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A Computer Model for Global Study of the
General Circulation of the Atmosphere

Abstract: A mathematical model is developed for global prediction of large-scale movements and mean properties of the atmosphere
from simulated initial weather conditions. A novel feature is the development of the formulation—one of considerably greater com-
plexity than those for previous weather models adapted to machine calculation—in a concise tensor form. The organization of the
computational task illustrates how a very complex problem with vast data requirements may be solved on a computer with limited

high-speed storage.
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Introduction

This paper describes a joint project of IBM and the U. S.
Weather Bureau in the area of large-scale global weather
forecasting on the IBM sTrReTCH (7030) Computer. The
basic formulation chosen for the project was proposed by
the General Circulation Research Section of the U. S.
Weather Bureau, under the guidance of Drs. J.
Smagorinsky and S. Manabe, as well as J. L. Holloway, Jr.
and R. F. Strickler. The STRETCH program, designated
“Global Weather Simulator,” resulting from this endeavor
was used in modified forms, during several years, for
experimental studies at the General Circulation Research
Laboratory in Washington, D. C."’? The most extensive
of these modifications, all of which were made by Weather
Bureau personnel, reduced the region of treatment to a
hemisphere. Alternative methods which enable treat-
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ment of global models have been developed and/or used
by Y. Kurihara® and K. Bryan® and also by H. L. Kuo,
Y. Mintz, and J. Smagorinsky in unpublished work.

The formulation of the basic problem is developed in
terms of tensor algebra which, we believe, is a substantial
simplification and should have interest even for the mete-
orologist. In the discretization for numerical calculation,
the atmosphere is stratified into nine layers in the vertical,
with up to more than 10,000 points taken in each layer.
Different mappings are adopted for the northern and
southern hemispheres, and special interpolation techniques
are developed to relate data at points near the transitional
equatorial boundary. The discussion of the data processing
problem at the core of this project seems to be, as the
authors have found out over the past years, of recurrent




interest to the computing field. Special attention is given
to the organization, and plan for efficient computer manip-
ulation, of the vast amounts of data required. The com-
puter program is also designed to facilitate experimentation
with “submodels™ of varying complexity for several alter-
native choices of the number of points in the spatial grid.

Even within the framework of this rather lengthy paper,
some important areas, in particular that of “radiation,”
had to be omitted.

Formulation of the global weather model

In the following we wish to describe as concisely as possible
the formulation on which the model is based. We can be
quite brief as far as physical aspects and meteorological
significance of the model are concerned, referring the
interested reader for details to the pioneering work of
Eliassen,””” Phillips,® Charney,’ and, for this model in
particular, of Smagorinsky.''*"'°"** However, we shall
expend some effort on the formal mathematical derivation
of the basic equations used by the computer. We found
that the various transformations of the physical equations,
necessitated by a mapping of the earth on two Cartesian
coordinate systems, lead to many difficulties, e.g., in the
area of interpolation around the equator. These can be
handled only if the transformation properties of the various
variables are clearly understood. As a consequence we
were naturally led towards employing the well-known
procedures of tensor calculus. For a different, more
meteorologically oriented approach to a part of this
material we refer to Refs. 7 and 13.

o [. The basic physical equations

The prime objective of the global weather model is to
determine a set of seven physical variables, taken to be
characteristic for the state of the atmosphere, from the
integration of a corresponding set of partial differential
equations with physically appropriate boundary con-
ditions. We may take as unknowns the variables

{w', w’, w*} = wind velocity
pressure

density

absolute temperature

relative humidity.

SN Do
Il

Correspondingly, the determining equations are:

a) The equations of motion (Navier-Stokes) (compare,
e.g., Ref. 5)

TE%—F(w-V)w—FZQXW

+igradp—g-—%f=0, where (1)

Q = angular velocity of earth

g = gravitational acceleration (assumed to have con-
stant magnitude)

f = frictional force vector.

b) The equation of continuity:

37" + div (pw) = 0. @)
¢) The equation of state (of air):

p = pRT, (3
where

R = universal gas constant (if necessary, modified to
account for deviations of the atmosphere from
the ideal gas state)

d) Thermodynamic energy equation [compare, e.g., (1),

1

A ] q <pst)" <pst>x

f=—8g =\, =T\ 4
o, T a c, \D /] @

6 = potential temperature

¢y, ¢, = specific heat of air at constant pressure (vol-
ume)

Doy = standard pressure (1000 mb)
g = rate of heating per unit mass of air.

The dot above @ denotes total differentiation with
respect to time. The specific entropy of a perfect gas
isequaltoc, * In @

¢) Humidity tendency equation: # = W %)

Il

r miXing ratio (gmwa ter vapor/gmdry air)

W = rate of water vapor increase (per unit mass of
air) due to external sources or internal changes (e.g.,
evaporation) of the system.

o 2. The equations of motion in stereographic map systems

It was considered desirable to project the surface of the
spherical earth stereographically onto two planes tangent
at the poles. The equations are to be solved in the Cartesian
system which obtains if a point P in the atmosphere verti-
cally above a surface point SP is represented under the
transformation by a point the same distance vertically
above the image point of SP. We consider four coordinate
systems, the local Cartesian system with origin at SP
(oriented as shown in Fig. 1), the spherical coordinate
system E (Figs. 1, 2, 3) and the two Cartesian map systems
N and S. To indicate the system used at any instant, we
employ indices (T, E, N, S) as subscripts or superscripts
(whichever is more convenient). For the coordinates and
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Figure 1 The local Cartesian system = with origin at
typical earth surface point SP.

velocities we use the following symbols (i = 1, 2, 3):

coordinates velocity
2 (245 22, 28) w=w = {w, ws, ws}
= (¢,7,7Y), = {w', W, '}
=w = {7, 25%

E: () o=y A

= (7N,

N (x', X% X% = {x, 7,2
= (x, 5,2,

s (.88 v = {98
= (& .

Triplets enclosed by { } and symbols such as v* represent
vectors in the sense of tensor algebra. Superscripts (sub-
scripts) are used to denote contravariant (covariant) tensor
character.

We use the convention of summing over repeated indices
and we assume some familiarity with the basic tensors g,
and g**, e,,, and e*°, the operations of raising and lower-
ing indices, the Christoffel symbols, covariant differen-
tiation, etc. (see, e.g., Ref. 14).

In the 2 system the vectors Q and g have the form:
Qs = {Q, Q, &%} = {0, Qsiny, Q@ cos v},
g = {0,0, —g}.

The fact that the equations have to be solved on a grid
with a finite number of points suggests that the variables
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(6)

be considered as mean values of the corresponding physical
entities over a neighborhood surrounding a grid point.
It is shown easily (in any text on meteorological turbu-
lence) that (1) is indeed satisfied by such mean values, if
f is interpreted to represent not only viscous forces (which
we neglect) but also the “turbulence” or “diffusion” forces
caused by the transport of air by small scale motions
(perturbations). In 2, f can be written in terms of a “‘stress”
tensor 7;; (or in general coordinates R;;, R

o= rat et g e 1= 12,3 ()
Equation (1) can be viewed as derived from a general tensor
equation, valid in all coordinate systems, by suitable
interpretation of the variables (e.g., u; — w;). The covar-
iant form of the tensor equation is:

Ti B i, + 26“".98”1”
1 ap 1 ia
-~ —G;, ——g,;R .= 0. 8
oo , SR, (8)

The contravariant form 7° = 0 would be somewhat
less convenient. The operation denoted by a comma
preceding a subscript is that of “covariant differen-
tiation,”” which corresponds to the usual partial differen-
tiation in Cartesian coordinates and ensures, in more
general coordinates, that the resulting entity has tensor
character. For general tensors A%, 4; and 4*7 the covariant
derivatives are:

c_ad [,
A.k_axk +{mk}A ’

aA,' m
Ai.k - axk {i k}Ams (9)

g 04" i\ i\ im
A’k—axk +{mk}A +{mk}A ’

where the expressions in brackets are “Christoffel sym-
bols,” defined in terms of the fundamental tensors. In or-
thogonal coordinates the Christoffel symbols can be
obtained as follows (in this scheme summation over doubly
occurring symbols is suspended and the comma denotes the
usual partial differentiation):

m
a) k#s#m;ﬁk.{k s}—O,

b) =k, m#k: {k k} = =38 " Zikm
© m=k,s#k: k { = 3¢ i1
kS 2 kk,ss
d m=s5s=k: {k}—-gg (10)
k k 2 (AN




To interpret Eq. (8) in the Cartesian system 2 we require
the fundamental tensors for 2 :

1 0 0
(ds)’ = g dx' dx* > g’ = |0 1 0| = g8,
0 0 1
8zy = Igflf)| =1 (11)

Civm = g €2, = 1when (i, s, m) is an even permu-

tation of (1, 2, 3),

Ciom=—/g— €2 = —1 when (i, s, m) is an odd

ism

permutation of (1, 2, 3)

= 0— ¢'2) = 0 otherwise. 12

ism

Equation (8) can then be seen to reduce to Eq. (1) if
the obvious changes in notation are made (e.g., u* — w,,
R* — 7.,). From the validity of T\* = 0, moreover, we
can infer the validity of (8) for all coordinate systems.

As an intermediate step we consider the transformation
from Z to spherical coordinates E.

dZ' = rsinyd\, df = —rdy, d = dr (13)
or
) 0 rsinvy]|
az’
3y 0 ¥ 0 s
L1 0 0
0 0 1)
ay' 1
' = 0 , 0].
.1 0 0
rsiny

For the time being we retain the distinction between r
(radial coordinate of the spherical system) and a (radius
of the earth, assumed constant).

Before writing similar relations for the transformations
E— N, E— S, we define the mapping factors m and u:

_ 15 T

m = - , r = - .
asin vy a sin vy

(14)

(Refer to Figs. 2 and 3. Note that both quantities are
defined so as to be independent of r and z.) It is now easy
to derive the following relations and transformation
equations:

<2

Y _ o, Siny
2atan2 2a1+cos'y’

24 tan (W_—_ﬁf) _ oy Siny
2 1 — cos vy

~
f

(15)

ﬂ
l

PN}
B }z:r—a
Nr

S~ )
T {=r—a
P(S)

Figure 2 Relation of radial map distances (¢ and =) and
coordinates (z and ¢) of Cartesian map systems N and
S to coordinates » and vy of spherical system E for typical
atmosphere point P.

