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A Generalized Legendre-Clebsch Condition for  the 
Singular Cases of Optimal Control 

Abstract: For certain  optimal  control  problems,  some of the extremal  trajectories  generated by simultaneous  solution of the state and 
adjoint  equations may  include  arcs  of a special  character,  called  “singular”  arcs.  The  optimality of  singular arcs  has  been the subject of 
considerable  uncertainty,  since  the  classical  criteria are inapplicable  or  inconclusive.  This  uncertainty  has  recently  been  reduced by the 
discovery  of additional necessary conditions  for  the  optimality of singular  arcs.  The  principal  result  of  this  paper  is a general  statement 
and proof  of  these conditions,  in the form of a “generalized  Legendre-Clebsch condition” which  reduces to the classical  Legendre- 
Clebsch condition when  applied to nonsingular  arcs,  and gives additional necessary conditions when  applied to singular  arcs.  Other 
results  include a classification  of the possible  singular arcs, a useful  extension  of the  conventional  optimal-control  formalism (by the 
introduction of  “generalized Hamiltonians”  and  “generalized  control  transformations”), and some  interesting  variational  formulae. 

1. Introduction 

For certain optimal  control problems, some of the extremal 
trajectories generated by simultaneous  solution of the equa- 
tions of motion  and  the Euler-Lagrange equations  may 
include arcs of a special character, called “singular” arcs. 
The distinction between singular and nonsingular  arcs of 
extremals goes back to classical studies in  the calculus of 
variations, but singular arcs have not been extensively 
studied  until  quite recently. A general definition (slightly 
modernized) may be stated as follows: An extremal arc is 
singular if, at each point of the  arc, there is some allow- 
able first-order weak control variation which leaves the 
value of the variational  Hamiltonian unchanged to second 
order. 

When the  control vector is in  the interior of its allowed 
region, and  the necessary partial derivatives exist, this 
definition can be  restated as follows: An extremal arc is 
singular if the matrix H,, (whose elements are second 
partial derivatives of the variational  Hamiltonian with 
respect to components of the  control vector u) is singular 
everywhere on  the  arc, i.e., if its determinant vanishes 
identically on  the arc. 

The most  common and most important cases involving 
singular arcs arise when the variational  Hamiltonian de- 
pends linearly on some control variable, with a coefficient 
that vanishes identically on  the arc. In these cases there 
are finite control variations which do  not affect the value 
of the Hamiltonian, so the Pontriagin maximum principle 
(or its classical counterpart,  the Weierstrass condition)  does 
not directly determine a unique optimal  control  as a func- 
tion of the  state  and  adjoint variables. Instead, the optimal 

control is determined indirectly by the requirement that 
the coefficients of the linearly-appearing control variables 
remain zero for  the  duration of the singular arc. This is 
discussed at length in Section 4. 

Singular arcs of the “linear” type have been extensively 
studied  in recent years, but they are  not  the only  type of 
singular arc possible. There  also exist singular arcs where 
all the  control variables occur nonlinearly in  the Hamilton- 
ian  and  are uniquely determined by the maximum  prin- 
ciple. Singular arcs of the nonlinear  type  (or of mixed type) 
have not been extensively studied. However, examples are 
easy to construct, and at least one example has arisen  in 
an  important practical problem. A geometric interpretation 
of the various types of singular arcs (linear, nonlinear, and 
mixed) will be given in Section 3. Singular arcs of the non- 
linear  type will be discussed again in Section 8. 

The optimality of extremals which include singular arcs 
has been the subject of considerable doubt  and discussion, 
since the classical criteria are either inapplicable to singular 
arcs, or inconclusive. The difficulty is associated with the 
classical Legendre-Clebsch condition.  This  condition has 
two  forms: a weak form  and a strong form. Stated in 
modern  terms (i.e., in a form compatible  with Pontriagin’s 
maximum principle) the weak Legendre-Clebsch condition 
requires the matrix H,, to be negative semidefinite. It is 
an immediate  corollary of the maximum principle (when 
the  control vector is in  the interior of its allowed region) 
and is a classical necessary condition for optimality. The 
strong  form of the Legendre-Clebsch condition  requires 
H,, to be negative definite. For nonsingular  arcs, the  two 36 1 

IBM JOURNAL JULY 1967 



362 

forms are equivalent, but on singular arcs only the weak 
form holds. The classical  theorems  giving suficient con- 
ditions for optimality  assume the strong form of the 
Legendre-Clebsch condition, and are therefore  inapplicable 
to extremals  with  singular  arcs. In particular, the classical 
Jacobi theory, which leads to the Jacobi necessary  con- 
dition (that the extremal  must not include a pair of con- 
jugate points) and to a sufficient condition for local 
optimality, does not apply to singular  arcs. 

It is  easy to see that for  singular arcs, the weak Legendre- 
Clebsch condition must  be  supplemented by additional 
necessary conditions. For example,  consider the problem 
of minimizing the integral of a$ + bpz from 0 to T,  with 
y = 0 at the endpoints.  This  problem has no solution 
unless b 2 0 (the weak  Legendre-Clebsch  condition). If 
b > 0, the extremal y = 0 is nonsingular and the Jacobi 
theory may  be  used to prove  optimality for values of T such 
that UT' + b ~ '  > 0. If b = 0, this extremal  is  singular, 
and its optimality  depends on the additional necessary 
condition a 2 0. 

The principal  purpose of the present  paper is to state 
and prove a generalized  Legendre-Clebsch  condition  which 
for nonsingular arcs reduces to the classical  Legendre- 
Clebsch condition, and for  singular arcs gives additional 
necessary conditions like the one in the example  above. 
It seems probable that when the generalized  Legendre- 
Clebsch  condition is satisfied, a generalization of the 
Jacobi  theory  should  be  possible, giving a Jacobi  condi- 
tion for extremals  with  singular  arcs, and an assurance of 
local optimality if this condition is strongly  satisfied,  i.e., 
if the extremal  (including its end-points)  does not contain 
a pair of conjugate  points.  However, this is beyond the 
scope of the present  paper. 

The generalized  Legendre-Clebsch  condition  may  be 
regarded as an extension and generalization of the work 
of  Kelley.' Considering a problem  with  only a single  con- 
trol variable, so H, and H,, reduce to scalars, Kelley 
showed that if H,, = 0, an additional necessary  condition 
is (in a form suggested by Bryson) 

- [(d/dt)'H,] 2 0. d 
au 

(Note: Kelley's  own  statement of this condition has the 
inequality  sign  reversed.  This is because Kelley  uses a min- 
H formulation of the optimality conditions instead of the 
max-H formulation adopted in the present  paper.)  When 
Kelley's test quantity is zero, additional conditions are 
needed. Kopp and Moyer (private communication) con- 
jectured that a general  necessary condition for the case of 
a single control variable is that the first  nonvanishing 
member of the sequence { qm) , where 

m = 0 ,  1, 2 ,  

must  occur for even m(m = 2k) and have the correct sign. 
Subsequent  work by  myself, and independently by Kopp 
and Moyer,2*3 has shown this conjecture to be  correct, 
except that  the evenness condition is  always  automatically 
satisfied and hence need not be  considered. The correct 
sign turns out to be (- l)k+', so the generalized  necessary 
condition for cases  with a single control variable  is 

(-l)k - [ (d/dt)2kH,]  5 0.  
d 
dU (3) 

This evidently  reduces to the Legendre-Clebsch  condition 
if k = 0, and to  the Kelley condition if k = 1. It is  con- 
venient to call 2k the degree of singularity of the arc.  Then 
nonsingular arcs are singular of degree  zero, and arcs for 
which  Kelley's  condition  holds  strongly are singular of 
degree  two. The intermediate-thrust arcs of rocket tra- 
jectories  in  vacuum are singular of degree  four  (Robbins4). 

