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A Generalized Legendre-Clebsch Condition for the
Singular Cases of Optimal Control

Abstract: For certain optimal control problems, some of the extremal trajectories generated by simultaneous solution of the state and
adjoint equations may include arcs of a special character, called “singular” arcs. The optimality of singular arcs has been the subject of
considerable uncertainty, since the classical criteria are inapplicable or inconclusive. This uncertainty has recently been reduced by the
discovery of additional necessary conditions for the optimality of singular arcs. The principal result of this paper is a general statement
and proof of these conditions, in the form of a “generalized Legendre-Clebsch condition” which reduces to the classical Legendre-
Clebsch condition when applied to nonsingular arcs, and gives additional necessary conditions when applied to singular arcs. Other
results include a classification of the possible singular arcs, a useful extension of the conventional optimal-control formalism (by the
introduction of “generalized Hamiltonians® and “‘generalized control transformations™), and some interesting variational formulae.

1. Introduction

For certain optimal control problems, some of the extremal
trajectories generated by simultaneous solution of the equa-
tions of motion and the Euler-Lagrange equations may
include arcs of a special character, called ““singular” arcs.
The distinction between singular and nonsingular arcs of
extremals goes back to classical studies in the calculus of
variations, but singular arcs have not been extensively
studied until quite recently. A general definition (slightly
modernized) may be stated as follows: An extremal arc is
singular if, at each point of the arc, there is some allow-
able first-order weak control variation which leaves the
value of the variational Hamiltonian unchanged to second
order.

When the control vector is in the interior of its allowed
region, and the necessary partial derivatives exist, this
definition can be restated as follows: An extremal arc is
singular if the matrix H,, (whose elements are second
partial derivatives of the variational Hamiltonian with
respect to components of the control vector u) is singular
everywhere on the arc, i.e., if its determinant vanishes
identically on the arc.

The most common and most important cases involving
singular arcs arise when the variational Hamiltonian de-
pends /inearly on some control variable, with a coefficient
that vanishes identically on the arc. In these cases there
are finite control variations which do not affect the value
of the Hamiltonian, so the Pontriagin maximum principle
(or its classical counterpart, the Weierstrass condition) does
not directly determine a unique optimal control as a func-
tion of the state and adjoint variables. Instead, the optimal

control is determined indirectly by the requirement that
the coefficients of the linearly-appearing control variables
remain zero for the duration of the singular arc. This is
discussed at length in Section 4.

Singular arcs of the “linear” type have been extensively
studied in recent years, but they are not the only type of
singular arc possible. There also exist singular arcs where
all the control variables occur nonlinearly in the Hamilton-
ian and are uniquely determined by the maximum prin-
ciple. Singular arcs of the nonlinear type (or of mixed type)
have not been extensively studied. However, examples are
easy to construct, and at least one example has arisen in
an important practical problem. A geometric interpretation
of the various types of singular arcs (linear, nonlinear, and
mixed) will be given in Section 3. Singular arcs of the non-
linear type will be discussed again in Section 8.

The optimality of extremals which include singular arcs
has been the subject of considerable doubt and discussion,
since the classical criteria are either inapplicable to singular
arcs, or inconclusive. The difficulty is associated with the
classical Legendre-Clebsch condition. This condition has
two forms: a weak form and a strong form. Stated in
modern terms (i.e., in a form compatible with Pontriagin’s
maximum principle) the weak Legendre-Clebsch condition
requires the matrix H,, to be negative semidefinite. It is
an immediate corollary of the maximum principle (when
the control vector is in the interior of its allowed region)
and is a classical necessary condition for optimality. The
strong form of the Legendre-Clebsch condition requires
H,. to be negative definite. For nonsingular arcs, the two
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forms are equivalent, but on singular arcs only the weak
form holds. The classical theorems giving sufficient con-
ditions for optimality assume the strong form of the
Legendre-Clebsch condition, and are therefore inapplicable
to extremals with singular arcs. In particular, the classical
Jacobi theory, which leads to the Jacobi necessary con-
dition (that the extremal must not include a pair of con-
jugate points) and to a sufficient condition for local
optimality, does not apply to singular arcs.

It is easy to see that for singular arcs, the weak Legendre-
Clebsch condition must be supplemented by additional
necessary conditions. For example, consider the problem
of minimizing the integral of ay’ + by® from 0 to T, with
y = 0 at the endpoints. This problem has no solution
unless » > 0 (the weak Legendre-Clebsch condition). If
b > 0, the extremal y = 0 is nonsingular and the Jacobi
theory may be used to prove optimality for values of T such
that aT? 4+ br° > 0. If b = 0, this extremal is singular,
and its optimality depends on the additional necessary
condition a > 0.

The principal purpose of the present paper is to state
and prove a generalized Legendre-Clebsch condition which
for nonsingular arcs reduces to the classical Legendre-
Clebsch condition, and for singular arcs gives additional
necessary conditions like the one in the example above.
It seems probable that when the generalized Legendre-
Clebsch condition is satisfied, a generalization of the
Jacobi theory should be possible, giving a Jacobi condi-
tion for extremals with singular arcs, and an assurance of
local optimality if this condition is strongly satisfied, i.e.,
if the extremal (including its end-points) does not contain
a pair of conjugate points. However, this is beyond the
scope of the present paper.

The generalized Legendre-Clebsch condition may be
regarded as an extension and generalization of the work
of Kelley."! Considering a problem with only a single con-
trol variable, so H, and H,, reduce to scalars, Kelley
showed that if H,,, = 0, an additional necessary condition
is (in a form suggested by Bryson)

o [(@/aif B 2 0. (1

(Note: Kelley’s own statement of this condition has the
inequality sign reversed. This is because Kelley uses a min-
H formulation of the optimality conditions instead of the
max-H formulation adopted in the present paper.) When
Kelley’s test quantity is zero, additional conditions are
needed. Kopp and Moyer (private communication) con-
jectured that a general necessary condition for the case of
a single control variable is that the first nonvanishing
member of the sequence {q,,}, where

qQn = % [(d/dt)mHu]’ m=0,1,2,:--, (2)
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must occur for even m(m = 2k) and have the correct sign.
Subsequent work by myself, and independently by Kopp
and Moyer,”® has shown this conjecture to be correct,
except that the evenness condition is always automatically
satisfied and hence need not be considered. The correct
sign turns out o be (— 1)'”1, so the generalized necessary
condition for cases with a single control variable is

(—1)* o [(@/d*B) < o. 3

This evidently reduces to the Legendre-Clebsch condition
if ¥ = 0, and to the Kelley condition if k = 1. It is con-
venient to call 2k the degree of singularity of the arc. Then
nonsingular arcs are singular of degree zero, and arcs for
which Kelley’s condition holds strongly are singular of
degree two. The intermediate-thrust arcs of rocket tra-
jectories in vacuum are singular of degree four (Robbins*).

