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Abstract: A numerical  study  is  made of a moving  magnetic  domain  wall. It is  assumed that  the  wall  moves  with a uniform  velocity V 
under the influence of an  applied  magnetic  field of magnitude Ha. This  leads  to a boundary  value  problem  on a doubly  infinite  line. By 
using a symmetry  in  the  problem,  the  inherent  difficulty  of a two-dimensional  search  on a doubly  infinite  line  is  bypassed.  For  each V 
the problem  is  solved as a sequence of initial  value  problems  involving a one-dimensional  search. A limiting  velocity  is  determined by 
means of an  eigenvalue  analysis.  The  curve  representing  the  relation  between V and Ho is  determined  for a particular  case. 

The purpose of this paper is to make a numerical  study of boundary value  problem on a half-infinite  line (0 5 9 < 
a moving 180" magnetic domain wall in a cubic  crystal a). An integral of the system of torque equations further 
of composition NiO.,, Fez.,, 0,. The wall is assumed to reduces the problem so that each boundary value  problem 
have a uniform  velocity of V (cm/sec) and to be  moving is solved through a sequence of initial value  problems in- 
under the influence of an applied  magnetic field  of  magni-  volving a search on the initial value of 0 (i.e., the 0 that 
tude Ho (Oe). A formula, Eq. (4), is derived which repre- corresponds to 4 = ?r/2 and 4 = 7r, respectively). 
sents the velocity V as a function of Ho and of the wall  An  eigenvalue-eigenvector  analysis  is  made for the sys- 
shape. In Fig. 4 we  give a curve  representing the relation tem of torque equations in the neighborhood of the equilib- 
between V and Ho for the particular case  considered in this rium  points, and this is used to show that there is an 
paper. upper limit to the velocity that can be  achieved in this 

The magnetic  vector for the domain  wall  is of uniform  model of domain  wall motion. This analysis has also  been 
magnitude and its direction is a function of 9 = z - Vt. utilized in a scheme for correcting the initial value of 0, 
Fig. 1 indicates the orientation of the magnetic  axes x ,  y ,  O(0). Since no satisfactory  method  was found for correcting 
and z in terms of the axes x', y', and z' of the crystal, and 0(0) when V approached its upper limit, the relation be- 
Fig. 2 shows the angles 4 and 0 which  define the direction  tween V and Ho in the neighborhood of this limiting veloc- 
of the magnetic  vector for the domain wall. There are four ity is not determined in this paper. 
easy directions in the xy plane.  They are+o, ?r - 40, 7r + 40, Before  presenting the system of torque equations, Eq. 
and 27r - 4o where +o = arctan fi. On one side of the (5), we derive  Eq. (4) which represents the relation between 
domain  wall the magnetic  vector for the crystal has the the velocity V and the magnitude of the applied field Ho. 
direction4 = &, 0 = 0, and this is also the direction of the In 1950 Kittell proposed that a magnetic domain wall 
applied  field. The easy  direction 4 = ?r - 40, 0 = 0 is under the influence of an applied field  moves at such a 
achieved as  an intermediate direction in the domain  wall,  velocity that  the liberated magnetostatic energy is com- 
and, finally, on the other side of the domain  wall the direc-  pletely  dissipated  by the damping forces  which  resist the 
tion is 4 = 4o + a, 0 = 0. spin rotations occurring as  the wall  advances.  Clogston' 

By means of the system of torque equations, Eq. (5), the has shown that the power  per unit area dissipated through 
transition from 4 = 4o to 4 = T - +o and the transition the itinerant electron  loss  mechanism in a 180' domain 
from 4 = 7r - c $ ~  to 4 = ?r + cp0 each  define a boundary wall in  Nio. 7 5  Fe,.,, 0, moving at low  velocity V in a 
value  problem on a doubly  infinite  line (- a < 9 < a). direction  perpendicular to the (110) plane can be  written 
A symmetry is proved  which  reduces  each  problem to a 
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where N is the number of mobile electrons per  cm3, W is a 
parameter associated with a representation of the energies 

x [  lOO]x’ 

t 
of the mobile electrons, and T is the electronic relaxation 
time. The rate at which magnetostatic energy  is  released  is 
2M,H,V per unit wall area, where H ,  is the effective 
applied field, i.e., the field above threshold, and M ,  is the 
saturation magnetization. Setting these two quantities 
equal to each other, one obtains the following  expression 
for the velocity of a domain wall: 