The conditions derived for one control variable can be 
readily  generalized to cases  with  multi-component control 
vectors.  This  gives the generalized  Legendre-Clebsch  con- 
dition in its most  complete  form. In multi-component 
cases,  arcs  with an odd degree of singularity can occur, but 
are necessarily  non-optimal. It is interesting to note that 
this result is consonant with the original  Kopp-Moyer 
conjecture. 

The generalized  Legendre-Clebsch condition is not the 
only approach to the optimality  problem  for  singular  arcs. 
Alternative approaches are the Green's-theorem  method 
of  Miele5 and the transformation methods of  Kelley' and 
 GO^.^ The transformation methods are about as powerful 
as the method  described  here, but are more laborious to 
apply. Miele's method is the best  when it is  applicable, 
since it can  sometimes  establish absolute optimality. 
However, it is  usually  inapplicable. A comprehensive  dis- 
cussion of singular arcs, with  many  original  results and an 
excellent  list of references, has recently  been  given  by 
Johnson.' 

2. Formulation of the problem 

The optimization  problem is assumed to be stated in the 
Mayer-Pontriagin form. That is, a system of first-order, 
ordinary differential equations (state equations)  is given in 
the form 

x i  = f i (x ,u,  t ) ,  i = 1, 2 ,  n ,  (4) 

where x i  is the ith component of the n-component state 
vector x, and u is a control vector of dimensionality n,  2 n. 
The control vector is subject to some  given  set  of state- 
independent control constraints. These may be  compactly 
expressed  in the form u E U,  where U is  some  given  region 
in the control space. The assumption that  the control 
constraints are state-independent  is not very restrictive, 
since  state-dependent constraints can generally  be  restated 
in a state-independent  form. It could  readily  be  eliminated, 
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but this would complicate the discussion. The optimization 
problem is to find a trajectory (i.e., a solution of (4) con- 
sistent with the  control constraints) that satisfiies given 
boundary conditions at  an initial  time to and a final time 
tf ,  and minimizes a given function of x(tf). The first-order 
necessary conditions for optimality are given by the Pon- 
triagin  maximum principle 

H(x, P,  u, t )  = max H(x,  p, u*, t ) ,  ( 5 )  

where H is the  Hamiltonian function 

u*au 

n 

N x ,  P,  u, t )  = Pi f i (X ,  u, t )  = pTf (6) 
i = l  

and p, which is an n-component adjoint vector that is a con- 
tinuous  function of time, obeys the differential equation 

pi  = - - d H / d x i ,  j = 1, 2 ,  n ,  (7) 

and satisfies certain transversality conditions at times to 
and t , .  It will be convenient to introduce a compact 
vector-matrix notation  in which partial differentiation 
with respect to components of a vector is denoted by using 
that vector as a subscript In this notation, (4) and (7) can 
be written  in the familiar canonical form 

x = H, ( 8 4  

p = -H 
I .  ( 8b) 

We shall restrict attention  to arcs in which u is in  the inter- 
ior of its allowed region U, either originally or  as  the result 
of a control-reduction process. This means that if the 
optimal u is on  the  boundary of U, it is generally possible 
to use this  fact to eliminate one or more  control variables, 
thereby defining a new u of reduced dimensionality, and 
a corresponding new U in a new control space (also of 
reduced dimensionality) such that  the new u is in the inte- 
rior of the new U. For  arcs of the chosen type, and as- 
suming existence and continuity of ,the relevant partial 
derivatives, (5) implies the Euler-Lagrange  condition 

H, = 0 (9) 

and  the weak Legendre-Clebsch condition that  the matrix 
H,, be negative semidefinite: 

H,, 5 0.  (10) 

If the matrix H,, has r null eigenvectors, the  arc will be 
said to be singular of rank r, and  to have r “singular 
controls” and  n, - r “nonsingular  controls.” (Rank of 
singularity, as defined here for multivariable cases, should 
not be confused with degree of singularity, defined in the 
previous section in  connection  with one singular control 
variable.) 

The  nature  and significance of singular arcs  can be 
made clearer by using a well-known geometrical interpre- 
tation of Eqs. (4)-(7). If u is varied over its allowed region 

U while x and t are hell d fixed, the vector x = f(x, u, t )  
traces out a pointset S(x, t )  in a rate-space called the 
“hodograph space.” In  terms of this  pointset, (4) and  the 
control constraints  can  be reduced to the single relation 

x E S(x, t ) .  (1 1) 

If the pointset S is  not convex, the optimization  problem 
may not have a solution  with piecewise-continuous con- 
trols, since a “chattering” control (rapid switching among 
two  or  more values of u) may be  able to generate an 
average x which is desirable for optimality but  not realiz- 
able by any single allowed value of u. In  such cases, the 
standard procedure is to consider a “relaxed” optimization 
problem  in which S is augmented to  make  it convex. The 
solution of the relaxed problem  can  be directly translated 
into a solution of the orginal problem. To simplify the 
discussions below, S will be assumed convex. This does not 
entail  any significant loss of generality. 

If we introduce the abbreviation f* = f(x, u*, t )  where 
u* is a possibly non-optimal control, (5) and (6) state  that 
the  optimal x, corresponding to  the optimal control, must 
satisfy the relation 

pTx = max (pTf*). (12) 

The geometrical interpretation of this  relation is that 
there is a hyperplane P in  the  hodograph space which has 
the adjoint vector p as  its positive normal, and “rests” on 
the pointset S. That is, S and P have at least one point  in 
common, and all points of S lie  either on P or in the nega- 
tive halfspace defined by P. The  optimal x (and hence, the 
optimal control)  corresponds to a point of contact between 
S and P, which is a point of tangency if S possesses a 
smoothly  turning normal in the neighborhood of the con- 
tact. In general, both S and P change with time, so the 
hyperplane rolls on a moving surface. If S and P have 
only one point of contact, the optimal control  and  the 
instantaneous  rates of change of S and P are uniquely 
determined. The contact may be  non-unique at  isolated 
instants of time (this gives one type of corner) or  through- 
out  one  or  more finite-duration  arcs of the trajectory. 