The conditions derived for one control variable can be
readily generalized to cases with multi-component control
vectors. This gives the generalized Legendre-Clebsch con-
dition in its most complete form. In multi-component
cases, arcs with an odd degree of singularity can occur, but
are necessarily non-optimal. It is interesting to note that
this result is consonant with the original Kopp-Moyer
conjecture.

The generalized Legendre-Clebsch condition is not the
only approach to the optimality problem for singular arcs.
Alternative approaches are the Green’s-theorem method
of Miele’ and the transformation methods of Kelley® and
Goh.” The transformation methods are about as powerful
as the method described here, but are more laborious to
apply. Miele’s method is the best when it is applicable,
since it can sometimes establish absolute optimality.
However, it is usually inapplicable. A comprehensive dis-
cussion of singular arcs, with many original results and an
excellent list of references, has recently been given by
Johnson.®

2. Formulation of the problem

The optimization problem is assumed to be stated in the
Mayer-Pontriagin form. That is, a system of first-order,
ordinary differential equations (state equations) is given in
the form

% = fdx,u, 1), i=1,2,---n, 4

where %, is the i*® component of the n-component state
vector x, and u is a control vector of dimensionality n, > n.
The control vector is subject to some given set of state-
independent control constraints. These may be compactly
expressed in the form u e U, where U is some given region
in the control space. The assumption that the control
constraints are state-independent is not very restrictive,
since state-dependent constraints can generally be restated
in a state-independent form. It could readily be eliminated,




but this would complicate the discussion. The optimization
problem is to find a trajectory (i.e., a solution of (4) con-
sistent with the control constraints) that satisfiies given
boundary conditions at an initial time 7, and a final time
t;, and minimizes a given function of x(¢,). The first-order
necessary conditions for optimality are given by the Pon-
triagin maximum principle

H(x, p,u, ) = max H(x, p, u*, 1), (5)

u*el/

where H is the Hamiltonian function

H(x,p,u,t) = ;1 pifdx,u, ) = PTf (6)

and p, which is an n-component adjoint vector that is a con-
tinuous function of time, obeys the differential equation

b = —0H/0x;,  j= 1,2, - n, (7)

and satisfies certain transversality conditions at times 7,
and ¢,. It will be convenient to introduce a compact
vector-matrix notation in which partial differentiation
with respect to components of a vector is denoted by using
that vector as a subscript In this notation, (4) and (7) can
be written in the familiar canonical form

*=H, (8a)
p = —H,. (8b)

We shall restrict attention to arcs in which u is in the inter-
ior of its allowed region U, either originally or as the result
of a control-reduction process. This means that if the
optimal u is on the boundary of U, it is generally possible
to use this fact to eliminate one or more control variables,
thereby defining a new u of reduced dimensionality, and
a corresponding new U in a new control space (also of
reduced dimensionality) such that the new u is in the inte-
rior of the new U. For arcs of the chosen type, and as-
suming existence and continuity of the relevant partial
derivatives, (5) implies the Euler-Lagrange condition

H, =0 9

and the weak Legendre-Clebsch condition that the matrix
H, . be negative semidefinite:

H, < 0. (10)

If the matrix H,, has r null eigenvectors, the arc will be
said to be singular of rank r, and to have r ‘‘singular
controls” and n, — r “nonsingular controls.” (Rank of
singularity, as defined here for multivariable cases, should
not be confused with degree of singularity, defined in the
previous section in connection with one singular control
variable.)

The nature and significance of singular arcs can be
made clearer by using a well-known geometrical interpre-
tation of Egs. (4)~(7). If u is varied over its allowed region

U while x and ¢ are held fixed, the vector x = f(x, u, 7
traces out a pointset S(x, /) in a rate-space called the
“hodograph space.” In terms of this pointset, (4) and the
control constraints can be reduced to the single relation

% e S(x, 0. (11)

If the pointset S is not convex, the optimization problem
may not have a solution with piecewise-continuous con-
trols, since a “chattering” control (rapid switching among
two or more values of u) may be able to generate an
average X which is desirable for optimality but not realiz-
able by any single allowed value of u. In such cases, the
standard procedure is to consider a ‘““relaxed” optimization
problem in which S is augmented to make it convex. The
solution of the relaxed problem can be directly translated
into a solution of the orginal problem. To simplify the
discussions below, S will be assumed convex. This does not
entail any significant loss of generality.

If we introduce the abbreviation f* = f(x, u*, r) where
u* is a possibly non-optimal control, (5) and (6) state that
the optimal %, corresponding to the optimal control, must
satisfy the relation
p’x = max (p"f¥). (12)

1*e¢8S
The geometrical interpretation of this relation is that
there is a hyperplane P in the hodograph space which has
the adjoint vector p as its positive normal, and “rests” on
the pointset S. That is, S and P have at least one point in
common, and all points of S lie either on P or in the nega-
tive halfspace defined by P. The optimal x (and hence, the
optimal control) corresponds to a point of contact between
S and P, which is a point of tangency if S possesses a
smoothly turning normal in the neighborhood of the con-
tact. In general, both S and P change with time, so the
hyperplane rolls on a moving surface. If S and P have
only one point of contact, the optimal control and the
instantaneous rates of change of 8 and P are uniquely
determined. The contact may be non-unique at isolated
instants of time (this gives one type of corner) or through-
out one or more finite-duration arcs of the trajectory.