2 H o  Ma V =  

( 3  
. (2) I 

T(&) lr+r 2 W 2  sin2 4 cos2 4 - d+ I I 
I 

The parameters in Eq. (2) at 201°K can be determined 
from existing experimental data,  and the relationship 
between domain wall  velocity and applied field can be / / 

verified  by comparison with measurements made with 
picture frame samples at this temperature by Galt.3 At 
very  low  velocities, one may  use for d+/dq the value for a / / 

domain wall at rest in  the (110) plane. Representing the / / 

anisotropy energy by the first-order constant only, one // 

may write d+/dq as follows:2 
Figure 1 Orientation of the  magnetic  axes x ,  y, and z in 

d+/dq = (- K1/12A)”2 12 - 3 s i n 2 4 \ ,  terms of the  crystal  axes x’, y’,  and z’. 

where K, is the first-order anisotropy constant, and A is the 
exchange constant. The value of Kl at 201°K is -6.43 X 
lo4 ergs/cm3  [Ref. 41; the value of A is 1.09 X erg/cm 
[Ref. 31. M a  is 330 gauss [Ref. 41. 

The quantity rNW2/M,kT may  be evaluated from 
ferrimagnetic resonance linewidth data. Clogston’ has Figure 2 Orientation of the  angles @J and 8. 
shown that for Ni,, 75Fe2, 2504 the contribution to  the line- 
width in the (110) plane produced by the itinerant electron 
loss  mechanism is 

// 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

where is the direction of the d.c.  field referred to the 
[loo] axis, and w is the angular velocity of the microwave 
field. Thus, we have 

Measurements of AHf111l - AHrlaal have been made at 
24.0 GHz: yielding a value of 190 gauss at 201 OK, and  at 
9.2 G H z , ~  yielding a value of 100 gauss.* Utilizing these 

* An additional isotropic contribution to the linewidth is attributable to 
eddy currents. The effect of eddy current losses on domain wall velocities in 
this material is not significant. Cf. Ref. 3. 285 
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two results, we obtain a value for ( 7 N W 2 ) / ( M , k T )  of 
2.09 X lo-’ gauss/sec. 

After the values of the parameters have been introduced 
in equation (2), the expression for the domain wall  velocity 
is 

2.09 X lo-’ gauss/sec (+ 2 s in2 4 

= (2.34 X 104Ho) cm/sec. 

This value is in fair agreement with the experimental 
value of the low velocity domain wall mobility of 26 150 
cm/sec/gauss obtained by Galt. 

The shape of a domain wall at rest is determined by the 
condition that the net torque acting on  the spins within 
the wall vanishes at every point. This requires that  the 
magnetization lie in the plane of the wall. For a wall in 
motion, on  the other  hand, the spins in the region of the 
wall must rotate between the directions of magnetization 
in the two adjacent domains, and the magnetization 
orientation assumed in the wall must generate a demagneti- 
zation field  which  will produce the required angular veloc- 
i t i e ~ ~ , ~ .  In order that this field exist, the magnetization 
will not lie in  the plane of the wall but will make  some 
angle e(q) with it. Clogston’s calculation of the power 
dissipated by a moving wall whose “shape” 4(q) is that  of 
a wall at rest can be extended to a wall of general shape 
4(q), e(q) by adding a term $ W 2  sin’4 (dB/d$’/(d4/dq)” 
to the expression under the integral sign in Eq. (1) [Ref. 21. 
Thus, we obtain 

In  the system of (5 )  we have included torques due to 
exchange, anisotropy, and internal (demagnetizing) fields. 
Our neglect  of the applied field and of damping forces is 
justified when these fields are small compared with the 
others. Enz8 has studied the dependence of wall shape 
(in the case of uniaxial anisotropy) as a function of wall 
velocity in the absence of applied and damping fields, and 
found a kind of “Lorentz  contraction.” We solve here 
the corresponding problem for the case of cubic anisotropy 
in the limit of weak damping. 

