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A Computer Model  for Global Study of the 
General  Circulation of the Atmosphere 

Abstract: A mathematical  model  is  developed  for  global  prediction of large-scale  movements and mean  properties of the  atmosphere 
from  simulated  initial  weather  conditions. A novel feature is the development of the  formulation-one of considerably  greater  com- 
plexity than those  for  previous  weather  models  adapted to machine  calculation-in a concise  tensor  form. The  organization of the 
computational  task  illustrates how a very  complex  problem  with  vast data requirements  may  be  solved on a computer  with  limited 
high-speed  storage. 
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Introduction 

This  paper describes a joint project of IBM  and  the U. S. 
Weather  Bureau in  the area of large-scale global weather 
forecasting on  the  IBM STRETCH (7030) Computer. The 
basic formulation chosen for  the project was proposed by 
the General  Circulation  Research Section of the U. S. 
Weather Bureau, under the guidance of Drs. J. 
Smagorinsky and S. Manabe, as well as J. L. Holloway, Jr. 
and R. F. Strickler. The STRETCH program, designated 
“Global Weather  Simulator,” resulting from this  endeavor 
was used in modified forms,  during several years, for 
experimental studies at the  General Circulation  Research 
Laboratory in Washington, D. C.’ ” The most extensive 
of these modifications, all of which were made by Weather 
Bureau personnel, reduced the region of treatment to a 
hemisphere. Alternative methods which enable  treat- 

ment of global models have been developed and/or used 
by Y. Kurihara3 and K. Bryan4 and also by H. L. Kuo, 
Y. Mintz, and J. Smagorinsky in unpublished work. 

The formulation of the basic problem is developed in 
terms of tensor algebra which, we believe, is a substantial 
simplification and should  have  interest even for  the mete- 
orologist. In  the discretization for numerical  calculation, 
the atmosphere is stratified into nine layers in  the vertical, 
with up to more  than 10,000 points taken  in each layer. 
Different mappings are  adopted for the  northern  and 
southern hemispheres, and special interpolation techniques 
are developed to relate data at points near the transitional 
equatorial boundary. The discussion of the  data processing 
problem at  the core of this project seems to be, as the 
authors have found  out over the past years, of recurrent 
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interest to the computing field.  Special attention is given 
to the organization, and plan for efficient computer  manip- 
ulation, of the vast amounts of data required. The com- 
puter  program  is  also  designed to facilitate  experimentation 
with  “submodels” of varying  complexity for several alter- 
native  choices of the number of points in the spatial grid. 

Even within the framework of this rather lengthy  paper, 
some important areas, in  particular that of “radiation,” 
had to be  omitted. 

Formulation of the  global  weather  model 

In the following we  wish to describe as concisely as possible 
the formulation on which the model  is  based. We can  be 
quite brief as far as physical  aspects and meteorological 
significance of the model are concerned,  referring the 
interested  reader for details to the pioneering  work of 
Eliassen:”  Phillips: Cha rne~ ,~  and, for this model  in 
particular, of Smagorinsky.’ *2*10-12 However, we shall 
expend  some  effort on the formal mathematical  derivation 
of the basic equations used by the computer. We found 
that the various transformations of the physical  equations, 
necessitated  by a mapping of the earth  on two  Cartesian 
coordinate systems,  lead to many  difficulties,  e.g.,  in the 
area of interpolation around the equator. These can be 
handled  only if the transformation properties of the various 
variables are clearly  understood. As a consequence we 
were naturally  led towards employing the well-known 
procedures of tensor  calculus. For a different,  more 
meteorologically  oriented approach to a part of this 
material we refer to Refs. 7 and 13. 

I .  The basic physical equations 

The prime  objective of the global  weather  model is to 
determine a set of  seven physical  variables, taken to be 
characteristic for the state of the atmosphere,  from the 
integration of a corresponding  set of partial differential 
equations with  physically appropriate boundary con- 
ditions. We  may take as unknowns the variables 

w = { wl,  w2, w3] = wind  velocity 
p = pressure 
p = density 
T = absolute temperature 
h = relative  humidity. 

Correspondingly, the determining equations are: 

a) The equations of motion  (Navier-Stokes)  (compare, 
e.g.,  Ref. 5 )  

dW T E - + (w.V)W + 2Q X w 

1 1 
P P 

a t  

+ - grad p - g - - f = 0, where ( 1) 

P = angular velocity  of earth 
g = gravitational acceleration  (assumed to have  con- 

stant magnitude) 
f = frictional force  vector. 

b) The equation of continuity: 

dp + div (pw) = 0.  
at  

c) The equation of state (of air): 

P = PRT, (3) 

where 

R = universal  gas constant (if necessary,  modified to 
account for deviations of the atmosphere from 
the ideal  gas state) 

d) Thermodynamic  energy equation [compare,  e.g., (l), 
(211 

0 = potential temperature 
c,, cv = specific heat of air at constant pressure  (vol- 
ume) 

p a t  = standard pressure (1000 mb) 
q = rate of heating  per unit mass of air. 

The dot above 0 denotes total differentiation  with 
respect to time. The specific entropy of a perfect  gas 
is equal to c ,  In 0 

e)  Humidity  tendency equation: i = W ( 5 )  

r = mixing ratio (gmwater  vaporlgmdry a i r )  

W = rate of water  vapor  increase  (per unit mass of 
air) due to external  sources or internal changes  (e.g., 
evaporation) of the system. 

2.  The equations of motion in stereographic map systems 

It was  considered  desirable to project the surface of the 
spherical earth stereographically onto two  planes  tangent 
at  the poles. The equations are to be  solved  in the Cartesian 
system  which obtains if a point P in the atmosphere verti- 
cally  above a surface  point SP is represented  under the 
transformation by a point the same  distance  vertically 
above the image point of SP. We consider four coordinate 
systems, the local Cartesian system  with  origin at S P  
(oriented as shown in Fig. l), the spherical coordinate 
system E (Figs. 1 , 2, 3) and the two  Cartesian  map  systems 
N and S. To indicate the system  used at any instant, we 
employ  indices (2, E, N ,  S) as subscripts or superscripts 
(whichever is more  convenient). For  the coordinates and 313 
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Figure 1 The local Cartesian  system Z with origin at 
typical  earth surface point SP. 

velocities we use the following  symbols ( i  = 1, 2, 3 ) :  

coordinates velocity 

2: (Z1,&, 2 3 )  w = w .  1 = {Wl,  wz, w31 

= (z’ ,   z2 ,   z3>,  = { w l ,  w2, w3) 
= w i  = 1 ~ 1 ,  i2, 231 

E: ( y ‘ ,   y 2 ,   y 3 )  ui = { f , ? ,  h} 
= ( r ,  Y, X), 

N (x1,x2,x3) ui = {k, p , i )  

s: ( t1,t2,  v i  = it, 7j, f ] .  
= (x, Y ,  z ) ,  

= 8 ,  f 5  s->. 
Triplets  enclosed  by { 1 and symbols  such as ui represent 

vectors in the sense of tensor  algebra.  Superscripts  (sub- 
scripts) are used to denote contravariant (covariant)  tensor 
character. 

We use the convention  of  summing  over  repeated  indices 
and we assume  some  familiarity  with the basic tensors g,k 
and gik, eabo and eabc, the operations of raising and lower- 
ing  indices, the Christoffel  symbols,  covariant  differen- 
tiation, etc.  (see,  e.g.,  Ref. 14). 

In the Z system the vectors B and g have the form: 

Q ( Z ,  = {aly Q2, 3,) = ( 0 ,  siny,  Q C O S Y ~ ,  

&Z) = ( 0 ,  0 ,  - g ) .  
(6)  

The fact that the equations have to be  solved on a grid 
314 with a finite  number of points suggests that the variables 

be  considered as mean  values of the corresponding  physical 
entities  over a neighborhood surrounding a grid  point. 
It is shown  easily  (in  any  text on meteorological turbu- 
lence) that (1) is indeed  satisfied by such  mean  values, if 
f is interpreted to represent not only  viscous  forces  (which 
we neglect) but also the “turbulence” or  “diffusion”  forces 
caused by the transport of air by small  scale motions 
(perturbations). In 2,  f can  be written in terms of a “stress” 
tensor ri (or in general coordinates Ri i, Ri ’) 

Equation (1) can be  viewed as derived  from a general  tensor 
equation, valid  in all coordinate systems, by suitable 
interpretation of the variables  (e.g., ui -+ wi). The covar- 
iant form of the tensor equation is: 

Ti = f u ~ u ~ , ~  f 2eismf12.um 
all. 
dt 

The contravariant form Ti = 0 would  be  somewhat 
less  convenient. The operation denoted by a comma 
preceding a subscript  is that of “covariant differen- 
tiation,’’ which corresponds to the usual partial differen- 
tiation in  Cartesian coordinates and ensures, in more 
general  coordinates, that  the resulting entity has  tensor 
character. For general  tensors Ai ,  A i  and Ai the covariant 
derivatives are : 

A .  = - i i m k } A m ,  
z . k  a A .  

axk 
A:: .. = a A i i  f { i k } A m i  f { d k } A i m ,  

where the expressions in brackets are “Christoffel sym- 
bols,” defined in terms of the fundamental tensors. In or- 
thogonal coordinates the Christoffel  symbols can be 
obtained as follows  (in this scheme  summation  over  doubly 
occurring  symbols  is  suspended and the comma  denotes the 
usual partial differentiation) : 
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To interpret Eq. (8) in the Cartesian system Z we require 
the fundamental tensors for 2 : 

I :  1 0 0  

(ds)' = g i k  dx' dxk + gl:) = 0 1 0 = gf;), 

0 0 1  

g(z )  = IgtE'I = 1 

eism = 4i3 e f c  = 1 when (i, s, m) is an even permu- 
tation of (1, 2, 3), 

eiam = - 4; + e f f i  = -1 when (i, s, m) is an odd 
permutation of (1, 2, 3) 

eiam = O +  e::: = 0 otherwise. (12) 

Equation (8) can then be  seen to reduce to Eq. (1) if 
the obvious  changes  in notation are made  (e.g., ua + we, 
Ria + ria) .  From the validity of T:') = 0, moreover, we 
can  infer the validity of (8) for all coordinate systems. 