Let Sp denote the set of contact points, i.e., the inter-
section of S and P. The convexity assumption for S implies
that Sp also is convex, so Sy consists of a single point, or
a segment of a straight line, or a convex region in a two-
dimensional plane, or more generally a convex region in a
linear subspace of the hodograph space, of dimensionality
r’. From the geometrical viewpoint described above, the
control variables are merely a convenient parameterization
of the pointset S(x, 7). By a transformation of the control
variables if necessary, it is always possible to ensure that
Sp is linearly parameterized. Then for f ¢ Sp there are r'
components of u that appear linearly in the state equations
and do not affect the value of the Hamiltonian, so their
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values are not directly determined by the maximum
principle. These »' components are singular control var-
iables of the “linear” type mentioned in the Introduction.
The remaining r — ’ singular control variables occur non-
linearly in the Hamiltonian, and are directly and uniquely
determined by the maximum principle.

If the matrix H,, has full rank (i.e., if each control
variable really represents an independent degree of control
freedom for weak perturbations) the strong Legendre-
Clebsch condition H,, < 0 has an obvious geometrical
interpretation: it states that contact between S and P is
unique, and is at most of second order. Non-unique contact
implies the existence of at least one “linear” singular con-
trol variable; unique but higher-order contact means
singular control variables of the “nonlinear” type.

3. Generalized variational hamiltonians

Before proceeding further with the discussion of singular
arcs, it is expedient to introduce the concept of a “general-
ized Hamiltonian.,” This concept greatly simplifies the
treatment of complex singular cases, but its utility is by no
means restricted to such cases. It appears to be a con-
venient general tool for the optimal-control theorist as
well as for the user of optimal control theory.

Consider the optimization problem stated in Section 2,
and the corresponding Hamiltonian given by (6). Now
suppose that as a direct or indirect consequence of the
maximum principle, it can be shown that the optimal con-
trol vector u can be expressed as a function of x, p, ¢, and
a new control vector v (of smaller dimensionality) which
remains to be determined. That is,

u=ux,p,?V). (13)

Since rescaling the adjoint vector p by an arbitrary positive
constant factor cannot change the optimal control, the
function u(x, p, ¢, v) is necessarily a homogeneous function
of the components of p, of degree zero. We shall restrict
attention to cases in which u and v are in the interiors of
their allowed regions, so constraints need not be considered
explicitly. Substitution of (13) into the Hamiltonian gives
a new Hamiltonian:

Hnew(x; P, v, t) = Hold[x7 pr u(xs ps t’ V), t]' <14)

The new (generalized) Hamiltonian will not in general
be of the form shown in (6), that is, it will not in general be
linear in the adjoint vector p. However, it will be a homo-
geneous function of the components of p, of degree one.
It therefore satisfies the Euler identity for such functions,
namely

H = p"H,. (15)

Exactly the same equations and trajectories may be ob-
tained from the generalized Hamiltonian [using (8) and
the maximum principle] as would be obtained by using
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the original Hamiltonian and substituting (13) into the
results. This equivalence is immediately evident for trajec-
tory arcs in which u and v are in the interiors of their
allowed regions: the equation H, = 0 for the old Hamil-
tonian implies H, = 0 for the new, and also implies that
the values of X = H, and p = — H, do not depend on
which Hamiltonian is used. The equivalence can also be
shown for arcs in which u and v are influenced by con-
straints that are constant or depend on ¢ only, though this
is unnecessary for present purposes.

All, or nearly all, of the mathematical formalism that
has been developed for conventional variational Hamil-
tonians can be extended to the generalized variational
Hamiltonians described in this section. Where derivations
make use of (6), they can be modified to use (15) instead.
For example, some elegant second-order variational for-
mulae given in Section 6 are valid for generalized Hamil-
tonians.

Although the principal practical utility of generalized
variational Hamiltonians is in connection with a partial
determination of the optimal control vector (so v is of
smaller dimensionality than u) such Hamiltonians may
also arise from the use of generalized control transfor-
mations (i.e., transformations in which the new control
vector depends on the adjoint vector p, as well as on x, ¢,
and the old control vector) in which the dimensionality of
the control vector does not change. Such transformations
are evidently of both theoretical and practical interest.
Some of the uses of generalized control transformations
(with or without reduction of control dimensionality) are
illustrated in the following sections. It should perhaps be
emphasized again that these control transformations do
not affect either the state vector x(f) or the adjoint vector
p(¢). Consequently one may, if desired, apply them to
particular subarcs of a trajectory without affecting the
treatment of the rest of the trajectory.

Still another way in which generalized variational Hamil-
tonians may arise is by canonical transformations which
alter the state and adjoint variables while preserving
equations (5), (8), and (15). Discussion of these more
general transformations is outside the scope of the present
paper.

4. Singular arcs of linear type

In this section, the use of generalized variational Hamil-
tonians will be illustrated by a discussion and classification
of cases in which the singular control variables are all of
the ““linear” type. (This classification will subsequently be
shown to be relevant for singular arcs in general.) Certain
quantities defined in the course of the discussion will be
useful in the next section, where the generalized Legendre-
Clebsch condition is stated and discussed.

Consider a Hamiltonian H(x, p, u, £) which is regular in
the region of interest, i.e., it and all its partial derivatives,




up to whatever order is needed, exist and are continuous
in this region. Throughout the region of interest, the matrix
H,. is assumed to have rank n, — r. Then by well-known
implicit function theorems, the equations H, = 0 can be
used to express all the original control variables as regular
functions of x, p, f and of r new control variables (which
may possibly be a subset of the original control variables).
In other words, the n, — r nonsingular control variables
can be eliminated, leaving only the r singular control
variables. Also, the resulting new Hamiltonian will be
regular. Assume that the new Hamiltonian is linear in the
new, r-component control vector. Then

Hix,p,u,? = H(x,p, 0,7 + u"H(x,p, ). (16)