Let Sp denote the set of contact  points, i.e., the inter- 
section of S and P. The convexity assumption for S implies 
that Sp also is convex, so Sp consists of a single point, or 
a segment of a straight line, or a convex region in a two- 
dimensional plane, or more generally a convex region in a 
linear subspace of the  hodograph space, of dimensionality 
r’. From  the geometrical viewpoint described above, the 
control variables are merely a convenient parameterization 
of the pointset S(x, t) .  By a transformation of the  control 
variables if necessary, it is always possible to ensure that 
SP is linearly parameterized. Then for f e Sp there  are r‘ 
components of u that appear linearly in  the  state equations 
and  do  not affect the value of the Hamiltonian, so their 
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values are not directly  determined by the maximum 
principle.  These r’ components are singular control var- 
iables of the “linear” type  mentioned in the Introduction. 
The remaining I - I’ singular control variables  occur non- 
linearly in the Hamiltonian, and are directly and uniquely 
determined by the maximum  principle. 

If the matrix H,, has full rank (i.e., if each control 
variable  really  represents an independent  degree of control 
freedom for weak perturbations) the strong Legendre- 
Clebsch condition H,, < 0 has an obvious  geometrical 
interpretation: it states that contact between S and P is 
unique, and is at most of second order. Non-unique contact 
implies the existence of at least  one “linear” singular  con- 
trol variable; unique but higher-order contact means 
singular control variables of the “nonlinear” type. 

3. Generalized variational hamiltonians 

Before  proceeding further with the discussion of singular 
arcs, it is  expedient to introduce the concept of a “general- 
ized Hamiltonian.”  This  concept  greatly  simplifies the 
treatment of complex  singular  cases, but its  utility  is by no 
means  restricted to such  cases. It appears to be a con- 
venient  general tool for the optimal-control theorist as 
well as for the user of optimal control theory. 

Consider the optimization  problem stated in Section 2, 
and the corresponding  Hamiltonian given  by (6). Now 
suppose that  as a direct or indirect  consequence of the 
maximum  principle, it can be  shown that the optimal  con- 
trol vector u can  be  expressed as a function of x, p, t ,  and 
a new control vector v (of  smaller  dimensionality)  which 
remains to be  determined. That is, 

u = U(X, p, r, v). (1 3) 

Since  rescaling the adjoint vector p by an arbitrary positive 
constant factor cannot change the optimal control, the 
function u(x, p, t ,  v) is  necessarily a homogeneous function 
of the components of p, of degree  zero. We shall  restrict 
attention to cases  in  which u and v are in the interiors of 
their allowed  regions, so constraints need not be  considered 
explicitly. Substitution of (13) into the Hamiltonian gives 
a new Hamiltonian: 

H~,,(x, P ,  V, t )  = Hold[x, p, U(X, p, t ,  v), t ] .  (14) 

The new (generalized)  Hamiltonian  will not in general 
be of the form  shown in (6), that is, it will not in general  be 
linear in the adjoint vector p. However, it will  be a homo- 
geneous function of the components of p, of  degree  one. 
It therefore  satisfies the Euler  identity for such  functions, 
namely 

H pTH,. 

Exactly the same equations and trajectories may be ob- 
tained from the generalized Hamiltonian [using (8) and 
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the original Hamiltonian and substituting (13) into  the 
results.  This  equivalence  is  immediately  evident for trajec- 
tory arcs in which u and v are in the interiors of their 
allowed  regions: the equation H, = 0 for the old  Hamil- 
tonian implies H, = 0 for the new, and also implies that 
the values of x = H, and p = - Hz do not depend on 
which Hamiltonian is  used. The equivalence can also be 
shown for arcs in which u and v are influenced  by  con- 
straints that are constant or  depend on t only, though this 
is unnecessary for present  purposes. 

All, or nearly all, of the mathematical  formalism that 
has been  developed for conventional variational Hamil- 
tonians can be  extended to the generalized variational 
Hamiltonians described  in this section.  Where  derivations 
make  use of (6), they  can  be  modified to use (15) instead. 
For example,  some  elegant  second-order variational for- 
mulae  given in Section 6 are valid for generalized  Hamil- 
tonians. 

Although the principal  practical  utility of generalized 
variational Hamiltonians is in connection  with a partial 
determination of the optimal control vector (so v is of 
smaller  dimensionality than u) such Hamiltonians may 
also  arise from the use of generalized control transfor- 
mations  (i.e., transformations in which the new control 
vector  depends on the adjoint vector p, as well as on x, t ,  
and the old control vector) in which the dimensionality of 
the control vector  does not change.  Such transformations 
are evidently of both theoretical and practical interest. 
Some of the uses  of  generalized control transformations 
(with or without  reduction of control dimensionality) are 
illustrated  in the following  sections. It should  perhaps  be 
emphasized  again that these control transformations do 
not affect  either the state vector x(t) or the adjoint vector 
p(t). Consequently  one  may, if desired,  apply  them to 
particular subarcs of a trajectory without  affecting the 
treatment of the rest of the trajectory. 

Still another way in  which  generalized variational Hamil- 
tonians may arise is  by  canonical transformations which 
alter the state and adjoint variables  while  preserving 
equations ( 9 ,  (8), and (15). Discussion of these  more 
general transformations is outside the scope of the present 
paper. 

4. Singular arcs of linear type 

In this section, the use of generalized  variational  Hamil- 
tonians will  be  illustrated  by a discussion and classification 
of cases in which the singular control variables are all of 
the “linear”  type.  (This  classification will subsequently  be 
shown to be  relevant for singular arcs in general.) Certain 
quantities defined in the course of the discussion  will  be 
useful in the next  section,  where the generalized  Legendre- 
Clebsch condition is stated and discussed. 

Consider a Hamiltonian H(x, p, u, r) which  is  regular in 
the region of interest, i.e., it and d l  its partial derivatives, 
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up to whatever order is needed, exist and  are continuous 
in this region. Throughout  the region of interest, the matrix 
H,, is assumed to have rank n ,  - r .  Then by well-known 
implicit function  theorems, the equations H, = 0 can be 
used to express all the original control variables as regular 
functions of x ,  p, t and of r new control variables (which 
may possibly be a subset of the original control variables). 
In  other words, the n ,  - r nonsingular control variables 
can be eliminated, leaving only the r singular control 
variables. Also, the resulting new Hamiltonian will be 
regular. Assume that  the new Hamiltonian is linear in  the 
new, r-component control vector. Then 

H ( x ,  P, u, t) = H ( x ,  P. 0, t )  + u T K ( x ,  P, t ) .  (16) 

The maximum principle requires H, to vanish identically 
on  any extremal arc where u is in the interior of its allowed 
region. This does not directly determine u, since H, is 
independent of u by the linearity assumption. However, 
(as is well known) it determines u indirectly, via the time 
derivatives of H,. The identical vanishing of H,, which is 
necessary to keep the trajectory singular, gives the sequence 
of conditions 

H, = 0 ,  (Hu)* E 0 ,  (HU)" = 0 ,  etc. (17) 