As an intermediate  step we consider the transformation 
from Z to spherical coordinates E. 

dzl = r sin y dX, dz' = -r d y ,  dz3 = dr (13) 

or 

I o  0 1: 

r sin y 

For the time  being we retain the distinction  between r 
(radial coordinate of the spherical  system) and a (radius 
of the earth, assumed constant). 

Before  writing  similar  relations for the transformations 
E + N, E + S, we define the mapping factors m and 1.1: 

(Refer to Figs. 2 and 3. Note that both quantities are 
defined so as to be  independent of r and 2.) It is  now  easy 
to derive the following  relations and transformation 
equations : 

t = 2a tan - = 2a Y sin y 
2  1 + cos y ' 

(1 5 )  
sin y 

f p'N'T} z=r--(I 

v 
T 

P O )  

I = r - l l  

Figure 2 Relation of radial  map distances ( t  and T) and 
coordinates ( z  and p )  of Cartesian map systems N and 
S to coordinates r and y of spherical system E for typical 
atmosphere point P .  

L (I n i 

I 
I 
I S 

5 3 = 5  

Figure 3 Relation between coordinates x, y ,  q and I of 
Cartesian map systems N and S and of coordinates y and h 
of spherical system E for typical earth surface point SP. 

2 
m =  

1 + cos y = 1 + (;)2, 

2 
/I = 1 - cosy = 1 + (5)' 

dt = ma dy , 

dr  = - p a  dy, 

I 

~ 

315 
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x = x' = t cos X = ma sin y cos X,  

t = g = - z =  - r cos X = -Ma sin y cos X 

y = x' = t sin X = ma sin y sin X ,  

7 = 5' = r sin X = pa sin y sin X 

z = x  = r - a ,  

l = t 3 = r - a .  

(1 8) 

3 

Taking advantage of (17) one easily obtains: 

0 

0 

We  now combine (13) and (19) to give the composite 
transformations 2 -+ N, S. 

-sin X -cos X 

-+- = m.- dXk a 
az8 r 

I o  o r/paJ 

The fundamental tensors and the line  element in N and S 
are easily  computed 

gfk,) = a2/r2 

316 

p2 0 0 

0 p2 0 

. o o r2/a2 J 

I 

for (i, s, m) an even permutation of (1,  2,  3) 

-2 2 -2 = -rn r a  , - " p-CL"r"-2 

for (i, s, m) an odd permutation of (1, 2, 3) 

= 0, = 0 otherwise. 

Utilizing the scheme (10) we arrive at the following  non- 
vanishing  Christoffel  symbols  (concentrating for the time 
being on N only): 

{ 2 2  } = -{111} = -{ 2 1  ' } z -{ 1 2  2 }  

{121} = -{ 2 2  2 }  = -{1l2} = -{29 

3 1   1 3   3 2  

{131} = {22} = -2 1 r  

We are now in a position to assign  explicit  expressions to 
the various  members of T j N ) .  We consider  first the term 

si = - + U a * U i . a ,  
dUi 
at 

ua = g ai ui = {(y)2ul, (y)2u2, %}. 
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The covariant  derivatives  of ui are obtained from (9) and (26): 

-" au, u1 

dz r 

[% - 5 
ax r 

Denoting by a dot the "chain  rule" operator d / d t  + uu 
a/dx", we have for Si : 

s3 = l i 3  - - m2a2 
r3 ( 4  + u 3  * 

The angular velocity and Coriolis term (Ci = 2 e i k m -  
Qkum) components  become: 

"sin y cos X ,  "sin y sin X, - cosy), 
r 

r ma 

a - cos y u1 + - sin y cos Xu3, 
1 

r m 

(;)'rn sin y[-cos X u2 + sin X ul] . (30) I 
It is  evident that  the pressure and gravitational terms 

in (8) remain of the same  form  in N as in 2. Postponing 
a detailed  discussion of the "friction"  term fi, we can now 
write the equations of motion  in the form: 

J 

In dynamic  meteorology it is customary to make  (in the 
coordinate systems 2 and E )  the "quasistatic"  approxi- 
mations (see Ref. 7, A. Eliassen  and E. Kleinschmidt, p. 
20), which amount to dropping the underlined  terms  above. 
In the sequel we shall adhere to this convention and shall 
also  set r = a, treating the atmosphere as an essentially 
infinitesimally thin layer. We also treat terms of order 
a as negligibly  small  in  expressions  containing  terms  of 
order 1. 

Retracing the above  arguments for the S-system, we 
find the only  difference to be one in the sign of sin X in the 
Coriolis  terms. 

-1 

3. Pressure and relative  pressure as independent variables 

It was  established by Eliassen5 that, within the framework 
of the quasistatic approximations, the equations of motion 
take an especially  simple form (in the B coordinate system) 
if p is introduced as independent  variable  in  place of z3. 
In particular the equation of continuity becomes (B(p) = 
2 system  with p as third coordinate): 

(!$)p + ($)D + ap aw = 0, w = @ [in B(p) ] .   ( 32 )  

The equation in the map system can be transformed 
partially in the same  manner: 

= 0 [in N(z ) ] ,  (3 3)  

Since rn does not depend on z nor on p ,  (am/ax) ,  can be 
replaced by (am/ax),. One then obtains immediately: 

(3 5 )  

I 
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GLOBAL  WEATHER  FORECASTING 



As a consequence one ca Ln transform the chain rule one obtains in analogy to (33),  (34),  (35) the relations: 
operator d/dt  as follows  (denoting by a any function) : 

From  the hydrostatic relation (ap/az = - pg) one  may 
infer that (ap/dx), can be  replaced by pg(dz/ax),, so that 
the equations of motion  (excluding f i )  for the N(p) system 

1 1 
24;) x + 2Q cos y uz 

- g- = 0. aZ 
dY 

az 1 - = “ = “ (using the ideal  gas law). 
a P  gP gP 

Finally we introduce (see  Ref. 15, N. A. Phillips) the 
ratio of p to p* (surface  pressure at point (x, y ,  z = 0)) as 
a new variable: 

Q PIP*. u P = P,Q 4- QP, = P$ + QP,. 

(38) 

Considering the total differential of Q with dp = 0, one 
has : 

(39) 

(s)p = (s)Q - E (%)Q E ( i  = 1 ,  2). 

After  some algebra, using the chain  rule 

= P{(g)Q + ($) Q + &j a; 

dw + (%) 
* aQ Q 

In the computer  program the equation of continuity (42) 
is used in a two-fold  manner, to step p* in time and to 
compute W = Q (from which both w and u3 can be obtained) 
at the various @levels. To this end one integrates (42) 
with  respect to Q, using the boundary conditions G = 0 
a t e =  O , Q =  1: 

W(Q) = -e (%) 
p* 

(partial derivatives  here and in the sequel in the N(Q) 
system). 

Combining (42) with (40) one has (in  analogy to (36)): 

d.1 - r d b P * )  
dt p* at 

- 

Using the “geopotential” @ = gz instead of 2, we may 
replace the horizontal derivatives of z as follows  [see (3911: 

The equations of motion can now be taken from (31), 
(45) and (46) : 

+ 2Q p*uz cosy - ”* m2p (24: + 4 )  x 2a2 

(47 .a) 
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a(P* 4 )  - - - 2[ a ( P * u l U z )  + a$u:) ]  The velocity transformations 
at  ax 

awu2 m2P 2 3  p*ul cosy -"z* (u? + u;) y - * d e -  2a 

atz axk urn = p u z ,  
v i  = 2 uk 

can now be read off without difficulty. 
a@ 

- p * a y -  RT*A a y  = 0 (47*b) 4. The energy and humidity equations in the map systems 

(47.c) 

It is quite clear that the same equations hold for S, 

The covariant velocity components (ul,  uz, u3) are not 
to be  confused  with actual physical  velocity components. 
To obtain  the physical  velocity components on earth, we 
have to use the appropriate tensor transformations : 

(ul, u2, x ,   Y ,  m2) being  replaced by (VI,  u2, t ,  7, p2) .  

In (4) and ( 5 )  the terms e and F represent qualities of a 
particular parcel of air. In terms of the fields e(x,   y,  z ,  t )  and 
r(x,   y ,  z ,  t )  they are total time derivatives. On  the  other 
hand  the quantities q and W should be regarded as func- 
tions of ( x ,   y ,  z ,  t )  to be  specified  directly  by some auxiliary 
formulations. In the computer formulation we have to 
link the local variations dO/dt,  &/at,  du/dt, etc. to these 
"outside"  influences  (e.g., radiation, precipitation, changes 
of state, diffusion). 

Using results from Refs. 10 and 11 we can write the 
energy equation in  the form 

In the computer program it is also necessary, for inter- The three right-hand terms represent, in succession, 
polation purposes at the  equator, to relate the coordinates the effects of ''pseudoadiabatic'' thermodynamic processes, 
and the velocity components Of N and s. Utilizing relations radiation processes and diffusion processes. It suffices to 
(15)-(17) we established: regard the terms as being computed at a point ( x ,   y ,  z ,  t )  

from the variables stored in  the machine at  that instant. 
To obtain  the local variation of (Op,) with time we apply tr t r  

(49) the operation implicit in (45): 

x2 - y2   2xy  

= 1 I " 2 x y   x 2  - y 2  
dt 

4a2 
0 o 4a2 d ( i T )  

- p* aQ + ( K  + 6r) $! + (48 + (40) (54) 
x2 - y2   2xy  

C P  

at1 
dx" (x2 + V 2 Y  

-2xy   x2  - y 2  0 two parts, one (WE) standing for the change of water vapor 
Turning to the humidity equation ( 3 ,  we break W into 

__ - - 

0 (x2 + Y 2 ) 2 J  contents of air at a point due to external agents, the other 

also introduce as new variable the relative humidity h (the 
4a2 ( W,)  representing the change due to internal processes. We 

(51) ratio of  mixing ratio to saturation mixing ratio r8) .  
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According to Ref. 11 the equation can  be  rewritten  in the 
form : 

h = ’ [(l - h) 6-ym - (1  - 6 ) h * y , ]  + - W E ,  (57) 
1 

P r ,  

where the first term accounts for pseudo-adiabatic pro- 
cesses (in a fraction 6 of the air around a grid  point), the 
second for adiabatic processes. The parameters 6, vm, y d  
are suitable  functions of T, h and the coefficients char- 
acteristic for a realistic  air-vapor  mixture. 

