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On the Velocity of a Domain Wall
in an Applied Magnetic Field

Abstract: A numerical study is made of a moving magnetic domain wall. It is assumed that the wall moves with a uniform velocity ¥
under the influence of an applied magnetic field of magnitude H,. This leads to a boundary value problem on a doubly infinite line. By
using a symmetry in the problem, the inherent difficulty of a two-dimensional search on a doubly infinite line is bypassed. For each V'
the problem is solved as a sequence of initial value problems involving a one-dimensional search. A limiting velocity is determined by
means of an eigenvalue analysis. The curve representing the relation between ¥ and H, is determined for a particular case.

The purpose of this paper is to make a numerical study of
a moving 180° magnetic domain wall in a cubic crystal
of composition Nig ;5 Fe, o5 O,. The wall is assumed to
have a uniform velocity of V (cm/sec) and to be moving
under the influence of an applied magnetic field of magni-
tude H, (Oe). A formula, Eq. (4), is derived which repre-
sents the velocity V as a function of H, and of the wall
shape. In Fig. 4 we give a curve representing the relation
between V and H, for the particular case considered in this
paper.

The magnetic vector for the domain wall is of uniform
magnitude and its direction is a function of 4 = z — V1.
Fig. 1 indicates the orientation of the magnetic axes x, y,
and z in terms of the axes x', y’, and z’ of the crystal, and
Fig. 2 shows the angles ¢ and ¢ which define the direction
of the magnetic vector for the domain wall. There are four
easy directions in the xy plane. They are ¢o, 7 — ¢o, ™+ Po,
and 2r — ¢, where ¢, = arctan v2. On one side of the
domain wall the magnetic vector for the crystal has the
direction ¢ = ¢, 6§ = 0, and this is also the direction of the
applied field. The easy direction ¢ = 7 — ¢, § = 0 is
achieved as an intermediate direction in the domain wall,
and, finally, on the other side of the domain wall the direc-
tionis¢ = ¢p - 7, 6 = 0.

By means of the system of torque equations, Eq. (5), the
transition from ¢ = ¢, to ¢ = ™ — ¢, and the transition
from ¢ = = — ¢y to ¢ = 7 + ¢, each define a boundary
value problem on a doubly infinite line (— o < < ®).
A symmetry is proved which reduces each problem to a
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boundary value problem on a half-infinite line (0 < 9 <
), An integral of the system of torque equations further
reduces the problem so that each boundary value problem
is solved through a sequence of initial value problems in-
volving a search on the initial value of 6 (i.e., the 8 that
corresponds to ¢ = 7/2 and ¢ = 7, respectively).

An eigenvalue-eigenvector analysis is made for the sys-
tem of torque equations in the neighborhood of the equilib-
rium points, and this is used to show that there is an
upper limit to the velocity that can be achieved in this
model of domain wall motion. This analysis has also been
utilized in a scheme for correcting the initial value of 6,
6(0). Since no satisfactory method was found for correcting
6(0) when V" approached its upper limit, the relation be-
tween V and H, in the neighborhood of this limiting veloc-
ity is not determined in this paper.

Before presenting the system of torque equations, Eq.
(5), we derive Eq. (4) which represents the relation between
the velocity ¥ and the magnitude of the applied field H,.
In 1950 Kittel' proposed that a magnetic domain wall
under the influence of an applied field moves at such a
velocity that the liberated magnetostatic energy is com-
pletely dissipated by the damping forces which resist the
spin rotations occurring as the wall advances. Clogston®
has shown that the power per unit area dissipated through
the itinerant electron loss mechanism in a 180° domain
wall in Nig. ;5 Fe,.,; O, moving at low velocity V in a
direction perpendicular to the (110) plane can be written

ot 7w
P = V%-(%) /¢o 2w sin® ¢ cos® ¢(j—:> dp, (1)




where N is the number of mobile electrons per cm®, W is a
parameter associated with a representation of the energies
of the mobile electrons, and 7 is the electronic relaxation
time. The rate at which magnetostatic energy is released is
2M HV per unit wall area, where H, is the effective
applied field, i.e., the field above threshold, and M, is the
saturation magnetization. Setting these two quantities
equal to each other, one obtains the following expression
for the velocity of a domain wall:

2H M, )
NN [ e e, <d¢>
T(kT) f% 2W" sin” ¢ cos” ¢ dn do

The parameters in Eq. (2) at 201°K can be determined
from existing experimental data, and the relationship
between domain wall velocity and applied field can be
verified by comparison with measurements made with
picture frame samples at this temperature by Galt.® At
very low velocities, one may use for d¢/dn the value for a
domain wall at rest in the (110) plane. Representing the
anisotropy energy by the first-order constant only, one
may write dg/dn as follows:*

V= (2)

do/dn = (— K, /12 4)Y* |2 — 3sin® ¢|,

where K; is the first-order anisotropy constant, and A is the
exchange constant. The value of K; at 201°K is —6.43 X
10* ergs/cm® [Ref. 41; the value of 4 is 1.09 X 107% erg/cm
[Ref. 3]. M, is 330 gauss [Ref. 4].

The quantity NW?/M kT may be evaluated from
ferrimagnetic resonance linewidth data. Clogston® has
shown that for Ni, ;5Fe, 550, the contribution to the line-
width in the (110) plane produced by the itinerant electron
loss mechanism is

- 1 8(N)
AH = M_,3<kT>W

_wr
1 + w2T2 s

sin’ ¢
X (—4— + sin® ¢ cos’ ¢>
where ¢ is the direction of the d.c. field referred to the
[100] axis, and w is the angular velocity of the microwave
field. Thus, we have

1 8(N wT
St = St = 5 ()W 55 O
Measurements of AH ;117 — AH{100; have been made at

24.0 GHz,! yielding a value of 190 gauss at 201°K, and at
9.2 GHz,® yielding a value of 100 gauss.* Utilizing these

* An additional isotropic contribution to the linewidth is attributable to
eddy currents. The effect of eddy current losses on domain wall velocities in
this material is not significant. Cf. Ref. 3.
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Figure 1 Orientation of the magnetic axes x, y, and z in ‘
terms of the crystal axes x, y’, and z’. |

Figure 2 Orientation of the angles ¢ and 4.
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two results, we obtain a value for ({NW?)/(M,kT) of
2.09 X 107° gauss/sec.

After the values of the parameters have been introduced
in equation (2), the expression for the domain wall velocity
is

vV

b+
2H0|:2.09 X 107° gauss/sec f 2 sin® ¢

°

-1
X cos’ ¢ Z—: ddu:‘

it

(2.34 X 10°H,) cm/sec.

This value is in fair agreement with the experimental
value of the low velocity domain wall mobility of 26 150
cm/sec/gauss obtained by Galt.

The shape of a domain wall at rest is determined by the
condition that the net torque acting on the spins within
the wall vanishes at every point. This requires that the
magnetization lie in the plane of the wall. For a wall in
motion, on the other hand, the spins in the region of the
wall must rotate between the directions of magnetization
in the two adjacent domains, and the magnetization
orientation assumed in the wall must generate a demagneti-
zation field which will produce the required angular veloc-
ities®”. In order that this field exist, the magnetization
will not lie in the plane of the wall but will make some
angle 6(n) with it. Clogston’s calculation of the power
dissipated by a moving wall whose “shape” ¢(y) is that of
a wall at rest can be extended to a wall of general shape
(n), 6(x) by adding a term § W sin’e (d/dn)’/(dep/cin) ™"
to the expression under the integral sign in Eq. (1) [Ref. 2].
Thus, we obtain

Go+ T
V = 2H0M{2.09 X 107° gauss/sec f 2sin® ¢

x Lo of ) + 3 (G f ™ o

In order to determine the wall shape for the particular
example considered we start from the system of torque
equations

_M,Vdm
Y dy
&Im  OE, ) >
= m X <2A d772 gm 47rM.s’nzlz s (5)

wherem = (m,, m,, m,) is the normalized magnetic vector
(m2 + m? 4+ m} = 1) and is assumed to be a function
of n = z — Vi1, V = velocity in cm/sec of the wall. Also,
E, = anisotropic energy = Kool 4+ ool + alad),
o= m, a = (m, + m)NV2, ay = (m, — m)/V2,
vy = gyromagnetic ratio = 1.88 X 10’ rad/sec/Oe. In
terms of ¢, § we have m, = cos § cos ¢, m, = cos 0
sin ¢, m, = — sin 6.
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In the system of (5) we have included torques due to
exchange, anisotropy, and internal (demagnetizing) fields.
Our neglect of the applied field and of damping forces is
justified when these fields are small compared with the
others. Enz® has studied the dependence of wall shape
(in the case of uniaxial anisotropy) as a function of wall
velocity in the absence of applied and damping fields, and
found a kind of “Lorentz contraction.” We solve here
the corresponding problem for the case of cubic anisotropy
in the limit of weak damping.