The following pair of dimensionless equations is ob- 
tained from Eq. ( 5 )  

de 2 d24 
dP dP 

v COS e - = COS e 

+ E -- - sin 0 cos 0, d F  
a e  ( 7) 

where quantities are  as expressed in Eq. (8) to (12). [The 
term -$ is introduced in Eq. (8) so that F = 0 at its 
minima.] 

F = -Q + ;[cos4 e sin2 4(3 cos2 4 + 1) 

+ 2 sin2 e cos2 e( 3 COS’ 4 - 1) + sin4 e ] ,  (8) 

x [ cos2 @($) + ($2($)-1 j d4)-l. (4) E = -[-I (29 - = -=Mf K1 , 

In order to determine the wall shape for the particular 29 Mi 
example considered we start from the system of  torque 

{ = -. 
A 

equations 

M .  V dm 
Y dv 
” ” 

where m = (mZ, m,, rn J is the normalized magnetic vector 
(m: + rnz + mt = 1) and is assumed to  be a function 
of q = z - Vt,  V = velocity  in cm/sec of the wall. Also, 
E ,  = anisotropic energy = Kl(a&: + aiai + ai&, 
a, = rn,, a2 = (m, + r n z ) / & ,  a3 = ( m ,  - mu)/&,. 
y = gyromagnetic ratio = 1.88 X lo7 rad/sec/Oe.  In 
terms of 4, 0 we have rn, = cos 0 cos 4, m, = cos e 

286 sin 4, rn, = - sin 6. 
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For  the given values of the constant we have { = 6.28 X 
10l1,p = 7.92 X 105q, E = 0.047, and u = 1.015 X lO-’V. 
Multiplying Eq. (6) by d+/dp, Eq. (7) by de/dp and adding 
leads to the following integral of the system 

In analyzing the system (6), (7) it is convenient to  intro- 
duce the equivalent set of four first-order equations, 

de  
dP 
” - Y, 



- = -Eg(#J, e) + ~ ( 2 ~ s i n  e + U)/COS e, (16) d X  
dP 

I 
= sin e cos e (1  - x2 + Eh(+, e)) 

I 
I 

dcc 

- c x  COS e, (17) 

where 

g(#J, e) = sin + cos + 
X [cos' O(3 cos2#J - 1) - 3 sin2 01, (18) 

h(+, e) = cos2 e sin2 +(3 cos2 + + 1) 

-I- (2sin2 0 - 1)(3 cos2+ - 1) - sin2 0. (19) 

The three equilibrium points of Eqs. (14)-(17) that we 
are concerned  with are given  by P i  = (+i, O i ,  Xi, Yi), 
i = 1 ,2 ,3 ,  where 0 = X i  = Yi = 0, +1 = +o, 4, = T - 
+o, +3 = T + and +o = arctan &. These correspond 
to easy directions of magnetization, that is, to minima of 
E,. Since F = 0 at these  minima, then Z = 0 at each of the 
equilibrium  points. 

What we  seek for each  value of Vis a pair of trajectories 
T1&) and Tz@) which are solutions to Eqs. (14)-(17). For 
Tl we require that TI += PI as p -+ - and that TI -+ P2 
asp+=+ co.ForT,werequirethatT,+=P,asp+- w 

and that T, - P3 as p -+ 4- m . Once we have  determined 
Tl and T,, we calculate the applied field  (whose direction is 
#J = +o, e = 0, and whose  magnitude  is Ho in  oersteds) 
which will cause the domain wall to move  with  velocity V.  
Ho is  computed by the formula. 