Proceeding  in the same  fashion as above, we finally 
obtain for the local  variation of p,h: 

In this  paper we shall  omit  discussions of the terms 
qR and WE. The computation of the first term is  executed 
in a highly  complicated “radiation program” (for a 
partial formulation see  Ref. 16). In the actual model  Eq. 
(58) was  replaced  by a simpler formulation, keeping the 
mixing ratio constant, in the upper  layers of the atmos- 
phere. 

A summary of the computational  procedure 

In the initial formulation the independent  variables are 
x, y ,  z ,  t and the dependent  variables are wl ,  w2, w3, p, p ,  
T, r.  In the final formulation p and z have  interchanged 
places and new coordinates as well as new auxiliary  var- 
iables  have  made their appearance. The basic  prognostic 
equations are (47a), (47b), (44), (54) and (58). For most 
meteorological  purposes the quantities p*u1,  p*u2, p* T and 
p*h, apparently  with little difficulty  (i.e., after appro- 
priate scaling)  can  be  interpreted  directly as horizontal 
velocity components, absolute temperature and relative 
humidity. The total time  derivatives of the vertical  coordi- 
nates p and Q, namely w = p and W = Q, take the place 
of vertical  velocity. It may be  helpful to give a brief  sche- 
matic  description of a possible  sequence of computational 
steps  leading to  the evaluation of the basic quantities: 
velocity  components (wl ,  w,, w3), geopotential (a), vertical 
elevation (z), density (p), absolute temperature (T), rela- 
tive  humidity (h), mixing ratio ( I ) ,  ground  pressure (p,) 
and pressure (p). In the following, “+” means  “yields”: 

320 (2) + W3 = U 3 .  
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5. Formulation of momentum diffusion 

The nature of the diffusion  terms f i  is  only  incompletely 
understood at the present  time. In the following we borrow, 
with  Ref. 12, a formalism  from  elasticity  theory. In the 
process of developing the formalism into a physical 
description we are guided  by  results from one-dimensional 
flows (Prandtl hypothesis).  Yet we must  still  regard the 
final formulation as tentative,  subject to modifications, 
hopefully  only of parameters,  in  accordance  with the results 
obtained by the model. 

We consider the contravariant vector F’ E Rf of Eq. 
(8). It is  well known  (see,  e.g.,  Ref. 17, p. 67), that  the 
stress  tensor R’* is symmetric: 

= (59)  

Our  objective  is to express the “force  components” Fi 
in  terms of known  properties of the flow,  e.g.,  velocities 
and velocity gradients. To this end we investigate  what 
special form the general  stress-strain  relation 

Rfk = ctiera 
takes when  we  assume certain reasonable  symmetries in 
our model. The strains e’ are, in general, defined by: 

- - g‘”ganemn = ear 

emn = +(urn,, + un,m). 

The tensor cf: has 81 components.  However, by virtue 
of the symmetry  properties (see  Ref. 17, p. 156): 

c,, - c., = c;; = $ f  - r 8  ik - ik 
- C j k r  

which hold  in a Cartesian coordinate system  (say Z), the 
number of independent  “elastic  coefficients”  reduces to 
21 and the stress-strain  relations can be  represented by the 
matrix equation (entries  represented by points are to be 
filled in by  symmetry) : 

1 1  1 1  1 1  1 1  1 1  
c22 c33 c23 c31 c12 

22 22 22 22 _)I c22  c33  c23  c31  c12 

R =  

R l 1 -  

R Z 2  

R33 

R Z 3  

R31 

, 

R12, 

. . .  

. . .  
‘e‘ 

eZ2 

e3 

eZ3 

e3 

.el2 

E =  



We  now assume,  in the Z system,  "elastic"  symmetry 
with  respect to two perpendicular planes, say z3 = 0 and 
z1 = 0. It is shown in  Ref. 17, p. 159, that this implies 
symmetry  with  respect to z2 = 0 as well, and causes a 
reduction of the number of independent nonzero elastic 
coefficients to 9 (orthotropic symmetry). Finally we impose 
the additional requirement of symmetry with respect to 
rotations about the z3 = z axis (hexagonal symmetry), 
which  leaves us with only 5 independent nonvanishing 
elastic coefficients  (say a, b, c, d, e):  

modified elastic coefficients are given by: 
- i k  - i k  - 1 I m  
c,, - cr, TcTs grntgik 

~ 1 1  2 u - C ,  ~ 2 2  = b - C ,  = 0 
-23 -31 -12 12 

-11 -11  "11 
(70) 

c23 = c31 = e ,  cI2 = c12 = +(a - b ) .  

Utilizing (67) we can finally introduce the new coefficient X: 

a - c = c - b =  X ,  u - b = 2(c - b) = 2x, (71) 

in terms of  which the modified coefficient matrix becomes : 

a b c O O  0 

b a c O O  0 

c c d O O  0 

O O O e O  0 

O O O O e  0 

0 0 0 0 0 + ( a - b )  

To obtain a further simplification, we  now refer to the 
physical  meaning of R i i  = T~~ (see  Ref. 14) and demand 
that there exists a partial "equipartition" of kinetic 
energy of the turbulent disturbances ui.  That is, we assume 
that  the energy associated with perturbations of the vertical 
wind  velocity  is on the average equal to  the arithmetic 
mean of the energies associated with the  two horizontal 
components : 
__ 
( d J 2  = +[(w:)' (w;I2I + R:;) = ;(R:E) R:;,) 

- " 

(66) 

We can consider the strains as arbitrary, so that (65) 
implies : 

a +  b = 2c, c = d. (67) 

In addition we choose, as is frequently done, to rearrange 
the sum of the two terms dp/dxi and - giiRf:  of (8) so 
as  to modify both p (to j) and Ria (to ii"), keeping the 
combined effect unchanged. 

g i i R , ,  - dp/dx' = g i i R ] :  - d j / d x ' .  ia -.  
(6 8) 

The modified stress tensor is chosen so that its relation 
with a correspondingly modified strain tensor is especially 
simple : 
-. Rlk E R i k  - S . g i k  cjf.e'" 

S = "R' = - 
3 t ~ R z r n g m z  = +cCf:g,le'', (69) 

p = p - s .  
We  verify that (68) is indeed  satisfied [by virtue of 
(gii - S g' "),, = 6; dS/dx" = dS/dxi] and  that the 

x - ~ o o o o  
-x x 0 0 0 0  

0 0 0 0 0 0  

0 O O e O O  

0 O O O e O  

0 o o o o x  
In the sequel we shall drop  the tildes, but mustremember 

to interpret p, R ik and c;! as being the modified quantities. 
We  now resume our endeavor to represent fi"' in terms 

of the basic quantities in  the N-system. 

fi = gii (Crl(N).e;i)).a = gii . f ' *  (7 3) 
(N)   (N)  i u  (N) ' 

Fortunately, the structure of cf;(,) is  exactly the same as 
that of eft, (as in Eq. (65) or in Eq. (72)). 

This can be  seen  by evaluating each term in 

az' azz axi mn 
c t 5 ( N )  = 2 %% g " D 1 ( Z )  

with the partial derivatives [(21) and  its inverse]: 

"sinX  -cosX 0 
-I 

dx 
dZ" 
" - - m cos X - sin X 0 , 

0 0 -  
r 

am,  

(74) 

I 

For instance : 

= &in4 X + cos4 X) 
+ [2b + +(a - b)] sin2 X cos2 X = a. 32 1 
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Hence we can take c:!(,, to have the form of (72). We still  require the strain tensors defined  in (61). They are 
obtained from (27) and (22) in the following form: 

We  now  implement (60) (e.g., R’l = c:: e:: + 
cii e2’ = - R”) : 

To evaluate j i N )  we apply the last equation of (9) in its 
contracted form or use standard expressions for the con- 
tracted  Christoffel  symbols: 

where  we have  set : 

In order to use these  relations  in the computer  program, 
we still  have to relate the “elastic  coefficients” x and e to the 
local  properties of the flow. 

According to Eq. (31), the 1 / p  j i N )  are the contributions 
(except for sign) of “diffusion” to dui/dt. We  may then 
compare (80) to  the general  diffusion equation in a turbu- 
lent  wind: 

M,,  M,, M ,  being  exchange  coefficients. 
While equations (80) are more complicated than (82), 

they  have a strong structural resemblance to a simpler 
system of form: 

dt P 

For this system the substitution 

would  lead to  an equation of type (82) with 

M,  = M, = ma x / p ,  M ,  = e / p .  
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We conclude that M,, M,, and M ,  should be introduced 
in (80) to represent the “exchange” or “eddy diffusion” 
coefficients in the sense of Prandtl’s mixing length theory 

The explicit construction of M ,  and M ,  is left until 
after the discussion of temperature and humidity diffusion. 
At this  point we may mention that  in  the computer pro- 
gram the first two  terms of each equation are computed 
separately (in a “horizontal diffusion” subroutine)  from 
the last (“vertical diffusion”). One reason  for  this is that 
the “vertical diffusion” term is modified in accordance with 
temperature  distribution considerations (Richardson num- 
ber). Since the details of that formulation are still subject 
to change, we shall not dwell on them. We may also  point 
out  that  it was considered unnecessary, at this stage, to 
change the partial derivatives [e.g., ( a / a x ) ,  -+ (d/ax), + 
@/ax),]  in accordance with the developments of Section 3. 