The condition H, = 0 is independent of u (as already 
noted) and hence gives a relation among x, p, and t. By 
use of the equations x = H, and p = - Hz, the  other 
conditions given in (17) can  be successively reduced to 
similar relations among these variables, until  sooner or 
later (in general) a relation will be  encountered which 
explicitly involves u. Let Qm denote the r X r matrix whose 
elements are 

and let M denote the smallest value of m for which Qm has 
at least one nonzero element. In general, M is a function 
of x ,  p, and t, but to simplify the discussion we shall 
assume that M is  constant in the neighborhood of the 
extremal arc of interest, and make a similar assumption 
for  the  rank of Q M .  These  assumptions exclude certain 
atypical cases in which the extremal arc coincides with 
a line or surface in  the x, p, or t space  where M is greater, 
or  the  rank of Q M  is less, than  at neighboring points. (I am 
indebted to the  anonymous referee who brought these 
atypical cases to my attention.)  These  atypical cases will 
be discussed in Section 8. In all other cases, M is the first 
value of m for which the elements of Qm do  not all vanish 
identically in  the region of interest. For singular arcs, 
M 2 1 necessarily, and  the first of the conditions listed in 
(17) that explicitly involves u is 

0 = (d /d tIMH,  = W M ( X ,  P, t )  + Q M ( x ,  P, t ) ~ ,  (19) 

where W ,  and Q M  are independent of u (as  indicated) 
since u necessarily enters linearly into  the equation.  If 
Q M  is nonsingular, the  arc is singular of degree M with 
respect to each of the r singular control variables. (Note: 
Degree of singularity, as defined here,  should not be  con- 
fused with rank of singularity, defined earlier as  the number 
of singular control variables.) The optimal control is given 
by 

u = - [ Q M ( x ,  p, t)]"WM(x, p, t ) .  (20) 

The identical vanishing of H, on  the  arc guarantees 
the vanishing of all higher derivatives of H,, so no further 
relations need be considered. For  an  arc which is singular 
of degree M with respect to each of its r singular control 
variables, (17) therefore gives one relation  [Equation (19) 
or (20)] determining the  control vector, and  the M relations 

(d/dt)"H, = W , ( x ,  p,  t)  = 0 for 0 5 m < M .  (21) 

If M is finite (Le., if some derivative of H, involves u 
explicitly) these M relations are necessarily independent, 
for if any derivative of H, below the Mth could  be ex- 
pressed as a function of lower-order derivatives (including 
H, itself) with coefficients functions of time, then by suc- 
cessive differentiations the same  property  could be proved 
for  the Mth derivative, and  this derivative would therefore 
be  independent of u, contrary to the definition of M. Since 
the 2n components of x and p cannot satisfy more  than 2n 
independent  conditions it follows that either rM 5 2n, or 
all derivatives of H, are independent of u. The  latter 
alternative implies an indeterminate control function, a 
degenerate case that will not be considered. 

If the matrix QM is singular, so its  rank r, is less than r,  
the  arc is singular of degree M with respect to rl of its 
control variables, and singular to some higher degree with 
respect to other  control variables. By use of (19), rl of the 
singular control variables can be expressed as functions of 
x, p, t and  the remaining ("more singular") control var- 
iables. Substitution into  the Hamiltonian gives a new 
Hamiltonian with fewer control variables. The new H, and 
its first M - 1 derivatives automatically vanish as con- 
sequences of relations  already  obtained. The Mth de- 
rivative does not involve control variables, but some higher 
derivative will (in general). This gives a relation like (19) 
but with a new and larger integer M ,  and a new matrix 
Q M  of smaller size. If the new Q M  is nonsingular, the pro- 
cess terminates, otherwise it continues in  an obvious 
manner. Let  the sequence of values of M found  be M,, 
M,, etc. Then  the  arc is singular of degree M,  with respect 
to r1 control variables, of degree M, with respect to r, 
control variables, and so on. The  total degree of singularity 
of the  arc is defined to be 

M~ = r iMi .  (22) 365 
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Besides the control equations, there are M ,  conditions 
involving x, p, and t only, which  must  be  satisfied on  the 
singular arc. By an extension of an argument given earlier, 
these relations are necessarily independent (implying 
M T  5 2n) except  in degenerate cases  where at least one 
control variable can never  be determined. 

5. The generalized Legendre-Clebsch condition 

It is  convenient to extend the definition of the matrices 
Qm as given  by (22) to cases  where control variables may 
enter nonlinearly into  the Hamiltonian, so Qm may depend 
on u as well as  on x, p, and t .  Let M denote the smallest 
integer for which QM,  evaluated on the extremal of interest 
and with the optimal control, has at least one nonzero 
element. Then the classical  Legendre-Clebsch condition, 
which requires the matrix H,, = Qo to be negative  semi- 
definite, can be  expressed as a special  case of a more general 
necessary condition for optimality, involving QM.  This 
condition, which constitutes the complete generalization 
of the classical  Legendre-Clebsch condition for arcs which 
may be singular or nonsingular, can be stated in the form 
of two subconditions : 

(1) The integer M must  be even. 
(2)  If M = 2k ,  then (- l )kQ2k must  be  negative  semi- 

definite. 

These two subconditions will be derived  in  Section  7,  using 
results from Section 6. Their systematic application to a 
particular problem proceeds as follows. First form Qo = 
Huu. Then there are three alternatives: 

(A) Qo # 0 and nonsingular 
(B) Qo # 0 and singular 
(C) Q o  = 0. 

If Qo # 0, then M = 0, and the generalized condition 
reduces to the classical  Legendre-Clebsch condition, which 
is automatically satisfied as a consequence of the maximum 
principle. If Qo is not only nonzero but nonsingular (alter- 
native A) the arc is nonsingular, the Legendre-Clebsch 
condition is  satisfied in  its strong form, and  no further 
tests are necessary. If Qo is nonzero but singular (alter- 
native B) the  arc is singular, and use of the maximum 
principle to eliminate nonsingular controls (as described in 
Section 4 gives a new problem with a control vector of 
reduced dimensionlity, and such that the new Qo is zero. 
If Qo = 0, either originally (alternative C) or as a result 
of the reduction just mentioned, the procedure is to form 
successive  time-derivatives  of H, until some derivative 
(the Mth) gives a nonzero QM. If M is odd,  the  arc is 
non-optimal by subcondition ( 1 )  and need not be tested 
further. If M is  even, the matrix QM must be examined to 
see  whether it satisfies subcondition (2). If it does not, the 
arc is non-optimal and need not be tested further. If QM 
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ends with a favorable result. If QM satisfies subcondition 
(2 )  but is singular, further testing is required. In  the usual 
case  where the singular control variables are all of the 
linear type, the procedures described in Section 4 may 
be applied to eliminate successive sets of control variables. 
Each elimination gives a new integer M and a new matrix 
QM (of reduced  size) to which subconditions (1) and (2 )  
may be applied again. The process continues until some 
test is not met, or until subcondition (2)  is  satisfied in its 
strong form (i.e., with a nonsingular Q"). If some or all 
of the singular control variables are of the nonlinear type, 
or if one of the atypical cases mentioned in Section 4 arises, 
a modified procedure must be used. This will be  explained 
in  Section 8. 

It will  be shown in  Section 7 that the matrix QM is  nec- 
essarily  symmetric if M is  even, and antisymmetric if M is 
odd. When there is only one control variable (originally, 
or after reduction) the matrix Q+f reduces to a scalar qM, 
and M is necessarily even since an antisymmetric 1 X 1 
matrix vanishes. The generalized  Legendre-Clebsch con- 
dition then reduces to 

( " V Q 2 k  5 0, (23) 

which  is the one-variable necessary condition quoted in 
the Introduction. 