B=z

oo

Figure 3 Relation between coordinates x, y, » and £ of
Cartesian map systems N and S and of coordinates v and A
of spherical system E for typical earth surface point SP.

(16)
_ 2 _ (L)Z
”_1—c037_1+2a
dt = ma dv, (17)
dr = —ua dvy,
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X=X = {CcosSA = masin<y cos A,
g=¢ = —F= —7cos\ = —puasiny cos A
= 47 s - . .
y=x tsin A ma sin v sin A, (18)
7 =§& = rsin A\ = pasinysin A
z=x"=r—a,
{=8=r—a.
Taking advantage of (17) one easily obtains:
0 cos A —sin«y sin A
ax’ . .
gx:=ma 0 sin A siny cos A |,
1/ ma 0 0 (19)
0 cos A sin«y sin A
Qg—k— = ua|l 0 —sin A sin vy cos A
ayt M 7
1/ua 0 0

We now combine (13) and (19) to give the composite
transformations Z — N, S.

3y

A R S o
ot o7 ay' 07"
dx* = 5;; dy" (20)
" ., attayt .,
2 gt = ai &z = agiays &
@t = O Z v 0z
ay'
—sin A —cos A 0
ax* a .
- o = m; cos A —sin A 0o 1,
0 0 r/ma @1
sin A —cosA 0
k
g%; = u% cos A sin A 0
0 0 r/ua

The fundamental tensors and the line element in N and S
are easily computed

ik axi axk sm
€.g., &m — azsé?g(m .

(mz 0 0

g =a/l |0 m 0o |,

(22)
w0 0
g =a/r |0 w0 |,
316 L0 0 F/d
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m? 0 0
eV =1/ 0 m? 0o |,
2 2
t 0 0 a’/r (23)
W™ 0o o0
g =r/d| 0 w0 |,
L0 0 a'/F
g(N) — m—4r4a—~4,
(24)
gy = urtat,
2
r
(ds)ny = pepm [(@x)* 4+ (dy)"] + (d2)’,
(25)
2
,
(@ = 2 (@ + (an’] + (@)
0= e =

for (i, s, m) an even permutation of (1, 2, 3)

2

—2 2 - 2
= —m ra°“,

22
=— u ra
for (i, s, m) an odd permutation of (1, 2, 3)

= 0, = 0 otherwise.

Utilizing the scheme (10) we arrive at the following non-
vanishing Christoffel symbols (concentrating for the time
being on N only):

{212} - _{111} - _{221} - _{122}

{311} - {113} - {322} - {223} = lr
{131} - {232} -~ (26)

We are now in a position to assign explicit expressions to
the various members of T¢", We consider first the term

aui @
Si - 6t + u ui.a’

2 2
a ai._ [ ma ma
u =g U = Uy, Ugy Us(.
r r




The covariant derivatives of u; are obtained from (9) and (26):

Quy | wdm _wOm | oy Juy  wmdm o uydm uy _ w]
ax m ox m dy m a dy m dy m dx dz r
_ |94 mdm | u dm Ouy _wmdm , u,dm | us r Uy _ U
Bii = ox m 3y m 0x Ay max_l_may—'_m2 a dz r|’ (27)
dusg _ Qus _ u L
LOx r dy r 0z

Denoting by a dot the “chain rule” operator 8/9¢t + u” -
d/3x", we have for S;:

In dynamic meteorology it is customary to make (in the

S, = i, + _of_ng o+ ) 5 i=1,2 (29) coor.dmate systems 2 and‘E) the ‘quasmta?xc” approm-
2r mations (see Ref. 7, A. Eliassen and E. Kleinschmidt, p.
mad® \ 20), which amount to dropping the underlined terms above,

S3 = dy — 7 (i + uz). In the sequel we shall adhere to this convention and shall

The angular velocity and Coriolis term (C; = 2 e;11*
Q* 4™y components become:

ax"

Qk — le
(N) () azl

(29)

a . . . r
=m - {—sm ¥ cos A, —sin <y sin A, — cos 'y},
r ma
(N r)j—1 . . a
C;"'=2Q—-S—siny sin X u; — — cosy u,,
alm r
a 1 .
S cosy u; + - sin ¥y cos Aus,

2
(%) msiny[—cos X u; -+ sin A ul]}. (30)

It is evident that the pressure and gravitational terms
in (8) remain of the same form in N as in 2. Postponing
a detailed discussion of the “friction” term f;, we can now
write the equations of motion in the form:

. m 2Q0r (u; . .
™ — 4 +5§(uf+u;> x—7<—n—:sm'ysm>\

ﬁ 1(a_p m):
-|-racos'y>+pax—l—f1 0
Té”’=ﬂ2+ﬁ5(uf+u§)y+2—ﬂr(ﬂacosv
2r a r
+&sin'ycos)\)-l—l<a—p-|—fém>=0
m p \Qy
éw)=£¢_3~

2 2
— mr3a (u + u3) _|_2_r9_a m sin y(u, sin A — u, cos \)

rerl(®@ el o
p Z P

(31

also set r = a, treating the atmosphere as an essentially
infinitesimally thin layer. We also treat terms of order
a " as negligibly small in expressions containing terms of
order 1.

Retracing the above arguments for the S-system, we
find the only difference to be one in the sign of sin A in the
Coriolis terms.

& 3. Pressure and relative pressure as independent variables

It was established by Eliassen® that, within the framework
of the quasistatic approximations, the equations of motion
take an especially simple form (in the = coordinate system)
if p is introduced as independent variable in place of z,.
In particular the equation of continuity becomes (Z(p) =
2 system with p as third coordinate):

(S’i) + ("i> +¥_ 0 w=p 26 2

8z 1 aZ 2

The equation in the map system can be transformed
partially in the same manner:

dp 5 _ 3, 3pu) .k}
9 T () =5, + 5= +pu{sk

=0 [in N@)], (33
=[G, + G, + %)
-2 + ) )0 oo

Since m does not depend on z nor on p, (Im/dx), can be
replaced by (dm/dx),. One then obtains immediately:

m[(?‘i‘) + (g%” +5=0. (39)
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As a consequence one can transform the chain rule
operator d/dt as follows (denoting by « any function):

- (3] 48]+ 8 o
a = \ae), T¥\ax), T ¥\5y) T 9%,

(36)
= (5, ¢ 0| 20| ] oo

From the hydrostatic relation (3p/dz = — pg) one may
infer that (9p/dx), can be replaced by pg(dz/0x),, so that
the equations of motion (excluding f;) for the N(p) system

become:
u, Z[a(ul):’ 6(u1u2)]
" M e T oy
—%3%1)—%(14?—!— ) x + 2Q cos v u,
dz
& dx 0
_(?ﬁ _ [6(u1u2) + 8(u2)2:|
ot 0x dy
—%(;Z_z)—ﬁ(uf—%-ui)y—mcosvul
oz
—_— ga—y = 0. (37)
g—; = ——gl’; = —% (using the ideal gas law).

Finally we introduce (see Ref. 15, N. A, Phillips) the
ratio of p to p, (surface pressure at point (x, y, z = 0)) as
a new variable:

Q=p/py, @=p=p0+ Qb =p,&+ 0b,.
(38)
Considering the total differential of Q with dp = 0, one
has:
_ag> __Qw
(29) - -2%2 -1 (39)

da _ 1 da (ag>=(@>_g(§&)§@
dp  p,00° at/, dtleg b, \0t/q00

(o), = G), - 2 (). 5%
ax'/, 0x'/q by \0x'/q 00

After some algebra, using the chain rule

T (%)Q + '"2["1@;)0 +u <§y) } +d55 5 (40

(i=1,2).
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one obtains in analogy to (33), (34), (35) the relations:

oo (8 + (), <3 0]
e,

o G2, + (Ep“a) (%) J} (41

3% (617*)

Ps 50
+ mzl:a(p*ul)

(D us)
dx + ¥

Q dy

Q] = 0. (42)

In the computer program the equation of continuity (42)
is used in a two-fold manner, to step p, in time and to
compute s = O (from which both w and #; can be obtained)
at the various Q-levels. To this end one integrates (42)
with respect to Q, using the boundary conditions @ = 0
atQ0=0,0=1:

0 = 2 a_z@)
o0 - -2 (2

2
m

p* 0

it »/;|: () + 55 (P*uzﬂ (44)

(partial derivatives here and in the sequel in the N(Q)
system).
Combining (42) with (40) one has (in analogy to (36)):

da 1 dap,)

dt Py Ot

[ 3pyma) a<piu2a>} 3at)
+p*[ e o (45)

Using the “geopotential” & = gz instead of z, we may
replace the horizontal derivatives of z as follows [see (39)]:

{(32), - (22), - (39), - 2 (2. %
ax’ ox'/,  \ox'/q b, \dx'/q 00

a@) RT <8p*>

— — =) . 6

(), + 22 (%) . o
The equations of motion can now be taken from (31),

(45) and (46):

2 o + S |a0 @

a(piul) - —m \:a(P*_ul) + a(l’*uﬂlz)] - Jauy
ot dx dy * 00

2
+ 29 pouy cosy — THE (4] + ) x

2a
9% 3
—p, o — RT =0, (47.2)




a(Pi ”2) - —m [‘9(1@141”2) + a(PgEu2):‘
ot ox dy

0w m’
— D, ;’52 — 2Q p,u; cosy —Egi (i + ui) y
9% _ 9Dy _
Pug, ~RTGE=0 (47.b)
0% RT
0" o (47.¢)

It is quite clear that the same equations hold for S,
(g, 4y, x, y, m°) being replaced by (vy, vs, £, 7, ).

The covariant velocity components (u;, u,, u3) are not
to be confused with actual physical velocity components.
To obtain the physical velocity components on earth, we
have to use the appropriate tensor transformations:

x
i ax

w = w":a—z“”": m{—sin)\ul—}—cos)\uz,

—cos A u; — sin A u,, ?né} (48)

In the computer program it is also necessary, for inter-
polation purposes at the equator, to relate the coordinates
and the velocity components of N and S. Utilizing relations
(15)-(17) we established:

(%%)=(_tftf) 3 + Sl

(49)
£ E) _ <_1£ zz) __4d®
(xry - t2’t2 '_x2+y2( 1’1)
. ] £ -9 2 0
dx 4
il 2%n £ — 7 0
&+ 7))
0 0 4a°
(50)
xX =)t 2xy 0
= e —2xy x*—y 0
0 0 4q’
x“—y 2xy 0
.& — _igj___ 2
- E+ ) 2xy x —y 0
x* + »)°
0 0 4q°
(51)
£ - 2y 0
1
=z| —% £-7 0
0 0 4q°

The velocity transformations

_ % _
Unm axm Vg, Uy aEy

can now be read off without difficulty.

o 4. The energy and humidity equations in the map systems

In (4) and (5) the terms # and # represent qualities of a
particular parcel of air. In terms of the fields 8(x, y, z, 1) and
r(x, y, z, ) they are total time derivatives. On the other
hand the quantities g and W should be regarded as func-
tions of (x, y, z, £) to be specified directly by some auxiliary
formulations. In the computer formulation we have to
link the local variations 96/9t, 9r/dt, du/dt, etc. to these
‘outside” influences (e.g., radiation, precipitation, changes
of state, diffusion).