6. Temperature and humidity diffusion 

In this section we are concerned with the variation of a 
scalar function \k (x ,  y ,  z, t) ,  in particular potential temper- 
ature 0 and mixing ratio r ,  due to turbulent diffusion. We 
assume that these processes can be modeled after the 
process of molecular heat diffusion, which is represented 
formally by 

T = - div ( K .  grad T )  = ~ div F ,  
- 1  1 

(87) 
C,’ P CP’ P 

where 

F = heat flux, K = coefficient (or coefficient matrix) of 
heat conduction. 

We set similarly: 

.k = - div (cl *c  grad \k) 
1 

c1 
(8 8) 

or in tensor form: 

simplify the structure of ci i  we may demand, e.g., in  the 
Z system, that  the relation Fi = cii\ki remain valid (on 
account of natural symmetries) after the transformation: 

z‘ = A t  (90) 

rotation  about z3-axis 

(-1 0 07 
reflection with respect to 

b, A = 1 I the zz z3-plane. 

It is seen  easily that one  must have A ci = ci A and 
that the final form of ci must be: 

0 
i i  

From  the tensor  character one obtains  for the N map: 

and 

(9 3) 

By an argument analogous to that used around equations 
(82) to (85) we see that  the “exchange coefficients” are: 

323 

GLOBAL WEATHER FORECASTING 



Table 1 Approximate  corresponding  values of “vertical” 
structure  variables for ICAO standard  atmosphere  adjusted 
for height z = 0 at p = p = 1000 mb. 

1 .0556 
13 .1111 
2 .1667 
23 .2222 
3 .2778 
33 .3333 
4 .3889 
44 .4444 

+ o  

5 .5 
53 .5556 
6 .6111 
63 .6667 
7 .7222 
73 .7778 
8 .a333 
83  .8889 
9 .9444 
93 1 

0 
9 

34 
74 

126 
189 
259 
336 
417 
500 
583 
664 
741 
811 
874 
926 
966 
991 

loo0 

- 
34 31.6 

23 .O 
92  18.0 

14.7 
133 12.0 

10.1 
158 8 .3  

6.8 
166 5 .5  

4 . 3  
158 3.3 

133 
2 .5  
1 .7  
1 . 1  

92  .64 

34 
. 3  
.07 

0 

In the case of temperature diffusion we have c1 = c, p ,  
in the case of humidity  diffusion c, was  assumed to be 
essentially  independent of x, y ,  z .  

+ P [” az ( f P Z )  1 
1). 

7. Eddy diffusion coefficients 

According to the “mixing  length  hypothesis” of Prandtl, an 
“eddy  diffusion  coefficient”  should  be proportional to the 
product of two factors. One is the square of a characteristic 
length or scale of the mean motion, the other is usually 
(for  one-dimensional  motions) taken as the gradient of 
the mean  velocity. In the three-dimensional  case  con- 
fronting us, the local horizontal variations of  velocity  seem 
to be  best  described by the terms D s  and DT of (81). We 
shall therefore  relate the first  two  eddy  diffusion  coefficients 
K,, K ,  to the quantity: 

324 D = (0: + D;)’’’, (96) 

which has the convenient  property of  being invariant 
(a  scalar)  under the transformation N S (Ref. 18). To 
characterize the velocity variation in the vertical we take 
the scalar : 

Since we are constructing the diagonal  elements of a 
contravariant tensor of rank 2, we choose as our char- 
acteristic  length terms the scalars (l/m’) [(dx)’ + ( d ~ ) ~ ]  and 
(dz)’, multiplied by the appropriate terms of the funda- 
mental  tensor g”. 

0 0 K ,  I -  c1 

0 0  

D *  g” (dx)’ + (dy)’ 
m2 

0 D*g” (dx)’ + (dy)’ mz 

0 0 D; g 3 3 ( d ~ ) :  

I’ = const. D (dx)2 + ( d y ) 2  , f = const. D,(dz)’. m’ 

In the computer  program the difference equations cor- 
responding to (95) are solved on a grid  with  uniform 
horizontal spacing 6s = 6x = 6y and vertical  spacing 6z. 
The scalar (ds); = m-’[(dx)’ + (dy)’] of (95) is then re- 
placed  by const. (6s)’. This  is tantamount to having the 
characteristic  length of Prandtl correspond to a definite 
length on earth, e.g., the largest size of a particular type 
eddy, at every point of the grid. 

Taking out factors which are not affected  by  differen- 
tiations, we can replace (95) by: 

1 
(9 9) 
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The constants C,, C,, C,, C, have  been  left  unspecified. 
They are best  chosen  from  empirical data or,  as in the case 
of the program  described  here,  in  accordance  with  previous 
computational experience. 

We are now also in a position to reformulate the equa- 
tions of momentum  diffusion.  Similarly to (98), we have: 

= const. 

where 

m2x o o 
o m2x o 

, O  0 e 

X = const. D p . [(dx)’ + ( d ~ ) ~ ] ,  e = const. Dv - p . ( d ~ ) ~ .  

After transition to the difference  scheme, we obtain: 

x = const. D p - mz( 6s)’, e = const. D p (62)’. 

(101) 

- P 1 f l  = P {c5 (.Z[-& ( P  3) + $ ( P  9)] 

- P 1 fz = P {c5(6s)z[-& ( P  y) - $ ( P  y)] 

The authors know of no other detailed attempt at deri- 
vation of formulas (80)-(102). Some of the assumptions 
made  may,  therefore,  be  open to doubt. 

8. Discrete formulation 

“Vertical” structure 

The proposal of  Smagorinsky to take Q = p / p ,  = 
a’(3 - 2a) with equal a-intervals,  based upon consider- 
ations of resolution  in the “vertical” structure of the atmos- 
phere, was adopted (see  Ref. 16, S. Manabe and F. Moller). 
For the selected  maximum  number  of  nine a-intervals 
“Ad’, it follows that Aa = 1/9 from the fact that a ranges 
from 0 to 1 as p varies  from its value of 0 at the top of the 
atmosphere top*  at the surface of the earth. Because  of the 
variability of p and p* in space and time, the Q-intervals 
“AQ” obtained from this a-subdivision  correspond to 
nonuniform and variable  distances.  Thus, for Aa = 1/9, 

Table 2 Table of approximate  map grid interval As vs 
number n of intervals  from pole to equator. 

I1 5 10 20 40 

As(km.) 2548 1274  637.1 318.6 
”- 

QK  may  be  determined  from aK = ( K  - 1/2) Aa = 
(K - 1/2)1/9 where K = 1/2, 1, 13, 2, . . . , 93. QK 

will  be  called a “level” for K an integer,  otherwise a 
“half-level”.  Table 1 illustrates this “vertical” structuring 
under standard atmospheric  conditions. 

“Horizontal” structure 

A uniform  rectangular  grid  is  superimposed on the stereo- 
graphic  map  associated  with  each QK for each of the two 
hemispheres.  Each  grid  arises  from the introduction of 
lines  parallel to  the rectangular coordinate axes.  Both 
sets of parallels  have the same interval of spacing, equal to 
the radial map distance  divided by an integer 12. The radial 
map distance  from  pole to equator is the constant 2a, 
where a is the mean earth radius, map magnification for 
each  hemisphere  is  equivalent to the map “factor” pre- 
viously introduced in (14), and the spacing  interval is 
2a/n for all grids. Table 2 illustrates the relationship be- 
tween the spacing interval 2a/n, denoted by  “As”, and 
the parameter n for several  values of n within the range 
handled by the computer  program.  Since the map magnifi- 
cation varies from 1 at the pole to 2 at the equator, the 
earth distance  corresponding to the map distance As tends 
with  increasing n to As at the pole and to 3 As at  the equa- 
tor. 

Each  grid is regarded as comprising not only “interior” 
points inside or on the boundary of the circular  stereo- 
graphic  representation of the equatorial boundary of the 
hemisphere, but also  “exterior” points obtained from 
continuation of the grid-with the same  uniform spacing- 
outside the equatorial circle. The extent of the grid  is as 
required to evaluate for the next  time  position  five  “basic” 
variables at interior grid points of each  hemisphere, using 
the finite-difference equations chosen to approximate 
discretely the continuous formulation over the grid. The 
basic  variables  integrated  over the grid  with  respect to 
time  from  these  difference equations are p*,  u,p*, u2p*, 
Tp*, and hp, in N, and the same  except for ulp* and v2p* 
instead of u,p, and u,p* in S. (Because of the form of these 
equations, a minor  economy in computing  time  is effected 
by computing and storing values of T rather than of the 
“time-differenced”  variable Tp,.) This  evaluation  assumes, 
for each QK, that each  interior  grid  point  is the center of a 325 
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Table 3 Table of numbers of interior  and  exterior  grid 
points for each QR of N or S versus  the  number n of equal 
subdivisions  from  pole to equator. 

Number of grid  points for each QK of N or S 

I1 Interior Exterior 
~~ ~ 

5 81 
10 317 
20 1,257 
40 5,025 

68 
124 
236 
460 

6 

“13-point star” of neighbor grid points. In fact, the grid 
is  limited to contain only each interior point and each 
exterior point contained in the 13-point star of neighbor 
grid points for some interior point. (See Fig. 4.) 

The numbers of interior and exterior points in the grid 
for each QK of N or S are illustrated in Table 3 using the 
previously  selected  values of the parameter n. The con- 
figuration of grid points for n = 5 is indicated in Fig. 5. 