If this one-variable necessary condition can be proved, 
then subcondition (Z), which  is its obvious multivariable 
generalization, follows  immediately. To see this, consider 
any arc which is singular of order 2k and violates sub- 
condition (2) .  That is, at least one of the eigenvalues of Q2k 
has the wrong sign.  Because of the symmetry of Q2 k (to  be 
proved in Section 7) it is possible to diagonalize Q2k by 
a transformation of the control variables. The coefficients 
of this transformation may be functions of t alone, since 
the diagonalization is required to hold only on  the extremal 
being  tested. From the new control variables, select one 
which corresponds to a wrong-sign  eigenvalue, and 
"freeze" all the other control variables by considering 
them to be given functions of time. This creates a new prob- 
lem, with only one control variable. The one-variable 
condition (generalized Legendre condition) is violated, SO 

if it is a necessary condition for optimality, the arc being 
tested must be non-optimal for the new problem. But 
this means that  it must be non-optimal for the original 
problem also, since  every control variation permitted in 
the new problem is also permitted in  the original problem. 
Therefore, the one-variable necessary condition implies 
the necessity  of subcondition (2).  

From this discussion it is  evident that the generalization 
from a single control variable to multiple control variables 
adds nothing essentially  new,  except the possibility of arcs 
with odd-degree singularity. These will  be shown in Section 
7 to be non-optimal, as implied by subcondition (1). A 
general expression for Q,,  valid for singular cases of linear 



type with nonsingular controls eliminated, is 

Q1 = HtJL - HUzHpu. (24) 

If a and 0 are two  components of u, the optimality  con- 
dition Q1 = 0 can  be written out  in component form  as 

o =  ~["--"-"". d 2 H  d 2 H  

By this  test, a rank-two singular arc arising in  the theory 
of mid-course corrections of space trajectories has been 
shown to be non-optimal, verifying a conjecture of Break- 

1 dff dpk 80 dXk dff a 2 H  ax, 80 a 2 H  dpk 1 (25)  

6. Variational Formulae 

In  this section, certain  variational  formulae will be derived 
which relate control variations to changes of the final 
state. It will be recalled that for weak variations, the con- 
trol-vector change 6u is assumed to  be small of first order 
in  some  parameter e .  For strong  variations, the absolute 
integral of 6u is assumed to be small of first order in e ,  but 
no restrictions (other than those given by the  control 
constraints) are imposed on 6u itself. For either  strong or 
weak variations, the changes of the  state  and  adjoint 
vectors are of first order in e .  The change  in final state is 
to be determined to second order in e .  

Consider a given trajectory, which will be referred to  as 
the unperturbed  trajectory. A second trajectory  (the per- 
turbed trajectory) is to be  compared with this  trajectory. 
Let  quantities evaluated on  the perturbed  trajectory be 
identified by asterisks, whereas the corresponding  un- 
starred quantities are understood to be evaluated on  the 
unperturbed  trajectory. Thus x*, p*, and u* are perturbed 
variables, whereas x, p, and u are unperturbed. Define 

6x( t )  = x*( t )  - X ( t )  (26) 

with  analogous definition for  the  other quantities. It will 
also  be convenient to introduce the  notation 

f = x + (1/2) 6x = x* - 3 6x 
with  analogous definitions for p and a. Then by using (8) 
and (15), and relations derived from  the  latter  equation by 
partial differentiation, it is easy to verify that 
(p' 6 ~ ) '  = H* - H - 1 ,(HX + Hz)' 6x 

- $(HZ - H,)' 6p (27) 

without  approximation. For weak variations,  expanding 
the functions on  the right side of this  equation in Taylor's 
series about 2, p, ii, and noting that  the quadratic terms 
cancel, gives 

(p' ax)' = [H,(f, p ,  ii, t)]' 6u + (28) 

and integrating  this from to to tf gives 

[fl" 6x1:: = lo [H,(f, p ,  ii, t)]' 6u dt  + O(e3) ,  (29) 
I/ 

which is the desired relation for weak variations. By a 
tedious but straightforward  computation, it  can be  shown 
that  the analogous  formula 

[p' SX]:~ = llf [H(f, fi, u*, t )  - H(f, p, u, t ) ]  dt 

+ o ( ~ ~ )  (30) 

is valid for  strong variations. But this  formula, though of 
considerable intrinsic interest, is  not required for present 
purposes. Equation (29) can  be expressed in  the equivalent 
form 

[(P + 3 6P) ' 6x1:: 
i f  

= J1. (H, + 3 6H,)' 6u dt f O ( 2 ) .  (31) 

So far, no assumption has been made that  the unper- 
turbed trajectory is an extremal. Introducing  this assump- 
tion gives H, = 0, so (31) simplifies to 

[(p + 4 6p)' 6x1:: = lo (6H,)' 6u dt + O(r3). (32) 

For weak variations it is legitimate to assume (as cannot 
be assumed for  strong variations) that 6u, 6x, and 6p are 
expressible as power series in the parameter e :  

tl 

6u = e ?ill(,) + + E 2  6U(,) + * - ( 3 3 4  

6x = E 6X(,) + 3 2  6x0, + * * * (33b) 

6p = e tip(,) + e - .  ( 3 3 4  

Using these expansions, both sides of (32) are  to be 
evaluated to  order e2. To this order,  the right side of the 
equation is 

$e2 lo (6H,(l,)T d t ,  (34) 

where 

t f  

~ H , ( I )  = H,, ~ x ( I )  + Hun ~ P ( I )  + H,, ~ u ( I , .  (35) 

The quantities 6x(,) and 6p(,) are solutions of the follow- 
ing pair of linear differential equations: 

 sf(^) = Hpz ~ x ( I )  + Hpp ~ P ( I )  f Hpu 6 ~ ( 1 )  (36) 

6P(,) = -Hz= 6~(1) - Hz, 6 ~ ( 1 ,  - Hz, h 1 ) .  (37) 

Let us consider solutions of (36) and (37) for which 6x,,, 
vanishes at times to and tf, so there is no first order state- 
perturbation at  the endpoints. Then to order $, (32) can 
be rewritten as 

[P' 6x1:: = $eZ lo ( 6 H d '  d t ,  (38) 

where it is understood that 6x is O(2)  at time to and t,. 367 
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Let us assume for simplicity that  the endtimes to and tJ 
are fixed, and that the  state constraints (if any) imposed at 
times to and t J  are equality constraints. Then if P[x(to), 
x(t,)J is the quantity to be  extremized, the transversality 
conditions which p ( t )  is required to satisfy at the endtimes 
guarantee the existence of a constant p(with p 2 0 if P 
is to be  maximized, and p 5 0 if P is to be minimized) 
such that 

p 6P = [p' 6x + O( pxl"]::  (39) 

for all endpoint perturbations which are consistent with 
the state constraints referred to above. Putting this into 
(38), and dropping the terms in 16x(to)12 and 16x(t,)l2 
because they are of order e4, gives 

p 6P = +e2 (6H,(,,)' 6q1, dt 

to order e'. If the trajectory is a local optimum, p6P must 
be 5 0 for e sufficiently  small. Therefore, a necessary 
condition for optimality is that the integral on  the right 
side of this equation must be nonpositive for any solution 
of (39, (36), and (37) with 6x(,, vanishing at the endpoints. 

