combination method proved
superior on the whole to the simple Euler method despite
the fact that a Runge-Kuita step requires four right-hand
side evaluations instead of one, for the extra computation
is usually more than compensated by increased step sizes
where ||z* — z|| is large.

381

OPTIMAL TRAJECTORIES

382

The number of right-hand side evaluations varied from
2 to 5 in the case of trajectories differing slightly from
known trajectories (for example, worst case perturbations
of Saturn rocket performance) to 10, 20, or even 50 in
cases where the solution differed radically from the initial
estimate (for example, initial thrust direction misaligned
90 or 180 degrees). Nearly all cases of failure of conver-
gence that have arisen in practice proved attributable to
gross mistakes in the input data. A tendency was observed
for regions of practical convergence, i.e., convergence in
less than, say, 50 right-hand side evaluations, to become
smaller for extended missions.

Acknowledgment

The authors are grateful for the continued encourage-
ment and technical support received from N. R. Ruest and
E. W. Smythe and members of their development groups
at the IBM Space Systems Center, Huntsville, Alabama.

References

1. L. S. Pontraiagin, et al.,, The Mathematical Theory of
Optimal Processes, Interscience Publishers, John Wiley
& Sons, Inc., New York & London, 1962.

2. S. C. Dreyfus, Dynamic Programming and the Calculus of
Variations, Academic Press, New York and London, 1965.

K. R. BROWN, JR. AND G. W. JOHNSON

3. D. MacPherson, “An Explicit Solution to the Powered
Flight Dynamics of a Rocket Vehicle,” Aerospace Corp.,
Report No. TDR-169(3126) TN-2, October 31, 1962,

4. 1. E. Smith, “A Three Dimensional Ascending Iterative
Guidance Mode,” NASA-MSFC, Report No. MTP-AERO-
63-49, June 24, 1963.

5. G. W. Cherry, “A General Explicit, Optimizing Guidance
Law for Rocket-Propelled Spaceflight,” AIAA Paper No.
64-638, August 1964,

6. G. Leitmann, Optimization Techniques, Academic Press,
New York & London, 1962,

7. K. R. Brown and G. W. Johnson, “Optimal Guidance for
Orbital Transfer,” IBM Report No. 65-221-0003H, 30
August 1965.

8. K. R. Brown and G. W. Johnson, “Real-Time Optimal
Guidance,” IEEE Trans. Autom. Control, to be published.

9. B. Paiewonsky, “Optimal Control: A Review of Theory
and Practice,” AIAA Journal 3, 1985-2006 (1965).

10. W. G. Melbourne, C. G. Saur and D. E. Richardson,
“Interplanetary Trajectory Optimization with Power
Limited Propulsion Systems,” Proceedings IAS Symposium
on Vehicle Systems Optimization, Garden City, N. Y., pp.
138-150, November, 1961.

11, R. H. Hillsley and H. M. Robbins, “A Steepest-Ascent
Trajectory Optimization Method which Reduces Memory
Requirements,” Computing Methods in Optimization
Problems, ed. A. V. Balakrishnan and L. W. Neustadt,
Academic Press, 1964,

12. N. B. Hemesath, “A novel method for solving the vector
equation f(x) = 0,” IEEE Trans. Autom. Control AC-10,
483 (1965).

Received October 4, 1966