The method of evaluating the basic variables at exterior 
grid points from their values computed from the difference 
equations at interior grid points will be briefly indicated 
now, and will be described in detail in a later section. 
Corresponding positions in N and S are related by the 
geometry of inversion with respect to  the equatorial 
circle. Consequently, a grid point exterior to one hemi- 
sphere represents the same point in the atmosphere as 
represented by an interior point-not in general an interior 
grid point-of the other hemisphere.  Bivariate linear 
interpolation was chosen as  the means of expressing the 
values of each of the basic variables at such an interior 
point not in  the grid as a linear combination of its values 
at the surrounding four neighbor-not  necessarily en- 
tirely  interior-grid  points.  However, in relating values at 
the corresponding interior and exterior points, the basic 
variables which are vector components (u,p,, u2p*, v$*, 
vZpJ require coordinate transformation from N to S 
and/or S to N .  

Approximation of derivatives and integrals using jinite 
differences 

The methods of approximation described  below  were 
selected for initial experimentation and basically  express 
time and space derivatives (in “compact” or “contracted” 
form, instead of expanding derivatives of products) as 
central difference quotients. Later, in an attempt to avoid 
possibilities of nonlinear instability such as experienced 
by N. Phillips” and to conserve certain integral properties, 
a modified  difference method was adopted by the Weather 
Bureau for hemispherical experiments. The modification 
was proposed by D. Lilly” and is similar to a method of A. 
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Figure 4 The  13-point star of neighbor grid points for 
interior  point P. 

For any variable *, let \k;. i ,  : N  denote the value of * 
at time t = rAt at space point ( x  = iAs, y = jAs, QK) in 
N .  The time interval At is regarded as constant for one 
experiment (computer “run”), in which As = 2a/n and  the 
number of QK positions are also fixed. The symbols 7, i and 
j represent integers.  (When not pertinent, subscripts and 
superscripts will be omitted.) 

The derivative a\k‘/axl,, i , K  ; N  is approximated by the 
central difference quotient 

The calculation of derivatives  in S is  completely analogous 
to  that in N ,  requiring only the replacement, in  the pre- 
ceding and following  developments, of x ,  y and N by 
[, 7 and S,  respectively. 

The derivative a W / a t l  , i ,  K ; N  is approximated in one 
of two ways. For t = 7 = 0, and from the assumption 
that initial data for the basic variables are specified  only 
at this one time position, d*o/atli,  i , K  ; N  is approximated 
by the noncentral difference quotient 

For 7 > 0, central differencing  is  used to approximate 
d*‘/afli.i.K;N by 



An approximation to a\k'/dQ[ i , K  ;N for  each integer 
value of K is required. For this  purpose, the central differ- 
ence quotient 

where AQK = QK+l/z - QK-l,2, is used. For these de- 
rivatives, \k may be expressed as a product of two factors, 
the first factor being W( = Q) and  the second being one of 
the basic variables other  than p* .  E.g., the  term 

a ( a )  a(Whp ) 
P* -&j- - - -*- aQ 
[cf. (58)] yields \k = W * (hp*), hp, being one of the basic 
variables other  than p*.  The expression 

is evaluated as 

- 7  - ~i,i,K-1/2;N.(hp*):.i.K--1/2;NI. 

As each basic variable in  the second factor of \k is 
computed from  the difference equations  only  for integer 
values of K,  the arithmetic mean approximations 

( b * ) : , i , K + l / 2 ; N  = 3[(hP*)l,i,lC;N + (hP*):,LK+l;Nl 

and 

(hp*):,i.K-I/Z;N = %[(hp*):.i,K-l;N + (hp*)l.i.K;N] 
are used. 

Furthermore, 

in N [cf. (43)], Q' = p'/p* denoting the dummy variable 
of integration, 

u: = ul(x, y, Q; t)]'='', u: = u,(x, y, Q ;  t)IQ='' 

and 

in N [cf. (44)]. 
These two integrals are approximated by the customary 

Riemann sums, requiring only values of the integrands at 
the Q,-levels to  obtain W at  the half-levels. Introduction 
of the  boundary conditions W = 0 at  the  top  and  bottom 
half-levels (where Q = 0 and Q = 1, respectively), it is 
noted,  renders unnecessary any special evaluation of hp, 
in  approximating d\k'/aQ[ i ,  i , K  ;N at  the  top  and  bottom 
QK-levels. The treatment of the  other a\k/dQ terms is 
completely analogous. 

Figure 5 Interior and exterior grid  points  in one quadrant 
for each QK of N or S when n = 5 .  

From (38) and (40), W( = p )  may be expressed by 

in N. The value w:, is approximated using the pre- 
viously described approximations for  the terms in this 
relationship. 

Consider next the treatment of the geopotential terms. 
From Eq. (47): a@/aQ = - R T / Q .  Integration yields 
a]O'=O = 8]Q'=1 + R S, dQ' 

' T  

= gz, + R [ Td(ln e ' > ,  

where z, is  the height of the earth's surface, and Q' a 
dummy variable. This  relation is differentiated to obtain 
the required derivatives 

-- a@ = g 2 + R d(ln Q'). 
ax 

The derivatives 

are assumed in  approximation to vary linearly with In Q 

~ 
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in each  interval  between  adjacent Q,-levels. For nine 
Q,-levels, the resulting approximation: 

is  obtained from the customary  Riemann  sum approx- 
imation  for Jz; and a linear extrapolation approximation 
for j e. The expression 

denotes a linear combination of the values dT‘/dx i ,  i ,  K r  ; N  

at the lowest  two  e,,-levels, the coefficients  of  which are 
constants. (These  same constants apply to the other 
@-derivative  approximations.) The derivatives in this ex- 
pression for d@‘/axi ,  , K  :,, are approximated as described 
previously, and the treatment of the other @-derivatives 
is completely  analogous to  that for a@/ax.  

The only  derivatives which appear explicitly in the final 
equations of the continuous formulation are of first order, 
and the method of approximation for each  such  derivative 
is indicated in the above  discussion.  Higher order deriv- 
atives  would appear in the expansion of derivatives of 
products occuring in diffusion  terms in the final equations. 
However,  derivatives of products (not only in diffusion 
terms, but also in all other occurrences in the final form- 
ulation) are approximated in contracted form, and the 
computations for  such terms at most  require a few  suc- 
cessive applications of the above  differencing  techniques 
for first order derivatives. 

Let \k denote one of the basic  variables. Then, 
a\kr/ati,i,K~,,,,,s, and consequently \k:ti,K;,,(orS) are 
approximated from these  difference  methods.  E.g.,  let 

- [(UlP*)‘+l - 
1 

2At 

represent the approximation of a(ulp,)‘/ati ,  for a 
typical  value of r, and F i  ,i,K ;,, the approximate value of 
this derivative  obtained from applying a composition of 
the above  differencing  techniques to the expression for 
this derivative in terms of the other variables  obtained 
from the continuous formulation. Basically, Si, i , K  ; N  is 
developed from values of the variables which  were  com- 
puted  for time t = rAt at interior grid  point (x  = iAs, 
y = jAs, Q,) in N-the derivatives at this position  re- 
quiring the use  of  values  of  variables at neighboring 

328 grid points also-by addition, multiplication,  division, 

square root, etc.  Approximations for 

~ ( u , P * )  ~ ( T P , )  , a ( h ~ * )  
at ’ at  ’ at at 

in N (or for 

&P*) &P*) 
at ’ at ’ 

etc., in S )  are developed  similarly. During these  com- 
putations, use is made of certain coefficients  which,  being 
independent of time, are computed  only  once (prior to 
other calculations for r = 0). However,  provision was 
made-for  economy  of computing time-to permit the 
calculation of radiation, “horizontal” diffusion, and 
“vertical”  diffusion  terms  periodically  in  time.  Another 
exception is that the “horizontal” diffusion  terms are 
“lagged in time” in accordance  with a suggestion of 
Smagorinsky  based on stability  considerations (J. 
Smagorinsky?  p. 464). E.g., Fi, j , K  ;,, may  be separated 
into two parts S:,i,K:N and 
Then, 

( u ~ P * ) : + ~ , K ; N  = ( u I P * ) I ; ! , K ; N  + 2 A t ( ~ i . i . K ; N )  

= [(u~P*)‘” + 2At(Sr  + ~ ~ - ‘ ) I i , i , , : , ,  

for r > 0, where the “horizontal” diffusion  effect 
X:;:,,;,, and part (in this case  only for “vertical” 
diffusion) of S:, i , K ; N  may have  been  calculated for r - 1 
and r respectively, or may have  been  obtained by  merely 
referencing in storage previously  computed  values. The 
basic  variables for each  hemisphere are computed at 
r + 1 for  each interior point of each  Q-level,  except for 
p* which is computed  only for each interior point of 
half-level Q = 1. 

Approximation of exterior data using interpolation 

As indicated  previously, the four neighbor  grid  points 
which surround the interior “image” of an exterior  grid 
point are not necessarily interior. In fact, as many as three 
of these four neighbor  grid points may  be  exterior. For 
some of the image points having  exterior  neighbors, a 
special  “simultaneous equations” relationship  arises from 
the application of bivariate linear interpolation. From (49), 
the abscissas of each  exterior point and its interior image 
have opposite signs,  while the ordinates have the same sign. 
Consider the exterior  grid  points P, = ( x  = iAs, y = jAs, 
QK) in Nand Pz = (I: = - x ,  7 = y,  QK) in S.  Let P: and 
Pi denote the interior images of PI and P2, respectively. 
The simultaneous equations case  arises when both P: has 
exterior  point Pz as one of its four surrounding neighbor 
grid points and P: is  properly interior to its surrounding 
grid square, i.e., Pi does not lie on a grid  line.  (The  same 
statement  holds  with P: and Pz replaced  by P: and P I ,  
respectively.) For, in the simultaneous equations case, 
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the approximation of the basic variables at exterior point 
P1 using bivariate  linear  interpolation  depends upon their 
values at P2, while at P2 it depends upon their values at P,. 

This  bivariate  linear  interpolation may be described 
briefly as  the  formation of linear  combinations of data 
with constant coefficients. Thus, the “interpolation coeffi- 
cients” depend solely upon  the coordinates of the exterior 
grid  points (alternatively their  interior image points) and 
the number n of equal subdivisions from pole to equator. 
From symmetry considerations, it would have been 
sufficient to have  computed the interpolation coefficients 
for  one  octant of the circular grid of one Q,-level in N o r  S, 
i.e. for, say, x 2 y 2 0. (This may be seen from  the inter- 
polation  formulas which will be described.) 