The maximum principle requires H, to vanish identically
on any extremal arc where u is in the interior of its allowed
region. This does not directly determine u, since H, is
independent of u by the linearity assumption. However,
(as is well known) it determines u indirectly, via the time
derivatives of H,. The identical vanishing of H,, which is
necessary to keep the trajectory singular, gives the sequence
of conditions

H, = 0, (H) =0, (H,)" =0, etc. (17)

The condition H, = 0 is independent of u (as already
noted) and hence gives a relation among x, p, and z. By
use of the equations x = H, and p = — H,, the other
conditions given in (17) can be successively reduced to
similar relations among these variables, until sooner or
later (in general) a relation will be encountered which
explicitly involves u. Let Q,, denote the » )X r matrix whose
elements are

o - 2[(2) 2],

and let M denote the smallest value of m for which Q,, has
at least one nonzero element. In general, M is a function
of x, p, and ¢, but to simplify the discussion we shall
assume that M is constant in the neighborhood of the
extremal arc of interest, and make a similar assumption
for the rank of Q,,. These assumptions exclude certain
atypical cases in which the extremal arc coincides with
a line or surface in the x, p, or ¢ space where M is greater,
or the rank of Q4 is less, than at neighboring points. Tam
indebted to the anonymous referee who brought these
atypical cases to my attention.) These atypical cases will
be discussed in Section 8. In all other cases, M is the first
value of m for which the elements of Q,, do not all vanish
identically in the region of interest. For singular arcs,
M > 1 necessarily, and the first of the conditions listed in
(17) that explicitly involves u is

0= (d/dt)MHu = WM(X’ P t) + QM(x’ P t)u’ (19)

where W;, and Q,, are independent of u (as indicated)
since u necessarily enters linearly into the equation. If
Qy; is nonsingular, the arc is singular of degree M with
respect to each of the r singular control variables. (Note:
Degree of singularity, as defined here, should not be con-
fused with rank of singularity, defined earlier as the number
of singular control variables.) The optimal control is given
by

u = —[Qu(x, p, )7 Wil(x, p, 1). (20)

The identical vanishing of (d/dr)™ H, on the arc guarantees
the vanishing of all higher derivatives of H,, so no further
relations need be considered. For an arc which is singular
of degree M with respect to each of its r singular control
variables, (17) therefore gives one relation [Equation (19)
or (20)] determining the control vector, and the M relations

(d/d)™H, = W.(x,p,8) =0 for 0< m < M. (21)

If M is finite (i.e., if some derivative of H, involves u
explicitly) these M relations are necessarily independent,
for if any derivative of H, below the M*" could be ex-
pressed as a function of lower-order derivatives (including
H, itself) with coefficients functions of time, then by suc-
cessive differentiations the same property could be proved
for the M*® derivative, and this derivative would therefore
be independent of u, contrary to the definition of M. Since
the 2n components of x and p cannot satisfy more than 2»
independent conditions it follows that either rM < 2n, or
all derivatives of H, are independent of u. The latter
alternative implies an indeterminate control function, a
degenerate case that will not be considered.

If the matrix Q,, is singular, so its rank r; is less than r,
the arc is singular of degree M with respect to r, of its
control variables, and singular to some higher degree with
respect to other control variables. By use of (19), r, of the
singular control variables can be expressed as functions of
X, p, ¢t and the remaining (“more singular’) control var-
iables. Substitution into the Hamiltonian gives a new
Hamiltonian with fewer control variables. The new H, and
its first M — 1 derivatives automatically vanish as con-
sequences of relations already obtained. The M de-
rivative does not involve control variables, but some higher
derivative will (in general). This gives a relation like (19)
but with a new and larger integer M, and a new matrix
Q. of smaller size. If the new Q,, is nonsingular, the pro-
cess terminates, otherwise it continues in an obvious
manner. Let the sequence of values of M found be M,
M,, etc. Then the arc is singular of degree M, with respect
to r; control variables, of degree M, with respect to 7,
control variables, and so on. The total degree of singularity
of the arc is defined to be

My = 3> r:M,. (22)
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Besides the control equations, there are M, conditions
involving x, p, and ¢ only, which must be satisfied on the
singular arc. By an extension of an argument given earlier,
these relations are necessarily independent (implying
M, < 2n) except in degenerate cases where at least one
control variable can never be determined.

5. The generalized Legendre-Clebsch condition

It is convenient to extend the definition of the matrices
Q.. as given by (22) to cases where control variables may
enter nonlinearly into the Hamiltonian, so Q,, may depend
on u as well as on x, p, and ¢. Let M denote the smallest
integer for which Q,,, evaluated on the extremal of interest
and with the optimal control, has at least one nonzero
element. Then the classical Legendre-Clebsch condition,
which requires the matrix H,, = Q, to be negative semi-
definite, can be expressed as a special case of a more general
necessary condition for optimality, involving Q.. This
condition, which constitutes the complete generalization
of the classical Legendre-Clebsch condition for arcs which
may be singular or nonsingular, can be stated in the form
of two subconditions:

(1) The integer M must be even.
@ If M = 2k, then (—1)"Q,, must be negative semi-
definite.

These two subconditions will be derived in Section 7, using
results from Section 6. Their systematic application to a
particular problem proceeds as follows. First form Q, =
H, .. Then there are three alternatives:

(A) Qo # 0 and nonsingular
(B) Q, # 0 and singular
© Q,=0.

If Qo # 0, then M = 0, and the generalized condition
reduces to the classical Legendre-Clebsch condition, which
is automatically satisfied as a consequence of the maximum
principle. If Q, is not only nonzero but nonsingular (alter-
native A) the arc is nonsingular, the Legendre-Clebsch
condition is satisfied in its strong form, and no further
tests are necessary. If Q, is nonzero but singular (alter-
native B) the arc is singular, and use of the maximum
principle to eliminate nonsingular controls (as described in
Section 4 gives a new problem with a control vector of
reduced dimensionlity, and such that the new Q, is zero.
If Qo = 0, either originally (alternative C) or as a result
of the reduction just mentioned, the procedure is to form
successive time-derivatives of H, until some derivative
(the M*™) gives a nonzero Q,. If M is odd, the arc is
non-optimal by subcondition (1) and need not be tested
further. If M is even, the matrix Q, must be examined to
see whether it satisfies subcondition (2). If it does not, the
arc is non-optimal and need not be tested further. If Q,,
satisfies subcondition (2) and also is nonsingular, the test
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ends with a favorable result. If Q,, satisfies subcondition
(2) but is singular, further testing is required. In the usual
case where the singular control variables are all of the
linear type, the procedures described in Section 4 may
be applied to eliminate successive sets of control variables.
Each elimination gives a new integer M and a new matrix
Qj (of reduced size) to which subconditions (1) and (2)
may be applied again. The process continues until some
test is not met, or until subcondition (2) is satisfied in its
strong form (i.e., with a nonsingular Q). If some or all
of the singular control variables are of the nonlinear type,
or if one of the atypical cases mentioned in Section 4 arises,
a modified procedure must be used. This will be explained
in Section 8.