The following pair of dimensionless equations is ob-
tained from Eq. (5)

vcos()z—z= cos® 0%;%
—2sin0cos02—t§£ e%, (6)
— v cos G-Z—ﬁ= %;g-}-sin 6 cos 0(%)2
+ GQE — sin 6 cos 6, )

a0

where quantities are as expressed in Eq. (8) to (12). [The
term —3 is introduced in Eq. (8) so that F = 0 at its
minima.]

F= —14 Lcos* 8sin® ¢(3 cos’ ¢ + 1)
4 2 sin’ 6 cos® (3 cos® ¢ — 1) + sin® 6], (8)

p= ", (9)
o= (1) = . @
¢ = % (12)

For the given values of the constant we have { = 6.28 X
10", u = 7.92 X 10%), ¢ = 0.047,and v = 1.015 X 107°V.
Multiplying Eq. (6) by dop/du, Eq. (7) by df/du and adding
leads to the following integral of the system

-t ) 4 (8 42
I = cos 0<du + dn + 2¢F — sin® 4. (13)

In analyzing the system (6), (7) it is convenient to intro-
duce the equivalent set of four first-order equations,

aé _

s = X, (14)
de

- Y, (15)




g#;X = —eg(p, ) + Y(2Xsin 8 + v)/cos 4, (16)

ZTY = sin B cos § (1 — X* + eh(p, 6)

— vX cos 0, amn

where
glé, ) = sin ¢ cos ¢
X [cos® 6(3 cos’ ¢ — 1) — 3sin® 9], (18)
h(p, 8) = cos® 6sin® ¢(3 cos’ ¢ + 1)
4 (2sin® @ — 1)(3 cos®’¢ — 1) — sin® 9. (19)

The three equilibrium points of Egs. (14)-(17) that we
are concerned with are given by P; = (¢, 0;, X;, Y)),
i=1,2,3, where 0, = X; =Y, =0,¢ = ¢, o = 7™ —
b0, ¢s = T + ¢o, and ¢, = arctan v2. These correspond
to easy directions of magnetization, that is, to minima of
E.. Since F == 0 at these minima, then I = 0 at each of the
equilibrium points.

What we seek for each value of ¥ is a pair of trajectories
Ti(p) and T,(u) which are solutions to Eqs. (14)-(17). For
T; we require that T, > Py asu— — o and that T, — P,
as u— + «. For T, we require that 7, — P,as uy— — ®
and that T, — P; as u — -+ . Once we have determined
T, and T,, we calculate the applied field (whose direction is
¢ = ¢, 8 = 0, and whose magnitude is H, in oersteds)
which will cause the domain wall to move with velocity V.
H, is computed by the formula.

dot+ ¥

Hy, = 1.66 X 107°y sin’ ¢
¢o

X (Xcos®¢+3Y/X)dp.  (20)

For values of v # 0 it is necessary to solve Eqs. (14)-
(17) numerically. For T, we can specify that ¢ = /2 for
& = 0. Because of Eq. (13) this leaves two initial values to
be determined at u = 0 in such a way that the solution to
Egs. (14)~(17) will satisfy the boundary conditions at u =
=+ o, The following theorem establishes a symmetry which
enables us to avoid the difficulty of a two-dimensional
search coupled with numerical integration on a doubly
infinite line.

Theorem 1. If a trajectory T, exists which minimizes the
free energy, Eq. (21), then d6/du = 0 for ¢ = =/2.