Scalar exterior data 

The basic variables p*, Tp*, and hp,-whose values are 
invariant  under coordinate change from N to S or vice 
versa-are evaluated at exterior grid  points solely by 
interpolation from their values at some  interior grid points. 
Denote by P = (iAs, jAs,  QK)  an exterior grid  point  in 
either N or S and by P’ = (?As, j’As, QK) its  interior image 
in S or N ,  respectively. Denote 

gp, = ( [ P I )  - [ i ’ l  

and 

where (CY) is the least integer >a. The interpolation 
coefficients apt, Bp, ,  ep j ,  Dp ,, which may be regarded as 
“weights” for values of a variable at the  four neighbor 
grid points  surrounding the image point P‘, are given in 
Table 4. 

It is easily seen that aP ,, aP,, ep ,, and Dp I are non- 
negative and  have  sum 1. Special cases involving only 
two grid point neighbors of PI, and consequently only 
two coefficients, arise when P’ lies on a grid line. 

In  the nonsimultaneous  equations case, the value of a 
scalar basic variable at exterior point P, denoted  by S p  
(i.e., S = p,, Tp., or hp.), is obtained as a linear combi- 
nation of its values at  the grid point neighbors (not neces- 
sarily entirely interior) of its image point PI: 

sp = ap,s,,, + a3p’Sap, + epts,,. + DP.SD,,, 

(103) 

where the subscripts on S in the right member indicate the 
neighbor grid points of P’ according to their associated 
coefficients. 

In  the simultaneous equations case, the interpolated 
value, again  denoted by S p ,  is obtained by a modification 
of the above procedure. As before, consider the exterior 
grid  points Pl = (x  = iAs, y = jAs,  Q,) in N and 
P, = ( f  = - x, g = y ,  QK) in S, their  interior images 

being Pi in S and PL in N, respectively. In  the simultane- 
ous equations case, P, is one of the  four surrounding 
neighbor grid  points for Pi, and P2 serves similarly for 
Pi. Denote by Sp*, the linear combination of values of S 
at  the neighbor grid points of Pi in N other  than Pl, and 
similarly Spl I ,  the linear  combination of values of S at  the 
neighbor grid points of Pi in S other  than P2.  By analogy 
with the nonsimultaneous  equations  case: 

sp,, = a * ~ ~ s c t p ~ ~  + aP,.s~p,! + eP,.s,,l, 
S P , ,  = a P , , S a p 2 ,  + BP,.ScBP2, + e P , , S , P 2 ,  

as 

ap,. = a&=,., BP,, = BP,., ep,. = eP,’ 
(and Dpl‘ = Dp2,) by symmetry. 

Then 

SP, = SP,, + DP,.SP,  

and 

s p ,  = SP,, + D P , , S P , .  

Hence 

and 

Vector exterior datu 

The basic variables ulp. and u2p. in N transform  covar- 
iantly into ulp. and vzp, in S and vice versa. (The covariant 
velocity components u1 and u, in N are related to the con- 
travariant  “map velocity” components u1 = x and u2 = 9 
in N by rn2(ul, u,) = (ul, u’), and similarly for  the com- 
ponents  in S .  The corresponding physical velocity com- 
ponents, expressed in stereographic  coordinates, are 
obtained by multiplying the  map velocity components  by 
the reciprocal of the magnification.) The evaluation of 
ulp,  and u,p, at each  exterior grid point of N, or the 
evaluation of ulp, and u,p, at each exterior grid point of S, 
may  be  regarded as composed of two  operations: (a) 
interpolation for components expressed in the  coordinate 
system of the interior  image point using the same  inter- 
polation coefficients as for scalar data,  and (b)  transfor- 
mation of the interpolated  components to obtain  the 
corresponding  components expressed in the  coordinate 
system of the associated exterior grid point. 

In  the nonsimultaneous equations case, let (ulp,), and 
( U ~ P * ) ~  denote  the values of u,p, and u2p* to be derived for 
exterior grid point P = (iAs, jAs,  QK) in N, and let (ulpr),’ 329 
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and (uZp.Jp, denote the corresponding components at the 
interior image  point P’ = (i’As, j’As, Q K )  in S of p .  Then, in 
accordance  with  (a)  above, (u,p.Jp, and (uzpJp,  are 
obtained as linear combinations of values of vlp,  and uzp* 
at the grid point neighbors (not necessarily  entirely interior) 
of P‘ in S using the interpolation coefficients in Table 4. 
Denoting, as usual, the number of equal subdivisions of the 
grid from pole to equator by n, in  accordance  with (b) 
above, (50) and (51) yield: 

The formulas for evaluating ulp, and uzp, at exterior 
grid  point P in S are obtained by interchanging in (105) 
y p ,  with ulp. and uzp, with u,p*, P’ then denoting the 
interior image  in N of P .  

In the simultaneous equations case, the development of 
the formulas is completely  analogous to the scalar  simul- 
taneous equations case,  except for the additional opera- 
tions (b) above  using (50) and (51). The resulting formulas 
are : 

Table 4 Bivariate  linear  interpolation  coefficients for in- 
terior image point P’. 

Relatiue positions of associated 
Coefficients for P’ grid point neighbors of P‘ 

U p ,  4 P ,  3P’ Nearest  origin 
CBp, = (1 - $ P , ) 3 P t  Has  same  ordinate  as that 

ep. = $,, (1 - $ P O  Has same abscissa  as that 
nearest  origin 

nearest  origin 
D,, = (1 - g p  .) (1 - g P , )  Most  distant  from  origin 

where 

P1 = ( i A s ,   j A s ,  QK) in N ,  

Pz = (“As,   jAs,  Q K )  in S ,  

( S U I p J r 1 ,  = a p l , ( ~ l ~ * ) a p , ,  

+ a3Pl,(ulP*)a3p,. + eP1’(u1P*)eP*,> 

and similarly for the other subscripted S terms. The for- 
mulas  for  evaluation of ulp, and uzp. at exterior  grid points 
Pz are obtained by interchanging ulp,  with ulp*,  u2p8 with 
u2p.,  Pl with Pz, and Pi with Pi in (106). 

9. Data ‘‘flow’’ 

Input 

The first  stage of data processing  performed the com- 
puter program develops initial data and initializes the 
program from input data stored on magnetic tape. In 

330 addition to the initial data which are required to be 

J 

specified  over the grid at time  position t = r = 0 for the 
basic  variables, other data are processed  which  describe 
the desired distributions of characteristics of the earth’s 
surface  (height, albedo, roughness,  soil moisture, sea 
temperature, snow  depth), of the atmosphere (cloud 
properties,  long-wave absorption, solar absorption, car- 
bon dioxide,  ozone), and of solar radiation (zenith  angle 
of the sun, duration of daylight).  Initially, the atmosphere 
is  assumed to be  isothermal and not in motion. Provision 
was made to enable  performance of experiments of differ- 
ent complexity. Thus, input control parameters not only 
specify the size  of the grid,  time  interval, and frequencies 
of calculation of radiation, “horizontal” diffusion, and 
“vertical”  diffusion effects, but determine  whether  moisture 
and cloud distributions are to be  held constant in  time or to 
be  predicted. 
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Storage and data manipulation during numerical integra- 
tion 

The magnitude of the  data requirements is indicated by the 
fact that,  for  the maximum size grid treated (n = 40, nine 
Q-levels), approximately 11,000 values of p .  and 395,000 
values of the  other basic variables collectively are computed 
from  the difference equations  and interpolation for  each 
time  point (cf. Table 3). Because of limited space in  the 
high-speed magnetic core storage, only a small portion 
of these data  for each of the three successive time  points 
involved in  the difference equations is contained in this 
storage at any  instant of time, while all of these data  for 
three  time  points are simultaneously present in  the inter- 
mediate-speed magnetic disk storage. The storage re- 
quirements are further enlarged by non-time-dependent 
pointwise data (e.g.,  coefficients in the difference equations, 
height of the earth’s surface), by pointwise variables 
computed periodically in  time (e.g., land surface temper- 
ature, radiation and diffusion terms), by non-time-de- 
pendent non-pointwise data (e.g., tables), and by the 
instructions and temporary data storage of the computer 
program. 

A complex plan is used for the  allocation of storage and 
the manipulation of data  in  the computer  program. This 
plan was chosen with the purpose of minimizing the time 
required for  the numerical  integration of the basic var- 
iables over the maximum size grid. 

Denote by M i , N  the set of all  interior grid point values 
for the half-level Q = 1 of p a ,  and  for all Q-levels  of uIp*, 
u2p., T ,  and hp,, at  ordinate y = jAs and time  point t = d t  
in N .  Denote by Z;, the same set of values except for 
exterior grid points  instead of interior grid points. Let 
LJ,N contain pointwise non-time-dependent data for both 
interior and exterior grid points and pointwise period- 
ically computed data  at interior grid points for  ordinate 
y = jAs at time t = rat (except the “lagged” diffusion 
terms are  at time t - At = [T - l ]At )  in N .  Similar sets 
of data  for S are denoted by M;,  s, IJ, s, and L:,s where 
q = jAs.  

The calculations  required  for one time  “step” by the 
difference equations  and bivariate  linear  interpolation 
may be described as  the evaluation of M;;C;, Z;:& M:::, 
ZiTi, and  any needed modification of L;;; and LJ;; to 
obtain L:,N and L; , s ,  for all pertinent ordinates y = jAs 
and q = jAs of N and S .  In fact, a “data flow plan”  for 
these calculations, i.e., a plan of transference of data 
between the high-speed smaller capacity  core  storage and 
the intermediate-speed larger capacity disk  storage during 
the computations, was selected which uses such M ,  Z, and L 
“planes of data”  as “read-write” transference  units. The 
choice of these units seemed natural in view of the grid 
geometry, the requirements of the discrete formulation, 
and of the limited capacity of core storage. (The  computer 

program was designed to be  operable on a STRETCH 

installation including 65,536 words of core storage, 
approximately 2,000,000 words of disk storage, at least 
five magnetic tapes, card reader,  printer, and console.) 
This choice enables these calculations for  one time step to 
be performed in successive stages as required by high-speed 
storage space limitations while permitting data  trans- 
ferences between the high-speed storage and  the intermedi- 
ate-speed storage often to be  performed simultaneously 
with the calculations. 