Using results from Refs. 10 and 11 we can write the
energy equation in the form

5 - + - (CIR + QD) (52)

cr:.l»—-

The three right-hand terms represent, in succession,
the effects of “pseudoadiabatic” thermodynamic processes,
radiation processes and diffusion processes. It suffices to
regard the terms as being computed at a point (x, y, z, ©)
from the variables stored in the machine at that instant.
To obtain the local variation of (fp,) with time we apply
the operation implicit in (45):

1.3(6p,) [a@ wh) | o m)] (@)
Dy Ot +p* ;x - Sy T a0

I‘w
= 0[ 8
*Q

Introducing absolute temperature T by § = T(p,./p)",
substituting from (38) and the chain rule, and cancelling a
factor p%,(Qp.)”", we arrive at

+ qn)] (53)

op, T _ I(pyTu) | 9o Tuz)]
ar m[ ox T oy
~p Dy et ) L B+ ) (9

Turning to the humidity equation (5), we break W into
two parts, one (W3z) standing for the change of water vapor
contents of air at a point due to external agents, the other
(W ;) representing the change due to internal processes. We
also introduce as new variable the relative humidity # (the
ratio of mixing ratio to saturation mixing ratio r,).

F= Wg+ Wi, r = hr, (55)

iL=r—1(W1——h-r‘)—|-r—1 Wg (56)
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According to Ref. 11 the equation can be rewritten in the
form:

i = "I_‘; (1 — A 67, — (1 — 8h-v,) +r_1 We, (57)

where the first term accounts for pseudo-adiabatic pro-
cesses (in a fraction 6 of the air around a grid point), the
second for adiabatic processes. The parameters 8, ¥, Yq
are suitable functions of T, & and the coefficients char-
acteristic for a realistic air-vapor mixture.

Proceeding in the same fashion as above, we finally
obtain for the local variation of p_#:

Ip, 2[6(11 hu) | 0(p h“2>:| d(wh)
et . S * * _ AT
at m T Ty, P+ "a0

+ 20 = B Soye — (1= v + PP (s

In this paper we shall omit discussions of the terms
gr and Wy, The computation of the first term is executed
in a highly complicated “radiation program” (for a
partial formulation see Ref. 16). In the actual model Eq.
(58) was replaced by a simpler formulation, keeping the
mixing ratio constant, in the upper layers of the atmos-
phere.

A summary of the computational procedure

In the initial formulation the independent variables are
X, ¥, z, t and the dependent variables are w;, wa, ws, p, D,
T, r. In the final formulation p and z have interchanged
places and new coordinates as well as new auxiliary var-
iables have made their appearance. The basic prognostic
equations are (47a), (47b), (44), (54) and (58). For most
meteorological purposes the quantities p,u;, p, 1., p, T and
D.h, apparently with little difficulty (i.e., after appro-
priate scaling) can be interpreted directly as horizontal
velocity components, absolute temperature and relative
humidity. The total time derivatives of the vertical coordi-
nates p and Q, namely w = p and & = O, take the place
of vertical velocity. It may be helpful to give a brief sche-
matic description of a possible sequence of computational
steps leading to the evaluation of the basic quantities:
velocity components (wy, w,, ws), geopotential (), vertical
elevation (z), density (p), absolute temperature (7, rela-
tive humidity (k), mixing ratio (r), ground pressure (p,)
and pressure (p). In the following, “—" means “yields”:

(47) '_)p*ul, p*u2: é} — Uy, Uy
(43), (44) — @, p,
(38) >w, p; (54)>T; (58)—h; (55)—>r; ®—>z

k
ox 1 2
= T U, W = W, W= W

0z

b

(3)—p w

(2) = ws = .
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o 5. Formulation of momentum diffusion

The nature of the diffusion terms f; is only incompletely
understood at the present time. In the following we borrow,
with Ref. 12, a formalism from elasticity theory. In the
process of developing the formalism into a physical
description we are guided by results from one-dimensional
flows (Prandtl hypothesis). Yet we must still regard the
final formulation as tentative, subject to modifications,
hopefully only of parameters, in accordance with the results
obtained by the model.

We consider the contravariant vector F' = R’2 of Eq.
(8). It is well known (see, e.g., Ref. 17, p. 67), that the
stress tensor R’ is symmetric:

R'® = R, (59)

Our objective is to express the “force components” F’
in terms of known properties of the flow, e.g., velocities
and velocity gradients. To this end we investigate what
special form the general stress-strain relation

R™ = clie™ (60)

takes when we assume certain reasonable symmetries in
our model. The strains e"® are, in general, defined by:

re Tm _sn ar

e = 8§ 8 €pn = € (61)
lun = 5(tn,n + Un,m).

The tensor ¢’* has 81 components. However, by virtue
of the symmetry properties (see Ref. 17, p. 156):

ik . ik __ ki _ ki __ rs
Crs = Csr = Cyr = Crsg = Ciks (62)

which hold in a Cartesian coordinate system (say Z), the
number of independent ‘‘elastic coefficients” reduces to
21 and the stress-strain relations can be represented by the
matrix equation (entries represented by points are to be
filled in by symmetry):

(11 1 11 1 11 11
Ci1 Coz €33 C23 €31 Crp

22 22 23 22 22
Co2 C33 C23 C31 Cig

33 33 33

33
. * €33 Caz3 Ca1 Ci3
Rz = E 3 (63)

23 23 23
C2z €31 Ci2

31 31
C31 Ci2
IZJ
C1g
[ p11] [ 1)
R e
22 22
R e
33 33
R e
R = , E = . (64)
2 23
R* e
3 31
R* e
12 12
(R e




We now assume, in the X system, “elastic” symmetry
with respect to two perpendicular planes, say z; = 0 and
zy = 0. It is shown in Ref. 17, p. 159, that this implies
symmetry with respect to z, = 0 as well, and causes a
reduction of the number of independent nonzero elastic
coefficients to 9 (orthotropic symmetry). Finally we impose
the additional requirement of symmetry with respect to
rotations about the z; = z axis (hexagonal symmetry),
which leaves us with only 5 independent nonvanishing
elastic coefficients (say a, b, ¢, d, e):

(@ b c 0 0 o |
b a c¢c 0 O 0
Rz = ccd00 0 E;. (65)
0 0 0 ¢ O 0
0 0 0 0 e 0
0000 O %(a—b)J

To obtain a further simplification, we now refer to the
physical meaning of R*’ = r,; (see Ref. 14) and demand
that there exists a partial “equipartition” of kinetic
energy of the turbulent disturbances u/. That is, we assume
that the energy associated with perturbations of the vertical
wind velocity is on the average equal to the arithmetic
mean of the energies associated with the two horizontal
components:

(wo)* = 3[(W)* + (w)’] = RSy = 3Ry + RS,
(66)

We can consider the strains as arbitrary, so that (65)
implies:

a-+ b= 2c, ¢ =d. (67)

In addition we choose, as is frequently done, to rearrange
the sum of the two terms dp/dx’ and — g:;R'% of (8) so
as to modify both p (to 7) and R™ (to R’), keeping the
combined effect unchanged.

giiR'% — ap/ax’ = g ,R'S — 9p/9x’. (68)

The modified stress tensor is chosen so that its relation
with a correspondingly modified strain tensor is especially
simple:

Eik = RJk _ S.gik = Eil:.erl
S =13R, = IR""g,;, = Y!Tgne”, (69)
p=p—8S.

We verify that (68) is indeed satisfied [by virtue of
(gii S 8%, = 8% 35/0x" = 35/9x"] and that the

modified elastic coefficients are given by:

~ik _ ik 1im ik

Crs = Crs — 3Crs Emi&

~11 ~11 ~11

i1 = a—¢, Cga = b — Cc, C3z = 0 (70)
~23 ~31 ~12

Cog = C31 = €,

II

3(a — b).

Utilizing (67) we can finally introduce the new coefficient x :

Ciz = 012

a—c=c—b=x, a—b=2c—0b =2, (1)

in terms of which the modified coefficient matrix becomes:

[ 'x —x 0 0 0 0]

—X x 0 0 0 0
- 0 0000 0f (72

0 00 ¢ 0 0

0 000 ¢ O

L0 00 0 0 x

In the sequel we shall drop the tildes, but must remember
to interpret p, R™ and ¢’* as being the modified quantities.

We now resume our endeavor to represent ¥’ in terms
of the basic quantities in the N-system.