Before we prove this theorem we wish to examine its con-
sequences. If we introduce ¢ = ¢ — /2, then F(xr/2 +
¥, 6) = F(r/2 — y, 6) and hence F/3y is an odd function
of Y and dF/96 is an even function of . Also, y(— =) =
— (/2 — ¢) = — Y() and therefore the transformation
¢ — — ¢, u — — u leaves the Egs. (6) and (7) and the
boundary conditions invariant. Because the system is

autonomous there is no loss of generality in specifying
that for 4 = 0,y = 0 and hence by the theorem df/du = 0.
If we have a solution i, 8 to Egs. (6), (7) for u > 0 satisfy-
ing the boundary conditions ¥(0) = 0, d0/du(0) = 0, and
T, = P, at u = =, then we have a solution for all u with
the desired boundary conditions by the extension

Y = (@(u) w0
—¥(=w =<0
o = |00 p20
i-w  w<o.

By using Eq. (13), x(0) > 0 is determined in terms of
6(0), and, therefore, the above theorem reduces the prob-
lem of finding 7; to a one-parameter search on the value
of 6(0). For each 6(0) we have an initial value problem on
the half line u > 0. Finding 7, is similar except that
db/du = 0forp = .

Proof of Theorem 1. Withy = ¢ — /2, (6) and (7) are the
Euler equations for the following variational problem for
the free energy E.

© dy d0> ..
f_m L(‘P’ 6, du ’ du du = minimium (21)

T,=Piatp= —o, T,=Paty= +x

where

L= —12-[(%%) cos® 8 + (%) -+ sin® 0}

dy .
-0 E::l/sm 9 — eF<’5r + v, 0>- (22)

Furthermore, we normalize u such that u = 0 wherey = 0.
In the problem of (21) we admit functions # whose deriv-
ative may have a jump discontinuity at the origin.

Lemma. The problem of (21) is equivalent to

J :f L du = mini
; w = minimum (23)
T, =P, at w= o and Y0) = 0

Proof of the lemma
o 0 «©

E=f Ldu=f Ldp+f Ldu= J+ J.
— — 0

Let v = — p, () = — §(»), 6(w) = () for u > 0. Then

- 0 dy df
J~f_mL<¢’0’du ’du)dﬂ

> (s s dd dé)
= s 0) s T, .
fo L<‘// dv v dv
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Figure 3 Velocity (cm/sec) of domain wall versus initial
value of ¢ (radians).

Let 1, 6, be a pair of trial functions for the problem of
(21) and assume that J; < J,. We define a new pair of trial
functions y,, 6, such that

o) = | 9 w0
l=p=w  w<o,
6,(0) = fol(#) p=0
lo=w <o

Then J, = J, = Jy s0 B, = 2J; £ J; + J, = E;. A similar
symmetrizing reduction can be made if fl < J;. Since the
problem is to minimize E, the trial functions for Eq. (21)
can be restricted to odd functions for ¢ and even functions
for 6. In this way there is a one-to-one correspondence
between the trial functions for the two problems. More-
over, in this class of functions

E = 2J, and hence the equivalence is self-evident.
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To complete the proof of Theorem 1 we note that the
condition

do

=L,: =+
d/.l. I Oatp. 0

is a natural boundary condition of (23) and necessarily
must be satisfied for the minimum. Thus, for the solution
to (21), d6/du is continuous at p = 0 and has the value
zero. The proof for Theorem 1 is completed.

Theorem 2. Neither T, nor T, exist for

lo} > (1 + 8V + (8)'7, (24)
where
5 = 4e (23

(We note that since ¢ = 0.047, we must have [v] < 1.29;
that is,

0< V< 1.27 X 10%. (26)

Proof: Let ® = ¢ — ¢, where i = 1, 2, or 3. Then the
linearized system for (14)-(17) about P; is given by

a®

- r (27)
de
X _ 56 + vy, (29)
du
dy
i (14 80 — vX. (30)

The characteristic equation for the system is

AN — (1426 — N+ 81+ 5) = 0. (31
The eigenvalues are == \;, == A\, where Re(\;) > 0,

N = 3[1 + 28 — o* + (—1)'+/D] (32)
and

D=(1+428—0) — 4511+ 9. (33)

o] > 0+ 8+ ()} then0 < D<A+ 28 — )
and 1 + 26 — ¢’ < 0o \? < 0. Thus, if Eq. (24) is sat-
isfied, the eigenvalues for the linearized system are pure
imaginary and no trajectory will approach the equilibrium
points as u — ==, Q.E.D.