Ho = 1.66 X V 1 sin' #J 
90+ w 

9. 

x (x  cos2 #J + 4 Y'/X) d#J. (20) 

For values  of u # 0 it is necessary to solve  Eqs. (14)- 
(17) numerically. For Tl we can specify that + = ~ / 2  for 
p = 0. Because  of  Eq. (13) this leaves  two initial values to 
be  determined at p = 0 in  such a way that the solution to 
Eqs. (14)-(17) will satisfy the boundary conditions at p = 
f a .  The  following  theorem  establishes a symmetry  which 
enables us to avoid the difficulty  of a two-dimensional 
search  coupled  with  numerical integration on a doubly 
infinite  line. 

Theorem I .  Zf a  trajectory Tl exists which minimizes the 
free energy, Eq. (21), then dO/dp = 0 for + = ~ / 2 .  

Before we prove this theorem we  wish to examine its con- 
sequences. If we introduce # = + - ~/2, then F(7r/2 + 
#, e) = F ( T / ~  - #, e) and hence aF/a# is an odd function 
of # and aF/ae is an even function of #. Also, #(- a) = 
- (n/2 - = - #(OD ) and therefore the transformation 
# += - #, p -+ - p leaves the Eqs. (6)  and (7) and the 
boundary conditions invariant. Because the system  is 

autonomous there is no loss of generality  in  specifying 
that for p = 0, # = 0 and hence by the theorem dO/dp = 0. 
If  we have a solution $, 8 to Eqs. (6), (7) for p 1 0 satisfy- 
ing the boundary conditions $(O) = 0, d8/dp(O) = 0, and 
Tl = Pz at p = a, then we have a solution for all p with 
the desired  boundary conditions by the extension 

*G) = , 1 i%) P 2 0  

\ &) P 2 0  

1 i - a - P )  CC I 0 

i -  
l e ( - P )  P 5 0.  

= 

By  using Eq. (13), x(0) > 0 is  determined in terms of 
e(O), and, therefore, the above theorem  reduces the prob- 
lem  of  finding Tl to a one-parameter search on the value 
of e(0). For each e(0) we have an initial value  problem on 
the half  line p 2 0. Finding T, is  similar  except that 
de/dp = 0 for + = T.  

Proof of Theorem 1. With # = + - n/2, (6) and (7) are the 
Euler equations for the following variational problem for 
the free  energy E. 

T 1 = P 1 a t p = - a ,   T I = P z a t p = + c o  

where 

- v --sin d* 0 - r F  

Furthermore, we normalize p such that p = 0 where # = 0. 
In the problem of (21) we admit functions 8 whose  deriv- 
ative may  have a jump discontinuity at the origin. 

Lemma. The problem of (21) is equivalent to 

J = J m  L dp = minimum 

T ,  = P, at p = a and #(O) = 0 

Proof of the lemma 

E = [ l L d p = [ m L d p f L 9 L d p =  J^+ J .  

Let v = - p, #(p) = - &v), O(p) = d(v) for p 2 0. Then I 

1. (23) 
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Figure 3 Velocity (cm/sec) of domain  wall  versus  initial 
value of e (radians). 

Let +1, O1 be a pair of trial functions  for the problem of 
(21) and assume that J1 5 i1. We define a new pair of trial 
functions +,, O2 such that 

Oz(P) = 1; O I W  P L 2 0  

h - P )  P 5 0 .  

Then J, = fz = J1 so Ez = 2.4 5 J1 + ,?, = El .  A similar 
symmetrizing  reduction can be  made if il 5 .TI. Since the 
problem  is to minimize E, the trial functions for Eq. (21) 
can  be  restricted to odd functions for + and even functions 
for 0. In this way there is a one-to-one  correspondence 
between the trial functions for the two  problems.  More- 
over, in this class of functions 

288 E E 2 J ,  and hence the equivalence  is  self-evident. 

I f  Theorem 1 we note that the To complete the proof c 
condition 

dB 
- = Lo,  = O at p = O+ 
dP 

is a natural boundary condition of (23) and necessarily 
must  be  satisfied for the minimum.  Thus, for the solution 
to (21), dO/dp is continuous at p = 0 and has the value 
zero. The proof  for  Theorem 1 is  completed. 

Theorem 2. Neither Tl nor T ,  exist for 

Iul 2. (1 + 6)1/2 + (6)1/2, (24) 

where 

6 = +€. 