E'N) = (N)(crauv) ‘€)= gEIJV) fi- (73)

Fortunately, the structure of ¢i¥ ., is exactly the same as
that of ¢i¥ , (as in Eq. (65) or in Eq. (72)).
This can be seen by evaluating each term in

; 7 o7 8x ax o
Crin = 3x ax® 3" a7 ' (74)
with the partial derivatives [(21) and its inverse]:
—sinAN —cosA O
i
%;= m| cosA —sinA 0|,
9z
0 0 ﬁ
(75)
—sin A cosA O
v
6zr = 1 —cosA —sinA O
ox m am
0 0 5
For instance:
11 62 axl ? 11
Civwy = I 6 C11(3)
3z a«"\* dz' ax'\?
+ (f)xl az' > C;;m - <W?z§ ¢
62 ax) 29 <az az ax ax) 12
+ <6x o) B T NG 0 531 o 37/
= q(sin* A + cos* \)
+ [2b + #(a — b)] sin® N cos® A = a. 321
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Hence we can take c* x, to have the form of (72). We still require the strain tensors defined in (61). They are
obtained from (27) and (22) in the following form:

u | w dm _u dm l(% 61) wdm | uy dm 1(% %)7
6x+m Ox m ady 2 6y+6x +mé)y m dx 2 8z+0x
du u, Om u, dm 1 (8u 6u>
Ny _ . Uk 2 YR A2 YT — [ X222 Z23
Emn dy m Ox m dy 2 \9z + dy (76)
9u;
0z J
[ adu o dm o 9m m’ <3u1.m2 auzmz) m’ (Qﬂ Q&)
ax T MG, T Mgy AT 2 \az T ax
oo _ sOuy o Om g Om m’ (31 61)
ey = m g, T Mg + m’u, 3y > \oz + 3y (77)
Aus
~ dz
We now implement (60) (e.g., R™ = ci} el! +
11 22 _ 22y,
Cp € = — R™):
where we have set:
dm’u dm’u
Rizl\r) = _Rgn = Xm2{_"—l - __‘—2}, _ Im’u, dm’u,
dx dy Dp=\————T]7"},
ax ay (81)
2 2
Rion = R = m2{a—’—nai + ﬂ"a_li?_}, D, = <am2u1 + 3m2u2>.
Y * (78) dy ax
RS — R — . 2{% + Q_H_a} In order to use these relations in the computer program,
o o 0z x )’ we still have to relate the “elastic coefficients” x and e to the
P 3 local properties of the flow.
R%, = R, = mz{-‘;‘fz + 6—%} According to Eq. (31), the 1/p f” are the contributions
< Y (except for sign) of “diffusion” to du,/dr. We may then
To evaluate 1 we apply the last equation of (9) in its compare (80) to the general diffusion equation in a turbu-
contracted form or use standard expressions for the con- lent wind:
tracted Christoffel symbols: dn P an 9 om P an
_ — =M )+ =M —)+-\M—/ (82)
. OR'® i o ) dt ox ox dy ady 0z az
RG ="+ R™" + R'™, . .
9x° ma m M., M,, M, being exchange coefficients.

. While equations (80) are more complicated than (82),
{0‘ } — 1 _a_l Ing= __IE 611: (79) they have a strong structural resemblance to a simpler
le 20x m- dx system of form:

After some simple algebra we obtain: dUu, mw’ {6 ( F) U1)
£ _m 9 |,
1 - m2 3 X F X dt P ox dx
—fi = —9\=\"z Dr] + —\-Zz Ds
o p ox \m 3y \m A +i< 6U1> +£<_e_6U1>} (83)
ay \X gy az \m® 9z//)°
+ ._L _6_ 2 él.l_l -+ % 80 .
o oz " \az T ox /[ (80) For this system the substitution
1 ) nl2 (5] X d X . = L. R % = . 9 U, etc., 84
o T e Nox i P) T oy i P e =S Ve e T wtax 9
would lead to an equation of type (82) with
_|_ __1 Q. {em2<% + %)}
322 pm’ 3z oz ' ay /)’ M,=M,=m"x/p, M,=c¢/p. (85)
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We conclude that M, M,, and M, should be introduced
in (80) to represent the “exchange” or “eddy diffusion”
coefficients in the sense of Prandtl’s mixing length theory

1w m’ ]9 P 9 P
~—h = —\—_\=aMDy) + -3 M,Dg
p p 0x \m ay \m

2
l ;N) =_m_{_6_ (—pZ MzDS>__Q_-<£Z MzDT)
X \m y \m

v o2 e 2]}
74 m? \0z dy

The explicit construction of M, and M, is left until
after the discussion of temperature and humidity diffusion.
At this point we may mention that in the computer pro-
gram the first two terms of each equation are computed
separately (in a “horizontal diffusion” subroutine) from
the last (‘“vertical diffusion’). One reason for this is that
the “vertical diffusion” term is modified in accordance with
temperature distribution considerations (Richardson num-
ber). Since the details of that formulation are still subject
to change, we shall not dwell on them. We may also point
out that it was considered unnecessary, at this stage, to
change the partial derivatives [e.g., (/0x), — (9/3x), —
(3/9x)¢] in accordance with the developments of Section 3.

o 6. Temperature and humidity diffusion

In this section we are concerned with the variation of a
scalar function ¥ (x, y, z, ), in particular potential temper-
ature # and mixing ratio r, due to turbulent diffusion. We
assume that these processes can be modeled after the
process of molecular heat diffusion, which is represented
formally by

T:

div (K-grad T) =

div F, (87)
o p Co* P

where

F = heat flux, K = coefficient (or coefficient matrix) of
heat conduction.
We set similarly:

¥ = c_l div (c;-c grad ¥) (88)
1

or in tensor form:

. 1 :
¥ = e [Cl'F],i.

F' = c'y;. (89)

In both cases (8, r) the coefficients ¢’ of the “eddy
diffusion” tensor ¢’’ have dimension (length)’/time. To

simplify the structure of ¢’’ we may demand, e.g., in the

= system, that the relation F* = ¢'“¥; remain valid (on
account of natural symmetries) after the transformation:

= Az (90)
( cose sing O
a) A= |—sing cose 0| rotation about z;-axis
L O 0 1
(—1 0 0
reflection with respect to
b) 4=| 0 1 0 P
the z, z;-plane.
L 0 0 1
It is seen easily that one must have 4 ¢*’ = ¢*? 4 and

that the final form of ¢*’ must be:

00 ' 0 0
c¢kh =10 ¢ ol=|0 T of. (91)
0o o0 0 0o T

2.
Zs
I
=)
H
3
n
o o

(92)

o
o
=

and

£ i g,
a'¥on = [erean ¥ 1

9 [c D a_if]
ax 1 (N) ax

Il

By an argument analogous to that used around equations
(82) to (85) we see that the “exchange coefficients™ are:

(K., K, K.) = (m’/e))(T, T', ). (94) 323
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Table 1 Approximate corresponding values of “vertical”
structure variables for ICAO standard atmosphere adjusted
for height z = 0 at p = p» = 1000 mb.

D = 1000 QK Aps Zr
K oK (mb.) (mb.) (km.)
3 0 0 -
1 .0556 9 34 31.6
13 111 34 23.0
2 .1667 74 92 18.0
2% .2222 126 14.7
3 2778 189 133 12.0
33 .3333 259 10.1
4 .3889 336 158 8.3
43 .4444 417 6.8
5 .5 500 166 5.5
5% .5556 583 4.3
6 .6111 664 158 3.3
63 .6667 741 2.5
7 L7222 811 133 1.7
73 L7778 874 1.1
8 .8333 926 92 .64
8% .8889 966 .3
9 .9444 991 34 .07
93 1 1000 0

In the case of temperature diffusion we have ¢; = ¢, - p,
in the case of humidity diffusion ¢; was assumed to be
essentially independent of x, y, z.

R )
dt |qies. N p Lox Fpax +6y T dy
110 (= [/}
+‘[2(“5§)]
P (95)
a | _ {i(ﬁ) i(gJ
dt diff. =m (")x ax +6y F y
g(@)
+6z r Z

o 7. Eddy diffusion coefficients

According to the “mixing length hypothesis™ of Prandtl, an
“eddy diffusion coefficient” should be proportional to the
product of two factors. One is the square of a characteristic
length or scale of the mean motion, the other is usually
(for one-dimensional motions) taken as the gradient of
the mean velocity. In the three-dimensional case con-
fronting us, the local horizontal variations of velocity seem
to be best described by the terms Dg and Dy of (81). We
shall therefore relate the first two eddy diffusion coefficients
K., K, to the quantity:

D = (Dr + DY, (96)
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which has the convenient property of being invariant
(a scalar) under the transformation N < S (Ref. 18). To
characterize the velocity variation in the vertical we take
the scalar:

(] 4[]}

3 ‘amv,,
0z

Dy
(o7)

, Vi = (w1, ).

Since we are constructing the diagonal elements of a
contravariant tensor of rank 2, we choose as our char-
acteristic length terms the scalars (1/ m®) [(dx)* 4 (dy)’] and
(dz)’, multiplied by the appropriate terms of the funda-
mental tensor g**.

I'n®
K, O 0 ) 0 0
Kiyy=10 K, 0= const. 0 I'm? 0
0 0 K, @
B 2
0 0 I'm
L cl J
2 2
D'gn (dx) +2(dJ"> 0 0
m
2 2
= const. 0 D-g* @%2—(@- 0 (98)
0 0 D, ¢%(d2)*

T = const. D , T = const. D(dz).

(dx)* + (dy)?
m

In the computer program the difference equations cor-
responding to (95) are solved on a grid with uniform
horizontal spacing 8s = 6x = 8y and vertical spacing 6z.
The scalar (ds)> = m [(dx)’ + (@)1 of (95) is then re-
placed by const. (8s)°. This is tantamount to having the
characteristic length of Prandtl correspond to a definite
length on earth, e.g., the largest size of a particular type
eddy, at every point of the grid.

Taking out factors which are not affected by differen-
tiations, we can replace (95) by:

| _ l[i( 20)
dt laies. ¢ (39 p Lox pD 0x

8 (, e 18 (88
oo )]+ e [2 6o B)]

ar| Hi( ﬂ)
diff. = Culs)m |:5x b ox

dt




The constants C;, C,, Cs, C, have been left unspecified.
They are best chosen from empirical data or, as in the case
of the program described here, in accordance with previous
computational experience.

We are now also in a position to reformulate the equa-
tions of momentum diffusion. Similarly to (98), we have:

M, 0 0 mx 0 0
=10 M, 0 =% 0 mx 0
0 0 M, 0 0 e
D[(dx)*+(dy)’] 0 0
= const. 0 D[(dx)*+(dy)’] 0
0 0 Dy (dz)*

(100)
where
x = const. D + p - [(dx)’ + (d¥)’], e = const. Dy - p - (dz)’.
After transition to the difference scheme, we obtain:
x = const. D - p - m'(8sy’, e = const. Dy - p - (82)".
(101)

m? of 6 DD, i DDg
T{Cs (65) [E)_C (P P ) + 3y (P e ):I

Lty &)
+ Cs (82) [p e \oz ¥ ax

1 m’ o 8 DDg ) DD,
;b 7{C5(6s) [g; (p - )—5—y<p 3 )}

+ Cs(az){p % (%’f + g—;ﬁﬂ (102)

f

1
~h
p

The authors know of no other detailed attempt at deri-
vation of formulas (80)«(102). Some of the assumptions
made may, therefore, be open to doubt.

o 8. Discrete formulation

“Vertical” structure

The proposal of Smagorinsky to take Q = p/p, =
(3 — 2¢) with equal o-intervals, based upon consider-
ations of resolution in the “vertical” structure of the atmos-
phere, was adopted (see Ref. 16, S. Manabe and F. Moller).
For the selected maximum number of nine o-intervals
“Ag”, it follows that Ag = 1/9 from the fact that o ranges
from 0 to 1 as p varies from its value of 0 at the top of the
atmosphere to p, at the surface of the earth. Because of the
variability of p and p, in space and time, the Q-intervals
“AQ” obtained from this ¢-subdivision correspond to
nonuniform and variable distances. Thus, for Ag = 1/9,

Table 2 Table of approximate map grid interval As vs
number n of intervals from pole to equator.

n 5 10 20 40

As(km.) 2548 1274 637.1 318.6

Ox may be determined from ox = (K — 1/2) Ao =
(K — 1/21/9 where K = 1/2,1,1%, 2, ..., 9. Ox
will be called a “level” for K an integer, otherwise a
“half-level”. Table 1 illustrates this ‘“vertical” structuring
under standard atmospheric conditions.