This condition is  essentially the second-variational con- 
dition which is derived  in the classical variational calculus 
in connection with  Jacobi's  accessory  minimum problem. 
In the next section, it will be  used to derive the generalized 
Legendre-Clebsch condition which  is the main result of 
this paper. 

7. Proof of the generalized Legendre-Clebsch 

r (40) 

condition 

In this section, the generalized  Legendre-Clebsch condition 
will be shown to be a necessary condition for optimality, 
by use of the method of special variations. That is, it will 
be shown that if the generalized  Legendre-Clebsch con- 
dition is violated at any time between to and t J ,  then the 
trajectory cannot be optimal because a variation of the 
state, adjoint, and  control variables can be found which 
satisfies the conditions given  in  Section 6 and gives a 
positive value for the integral on  the right side of  (40). 
The basic method is due to Kelley' but has been  improved 
and generalized. 

Before  beginning the proof, it is convenient to introduce 
some abbreviated notation. Let A denote the value of the 
integral in (40), and let 6u(,, and 6H,(1, be represented 
by v and K respectively. Then 

A = 1:' K'(t)v(t) d t .  (41) 

Also, let z be a vector  with 2n components, of  which the 
first n give 6x0, and  the second n give 6p(, , ,  and introduce 
the 2n X r matrix R defined  by 

= [:::I (42) 
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and  the 2n X 2n matrices S, J ,  I defined by 

where I, is the n-dimensional unit matrix and 0, is the 
n-dimensional zero matrix. With this notation, (35),  (36), 
and (37) can be rewritten as follows: 

K = R T z  + H,,v (46) 

I = J S z  + J R v .  (47) 

Now let tz denote a time at which the generalized 
Legendre-Clebsch condition is violated, and consider an 
interval of width 2T centered on this time. The interval 
begins at time tl = tz - T and ends at time t3 = tz + T.  
The time tz is assumed to be in the interior of a singular 
arc,  and Tis  to be chosen so small that the entire interval 
from tl to t3 is also in this arc. For times before t l ,  the var- 
iations z and v are chosen to be  identically zero. For times 
between tl and t , ,   v(t) is chosen to be of the following form 
which depends on M ,  the order of singularity of the  arc: 

v ( t )  = a'k'(t) if M = 2k (484 

v(t) = a ( k + l ) ( t )  if M = 2k f 1 (48b) 

where the superscripts in parentheses denote orders of 
differentiation. The vector-function a(t) and  its first k 
derivatives are required to be continuous between  times 
t1 and t3 and to vanish at these two times. 

As a result of the control variation between  times tl 
and t3,  z(t3) will generally  be nonzero. For times  between 
t3 and t   J ,  the control variation is to be  chosen  in a manner 
that ensures that the first n components of z will vanish 
at time t ,  (i.e., so that 6x( , ,  vanishes at time t J  as required 
by the conditions given  in  Section  6). One component of 
ax(,, , the component normal to p automatically vanishes 
at time t , ,  since p T  6x(') is a constant and is initially zero. 
It is explicitly assumed that  it is possible to choose v( t )  
between t, and t ,  to make the other n - 1 components 
vanish also. This controllability (normality) assumption 
is probably not essential for the validity of the generalized 
Legendre-Clebsch condition, but it is essential for the 
derivation given here. 

It is important to note that  the controllability assump- 
tion need  only  be  valid before the partial elimination of 
control variables  discussed  in  Section 3. This is because one 
may use a generalized Hamiltonian and reduced control 
vector for time t >_ t,, but retain the original Hamiltonian 
and control vector for times after t3. 



For times  between t3 and t , ,  v(t) and K(t) are O([z(t,)l) 
in  magnitude, so (41) can be  rewritten as 

A = 1:' KT(v )v ( t )  dt + O(lz(t,) 1'). (49) 

Using (48) and integrating by parts k times  gives 

A = (-l)k 1 [K'k'(t)]Ta(f) dt + O(lz(fJ1') (50a) 

if M is even, and 

A = (-l)k 1 [K'k'(t)]TB(t)  dt + O(lz(t3)l') (50b) 

if M is odd. Now let us introduce the scalar  quantities a 
and p, defined as follows: 

a = la(t)l dt (51) 

1 .  

t x  

t r  

t l  

p = 1'' la(t)l dr. (52) 
t l  

It will be  shown that 

z(td = O(a) ( 5  3) 

K@'(t) = QM(t)a(t) + O(a). (54) 

Whence, for even M ,  

A = (- 1)& 1 aT(t)QM(t)a(t) dt + O(a') (554 

and for odd M, using the easily  proved  relation a 5 Tp, 

A = (- 1 a'(r)Q,(t)B(t) dt + O(ap). (55b) 

From these  relations, the generalized  Legendre-Clebsch 
condition  follows  immediately. To see this, consider  first 
the case of  even M and assume that (- l)kQM(tz) has a 
positive  eigenvalue, contrary to the generalized  Legendre- 
Clebsch  condition. Then choosing  a(f)  parallel to the corre- 
sponding  eigenvector, and making  use of the fact (to be 
proved later) that Q M  is symmetric  when M is  even,  gives 

1 ,  

1 1  

t .  

1 .  

A 2 A l, la(t) 12 dt + OG) ,  
1 .  

(56) 

where X is a lower  bound  for the eigenvalue,  over the 
interval from tl to t,. Since the eigenvalue is a continuous 
function of time and is  positive at time t2, this bound can 
be  chosen  positive  if Tis sufficiently  small.  Also,  Schwarz's 
inequality gives 

a2 I 2T l:' Ia(t)l' dt ,  (57) 

which  shows that the second  term of (56) is of higher order 
in T than the first term, so if T is  sufficiently small, A is 

necessarily  positive.  Therefore, the trajectory cannot be 
optimal. This proves the necessity of the generalized 
Legendre-Clebsch condition for the case of  even M. Now 
consider the case of M odd. For this case,  QM is an anti- 
symmetric matrix, as will be  shown shortly By the def- 
inition of M, QM must  have at least  one  nonzero  element. 
Without loss of generality, let QM12 = - QMZ1  be  such 
an element, and choose a(t) to have all its components 
zero  except al(t) and a,(t). Then 

A = (-Ilk 1 (ala2 - a2hl)QM12 dt + O(aP). ( 5 8 )  

The integral can be  made to have  either  sign,  since  one  can 
reverse the sign of al(t) while  leaving a,(t) unchanged. 
Also its magnitude  can  readily  be  made arbitrarily large 
compared to ab. This may be seen as follows:  define 
At = ( t  - tl), and choose al(t) and a,(t) to be of the forms 

al(t) = T k + l g l ( A t / T )  (594 

az(t) = Tk+'g2(At/T)  (59W 

so the maximum  magnitude of v = will  be  inde- 
pendent of T .  Then a varies  like TkC2 and /3 varies  like 
Tk+' so ab varies  like T2k+3,  whereas the integral varies 
like QMI2(t2) times T2k+2,  plus terms of higher order, and 
hence  dominates if Tis sufficiently  small.  Therefore A can 
be  made to have  either  sign, so the trajectory cannot be 
optimal.  This  proves the necessity  of the generalized 
Legendre-Clebsch condition for the case of odd M, and 
hence  completes the derivation  except for proofs of  (53) 
and (54) and of the symmetry  properties of  QM.  These 
proofs are based on certain  explicit  expressions for z(t), 
A, and derivatives of K(t) up to and including the Mtb. 
Only  cases  with M 2 1 (i.e., singular  cases  with  all  non- 
singular controls eliminated) need be  considered. For such 
cases, H,, = 0 and (46) reduces to 

K = RTz. (60) 

Let  us  define a sequence of matrices R,, of dimensionality 
2n X r, by the equations 

t .  