It will be shown in Section 7 that the matrix Q, is nec-
essarily symmetric if M is even, and antisymmetric if M is
odd. When there is only one control variable (originally,
or after reduction) the matrix Q,,; reduces to a scalar gu,
and M is necessarily even since an antisymmetric 1 X 1
matrix vanishes. The generalized Legendre-Clebsch con-
dition then reduces to

(—l)k‘hk <o, (23)

which is the one-variable necessary condition quoted in
the Introduction.

If this one-variable necessary condition can be proved,
then subcondition (2), which is its obvious multivariable
generalization, follows immediately. To see this, consider
any arc which is singular of order 2k and violates sub-
condition (2). That is, at least one of the eigenvalues of Q.
has the wrong sign. Because of the symmetry of Q,; (to be
proved in Section 7) it is possible to diagonalize Q,; by
a transformation of the control variables. The coefficients
of this transformation may be functions of ¢ alone, since
the diagonalization is required to hold only on the extremal
being tested. From the new control variables, select one
which corresponds to a wrong-sign eigenvalue, and
“freeze” all the other control variables by considering
them to be given functions of time. This creates a new prob-
lem, with only one control variable. The one-variable
condition (generalized Iegendre condition) is violated, so
if it is a necessary condition for optimality, the arc being
tested must be non-optimal for the new problem. But
this means that it must be non-optimal for the original
problem also, since every control variation permitted in
the new problem is also permitted in the original problem.
Therefore, the one-variable necessary condition implies
the necessity of subcondition (2).

From this discussion it is evident that the generalization
from a single control variable to multiple control variables
adds nothing essentially new, except the possibility of arcs
with odd-degree singularity. These will be shown in Section
7 to be non-optimal, as implied by subcondition (1). A
general expression for Q,, valid for singular cases of linear




type with nonsingular controls eliminated, is
Ql = Huszu - Hupru- (24)

If @ and B8 are two components of u, the optimality con-
dition Q; = 0 can be written out in component form as

[ 8’H 9°H °H 9°H |
0==Z[ - D

— L da dp; 96 Ix; da 9%, 383 apy
By this test, a rank-two singular arc arising in the theory
of mid-course corrections of space trajectories has been
shown to be non-optimal, verifying a conjecture of Break-
well.?

6. Variational Formulae

In this section, certain variational formulae will be derived
which relate control variations to changes of the final
state. It will be recalled that for weak variations, the con-
trol-vector change 6u is assumed to be small of first order
in some parameter e. For strong variations, the absolute
integral of 8u is assumed to be small of first order in ¢, but
no restrictions (other than those given by the control
constraints) are imposed on éu itself. For either strong or
weak variations, the changes of the state and adjoint
vectors are of first order in e. The change in final state is
to be determined to second order in e.

Consider a given trajectory, which will be referred to as
the unperturbed trajectory. A second trajectory (the per-
turbed trajectory) is to be compared with this trajectory.
Let quantities evaluated on the perturbed trajectory be
identified by asterisks, whereas the corresponding un-
starred quantities are understood to be evaluated on the
unperturbed trajectory. Thus x*, p*, and u* are perturbed
variables, whereas x, p, and u are unperturbed. Define

ox(t) = x*(t) — x(v) (26)
with analogous definition for the other quantities. It will
also be convenient to introduce the notation

£ =x+4(1/2) 6x = x* — } &x

with analogous definitions for § and @. Then by using (8)

and (15), and relations derived from the latter equation by
partial differentiation, it is easy to verify that

(3" ox)" = H* — H — }(Hf + H,)" &x
— 3(H} — H)" dp (27)

without approximation. For weak variations, expanding
the functions on the right side of this equation in Taylor’s
series about ¥, P, {i, and noting that the quadratic terms
cancel, gives

(3" 6x)" = [H,(%, B, 4, H]" du + O() (28)

and integrating this from ¢, to ¢, gives

[p" ox]. = j:u [H (%, §, 1, )" sudt + O(), (29)

which is the desired relation for weak variations. By a
tedious but straightforward computation, it can be shown
that the analogous formula

tr
6" oxi = [ [HG B,u%, ) — HGE B,u, )] di
t

°

+ 0() (30)

is valid for strong variations. But this formula, though of
considerable intrinsic interest, is not required for present
purposes. Equation (29) can be expressed in the equivalent
form

{(p + % op)" ox]i!
=f”aL+%6Hondr+owy 31)

So far, no assumption has been made that the unper-
turbed trajectory is an extremal. Introducing this assump-
tion gives H, = 0, so (31) simplifies to

tf
(o+3 007 6l = 5 [ (GH) dudi +0(). (32
to
For weak variations it is legitimate to assume (as cannot

be assumed for strong variations) that éu, 6%, and dp are
expressible as power series in the parameter e:

Su = € Sugy + i€ buw + - (33a)
0x = e 0xqy) + 3€ 0%y + - (33b)
op = € 5P<1>‘ + o (33¢)

Using these expansions, both sides of (32) are to be
evaluated to order €. To this order, the right side of the
equation is

tr
1 f (5Hu<1))T dugy, dt, (34)
t

°

where
éH,,, = H,, 8xy, + H,, dpy + H,, duy,.  (35)