From Eq. (32) and (33), we see also that for [v] <
1+ & — (9! = 0.781 (ie.,, 0 < ¥ < 7.68 X 10%), there
are two positive and two negative real eigenvalues and
for (1 + 8 — O} < o] < A + 8 + (8}, there are
two eigenvalues with positive real parts and two with neg-
ative real parts.




If \; # \,, the general solution to Egs. (27)-(30) is
Q= 4 U(M)e““ + 4, U()\z)eh“ + B, U(“Al)e_)\”‘

+ B U(—N)e (34)
where
P
Q{o (35)
b'¢
LY
and
( 1
w=| | (36)
‘ (\* — &)/ |
L= 8)/v

Consider, for example, the approach to the equilibrium
point P, as 4 — -+ c. In this case ® = ¢ — ¢, where
¢, = = — arctan v2. Since we want Q — 0 as u— -+ o,
we must have 4, = 4, = 0. If the numerical integration
of Egs. (14)(17) for a given value of 6(0) has proceeded to
a value of u such that

lloll = @+ 6+ X"+ ¥°

is sufficiently small, then the linear system (27)—30) is a
valid approximation to (14)—(17) and we can solve the
equations of (34) for A4,, A4,, By, B,. The extent to which
A, and A, are suppressed serves as a guide to the choice
of 6(0). This method was used and numerical results were
thereby obtained. Figure 3 is a graph of #(0) as a function
of ¥V for¢(0) = /2, rand 0 < V< 9 X 10*, Figure 4 is a
graph of H, vs. V for the same range of V.

For V> 9 X 10* the approach to the equilibrium points
is strongly oscillatory, and the use of the linear system did
not prove adequate. The finding of an effective method
of convergence for 6(0) remains open in the upper range
of V.

If0 < ¥V < 7.68 X 10%, then the eigenvalues are real and
the approach to equilibrium is monotonic. In fact, 8, X,
and Y can be taken as functions of ¢ so that (14)~(17) are
replaced by

dé
dX .
o = [—egle, 6) + Y(2Xsin 6+ v)/cos 6]/ X, (38)

Zg = sin 8 cos 8(1 — X° + eh(p, 8))/ X

— v cos 6. (39)

sk
4
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0 1 2 3 4 5 6 7 8 9 10
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Figure 4 Velocity (cm/sec) of domain wall versus applied
magnetic field (oersteds).

As before, consider ¢ — ¢7, and suppose in (34) that 4, =
Ay = 0. Since 0 < \; < Ay, the term Byu(— e * domi-
nates unless B, = 0. Thus, for B, ¥ 0 we have a one-
parameter family of trajectories such that

a0 _ _N-—s  dx _
d¢ le ’ d¢
at¢g =¢5. Now0 <o < (6+ D' — ' =0.781,s0 0" < 1
and

M= 6 =3[0 - o) — DY

250
“ 0T 5 07 > 0.

Yy _ N -
do - v

_)\15

Thus,
0>0 as ¢ — ¢,

This suggests trying 6(0) > 0, which proves to be correct.
In the numerical calculations Egs. (37)—(39) were used for
¥V X 107* < 7.68. In Figures 5, 6, and 7, respectively,
8, X, and Y are plotted as functions of ¢ for ¥ X 107* =
0, 4, 6, and 7.68.

Galt® has noted that the relationship between wall
velocity and applied field does not remain linear at large
fields, but takes on a curvature opposite to that of the
calculated results shown in Figure 4. At the temperature
of 201° K considered in this paper, the nonlinearity begins
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Figure 5 ¢ (radians) as a function of ¢ (radians) across
a domain wall moving with different velocities V (cm/sec),
=0forV =0.

Figure 6 X = d¢/du as a function of ¢ (radians) across
a domain wall moving with different velocities V (cm/sec).
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Figure 7 Y = do/du as a function of ¢ (radians) across
a domain wall moving with different velocities ¥ (cm/sec).
Y=0forV =0.

at a wall velocity of the order of 10* cm/sec, which is well
inside the linear region of the calculated curve. Oscilloscope
traces obtained by Galt indicate that in the nonlinear
region the wall velocity becomes increasingly nonuniform
as the field increases. This effect has not been explained.
Consideration of nonuniform wall velocities and variable
wall shapes is outside the scope of the time-independent
treatment presented here, but such possibilities at higher
velocities merit study.
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