1 1  

Ro = R (614 

Ri+1 = l i d  - SJR, ( i  2 0 ) ,  (61b) 

or in operator form by the equation 

Ri = [I(d/dt)  - SJI'R. (62) 

It is  easy to verify that 

(RTz)' = (Ri+l)Tz + R:JR,v, (63) 

whence,  in particular, 

K = (R:z)* = R:'Z + RTJR~V. (64) 369 
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If RoTJRo is not a null matrix, then M = 1 and QM = 
RoTJRo. If RoTJRo is a null martix, then K = RITz, and 
using (63) again gives 

K = (RTz)' = R:z + R;JR0v, (65) 

which  is analogous to (64) but with  different subscripts. 
If RITJRo is not a null matrix, then M = 2 and QM = 
RITJRo. If RITJRo is a null matrix, the process continues 
in an obvious manner. The general result is that 

(RM-II~JRo = QM (66) 

K(') = RGz + QMv (67) 

and  that, for all i < M ,  

( R , - ~ ) ~ J R ,  = o (6 8) 

K(i) = R:z. (69) 

To demonstrate the symmetry properties of QM it is con- 
venient to introduce a family of matices Ai , i  which are 
all of dimensionality r X r. The indices i, j do not refer to 
matrix elements, but identify members of the family. The 
defining equation is 

Ai, i  = R?JR, 

O <  i , j <  M -  1. 

It is  evident that (Ai,  i )T  = - Ai, and that QM = AM-1 . O  

so (QM)T = - AO,M-l. Differentiating (70) and using 
(61b)  gives 

(70) 

A i , i  zz Ai.i+l f A i + l . i *  (7 1) 

Now let s denote the least value of i + j for which Ai , i 
is nonzero for some i. Clearly s 5 M - 1 since o = 
QM # 0. Since  A,- i-l ,  = 0, and  its derivative is also zero, 
(71) gives 

0 = As-i.i + As-i.<+l* (72) 

Whence, by induction, 

A8-i , i  = (-l)iA8,0. (7 3) 

The integer s must be equal to M - 1 since (as already 
stated) it cannot be greater than M - 1, and by (66) and 
(73) it cannot be less. Setting i = s = M - 1 in (73) gives 

Ao.~--1 = (-~)"'AM-~,O, (74) 

which  is equivalent to 

QL = ( - l ) M Q ~ .  (75) 

This completes the proof of the symmetry properties of 
QM for M 2 1. (When M = 0, QM = H,, which  is ob- 
viously  symmetric, so the symmetry property holds for this 
case also.) The next step is to derive an explicit  expression 
for z(t). Let @(t,  7)  denote the transition matrix associated 
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the following set of equations : 

@(t ,   t )  = I (76) 

( d / d t ) @ ( t ,  7)  = Js(t)@(t, 7)  (77) 

( d / d ~ ) @ ( t ,  T) = - @ ( t ,  T) JS(7). (7 8) 

In terms of @ the solution of (47) is 

z(t) = 1' @ ( t ,  T)JR(T)v(T) d7, (79) 

since z(tl) = 0 by  choice. Equations (78) and (62) together 
give 

t l  

( d / d ~ ) [ @ ( t ,  T ) J R ~ ( ~ ) ]  = @ ( t ,  T)JRi+l(T)* (80) 

Integrating the right side of (79) by parts k times, and using 
(73) and (48a) gives 

z(t) = - (- l)k-i JRk-l-i(t)a(i)(t) 
k-1 

i=O 

+ (-Ilk /' @ ( t ,  7)JRk(7)a(7) d r  (81 4 
t l  

for the case of  even M. Similarly, for the case of odd M 
integrating by parts k + 1 times and using (73) and (48 b 
gives 

z(f)  = + (- l)k-i JR,_,(t)a'"(t) 
k 

i = O  

+ (-l)&+l /' @ ( t ,  7)JRkt1(7)a(T) d ~ .  (81b) 

Setting t = t3 in these formulae, and using the properties 
of a(t), gives 

z(t3) = ( - l )k f l  /'* @(t3 ,  T)JRk(7)a(r) d7 (82a) 

if M is  even, and 

z(t3) = (- l )k+l  / @ ( t 3 ,  7) JRk+1(7)a(7) d7 (82b) 

if M is odd. From these equations and (51), Eq. (53) 
follows  immediately. To prove (54) use k < M ,  which 
by (69) implies K'k' = RkTz. The cases of  even M ( M  = 
2k) and odd M ( M  = 2k + 1) must  be treated separately. 
Multiplying (81a) and (81b)  by RkT and using (70) gives 

K'k'(t)  = (- l)k"-'Ak,k-l-ia(i)(t) + O(a) (83a) 

for even M ,  and 

~ ( ' ) ( t )  = ( - ~ ) ~ - ~ ~ ~ , ~ - ~ a ( ~ ) ( t )  + O(CK) (83b) 

t l  

t ,  

t ,  

t l  

k-1 

i-0 

k 

2 = 0  

for odd M. In either case, the sum of the subscripts of A 
is M - 1 - i. If i # 0, the subscript-sum is less than M - 1 
and the A-matrix  vanishes  (see  discussion  following (71)). 



Therefore, (83a) and (83b)  reduce to 

K ( k )  = (- l)k-lAk.k-la(t)  + O(a) (844 

and 

K(’) ( t )  = (- l)kAk,ka(t) + o(~r), (84b) 

respectively.  However,  by virtue of (73), (- l)k-’Ak, k-1 = 
QM when M = 2k, and (- l ) k A k ,  k = QM when M = 2k + 
1. Therefore, (84a) and (84b) both reduce to 

K‘k’(t)  = QM(t)a(t) + o(a) 
which  is identical with (54), the relation to be proved. This 
completes the proof of the generalized  Legendre-Clebsch 
condition. 

8. Singular arcs of nonlinear type 

As has already been mentioned, there exist singular arcs 
where some or all of the singular control variables appear 
nonlinearly in  the Hamiltonian, and can be directly and 
uniquely determined by the maximum  principle. A simple 
example  is  given  by the problem of minimizing the integral 
of xlz  + x: from zero to infinity, for a specified  value  of 
x,(O). Applying the usual formalism gives the Hamiltonian 

H = P l U  + PZ(XT + u”). 

The absolutely optimal solution consists of a parabolic 
arc followed  by a singular arc where x1 p1  = u = 0. 
This arc is of the nonlinear type. 