The quantities §x;, and 6p, are solutions of the follow-
ing pair of linear differential equations:

ok, = H,, 8x, + H,, 0pyy + H,. Sug, (36)
qu 6“(1) . (37)

0Py = —H,, x4y, — H,, 0pay —

Let us consider solutions of (36) and (37) for which 6x;,
vanishes at times 7, and ¢,, so there is no first order state-
perturbation at the endpoints. Then to order ¢, (32) can
be rewritten as

ty
" 5x)il = 3¢ [ (M) bugy d, (39
to

where it is understood that 8x is O(€) at time 7, and ¢,.
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Let us assume for simplicity that the endtimes ¢, and ¢,
are fixed, and that the state constraints (if any) imposed at
times #, and f; are equality constraints. Then if P[x(¢,),
x(2,)] is the quantity to be extremized, the transversality
conditions which p() is required to satisfy at the endtimes
guarantee the existence of a constant u(with u > 0 if P
is to be maximized, and x < 0 if P is to be minimized)
such that

p 6P = [p" ox + O(|8x]")]i (39)
for all endpoint perturbations which are consistent with
the state constraints referred to above. Putting this into

(38), and dropping the terms in |8x(z,)|* and |éx(z,)|®
because they are of order *, gives

tr
p 6P = %Jf (6H,(1,) " ugy, dt (40)
i

to order ¢’. If the trajectory is a local optimum, u 6P must
be < 0 for e sufficiently small. Therefore, a necessary
condition for optimality is that the integral on the right
side of this equation must be nonpositive for any solution
of (35), (36), and (37) with éx,, vanishing at the endpoints.

This condition is essentially the second-variational con-
dition which is derived in the classical variational calculus
in connection with Jacobi’s accessory minimum problem.
In the next section, it will be used to derive the generalized
Legendre-Clebsch condition which is the main result of
this paper.

7. Proof of the generalized Legendre-Clebsch
condition

In this section, the generalized Legendre-Clebsch condition
will be shown to be a necessary condition for optimality,
by use of the method of special variations. That is, it will
be shown that if the generalized Legendre-Clebsch con-
dition is violated at any time between ¢, and ¢,, then the
trajectory cannot be optimal because a variation of the
state, adjoint, and control variables can be found which
satisfies the conditions given in Section 6 and gives a
positive value for the integral on the right side of (40).
The basic method is due to Kelley' but has been improved
and generalized.

Before beginning the proof, it is convenient to introduce
some abbreviated notation. Let A denote the value of the
integral in (40), and let du, and 6H,, be represented
by v and K respectively. Then

A= f Y K (v(s dr. (41)

Also, let z be a vector with 2n components, of which the
first n give 6x(;, and the second n give dp,,, and introduce
the 2n X r matrix R defined by

R = {H] (42)
H,,
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and the 2n X 21 matrices S, J, I defined by

S — ‘7sz Hzp} — ST (43)
LHP-E HI)P
o, L, r

= = -] (44)
L—1IL, O,

7

I = I‘In On’ — _JQ’ (45)

‘On Iﬂ

where I, is the n-dimensional unit matrix and O, is the
n-dimensional zero matrix. With this notation, (35), (36),
and (37) can be rewritten as follows:

K =R"z 4+ H,v (46)
z = JSz + JRv. (47)

Now let ¢, denote a time at which the generalized
Legendre-Clebsch condition is violated, and consider an
interval of width 2T centered on this time. The interval
begins at time ¢, = t, — T and ends at time t; = #, + T.
The time #, is assumed to be in the interior of a singular
arc, and T is to be chosen so small that the entire interval
from 1, to #; is also in this arc. For times before #,, the var-
iations z and v are chosen to be identically zero. For times
between #, and t,, v(¢) is chosen to be of the following form
which depends on M, the order of singularity of the arc:

v()) = a® () if M= 2% (48a)
v(®) = a7V () if M=2k+1 (48b)

where the superscripts in parentheses denote orders of
differentiation. The vector-function a(r) and its first k
derivatives are required to be continuous between times
t; and ¢, and to vanish at these two times.

As a result of the control variation between times #
and #;, z(1;) will generally be nonzero. For times between
t; and t,, the control variation is to be chosen in a manner
that ensures that the first » components of z will vanish
at time ¢, (i.e., so that §x;, vanishes at time ¢, as required
by the conditions given in Section 6). One component of
8% 1,, the component normal to p,, automatically vanishes
at time ¢,, since p* 8Xy, is a constant and is initially zero.
It is explicitly assumed that it is possible to choose v(7)
between #; and ¢, to make the other # — 1 components
vanish also. This controllability (normality) assumption
is probably not essential for the validity of the generalized
Legendre-Clebsch condition, but it is essential for the
derivation given here.

It is important to note that the controllability assump-
tion need only be valid before the partial elimination of
control variables discussed in Section 3. This is because one
may use a generalized Hamiltonian and reduced control
vector for time ¢ > t,, but retain the original Hamiltonian
and control vector for times after .




For times between #; and 2, v(¢) and K(?) are O(|z(%;)|)
in magnitude, so (41) can be rewritten as

a= [ R @w) dt + o). (49
Using (48) and integrating by parts k times gives

o= (=t [ RPOF e i - Oa)) (500
if M is even, and

a= (=1 [ RPOIE) @+ 0Ual) (500

if M is odd. Now let us introduce the scalar quantities «
and B, defined as follows:

« = f,“ la(s)| dt (s1)
5=.K“|ag|m. (52)
It will be shown that

K?(@) = Qu(nalt) + 0. (54)

Whence, for even M,

= 0 [T T OQuBa) & +06) (559
and for odd M, using the easily proved relation o < 78,
A= (0" [ O0u0 dt + 0d). (55

From these relations, the generalized Legendre-Clebsch
condition follows immediately. To see this, consider first
the case of even M and assume that (— l)kQM(tz) has a
positive eigenvalue, contrary to the generalized Legendre-
Clebsch condition. Then choosing a(f) parallel to the corre-
sponding eigenvector, and making use of the fact (to be
proved later) that Q,, is symmetric when M is even, gives