The “grid sweep” selected for  the calculations  produces 
the  output M‘” and L‘ data in  the following order: L‘ 
(if no modification of L‘” data is required to obtain  the 
L‘ data,  no re-computation and  no re-“writing” from core 
to disk of L data  are performed), M“’ for y = 0, As, 
2As, . . . ,2a,  -As,   ”As, . . . , - 2a; q = 0, As, . . . ,2a,  
-As,  . . . , - 2a, where 2a is the radius of the circular 
stereographic  representation of the  equator (a = mean 
radius of earth). To simplify exposition of the  data flow 
plan, a basic plan excluding the Z‘’’ and modification of 
L“” will be discussed first. 

Table 5 indicates the  data in high-speed storage used 
in the calculation of Mi:; for a typical ordinate y = jAs 
in N ,  but is also valid for a typical ordinate 7 = jAs in S 
by replacing N by S. 

The  data M i t i  (at time t + At) in  the right  column of 
the diagram are calculated from  both  data  in middle col- 
umn  (at time t )  and  data in left column  (at  time t - At). 
The L data  and  the union of data M U Z are stored  in core 
storage from left to right (in order of increasing abscissa 
in N and of decreasing abscissa in S )  for  each ordinate 
and each time, and  the calculation of M“’ is performed 
in the same  order.  This  arrangement of M U I data permits 
the program’s referencing of data in the same manner  for a 
neighbor grid  point which is exterior as for one which is 
interior. (For convenience in re-arranging M and I data 
“read” from  the disk to obtain  the M U Z arrangement in 
core  storage, the core  storage associated with each of the 
M U I is that  for ( M  U Z,LZ),  i.e., M U Z and a repetition 
of the portion of Z-denoted by .I-contained in the left 
half of the N-Q coordinate space.) 

In accordance with the stated order of grid sweep, the 
calculation proceeds from M::; to Mi: i ,  or  to Mi:;,  for 
a typical ordinate y = jAs in N depending on whether 
y 2 0 or y < 0, respectively. To avoid the delay which 
would otherwise occur in commencement of the calcu- 
lation of MT+l for  the next ordinate, additional  core 
storage  corresponding to  one  additional entry  in  each of 
the three  columns of the diagram in Table 5 is used as “buf- 
fer”  storage  for writing on disk from core  storage of T + 1 
data  or for  reading from disk to core  storage of T and T - 1 
data. However, a saving of core  storage is made by having 
M:f$ share space with ( M  U I>‘ for  the previous ordinate 
( y  - As = [ j  - l ]As for y 2 0, y + As = [ j  4- l ]As for 33 1 
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I I 
Figure 6 Interior image points in shaded  region of N represent same physical  points as selected  exterior  grid  points having 
labelled  ordinates  in S. 

y < 0),  the data for the leftmost (interior) abscissa of 
M::; replacing  in  core storage the data for the leftmost 
(exterior)  abscissa of ( M  U I)' at the previous ordinate. 

A minor  revision of the basic data flow plan  described 
above is necessary if L'" data  are modified to obtain L'. 
In the case  where the calculation  proceeds  from %Ti, to 
Mi:;, for example, after the calculation of KT:,, but 
prior to calculation of Mi:;, the LiSN data are obtained as 
a result of modifications  using data at T and/or T - 1 
and replace the Lir; data in both disk and core  storage. 
The change in the basic  plan  required in the case  where the 
calculation  proceeds from Mi::,,,  to Mi:;, or in the case 
of S instead of N ,  is  completely  analogous. The writing 
of the L' data plane on disk  from core storage is initiated 
as soon as feasible after its computation. This change in 
the basic data flow plan does not necessitate  any  increase 
in the core or disk storage requirements. (No additional 
core storage is  required as a buffer for disk  writing. Thus, 
there are in total four L data planes in core storage at any 
instant of time.  There  is  only  one L data plane  per ordinate 
y in N and one  per ordinate q in S stored on the disk,  in 
contrast to the three M and I data planes  for  each  typical 
ordinate in  disk storage arising from the three successive 
time  points.) 

A more  complex  change in the basic data flow plan  is 
made to include the development of the Z"' data for N 
and S. One of the reasons for this complexity  is that some 
of the neighbor  grid points which surround interior 
"images"  of the exterior  grid points are exterior. As the 
values of the variables at the exterior  grid points of N 
which comprise 1;;; can not be  obtained  until after 
computation of M"' data in S, the IT+' data in S which 
depend  upon 1;:; can not be  evaluated  completely  during 
the calculation of the M"' data planes in N .  The linear 
Combinations  used  for interpolation, requiring  values  both 
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planes, are restricted to values at interior grid points during 
the calculation of During the course of calculating 
the Mi:; data planes,  any of the linear combinations of 
data in the M"' data planes for N which  were  "incomplete" 
are "completed"  using Z7+' data for N to obtain the Z;:; 
data planes.  Also  during the course of calculating the Mi:; 
data planes,  "complete"  linear  combinations of data in 
M"' and Zr+' planes  in S are formed to obtain the Zit; 
data planes. 

Another reason the interpolation procedure introduces 
complexity  is that the order of generating the Z"' data 
is quite different from their order of usage in subsequent 
calculations. The order of the generation of 1'" data is 
governed  by the arrangement of the interior image points 
and by the order of calculations of the M'+l data planes, 
and results  in the allotment of core storage space for several 
I"' data regions. 

In discussing  in further detail the effects  of interpolation 
upon the data flow plan, two properties of the arrangement 
of interior image points are required.  Consider the linear 
combinations  obtained  using the  data Mi:; and Mi':,N 
which are simultaneously  available  in  core  storage prior to 
calculation of  when y > 0. Each  of  these  linear 
combinations  involves  values at the surrounding interior 
grid  point  neighbors of an (interior) image point whose 
ordinate, denoted by q', satisfies y - As < q' 5 y .  Then, 
it may be  shown that the ordinate q of the same  phys- 
ical  point in S (an exterior  grid point) satisfies 
y 5 q 5 y f 3As. (See Fig. 6.) 

The second of the two properties of the arrangement of 
interior image points required  is  contained in the result 
that y 5 q 5 y f As if the further restriction  is  imposed 
that the image point, having ordinate q' where 
y - As < q' 5 y ,  lie  in a grid square not all of whose 
vertices are interior. This  second property is  schematically 
illustrated  in  Fig. 7. (Simple  examples  within the range of 
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Figure 7 Interior image  points  in  shaded portions of partially exterior grid  squares  in N represent  same  physical  points as Figure 7 Interior image  points  in  shaded portions of partially exterior grid  square: Dints as 
selected exterior grid  points  having  labelled ordinates in S. 

interest for n establish that these inequalities can  not be 
sharpened by replacement of 3As with 2As in the first result 
or by elimination of As in  the second.) 

Entirely analogous results to those illustrated  in Figs. 
6 and 7 for y > 0 hold  for y < 0 due to the symmetrical 
arrangement of the image points in N with respect to 
y = 0, and also  by symmetry for y interchanged with 
7 and N with S. In  the special case y = 0 (or 7 = 0), the 
only image points for which the variables in M“’ are 
processed are those four  for each QK having ordinate 
7’ = 0 (or y’ = 0), arising from  the  four exterior grid 
points on q = 0 (or y = 0) of coordinate  plane Q = QK. In 
this special case, the linear  combinations do  not require 
“completion” using exterior data. 

Only the first of these two properties of the arrangement 
of interior image points affects the  data flow plan during 
the course of the Mi:,: calculations. The effect may be 
illustrated by considering a typical ordinate y > 0. Then, 
after  the calculation of all linear combinations  required 
from M:’:,N and Mi:,: where y = jAs  by image points 
having ordinates -q’ satisfying y - As = ( j  - 1)As < q’ 5 
y = jAs, additional core storage is occupied by the re- 
sulting generally incomplete Z‘+’ data planes denoted by 
‘Z;:;, 3Zi1i,s, 2Zi::,s and 11i+3.s  . The pre-superscript no- 
tation is used to indicate that each of these sets of data 
may be updated,  corresponding to incrementing the pre- 
superscript,  during the calculation of the linear  combi- 
nations for interpolation following the computation of the 
M“’ data planes succeeding that  just computed.  Although 
the ‘Zi:: data comprise linear combinations which are not 
in general entirely “complete”, it follows from 0 < 7’ < 7 
that  no further Mr+’ data  in N will cause modification of 
“Zi:;. Consequently, as  soon  as feasible after  calculation, 
the ‘Zi:; data  are written on  the disk from  core storage. 
One  additional Z“’ core  storage region is assigned in 
order to avoid possible delay in commencement of the 

next Z“’ calculations following the computation of 
(Such delay would prevent re-usage of the  core storage 
occupied by ‘1;:; until the writing of ‘Ziti on disk is 
finished.) An entirely analogous  change  in the  data flow 
plan is introduced to  handle interpolation  during the 
course of calculating Mi:; for a typical ordinate 
y = jAs  < 0. 