““Horizontal” structure

A uniform rectangular grid is superimposed on the stereo-
graphic map associated with each Qg for each of the two
hemispheres. Each grid arises from the introduction of
lines parallel to the rectangular coordinate axes. Both
sets of parallels have the same interval of spacing, equal to
the radial map distance divided by an integer n. The radial
map distance from pole to equator is the constant 2a,
where a is the mean earth radius, map magnification for
each hemisphere is equivalent to the map “factor” pre-
viously introduced in (14), and the spacing interval is
2a/n for all grids. Table 2 illustrates the relationship be-
tween the spacing interval 2a/n, denoted by “As”, and
the parameter n for several values of » within the range
handled by the computer program. Since the map magnifi-
cation varies from 1 at the pole to 2 at the equator, the
earth distance corresponding to the map distance As tends
with increasing # to As at the pole and to  As at the equa-
tor.

Each grid is regarded as comprising not only “interior”
points inside or on the boundary of the circular stereo-
graphic representation of the equatorial boundary of the
hemisphere, but also “‘exterior” points obtained from
continuation of the grid—with the same uniform spacing—
outside the equatorial circle. The extent of the grid is as
required to evaluate for the next time position five ““basic”
variables at interior grid points of each hemisphere, using
the finite-difference equations chosen to approximate
discretely the continuous formulation over the grid. The
basic variables integrated over the grid with respect to
time from these difference equations are p,, v;p,, v.p,,
Tp,, and hp, in N, and the same except for v,p, and vyp,
instead of u,p, and u,p, in S. (Because of the form of these
equations, a minor economy in computing time is effected
by computing and storing values of T rather than of the
“time-differenced” variable Tp,.) This evaluation assumes,
for each Qg, that each interior grid point is the center of a
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Table 3 Table of numbers of interior and exterior grid
points for each Qx of N or S versus the number n of equal
subdivisions from pole to equator.

Number of grid points for each Qg of N or S

n Interior Exterior
5 81 68

10 317 124

20 1,257 236

40 5,025 460

“13-point star” of neighbor grid points. In fact, the grid
is limited to contain only each interior point and each
exterior point contained in the 13-point star of neighbor
grid points for some interior point. (See Fig. 4.)

The numbers of interior and exterior points in the grid
for each Qx of N or S are illustrated in Table 3 using the
previously selected values of the parameter n. The con-
figuration of grid points for n = 5 is indicated in Fig. 5.

The method of evaluating the basic variables at exterior
grid points from their values computed from the difference
equations at interior grid points will be briefly indicated
now, and will be described in detail in a later section.
Corresponding positions in N and S are related by the
geometry of inversion with respect to the equatorial
circle. Consequently, a grid point exterior to one hemi-
sphere represents the same point in the atmosphere as
represented by an interior point—not in general an interior
grid point—of the other hemisphere. Bivariate linear
interpolation was chosen as the means of expressing the
values of each of the basic variables at such an interior
point not in the grid as a linear combination of its values
at the surrounding four neighbor—not necessarily en-
tirely interior—grid points. However, in relating values at
the corresponding interior and exterior points, the basic
variables which are vector components (#,p,,, UsD,, V1D,
wp,) require coordinate transformation from N to §
and/or S to N.

Approximation of derivatives and integrals using finite
differences

The methods of approximation described below were
selected for initial experimentation and basically express
time and space derivatives (in ‘“‘compact” or “contracted”
form, instead of expanding derivatives of products) as
central difference quotients. Later, in an attempt to avoid
possibilities of nonlinear instability such as experienced
by N. Phillips" and to conserve certain integral properties,
a modified difference method was adopted by the Weather
Bureau for hemispherical experiments. The modification
was proposed by D. Lilly*® and is similar to a method of A.
Arakawa.”!
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[e]

Figure 4 The 13-point star of neighbor grid points for
interior point P.

For any variable ¥, let ¥7 ; ¢.y denote the value of ¥
at time ¢ = 7At at space point (x = iAs, y = jAs, Og) in
N. The time interval At is regarded as constant for one
experiment (computer “run’’), in which As = 2a/n and the
number of Q positions are also fixed. The symbols 7, i and
Jj represent integers. (When not pertinent, subscripts and
superscripts will be omitted.)

The derivative d¥"/dx|,; ;. x.v is approximated by the
central difference quotient

1 T T
m (‘I’Hl,i.K;N - ‘I’i—l,a‘.K;N)
and similarly 697 /8y|;,;.x.x by

1 T T
EZS’ (‘I’.‘.iH,K;N - ‘I’i,i-1,K;N)-

The calculation of derivatives in S is completely analogous
to that in N, requiring only the replacement, in the pre-
ceding and following developments, of x, y and N by
£, n and S, respectively.

The derivative ¥"/d¢|, ;,x;~ is approximated in one
of two ways. For t = 7 = 0, and from the assumption
that initial data for the basic variables are specified only
at this one time position, 3¥°/31|; ;. x.x is approximated
by the noncentral difference quotient

1
—A_z: (\Ili,i,K;N - ‘Il?,i.K;N)'

For 7 > 0, central differencing is used to approximate
B\I’T/Gt[,-_,-_K;N by

T+1 =1

1
Z_A—; (‘I’i,f.K;N - ‘Ili.i.K;N .




An approximation to 9¥'/9Q|; ; x.x for each integer
value of K is required. For this purpose, the central differ-
ence quotient

1

AQ (\I,:,i,K+1/2;N - \Il:.i.K—I/Z;N)’
K

where AQx = Qxi1/2 — Qk_1/2, 1s used. For these de-
rivatives, ¥ may be expressed as a product of two factors,
the first factor being &( = Q) and the second being one of
the basic variables other than p,. E.g., the term

d(eh) _ d(ohp,)

Px "a0 90

[cf. (58)] yields ¥ = & - (hp,), hp,, being one of the basic
variables other than p,. The expression

1 T T
(‘I’i,i,K+1/2 - ‘I’i.i.K—l/z)

AQx

is evaluated as

1 - .
AQx [w:.f.xﬂ/z;zv'(hp*)in,Kn/z;N
— @i, ik-12v (D). i k—1/2:7]

As each basic variable in the second factor of ¥ is
computed from the difference equations only for integer
values of K, the arithmetic mean approximations

(hp*):,:i,K+l/2;N = %[(hp*):,i.K;N + (hp*);.i,K+1;N]

and

(hp*):,i.K—l/Z;N = %[(hp*):.i.K—l;N + (hp*):.i,K;N]

are used.

Furthermore,

S _Qd, °[a<u:p*> a<u;p*>] :
“ T py 01 Py Jo dx + dy @

in N [cf. (43)], Q' = p'/p, denoting the dummy variable
of integration,

u = w(x, ¥, 0; 0197, u = wlx, y,0; 0]
and

e i [ [a(ulpg n a<u2p*>] 0

at 0 ox Oy

in N [cf. (44)].

These two integrals are approximated by the customary
Riemann sums, requiring only values of the integrands at
the Qx-levels to obtain & at the half-levels. Introduction
of the boundary conditions @ = 0 at the top and bottom
half-levels (where Q = 0 and Q = 1, respectively), it is
noted, renders unnecessary any special evaluation of Ap,,
in approximating %" /8Q|; ; x.x at the top and bottom
Ox-levels. The treatment of the other d¥/3Q terms is
completely analogous.

‘\ —— Equator
O

\
L]

Figure 5 Interior and exterior grid points in one quadrant
for each Qx of N or S when n = 5.

O

Pole

From (38) and (40), w( = p) may be expressed by

- ap 2< p ap ):|
- 9Dy 9Dy ODy
w Dy w + Q[ ot + m\u, ox + u ay

in N. The value o] ; x.y is approximated using the pre-
viously described approximations for the terms in this

relationship.
Consider next the treatment of the geopotential terms.
From Eq. (47): 0®/3Q = — RT/Q. Integration yields

Q'=q Q=1 1o
d = —7 dQ’
[T =e] " wn G

g, + R [ Tdw o),

where z, is the height of the earth’s surface, and Q' a
dummy variable. This relation is differentiated to obtain
the required derivatives

FLIN S S 3
ax * ay * ot ¢ &y
E.g.,
9% _

92y fla_Y: ’
o % ox + R o 0% d(ln Q).

The derivatives

or or oT 4 9T
ox ' 3y ' ot an

are assumed in approximation to vary linearly with In Q
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in each interval between adjacent Qg-levels. For nine
Qx-levels, the resulting approximation:

3% 8z, { 21 [31"
>~ g% R =
dx i, i KN & dx i, N + KZ=K 2L ox i,i,K';N
aT‘r QK'+1
+ ] In <—~—)
X |i ik 41N Ok
oT" a1’
S S )
+ Ox |iisn OX si,0:n

is obtained from the customary Riemann sum approx-
imation for [J° and a linear extrapolation approximation
for [,. The expression

£<aT >
1,7,9;N

ox

denotes a linear combination of the values 77 /9x ; ; x ;»
at the lowest two Qg--levels, the coefficients of which are
constants. (These same constants apply to the other
®-derivative approximations.) The derivatives in this ex-
pression for 9®"/dx; ; x .y are approximated as described
previously, and the treatment of the other ®-derivatives
is completely analogous to that for d®/dx.