A> f la() [ dt + O(?), (56)

where A\ is a lower bound for the eigenvalue, over the
interval from 1, to ¢;. Since the eigenvalue is a continuous
function of time and is positive at time t,, this bound can
be chosen positive if T is sufficiently small. Also, Schwarz’s
inequality gives

ts
o < 2Tf la()|” dt, (57)
12

which shows that the second term of (56) is of higher order
in T than the first term, so if T is sufficiently small, A is

necessarily positive. Therefore, the trajectory cannot be
optimal. This proves the necessity of the generalized
Legendre-Clebsch condition for the case of even M. Now
consider the case of M odd. For this case, Q, is an anti-
symmetric matrix, as will be shown shortly By the def-
inition of M, Q,; must have at least one nonzero element.
Without loss of generality, let Qu2 = — Qua be such
an element, and choose a(f) to have all its components
zero except a;(¢) and a,(¢). Then

ta
A= (10" [ (@i = ain)Qurs di + O(ef). (59
The integral can be made to have either sign, since one can
reverse the sign of a,(r) while leaving a,(f) unchanged.
Also its magnitude can readily be made arbitrarily large
compared to of. This may be seen as follows: define
At = (¢t — 1,), and choose a,(¢) and a,(f) to be of the forms

a(t) = T*'g,(At/T) (59a)
ay(f) = T 'gy(At/T) (59b)

so the maximum magnitude of v = a‘**" will be inde-
pendent of T. Then « varies like 7% and 8 varies like
T 50 of varies like T°***, whereas the integral varies
like Qur12(t) times T°***, plus terms of higher order, and
hence dominates if T is sufficiently small. Therefore A can
be made to have either sign, so the trajectory cannot be
optimal. This proves the necessity of the generalized
Legendre-Clebsch condition for the case of odd M, and
hence completes the derivation except for proofs of (53)
and (54) and of the symmetry properties of Q,,. These
proofs are based on certain explicit expressions for z(?),
A, and derivatives of K(f) up to and including the M™.
Only cases with M > 1 (i.e., singular cases with all non-
singular controls eliminated) need be considered. For such
cases, H,, = 0 and (46) reduces to

K = Rz, (60)

Let us define a sequence of matrices R, of dimensionality
2n X r, by the equations

R, =R (61a)
R..; = R, — SJR; (i > 0), (61b)
or in operator form by the equation

R; = [I(d/df) — SJI'R. (62)
It is easy to verify that

R%2)" = Ri)"z + R7JRev, (63)
whence, in particular,

K = (R%2)" = R%z + R%JR,v. (64)
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If R,"JR, is not a null matrix, then M = 1 and Q) =
ROTJRO. If ROTJR(, is a null martix, then K = R, "z, and
using (63) again gives

K = R7z)" = Rz + R%JRyv, (65)

which is analogous to (64) but with different subscripts.
If RlTJRO is not a null matrix, then M = 2 and Q, =
R,“JR,. If R,"JR, is a null matrix, the process continues
in an obvious manner. The general result is that

(Rur-1)"JRy = Qu (66)
K™ = Ryz + Quv (67)
and that, for all i < M,

(Ri—l)TJRo =0 (68)
K = R7z, (69)

To demonstrate the symmetry properties of Q, it is con-
venient to introduce a family of matices A; ; which are
all of dimensionality r )X r. The indices i, j do not refer to
matrix elements, but identify members of the family. The
defining equation is

A, = RfJRi

(70)
0<i,j<M—1.
It is evident that (A, ;)" = — A; ;and that Q;y = A1 .0
s0 (Qs)" = — Ag 1. Differentiating (70) and using
(61b) gives
Ai,:‘ = Ai.i+1 + A (71)

Now let s denote the least value of i 4+ j for which A, ;
is nonzero for some i. Clearly s < M — 1since Ay_1,0 =
Qy # 0. Since A,_,_;,; = 0, and its derivative is also zero,
(71) gives

0=A,_;;,+ A _iin. (72)
Whence, by induction,
A,_..= (—=1A,,. (73)

The integer s must be equal to M — 1 since (as already
stated) it cannot be greater than M — 1, and by (66) and
(73) it cannot be less. Setting i = s = M — 1 in (73) gives

Ag yoy = (—I)M_lAM—l.O, (74)

which is equivalent to
Qx = (—1"Qu. (75)

This completes the proof of the symmetry properties of
Qy for M > 1. (When M = 0, Qy = H,, which is ob-
viously symmetric, so the symmetry property holds for this
case also.) The next step is to derive an explicit expression
for z(?). Let ®(t, 7) denote the transition matrix associated
with (47). That is @ is the 21 X 21 matrix which satisfies
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the following set of equations:

®(t, 1) =1 (76)
(a/d))®(¢, ) = JS(H®(t, 7) (77
(d/dr)®(t, 7) = —®(t, )]S(7). (78)

In terms of @ the solution of (47) is

2(t) = f " ®(t, DR(V() dr, (79

since z(t,) = 0 by choice. Equations (78) and (62) together
give

(d/dn)[®(z, 7)JR(7)] = ®(z, 7)JRius(7). (80)

Integrating the right side of (79) by parts k times, and using
(73) and (48a) gives

) = = 2 (— D TR (D2 )

F (=1 f ®(t, 7)JR(Da(r) dr (81a)

for the case of even M. Similarly, for the case of odd M
integrating by parts k£ + 1 times and using (73) and (48b
gives

) = + 3 (— D" TR (a0

4 (=) ftt ®(t, 7)JR,.i(7)a(r) dr. (8lb)

Setting ¢ = ¢, in these formulae, and using the properties
of a(?), gives

z(t;) = (—1)*** fth (15, 7)JR(P)a(7r) dr (82a)

if M is even, and

2(t) = (— 1) f "B, DR (Da(r) dr  (82D)

if M is odd. From these equations and (51), Eq. (53)
follows immediately. To prove (54) use £ < M, which
by (69) implies K = R,"z. The cases of even M (M =
2k) and odd M (M = 2k 4+ 1) must be treated separately.
Multiplying (81a) and (81b) by R,” and using (70) gives

KO() = 2 (—) A0 + 0@ (83)
for even M, and

KO() = X (1A a0 + 0@ (83
for odd M. In either case, the sum of the subscripts of A

is M — 1 — i, Ifi £ 0, the subscript-sum is less than M — 1
and the A-matrix vanishes (see discussion following (71)).