At first thought, it may  seem that singular arcs of non- 
linear type must have an artifical and “accidental” char- 
acter : Since the optimal control is uniquely determined by 
the maximum  principle, there is no control freedom which 
can be  exploited to maintain the singularity condition, so 
this type of singular arc cannot endure  for a finite time 
unless an identical agreement fortuitously exists  between 
the unique optimal control given  by the maximum principle 
and the  control needed to maintain the singularity prop- 
erty. 

Further consideration shows that this objection is not nec- 
essarily  valid.  Even if nonlinear singular arcs can only oc- 
cur for special  choices of the state equations, these special 
cases  may  be  of practical interest. Also, the identical agree- 
ment  necessary for continuation of the arc may not be for- 
tuitous, but  the result of deep  identities. This possibility is 
illustrated by the work of  Breakwell“  who has considered 
the singular extremals of rocket trajectories in  vacuum. In 
the usual treatment with time as independent variable, the 
rocket problem has singular extremals of linear type. 
Breakwell  showed that the problem may be transformed 
so the integral of thrust acceleration becomes the inde- 
pendent variable, and time becomes a control variable. 
In the transformed problem, the singular extremals are 
of nonlinear type. 

The generalized  Legendre-Clebsch condition is as appli- 
cable to singular arcs of nonlinear type as it is to other 
kinds of arc. For example,  in the problem just described 
we  find Qz = 2p, which  satisfies the condition, since pz 
must be  chosen  negative (otherwise, no meaningful extre- 
mals  exist).  However,  in  complex  cases  (which  will  seldom 
be encountered in practice) a special  difficulty  may  arise. 
The derivation of the generalized  Legendre-Clebsch con- 
dition assumed that the first and second partial derivatives 
of the Hamiltonian (with respect to components of x, p, 
and u) exist on the  arc to be tested, and are continuous in 
its neighborhood. If this regularity property holds for the 
original Hamiltonian, it will hold for the new Hamiltonian 
generated by the elimination of nonsingular control 
variables.  However, it will  generally not continue to hold 
if the maximum principle is used to eliminate a singular 
control variable of nonlinear type. This is illustrated by 
the example just given,  where elimination of u gives 

H = PZbT - 3(Pl/4PZ)4’31. 

For this Hamiltonian, the second partial derivative with 
respect to p1 does not exist on the singular arc where 
p1 = 0, so the regularity property has been lost. This 
does no harm in the example  case,  since no more control 
variables remain in  the Hamiltonian, so this Hamiltonian 
need not be  used in any “generalized  Legendre-Clebsch” 
tests. But if there are two or more singular control vari- 
ables, not all occuring linearly in  the Hamiltonian, and 
if the extremal is singular to different  degrees with respect 
to different control variables, a difficulty  may  arise. 

This difficulty can always be resolved by the following 
procedure. Let H(x, p, u, t )  be  the Hamiltonian after 
elimination of all nonsingular control variables. Find a 
new Hamiltonian which  is linear in u, and is such that on 
the extremal to be tested, the two Hamiltonians give 
identically the same values for the vectors Hz, H,, and H, 
and for the matrices Hz,,  Hz,, H,,, HH,, and Huu. This 
is  always  possible: one may, for example, choose the linear 
Hamiltonian to be 

H ( x ,  P, uo, t )  + (u - uIdTHu(x, P,  uo, t ) ,  

where uo(t) is the  control vector associated with the extre- 
mal to be tested. A review  of  Sections 6 and 7 will  show 
that either Hamiltonian must give the same answer  when 
used to evaluate the second-order effect  of an arbitrary, 
weak control variation about  the chosen  extremal. There- 
fore, it is justifiable to use the linear Hamiltonian in place 
of the original Hamiltonian in testing for optimality. But 
with the linear Hamiltonian, the procedures discussed in 
Section 4 become available, making it possible to eliminate 
sets of control variables (without losing the regularity 
property) and to apply the entire test sequence  described 
in  Section 5. 371 
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A slightly more  elaborate  procedure permits a more 
uniform  treatment of all cases, including the atypical 
cases mentioned  in Section 4. The procedure begins by 
linearizing about  the extrema1 to be tested, obtaining 
(39, (36), and (37). The coefficient matrices may be re- 
garded as given functions of time. If all nonsingular control 
variables have been eliminated, H,, will be zero. Successive 
derivatives of 6H,(,, can  be computed  until the newest 
derivative either fails to be linearly independent of deriv- 
atives already  found  (in which case there is no reason to 
proceed further, since no additional relations can be found) 
or involves with a nonvanishing coefficient Q M .  

After applying the optimality  test to Q M ,  a number of 
control variables equal  to  the  rank of QM can  be eliminated, 
and  the process continued (if necessary) by computing 
still higher derivatives. It is easy to verify that  the eli- 
mination can  be  done  in a way which preserves the forms 
of (35), (36), and (37). A byproduct of the procedure is a 
set of independent  linear  relations among  the components 
of and lipCl). Since these  relations cannot exceed 
2n in  number, the integer M ,  defined in Section 4 must 
be 5 2n, or  the process will end with some  components of 
6u(l, still undetermined. In  the  latter case, MT = m by 
convention, and variations higher than  the second must  be 
considered to determine  optimality. 

References 
1. H. J. Kelley,  “A  second variation  test  for  singular  extre- 

mals,” AZAA Journal 2, 138C1382  (1964). 
2. R. E. Kopp  and A. G. Moyer,  “Necessary conditions for 

singular  extremals,” AZAA Journal 3, 1439-1444  (1965). 
3. H. J. Kelley, R. E. Kopp  and A. G. Moyer,  “Singular 

extremals,”  in Optimization-Theory and Applications, 
(G.  Leitmann,  ed),  Academic  Press,  1966,  Vol.  1,  Chapter 3. 

4. H. M. Robbins,  “Optimality of intermediate-thrust  arcs 
of  rocket trajectories,” AZAA Journal 3, 10941098 (1965). 

5. A. Miele, “Flight mechanics and  variational  problems of 
linear  type,” Journal of Aerospace Sciences 25, 581-590 
(1958). 

6. H. J.  Kelley,  “A  transformation  approach to singular 
subarcs  in  optimal  trajectory  and  control  problems,” SZAM 
Journal on Control 2, 234-240  (1964). 

7. B. S. Goh, “The second variation for the  singular  Bolza 
problem,” SZAM Journal on Control 2, 309-325  (1966). 

8. C. D. Johnson,  “Singular  solutions  in  optimal  control 
problems,  in Advances in Control  Systems-Theory and 
Applications (C.  Leondes, ed.) Academic  Press,  1965,  Vol. 2. 

9. J. V. Breakwell, “A doubly  singular  problem  in  optimal 
interplanetary  guidance,” SZAM Journal on Control 3 ,  

10.  J. V. Breakwell,  “Minimum  impulse transfer,” AZAA Pre- 
print 66-416,  August  1963;  also  in AZAA Progress in 
Astronautics and Aeronautics:  Celestial Mechanics and 
Astrodynamics, (V. Szebehely,  ed.)  Academic  Press,  New 
York, 1964,  Vol.  14,  pp.  583-589. 

71-77  (1965). 

Received  September 5, 1966 

372 

H. M. ROBBINS 