The only derivatives which appear explicitly in the final
equations of the continuous formulation are of first order,
and the method of approximation for each such derivative
is indicated in the above discussion. Higher order deriv-
atives would appear in the expansion of derivatives of
products occuring in diffusion terms in the final equations.
However, derivatives of products (not only in diffusion
terms, but also in all other occurrences in the final form-
ulation) are approximated in contracted form, and the
computations for such terms at most require a few suc-
cessive applications of the above differencing techniques
for first order derivatives.

Let ¥ denote one of the basic variables. Then,
IV /0t; i k.nvorsy and consequently ¥iTr . oo o o are
approximated from these difference methods. E.g., let

o1
i,i,S;N’ ox

1 T+ T—
A ()™ — (up) Livixiw

represent the approximation of d(u,p.)’/dt; ; x.n for a
typical value of 7, and ¥, ; x.» the approximate value of
this derivative obtained from applying a composition of
the above differencing techniques to the expression for
this derivative in terms of the other variables obtained
from the continuous formulation. Basically, F;, ; x.» is
developed from values of the variables which were com-
puted for time ¢ = At at interior grid point (x = iAs,
y = jAs, Qg) in N—the derivatives at this position re-
quiring the use of values of variables at neighboring
grid points also—by addition, multiplication, division,
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square root, etc. Approximations for

O(mopy) Opy Ty 9(hpy)
a > dr 7 9t 0ot

in N (or for

d(uip,) 8(vepy)

aa > ar
etc., in S) are developed similarly. During these com-
putations, use is made of certain coefficients which, being
independent of time, are computed only once (prior to
other calculations for + = 0). However, provision was
made—for economy of computing time—to permit the
calculation of radiation, ‘horizontal” diffusion, and
“vertical” diffusion terms periodically in time. Another
exception is that the “horizontal” diffusion terms are
“lagged in time” in accordance with a suggestion of
Smagorinsky based on stability considerations (J.
Smagorinsky,'’ p. 464). E.g., F;.; x,» may be separated
into two parts G7 ; g,y and 377} x.x.
Then,

-1

(ulp*);-,(-il,K;N = ()i i kv T 286F ;. xn)
= [(up)™" + 280" + B D ik

for + > 0, where the ‘“horizontal” diffusion effect
37} g,y and part (in this case only for “vertical”
diffusion) of G7 ; .y may have been calculated for 7 — 1
and 7 respectively, or may have been obtained by merely
referencing in storage previously computed values. The
basic variables for each hemisphere are computed at
7 + 1 for each interior point of each Q-level, except for
P, which is computed only for each interior point of
half-level O = 1.

Approximation of exterior data using interpolation

As indicated previously, the four neighbor grid points
which surround the interior “image” of an exterior grid
point are not necessarily interior. In fact, as many as three
of these four neighbor grid points may be exterior. For
some of the image points having exterior neighbors, a
special “‘simultaneous equations” relationship arises from
the application of bivariate linear interpolation. From (49),
the abscissas of each exterior point and its interior image
have opposite signs, while the ordinates have the same sign.
Consider the exterior grid points P, = (x = iAs, y = jAs,
Ox)inNand P, = (§= — x,7 =y, Qx)in S. Let P/ and
P, denote the interior images of P, and P,, respectively.
The simultaneous equations case arises when both P] has
exterior point P, as one of its four surrounding neighbor
grid points and P] is properly interior to its surrounding
grid square, i.e., P} does not lie on a grid line. (The same
statement holds with P] and P, replaced by P, and P,,
respectively.) For, in the simultaneous equations case,




the approximation of the basic variables at exterior point
P, using bivariate linear interpolation depends upon their
values at P,, while at P, it depends upon their values at P;.

This bivariate linear interpolation may be described
briefly as the formation of linear combinations of data
with constant coefficients. Thus, the “interpolation coeffi-
cients” depend solely upon the coordinates of the exterior
grid points (alternatively their interior image points) and
the number n of equal subdivisions from pole to equator.
From symmetry considerations, it would have been
sufficient to have computed the interpolation coefficients
for one octant of the circular grid of one Qx-levelin N or S,
i.e. for, say, x > y > 0. (This may be seen from the inter-
polation formulas which will be described.)

Scalar exterior data

The basic variables p,, Tp,, and hp,—whose values are
invariant under coordinate change from N to S or vice
versa—are evaluated at exterior grid points solely by
interpolation from their values at some interior grid points.
Denote by P = (iAs, jAs, Q) an exterior grid point in
either N or S and by P’ = (i'As, j'As, Qg) its interior image
in S or N, respectively. Denote

gp = (|']) = 7]

and

e = 7D — 171

where {a) is the least integer >a«. The interpolation
coefficients Gp+, ®p-, Cp., Dp,, Wwhich may be regarded as
“weights” for values of a variable at the four neighbor
grid points surrounding the image point P’, are given in
Table 4.

It is easily seen that Qp., Bp, Cp., and Dp. are non-
negative and have sum 1. Special cases involving only
two grid point neighbors of P/, and consequently only
two coefficients, arise when P’ lies on a grid line.

In the nonsimultaneous equations case, the value of a
scalar basic variable at exterior point P, denoted by $p
(i.e., $ = p., Tps, Or hp.), is obtained as a linear combi-
nation of its values at the grid point neighbors (not neces-
sarily entirely interior) of its image point P’:

Sp = Qp:8ap- + ®BrSap- + GP’SGP' + Dp/Spp.s
(103)

where the subscripts on § in the right member indicate the
neighbor grid points of P’ according to their associated
coefficients.

In the simultaneous equations case, the interpolated
value, again denoted by $p, is obtained by a modification
of the above procedure. As before, consider the exterior
grid points P, = (x = iAs,y = jAs, Q) in N and
P, = (= — x,n =y, Q) in §, their interior images

being P} in S and P} in N, respectively. In the simultane-
ous equations case, P; is one of the four surrounding
neighbor grid points for P}, and P, serves similarly for
P[. Denote by S, - the linear combination of values of §
at the neighbor grid points of Pj in N other than P,, and
similarly S, -, the linear combination of values of 8 at the
neighbor grid points of P] in S other than P,. By analogy
with the nonsimultaneous equations case:

Sp,» = Qp, 8ar,, + Bp, 8ar,. T Cpr,'Scs,.
Sp. = Qp, 8ar, + Bp, 8gr,. + Cr, 8cp,

as

Qp, = Qp,’, Bp,» = Bp,", Cp,» = Cp,-
(and Dy, = Dp,.) by symmetry.

Then

8p, = Sp, + Dp,:8p,

and

8p, = Sp,r + Dp,.8p,.

Hence

_ S, + Dp, 0 Sp,e

t 1 — (ZDPU)2
and (104)
o _ Seat DeSp
P, 1 — (:DP,’)Z

Vector exterior data

The basic variables #,p. and u,p. in N transform covar-
iantly into v,p. and v,p. in S and vice versa. (The covariant
velocity components #, and u, in N are related to the con-
travariant “map velocity” components &' = x and i = y
in N by m*(u;, up) = (u', u°), and similarly for the com-
ponents in S. The corresponding physical velocity com-
ponents, expressed in stereographic coordinates, are
obtained by multiplying the map velocity components by
the reciprocal of the magnification.) The evaluation of
wp. and w,p. at each exterior grid point of N, or the
evaluation of v,p. and v,p. at each exterior grid point of S,
may be regarded as composed of two operations: (a)
interpolation for components expressed in the coordinate
system of the interior image point using the same inter-
polation coefficients as for scalar data, and (b) transfor-
mation of the interpolated components to obtain the
corresponding components expressed in the coordinate
system of the associated exterior grid point.

In the nonsimultaneous equations case, let (i,p.)» and
(uyp+)p denote the values of u;p. and u,p. to be derived for
exterior grid point P = (iAs, jAs, Qx) in N, and let (v,p+)p-
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and (v,p,)p- denote the corresponding components at the
interior image point P’ = (i’As, j'As, Q%) in S of p. Then, in
accordance with (a) above, (vp,)r- and (v.p,)p. are
obtained as linear combinations of values of v;p, and v,p,,
at the grid point neighbors (not necessarily entirely interior)
of P’ in S using the interpolation coefficients in Table 4.
Denoting, as usual, the number of equal subdivisions of the
grid from pole to equator by »n, in accordance with (b)
above, (50) and (51) yield:

(ulp*)P = ;15 {[(i,)Z - (j,)2](v1p*)P’ + 2i’j’(U2p*)P'}

(p)r = s (=207 G2+ (@) = () apy)r)

(105)

The formulas for evaluating v,p. and v,p. at exterior
grid point P in S are obtained by interchanging in (105)
wp. with vp. and w,p. with v,p., P’ then denoting the
interior image in N of P.

In the simultaneous equations case, the development of
the formulas is completely analogous to the scalar simul-
taneous equations case, except for the additional opera-
tions (b) above using (50) and (51). The resulting formulas
are:

Table 4 Bivariate linear interpolation coefficients for in-
terior image point P’.

Relative positions of associated
grid point neighbors of P’
Nearest origin

Coefficients for P’
Qp = 4p- gPl

®p (1 — gp.) 9p- Has same ordinate as that
nearest origin

Cpr = gp, (1 — gpr) Has same abscissa as that
nearest origin

Dpr = (1 —9p) (1 — gp) Most distant from origin

Table 5 Data in high-speed storage used in computing M7y

(M, 1)

(M, Disiy (M, I, DIy

(M, D}y (M, I, L)} » My
(M, DiZiy (M, I, L)i_.x

(M, )i n

S)Pll[.(i/)—t(jﬁ]z(suws)Pz’ + [(1,)2 - (jl)z](svm*)Pl' + 2i,j,(Sv=m)P1’

s

(106)

(ulp*)P1 - 2 2\2
i (:omz[“) + () }
n
iDP‘,[L—:(j:z]z(S"Hn)Pn’ - 2i,jl(Sllﬂn)P1’ + [(11)2 - (j,)2]<SUH7*)P1'
(uzp*)Px = N2 N2 ]2
i — (e Y]
n
where

P, = (ils, jAs,Qx)  in N,
P, = (—iAs, jAs, Qk) in S,
(Supe. = Qp,-(Wp)ar,
+ ®p, (p)ar, + Cp(ip)es,.

and similarly for the other subscripted .S terms. The for-
mulas for evaluation of v,p. and v,p. at exterior grid points
P, are obtained by interchanging u,p. with v,p., u,p« with
v+, Py with P,, and P} with P} in (106).