Therefore, (83a) and (83b) reduce to

K® = (—1)*"A;.._1a(r) + O(e) (84a)
and
KP() = (—1)"A,.a() + Oa), (84b)

respectively. However, by virtue of (73), (— 1)* A Byl =
Q. when M = 2k, and (— 1)*A, , = Qi when M = 2k +
1. Therefore, (84a) and (84b) both reduce to

K?1) = Qunal) + O(a)

which is identical with (54), the relation to be proved. This
completes the proof of the generalized Legendre-Clebsch
condition.

8. Singular arcs of nonlinear type

As has already been mentioned, there exist singular arcs
where some or all of the singular control variables appear
nonlinearly in the Hamiltonian, and can be directly and
uniquely determined by the maximum principle. A simple
example is given by the problem of minimizing the integral
of x,* + x,* from zero to infinity, for a specified value of
x:(0). Applying the usual formalism gives the Hamiltonian

H = pu+ p,(x1 + ).

The absolutely optimal solution consists of a parabolic
arc followed by a singular arc where x, = p, = u = 0.
This arc is of the nonlinear type.

At first thought, it may seem that singular arcs of non-
linear type must have an artifical and “accidental” char-
acter : Since the optimal control is uniquely determined by
the maximum principle, there is no control freedom which
can be exploited to maintain the singularity condition, so
this type of singular arc cannot endure for a finite time
unless an identical agreement fortuitously exists between
the unique optimal control given by the maximum principle
and the control needed to maintain the singularity prop-
erty.

Further consideration shows that this objection is not nec-
essarily valid. Even if nonlinear singular arcs can only oc-
cur for special choices of the state equations, these special
cases may be of practical interest. Also, the identical agree-
ment necessary for continuation of the arc may not be for-
tuitous, but the result of deep identities. This possibility is
illustrated by the work of Breakwell'® who has considered
the singular extremals of rocket trajectories in vacuum. In
the usual treatment with time as independent variable, the
rocket problem has singular extremals of linear type.
Breakwell showed that the problem may be transformed
so the integral of thrust acceleration becomes the inde-
pendent variable, and time becomes a control variable.
In the transformed problem, the singular extremals are
of nonlinear type.

The generalized Legendre-Clebsch condition is as appli-
cable to singular arcs of nonlinear type as it is to other
kinds of arc. For example, in the problem just described
we find Q, = 2p, which satisfies the condition, since p,
must be chosen negative (otherwise, no meaningful extre-
mals exist). However, in complex cases (which will seldom
be encountered in practice) a special difficulty may arise.
The derivation of the generalized Legendre-Clebsch con-
dition assumed that the first and second partial derivatives
of the Hamiltonian (with respect to components of x, p,
and u) exist on the arc to be tested, and are continuous in
its neighborhood. If this regularity property holds for the
original Hamiltonian, it will hold for the new Hamiltonian
generated by the elimination of nonsingular control
variables. However, it will generally not continue to hold
if the maximum principle is used to eliminate a singular
control variable of nonlinear type. This is illustrated by
the example just given, where elimination of u gives

H = p,[x{ — 3(p,/4p,)*""].

For this Hamiltonian, the second partial derivative with
respect to p; does not exist on the singular arc where
= 0, so the regularity property has been lost. This
does no harm in the example case, since no more control
variables remain in the Hamiltonian, so this Hamiltonian
need not be used in any *“‘generalized Legendre-Clebsch”
tests. But if there are two or more singular control vari-
ables, not all occuring linearly in the Hamiltonian, and
if the extremal is singular to different degrees with respect
to different control variables, a difficulty may arise.

This difficulty can always be resolved by the following
procedure. Let H(x, p, u, #) be the Hamiltonian after
elimination of all nonsingular control variables. Find a
new Hamiltonian which is linear in u, and is such that on
the extremal to be tested, the two Hamiltonians give
identically the same values for the vectors H,, H,, and H,,
and for the matrices H,,, H,,, H,,, HH,, and H,,. This
is always possible: one may, for example, choose the linear
Hamiltonian to be

H(X, P, U, t) + (u - uO)THu(x: P, o, t)y

where u,(r) is the control vector associated with the extre-
mal to be tested. A review of Sections 6 and 7 will show
that either Hamiltonian must give the same answer when
used to evaluate the second-order effect of an arbitrary,
weak control variation about the chosen extremal. There-
fore, it is justifiable to use the linear Hamiltonian in place
of the original Hamiltonian in testing for optimality. But
with the linear Hamiltonian, the procedures discussed in
Section 4 become available, making it possible to eliminate
sets of control variables (without losing the regularity
property) and to apply the entire test sequence described
in Section 5.
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A slightly more elaborate procedure permits a more
uniform treatment of all cases, including the atypical
cases mentioned in Section 4. The procedure begins by
linearizing about the extremal to be tested, obtaining
(35), (36), and (37). The coefficient matrices may be re-
garded as given functions of time. If all nonsingular control
variables have been eliminated, H,,, will be zero. Successive
derivatives of 6H,, can be computed until the newest
derivative either fails to be linearly independent of deriv-
atives already found (in which case there is no reason to
proceed further, since no additional relations can be found)
or involves 6u(, with a nonvanishing coefficient Q.
After applying the optimality test to Q,, a number of
control variables equal to the rank of Q,, can be eliminated,
and the process continued (if necessary) by computing
still higher derivatives. It is easy to verify that the eli-
mination can be done in a way which preserves the forms
of (35), (36), and (37). A byproduct of the procedure is a
set of independent linear relations among the components
of &x(;, and dp,. Since these relations cannot exceed
2n in number, the integer M, defined in Section 4 must
be < 2n, or the process will end with some components of
6u(y, still undetermined. In the latter case, M, = ® by
convention, and variations higher than the second must be
considered to determine optimality.

H. M. ROBBINS
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