Consider next the development of IT’’ data  during  the 
computation of the Mi:; data planes. Without use of the 
Zr+’ data obtained  during the calculation of the Mi;; data 
planes, the linear  combinations for interpolation by anal- 
ogywouldproduceincore~torage~Z~~~,~Z~~~,~,~Z~~~,~,and 

7 > 0. However, from 0 < y’ < y,  0 < 7’ < 7, 
y = 7 = jAs, it follows that, with appropriate use of the 
Z‘“ data obtained  during the M‘” calculations for N ,  the 
data comprising entirely “complete” linear  combinations 
Zi:; and ZiTi can  be computed at this stage, rendering 
unnecessary the  notation ‘‘‘Zi;;’. Thus,  all  linear combi- 
nations  contained in 3 Z ; + + : , N ,  2 Z ; : i , N  and  can also 
be “completed”, but  the pre-superscript notation is retained 
to indicate that in general these sets, in  containing  only 
data  for image points having positive ordinates less than 
or  equal q = y ,  do  not contain data for all required exterior 
grid points. By the second of the  two arrangement prop- 
erties of image  points, the ‘Z;:; data first become subject 
to updating  after  computation of Z;Ti ,w Consequently, 
the ‘Z::: data  are read from  the disk to core  storage 
sufficiently early to be available for modification prior 
to computing Mi::. The  data resulting from this modifi- 
cation  are denoted by ’Zit:. After calculation of Mi:; 
where q = jAs, data ‘I;;; are further  updated to obtain 
ZiTj. As soon  as feasible after  the calculation of ZiTj  and 
Zi:&;, these data  are written from core  storage on  the disk. 
Sufficient core storage is allotted for  the Z‘” data to enable 
its use as buffer storage to avoid delays in disk writing 

I Z ~ + l  ,+,,,followingcomputationofM~+~fora typicalordinate 
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Table 6 Data  in  high-speed  storage  immediately  prior  to  com- 
puting Mf:; for a typical  ordinate y = j A s  > 0 in N .  

( M  u I>:& 

( M  u I ,  L):;:.N ( M  u I);+l,iv 

( M  u I ,  L);:; ( M  u 1x3 

( M  u I ) J I ; , N  ( M  u I ,  L L , N  ( M 3 ,  * I , S X  

( M  u I ) : - : , N  

1 r + l  
I i i 2 . S  

I i + l , S  

1i.S 

2 r+l 

3 r+1 

Tat ,le 7 Data  in  high-speed  storage  immedia ~tely prior  to  com- 
puting Mi:; for a typical  ordinate 9 = j A s  > 0 in S.  

and reading of I“’ data. The change in the data flow plan 
due to interpolation during the course of the Mi:: calcu- 
lations for a typical ordinate q = jAs < 0 is  completely 
analogous to  that described for q = jAs > 0. 

Tables 6 and 7 indicate the contents of core storage 
immediately prior to computing Mi:; and Mi:: for typical 
ordinates y = jAs > 0 and q = jAs > 0, including the 
effects upon core storage of IT’’ calculations and of up- 
dating Lr” data which occurs  only  during  some  time steps, 
but excluding additional buffer storage. 

The amount of core storage allotted for the M ,  I ,  and L 
data planes,  including  buffer  storage, in order to perform 
the calculations  over the entire grid  is that for eleven 
regions of ( M  U I ,  J, IT+‘) and four regions of L data. 
The size  of  each  of these two types of regions  is  determined 
from consideration of the zero ordinate position  where 
the space  required is a maximum. The M U I ,  L, and r’’ 
data planes-although  each  is  typically  used in the same 
or updated form but in a different role during the calcula- 
tions associated  with  each of several  successively  computed 
M“’ data planes-are not moved within core storage. 
Rather, in the progression from the calculations  associated 
with  one M‘+’ data plane to  the next, the changing  roles 
are obtained by  cyclically permuting the reference ad- 
dresses-within  each  of  several sets of  addresses-used 
during calculation, reading from the disk to core storage, 
and writing on the disk from core storage. 

Output 

In addition to identifying information (e.g.,  experiment 
number,  values of input parameters,  time and space 
positions at selected  stages of the calculation),  essentially 
two  different  types of data are provided  (periodically or 
subject to manual control) as output at the printer and/or 
on magnetic tape. One  type of output consists of the values 
of pointwise  basic or intermediate  variables. The other 
type  consists of properties  “in-the-large”  obtained  from 
approximate integrations (summations) of functions over 
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properties  “in-the-large”  computed are relative and abso- 
lute  angular  momentum,  kinetic  energy, potential energy, 
and air mass.  Both of these  types of output, but especially 
that consisting of properties  “in-the-large,” are helpful 
in the monitoring and interpretation of experiments  per- 
formed  with the computer  program. 

10. Refinement: A procedure for increasing “horizontal” 
resolution 

Subject to the maximum  permissible  number n of intervals 
from pole to equator being 40, a special procedure con- 
tained in the computer program called  “refinement” may 
be  used to compute initial data for calculations  with 
n = 2n1 from results  obtained  with n = n,. E.g., a numer- 
ical integration of the basic  variables  over the earth from 
time t = 0 to t = tf might  be  accomplished in four stages 
of calculations:  (i)  from t = 0 to t = tl with n = 5, (ii) 
from t = tl to t = tz with n = 10, (iii) from t = t2 to 
f = t3 with n = 20, and (iv) from t = t, to t = t f  with 
n = 40. At the commencement of each of the last three 
stages,  some of the input parameters,  including  time 
interval At, could  be  changed, a bivariate linear inter- 
polation of the basic  variables  would  enable  assignment 
of the values of these  variables  for the commencement 
time at the newly introduced spatial points, and the non- 
time-dependent  pointwise data would  be  recomputed or 
supplemented  from additional input data on magnetic 
tape for the new  grid. The height z, at each  newly intro- 
duced point of the earth’s  surface  is  gradually  adjusted 
from an initial value  obtained from bivariate  linear 
interpolation to the proper final value  during the calcu- 
lations performed for subsequent  time  positions. 

Concluding remarks 

The Global Weather  Simulator contains more than 
15,000 STRETCH instructions, and is  comprised of  five 
sections which share approximately 10,000  64-bit  words 
of the high-speed  magnetic core storage. The remainder 
of the 65,536 words of core storage is  available for data. 
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The program sections include: GWSO (“Loader,” auto- 
matic restart  from  data on disk, processor of interrupts 
and input-output  operations), GWSl (Processor of input 
data),  GWS2 (Calculations and  data manipulations for 
numerical integration), GWS3 (Development of inter- 
mediate output  on magnetic tape,  and  restart  from such 
tape  output),  and GWS4 (Refinement). The intermediate 
tape  output also serves as  input  for “out-of-stream” 
analyses with independent  programs for development of 
final output  in  the required wide variety of graphically 
displayed forms.’ ” 

Preliminary studies were performed on  the  IBM 7090 
computer with programs for developing approximate 
solutions of Poisson’s equation and of the “wave equation” 
on  the surface of a sphere. The same forms of stereographic 
mapping and “equatorial”  interpolation were used in 
these studies as  in  the  Global Weather Simulator. The 
comparative effectiveness of several types of differencing 
was evaluated with tentative conclusions drawn concerning 
the convergence, stability, and accuracy of the several 
differencing methods considered. The choice of a time 
interval At for early experiments with the  Global Weather 
Simulator was based  partly upon  the “wave equation” 
experience, and partly upon  the experience of others with 
simpler weather models (e.g., see Smagorinsky,” p. 461). 
The dependence of the usual choice of time  step upon  the 
“horizontal” spacing of grid  points, in  both  the preliminary 
experiments for the global and hemispherical models and 
the later hemispherical experiments,’ ,’ is shown  in Table 8. 
The initial data for the time-dependent variables, the 
geophysical data describing the  earth  and its atmosphere, 
and  the frequencies of calculating radiation  and diffusion 
terms, were chosen by the Weather Bureau. The  “running 
time” of this  Simulator  program is limited by the speed 
of STRETCH, on which the approximate  time  required for 
a floating-point multiplication is 2.7 psec. The running 
time also depends in a complicated way upon  the size of the 
grid, the choice of certain  formulation  options (e.g., the 
frequency selected for  the highly complex radiation 
calculation), and  the  amount  and frequency of the gener- 
ation of output information. It was estimated that a basic 
global experiment for n in  Table 8 equal to 40 would re- 
quire 18 hours of calculation on STRETCH per atmosphere 
day. Table 9 provides timing information based upon 
actual hemispherical experiments for a “dry”  model 
(having “moist convective adjustment”) with n = 40. 
For a discussion of hemispherical experiments with the 
program, see J. Smagorinsky, S. Manabe, J. L. Holloway, 
Jr., and  R. F. Strickler (Refs. 1 and 2). 

With reference to Table 9, the “initializations” section 
required execution only once per ‘‘run”; the remaining 
sections were typically executed at every time  point, except 
only once  per 72 time  points for  the “radiation” section. 
On this basis, the entire  program comprising these sections 

Table 8 Time step At for Global Weather Simulator experi- 
ments for nine  Q-Levels ( n  = number of equal  subdivisions 
from pole to equator in  stereographic grid). 

n 5 10 20 40 

At (in  minutes) 40 20 10 5 

Table 9 Approximate  timing on STRETCH for the  program 
sections of a nine-level “dry” hemispherical  model  with 
n = 40 and At = 5 minutes. 

Execution time  per 
Section of program  time point (in  seconds) 

Initializations 114 
“Inner loop” 45 
Vertical  diffusion 28 
Horizontal diffusion  33 
Integrals 20 
Radiation 455 

requires approximately 10.6 hours of STRETCH calculation 
per atmosphere day for  the values of n and At specified 
in Table 9. 

For assistance rendered in formulating and program- 
ming the  Global Weather  Simulator and related IBM 
7090 studies, we  wish to express much  appreciation to 
our colleagues: Dr. G. W. Booth, E. V. Hankam, H. L. 
Herrick,  Jerrold Rubin, Dr. R. A. Spinelli, Dr. P. H. 
Sterbenz, and Mrs. F. T. Zederbaum. We also  appreciate 
the very helpful cooperation of J. L. Holloway, Jr., Dr. S. 
Manabe, Dr. J. Smagorinsky, Miss E. A. Storlie, and  R. F. 
Strickler of the U. S. Weather Bureau. 
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