& 9. Data *“‘flow”

Input

The first stage of data processing performed by the com-
puter program develops initial data and initializes the
program from input data stored on magnetic tape. In
addition to the initial data which are required to be
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specified over the grid at time position t = = = 0 for the
basic variables, other data are processed which describe
the desired distributions of characteristics of the earth’s
surface (height, albedo, roughness, soil moisture, sea
temperature, snow depth), of the atmosphere (cloud
properties, long-wave absorption, solar absorption, car-
bon dioxide, ozone), and of solar radiation (zenith angle
of the sun, duration of daylight). Initially, the atmosphere
is assumed to be isothermal and not in motion. Provision
was made to enable performance of experiments of differ-
ent complexity. Thus, input control parameters not only
specify the size of the grid, time interval, and frequencies
of calculation of radiation, *“horizontal” diffusion, and
“vertical” diffusion effects, but determine whether moisture
and cloud distributions are to be held constant in time or to
be predicted.




Storage and data manipulation during numerical integra-
tion

The magnitude of the data requirements is indicated by the
fact that, for the maximum size grid treated (n = 40, nine
Q-levels), approximately 11,000 values of p. and 395,000
values of the other basic variables collectively are computed
from the difference equations and interpolation for each
time point (cf. Table 3). Because of limited space in the
high-speed magnetic core storage, only a small portion
of these data for each of the three successive time points
involved in the difference equations is contained in this
storage at any instant of time, while all of these data for
three time points are simultaneously present in the inter-
mediate-speed magnetic disk storage. The storage re-
quirements are further enlarged by non-time-dependent
pointwise data (e.g., coefficients in the difference equations,
height of the earth’s surface), by pointwise variables
computed periodically in time (e.g., land surface temper-
ature, radiation and diffusion terms), by non-time-de-
pendent non-pointwise data (e.g., tables), and by the
instructions and temporary data storage of the computer
program.

A complex plan is used for the allocation of storage and
the manipulation of data in the computer program. This
plan was chosen with the purpose of minimizing the time
required for the numerical integration of the basic var-
iables over the maximum size grid.

Denote by M;  the set of all interior grid point values
for the half-level O = 1 of p., and for all Q-levels of u;p.,
uyp«, T, and hp., at ordinate y = jAs and time point ¢ = 7A¢
in N. Denote by I} , the same set of values except for
exterior grid points instead of interior grid points. Let
L} y contain pointwise non-time-dependent data for both
interior and exterior grid points and pointwise period-
ically computed data at interior grid points for ordinate
y = jAs at time t = TAf (except the “lagged” diffusion
terms are at time t — Af = [r — 1]A?) in N. Similar sets
of data for S are denoted by M; 4, I7 5, and L] s where
n = JjAs.

The calculations required for one time “‘step” by the
difference equations and bivariate linear interpolation
may be described as the evaluation of M['y, I}y, M}y,
I7's, and any needed modification of L]y and L} g io
obtain L] , and L ¢, for all pertinent ordinates y = jAs
and 7 = jAs of N and S. In fact, a “data flow plan” for
these calculations, i.e., a plan of transference of data
between the high-speed smaller capacity core storage and
the intermediate-speed larger capacity disk storage during
the computations, was selected which uses such M, I, and L
“planes of data” as “read-write” transference units. The
choice of these units seemed natural in view of the grid
geometry, the requirements of the discrete formulation,
and of the limited capacity of core storage. (The computer

program was designed to be operable on a STRETCH
installation including 65,536 words of core storage,
approximately 2,000,000 words of disk storage, at least
five magnetic tapes, card reader, printer, and console.)
This choice enables these calculations for one time step to
be performed in successive stages as required by high-speed
storage space limitations while permitting data trans-
ferences between the high-speed storage and the intermedi-
ate-speed storage often to be performed simultaneously
with the calculations.

The “grid sweep” selected for the calculations produces
the output M"*" and L" data in the following order: L’
(if no modification of L™ data is required to obtain the
L’ data, no re-computation and no re-“writing” from core
to disk of L data are performed), M" ™" for y = 0, As,
2As, ...,2a,—As, —2As, ...,—2a;7=0,4s, ..., 2a,
—As, ..., —2a, where 2a is the radius of the circular
stereographic representation of the equator (¢ = mean
radius of earth). To simplify exposition of the data flow
plan, a basic plan excluding the I"** and modification of
L™ will be discussed first.

Table 5 indicates the data in high-speed storage used
in the calculation of M}y for a typical ordinate y = jAs
in N, but is also valid for a typical ordinate n = jAsin S
by replacing N by S.

The data M7’y (at time ¢ + A?) in the right column of
the diagram are calculated from both data in middle col-
umn (at time 7) and data in left column (at time ¢ — Ap).
The L data and the union of data M | J I are stored in core
storage from left to right (in order of increasing abscissa
in N and of decreasing abscissa in S) for each ordinate
and each time, and the calculation of M"*" is performed
in the same order. This arrangement of M | I data permits
the program’s referencing of data in the same manner for a
neighbor grid point which is exterior as for one which is
interior. (For convenience in re-arranging M and I data
“read” from the disk to obtain the M | I arrangement in
core storage, the core storage associated with each of the
M | I'is that for (M |J I,.1),i.e., M |J I and a repetition
of the portion of I—denoted by ,I—contained in the left
half of the N-Q coordinate space.)

In accordance with the stated order of grid sweep, the
calculation proceeds from M}y to M1} yorto M } . for
a typical ordinate y = JjAs in N depending on whether
y 2 0or y < 0, respectively. To avoid the delay which
would otherwise occur in commencement of the calcu-
lation of M™™' for the next ordinate, additional core
storage corresponding to one additional entry in each of
the three columns of the diagram in Table 5 is used as “‘buf-
fer” storage for writing on disk from core storage of 7+ 1
data or for reading from disk to core storage of rand 7 — 1
data. However, a saving of core storage is made by having
M*y share space with (M (J )" for the previous ordinate
(—As=[j— 1lAsfory > 0,y + As = [j + 1]As for
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Figure 6 Interior image points in shaded region of N represent same physical points as selected exterior grid points having
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labelled ordinates in S.

y < 0), the data for the leftmost (interior) abscissa of

7% replacing in core storage the data for the leftmost
(exterior) abscissa of (M |J I)” at the previous ordinate.

A minor revision of the basic data flow plan described
above is necessary if L™" data are modified to obtain L".
In the case where the calculation proceeds from M} y to
M5, for example, after the calculation of M}’} , but
prior to calculation of M}*y, the L} , data are obtained as
a result of modifications using data at 7 and/or r — 1
and replace the L]y data in both disk and core storage.
The change in the basic plan required in the case where the
calculation proceeds from M}1}  to M T4, OF in the case
of S instead of N, is completely analogous. The writing
of the L™ data plane on disk from core storage is initiated
as soon as feasible after its computation. This change in
the basic data flow plan does not necessitate any increase
in the core or disk storage requirements. (No additional
core storage is required as a buffer for disk writing. Thus,
there are in total four L data planes in core storage at any
instant of time. There is only one L data plane per ordinate
y in N and one per ordinate % in S stored on the disk, in
contrast to the three M and 7 data planes for each typical
ordinate in disk storage arising from the three successive
time points.)

A more complex change in the basic data flow plan is
made to include the development of the I"™ data for N
and S. One of the reasons for this complexity is that some
of the neighbor grid points which surround interior
“images” of the exterior grid points are exterior. As the
values of the variables at the exterior grid points of N
which comprise I;’y can not be obtained until after
computation of M"*" data in S, the I"*? data in S which
depend upon I;j‘,\‘, can not be evaluated completely during
the calculation of the M™*' data planes in N. The linear
combinations used for interpolation, requiring values both
at interior and exterior grid points to obtain the I}*; data
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planeé, are restricted to values at interior grid points during
the calculation of M';. During the course of calculating
the M;f; data planes, any of the linear combinations of
datainthe M"*" data planes for N which were “incomplete”

are “completed” using I'*" data for N to obtain the ;73

data planes. Also during the course of calculating the j*;
data planes, “complete™ linear combinations of data in
M and I'"" planes in S are formed to obtain the 177y
data planes.

Another reason the interpolation procedure introduces
complexity is that the order of generating the I'*' data
is quite different from their order of usage in subsequent
calculations. The order of the generation of I'*' data is
governed by the arrangement of the interior image points
and by the order of calculations of the M™*" data planes,
and results in the allotment of core storage space for several
I'*! data regions.

In discussing in further detail the effects of interpolation
upon the data flow plan, two properties of the arrangement
of interior image points are required. Consider the linear
combinations obtained using the data M[7y and M} y
which are simultaneously available in core storage prior to
calculation of M]I] , when y > 0. Each of these linear
combinations involves values at the surrounding interior
grid point neighbors of an (interior) image point whose
ordinate, denoted by 7/, satisfies y — As < 9’ < y. Then,
it may be shown that the ordinate n of the same phys-
ical point in S (an exterior grid point) satisfies
y < 7 < y+ 3As. (See Fig. 6.)

The second of the two properties of the arrangement of
interior image points required is contained in the result
that y < 9 < y + As if the further restriction is imposed
that the image point, having ordinate 7%’ where
y — As < 9’ < p, lie in a grid square not all of whose
vertices are interior. This second property is schematically
illustrated in Fig. 7. (Simple examples within the range of




O=0Q
y Yy
y—As, y—As

y4As Y+ As

Figure 7 Interior image points in shaded portions of partially exterior grid squares in N represent same physical points as

selected exterior grid points having labelled ordinates in S.

interest for n establish that these inequalities can not be
sharpened by replacement of 3As with 2As in the first result
or by elimination of As in the second.)

Entirely analogous results to those illustrated in Figs.
6 and 7 for y > 0 hold for y < 0 due to the symmetrical
arrangement of the image points in N with respect to
y = 0, and also by symmetry for y interchanged with
n and N with S. In the special case y = 0 (or 5 = 0), the
only image points for which the variables in M™*' are
processed are those four for each Qx having ordinate
7 = 0 (or ¥ = 0), arising from the four exterior grid
points on 5 = 0 (or y = 0) of coordinate plane Q = Q. In
this special case, the linear combinations do not require
“completion” using exterior data.

Only the first of these two properties of the arrangement
of interior image points affects the data flow plan during
the course of the M]"; calculations. The effect may be
illustrated by considering a typical ordinate y > 0. Then,
after the calculation of all linear combinations required
from M2} , and M*y where y = jAs by image points
having ordinates %’ satisfyingy — As=(j — DAs < o' <
y = JjAs, additional core storage is occupied by the re-
sulting generally incomplete I'*' data planes denoted by
*Ite, 'Y 5, *I0tL s and 'I;.5, 5 . The pre-superscript no-
tation is used to indicate that each of these sets of data
may be updated, corresponding to incrementing the pre-
superscript, during the calculation of the linear combi-
nations for interpolation following the computation of the
M data planes succeeding that just computed. Although
the *I7*5 data comprise linear combinations which are not
in general entirely “complete”, it follows from 0 < 5’ < 3
that no further M data in N will cause modification of
41,’-:’;. Consequently, as soon as feasible after calculation,
the *I3*s data are written on the disk from core storage.
One additional I'*' core storage region is assigned in
order to avoid possible delay in commencement of the

T+1 T+1

next " calculations following the computation of M} .
(Such delay would prevent re-usage of the core storage
occupied by 41;?; until the writing of 41}:’; on disk is
finished.) An entirely analogous change in the data flow
plan is introduced to handle interpolation during the
course of calculating M’y for a typical ordinate
y= jAs < 0.

Consider next the development of I'"" data during the
computation of the M}*§ data planes. Without use of the
I'*! data obtained during the calculation of the M’y data
planes, the linear combinations for interpolation by anal-
ogy would produce incorestorage*I7 'y, ° 171} v, *I3%3 y.and
171} yfollowing computation of M} ' for a typical ordinate
n > 0. However, from 0 < y' < y, 0 < ' < 9,
y = 5 = jAs, it follows that, with appropriate use of the
I'** data obtained during the M”"" calculations for N, the
data comprising entirely “complete” linear combinations
IT'y and I7'; can be computed at this stage, rendering
unnecessary the notation ““I;’y”. Thus, all linear combi-
nations contained in *I77} y, oI773 » and 'I;1} , can also
be “completed™, but the pre-superscript notationis retained
to indicate that in general these sets, in containing only
data for image points having positive ordinates less than
or equal 7 = y, do not contain data for all required exterior
grid points. By the second of the two arrangement prop-

erties of image points, the 41}f§ data first become subject

to updating after computation of I7*] 5. Consequently,
the 41}:; data are read from the disk to core storage
sufficiently early to be available for modification prior
to computing M}';. The data resulting from this modifi-
cation are denoted by °I;*j. After calculation of Mj';
where n = jAs, data °I7*§ are further updated to obtain
I7*3. As soon as feasible after the calculation of I7g and
I7%y, these data are written from core storage on the disk.
Sufficient core storage is allotted for the I'"* data to enable

its use as buffer storage to avoid delays in disk writing

T+]1
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Table 6 Data in high-speed storage immediately prior to com-
puting M 'y for a typical ordinate y = jAs > 0in N.

(MU Diten 'Iiiss
(MU I, iy (MU Diay Ils
MU 1,7y (MU Dy I
MU DSy (MU LDy (M, 195

(MU Di%ow

Table 7 Data in high-speed storage immediately prior to com-
T+1

puting M} s for a typical ordinate » = jAs > 0 in S.

(MU DiZz.s iy

(MU I, L)iii,s (MU Diss Cly, 19701
MU L L (MU D s ClLy, 157"
MU DiZLs (MU LG as (M, Ly, 154
(MU Di.s

and reading of I"** data. The change in the data flow plan
due to interpolation during the course of the M}?; calcu-
lations for a typical ordinate = jAs < 0 is completely
analogous to that described for » = jAs > 0.

Tables 6 and 7 indicate the contents of core storage
immediately prior to computing M} 'y and M for typical
ordinates y = jAs > 0 and = jAs > 0, including the
effects upon core storage of I'™* calculations and of up-
dating L™ " data which occurs only during some time steps,
but excluding additional buffer storage.

The amount of core storage allotted for the M, I, and L
data planes, including buffer storage, in order to perform
the calculations over the entire grid is that for eleven
regions of (M |J I, .1, I'*") and four regions of L data.
The size of each of these two types of regions is determined
from consideration of the zero ordinate position where
the space required is a maximum. The M |J I, L, and I'**
data planes—although each is typically used in the same
or updated form but in a different role during the calcula-
tions associated with each of several successively computed
M™" data planes—are not moved within core storage.
Rather, in the progression from the calculations associated
with one M"*' data plane to the next, the changing roles
are obtained by cyclically permuting the reference ad-
dresses—within each of several sets of addresses—used
during calculation, reading from the disk to core storage,
and writing on the disk from core storage.

Output

In addition to identifying information (e.g., experiment
number, values of input parameters, time and space
positions at selected stages of the calculation), essentially
two different types of data are provided (periodically or
subject to manual control) as output at the printer and/or
on magnetic tape. One type of output consists of the values
of pointwise basic or intermediate variables. The other
type consists of properties ‘‘in-the-large” obtained from
approximate integrations (summations) of functions over
various spatial regions for a fixed time point. Among the
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properties “in-the-large” computed are relative and abso-
Iute angular momentum, kinetic energy, potential energy,
and air mass. Both of these types of output, but especially
that consisting of properties “‘in-the-large,” are helpful
in the monitoring and interpretation of experiments per-
formed with the computer program.

o 10. Refinement: A procedure for increasing “horizontal”
resolution

Subject to the maximum permissible number »n of intervals
from pole to equator being 40, a special procedure con-
tained in the computer program called “refinement” may
be used to compute initial data for calculations with
n = 2n, from results obtained with n = n,. E.g., a numer-
ical integration of the basic variables over the earth from
time ¢ = 0 to t = t, might be accomplished in four stages
of calculations: (i) from ¢t = 0 to r = ¢, with n = 35, (ii)
fromt = t, to t = t, with n = 10, (iii) from ¢t = £, to
t = t; with n = 20, and (iv) from ¢ = ; to t = ¢, with
n = 40. At the commencement of each of the last three
stages, some of the input parameters, including time
interval Az, could be changed, a bivariate linear inter-
polation of the basic variables would enable assignment
of the values of these variables for the commencement
time at the newly introduced spatial points, and the non-
time-dependent pointwise data would be recomputed or
supplemented from additional input data on magnetic
tape for the new grid. The height z, at each newly intro-
duced point of the earth’s surface is gradually adjusted
from an initial value obtained from bivariate linear
interpolation to the proper final value during the calcu-
lations performed for subsequent time positions.

Concluding remarks

The Global Weather Simulator contains more than
15,000 sTRETCH instructions, and is comprised of five
sections which share approximately 10,000 64-bit words
of the high-speed magnetic core storage. The remainder
of the 65,536 words of core storage is available for data.




The program sections include: GWSO0 (“Loader,” auto-
matic restart from data on disk, processor of interrupts
and input-output operations), GWS1 (Processor of input
data), GWS2 (Calculations and data manipulations for
numerical integration), GWS3 (Development of inter-
mediate output on magnetic tape, and restart from such
tape output), and GWS4 (Refinement). The intermediate
tape output also serves as input for ‘“out-of-stream”
analyses with independent programs for development of
final output in the required wide variety of graphically
displayed forms."*

Preliminary studies were performed on the IBM 7090
computer with programs for developing approximate
solutions of Poisson’s equation and of the “wave equation”
on the surface of a sphere. The same forms of stereographic
mapping and ‘“equatorial” interpolation were used in
these studies as in the Global Weather Simulator. The
comparative effectiveness of several types of differencing
was evaluated with tentative conclusions drawn concerning
the convergence, stability, and accuracy of the several
differencing methods considered. The choice of a time
interval Atz for early experiments with the Global Weather
Simulator was based partly upon the “wave equation”
experience, and partly upon the experience of others with
simpler weather models (e.g., see Smagorinsky,'® p. 461).
The dependence of the usual choice of time step upon the
“horizontal”” spacing of grid points, in both the preliminary
experiments for the global and hemispherical models and
the later hemispherical experiments,’'* is shown in Table 8.
The initial data for the time-dependent variables, the
geophysical data describing the earth and its atmosphere,
and the frequencies of calculating radiation and diffusion
terms, were chosen by the Weather Bureau. The “running
time” of this Simulator program is limited by the speed
of STRETCH, on which the approximate time required for
a floating-point multiplication is 2.7 usec. The running
time also depends in a complicated way upon the size of the
grid, the choice of certain formulation options (e.g., the
frequency selected for the highly complex radiation
calculation), and the amount and frequency of the gener-
ation of output information. It was estimated that a basic
global experiment for » in Table 8 equal to 40 would re-
quire 18 hours of calculation on STRETCH per atmosphere
day. Table 9 provides timing information based upon
actual hemispherical experiments for a “dry” model
(having “moist convective adjustment™) with » = 40.
For a discussion of hemispherical experiments with the
program, see J. Smagorinsky, S. Manabe, J. L. Holloway,
Jr., and R, F. Strickler (Refs. 1 and 2).

With reference to Table 9, the “initializations” section
required execution only once per “run”; the remaining
sections were typically executed at every time point, except
only once per 72 time points for the “‘radiation” section.
On this basis, the entire program comprising these sections

Table 8 Time step At for Global Weather Simulator experi-
ments for nine Q-Levels (n = number of equal subdivisions
from pole to equator in stereographic grid).

n 5 10 20 40

At (in minutes) 40 20 10 5

Table 9 Approximate timing on STRETCH for the program
sections of a mnine-level “dry” hemispherical model with
n = 40 and At = 5 minutes.

Execution time per

Section of program time point (in seconds)

Initializations 114
“Inner loop” 45
Vertical diffusion 28
Horizontal diffusion 33
Integrals 20
Radiation 455

requires approximately 10.6 hours of STRETCH calculation
per atmosphere day for the values of n and At specified
in Table 9.

For assistance rendered in formulating and program-
ming the Global Weather Simulator and related IBM
7090 studies, we wish to express much appreciation to
our colleagues: Dr. G. W. Booth, E. V. Hankam, H. L.
Herrick, Jerrold Rubin, Dr. R. A. Spinelli, Dr. P. H.
Sterbenz, and Mrs. F. T. Zederbaum. We also appreciate
the very helpful cooperation of J. L. Holloway, Jr., Dr. S.
Manabe, Dr. J. Smagorinsky, Miss E. A. Storlie, and R. F.
Strickler of the U. S. Weather Bureau.
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