(We note that since E = 0.047, we must  have 1 0 1  < 1.29; 
that is, 

o I v < 1.27 x io5). (26) 

Proof: Let 4, = 4 - t P i  where i = 1, 2, or 3. Then the 
linearized  system for (14)-(17) about P i  is  given  by 

= 6@ + UY, 
dM 

The characteristic equation for the system  is 

x4 - ( 1  + 26 - U 2 ) X 2  + 6(1 + 6) = 0 .  (31 

x: = +[1 + 26 - u2 + (-1)i 451 (32) 

The eigenvalues are f X1, f X, where  Re(Xi) 2 0, 

and 

D = (1 + 26 - u'))" - 46(1 + 6 ) .  (33) 

If 1 0 1  2 (1 + 6)$ + (6)*, then 0 5 D < (1 + 26 - u'))" 
and 1 + 26 - u2 < 0 so X: < 0. Thus, if Eq. (24) is sat- 
isfied, the eigenvalues for the linearized  system are pure 
imaginary and no trajectory will approach the equilibrium 
points as 1.1 + f 00. Q.E.D. 

From Eq. (32) and (33), we  see also that for [ u ]  5 
(1 + 6)* - (6)* = 0.781 (i.e., 0 5 V <  7.68 X lo4), there 
are two positive and two  negative  real  eigenvalues and 
for (1 + 6)' - (6)' < Iu( < (1 + 6)* + (a)+, there are 
two  eigenvalues  with  positive real parts and two  with  neg- 
ative  real parts. 

W. PALMER AND  R. A. WILLOUGHBY 



If X, # X,, the general  solution to Eqs. (27H30) is 

Q = U(Xl)exl” + A ,  U(X,)e”” + B,  U(--X,)e-”” 

+ B~ U( - X,)e-xz’ (34) 

where 

and 

U(X) = 

Consider,  for  example, the approach to the equilibrium 
point P, as p 3 + m . In this case @ = 4 - 4, where 
4, = ?r - arctan &. Since we want Q 3 0 as p + + w ) 

we must  have A, = Az = 0. If the numerical integration 
of Eqs. (14)-(17) for a given  value  of e(0) has proceeded to 
a value of p such that 

1 1 ~ 1 1  = @ +  e2 + x2+ y2 

is sufficiently small,  then the linear  system (27)-(30) is a 
valid approximation to (14)-(17) and we can solve the 
equations of (34) for A,, Az,  B,, Bz. The extent to which 
Al and A2 are suppressed  serves as a guide to the choice 
of e(0). This method  was used and numerical  results were 
thereby  obtained.  Figure 3 is a graph of O(0) as a function 
of V for &O) = ~ / 2 ,  ?r and 0 < V< 9 X lo“. Figure 4 is a 
graph of Ho vs. V for the same  range of V. 

For V > 9 X lo“ the approach to the equilibrium points 
is  strongly  oscillatory, and the use of the linear  system  did 
not prove adequate. The finding of an effective method 
of convergence for e(0) remains  open in the upper  range 
of v. 

If 0 < V < 7.68 X lo4, then the eigenvalues are real and 
the approach to equilibrium  is  monotonic. In fact, 0, X ,  
and Y can be taken as functions of 4 so that (14)-(17) are 
replaced  by 

2 = Y / X ,  
d4 (37) 

Figure 4 Velocity (cm/sec) of domain wall  versus  applied 
magnetic field (oersteds). 

As before,  consider 4 + 4; and suppose  in (34) that A ,  = 
A, = 0. Since 0 < X1 < Xz, the term Blu(- X1)e-’” domi- 
nates  unless B1 = 0. Thus, for B, # 0 we have a one- 
parameter  family of trajectories  such that 

dB 1; - 6 d X   d Y  X;- 6 
d4 U X 1  ’ d4 d4 U 

- -X1,  

a t4  = 4;. Now 0 < u < (6 + 1)* - 6’ = 0.781, so v2 < 1 
and 

” - -- ” ”~ - 

Thus, 

0 > 0 as 4 + 4;. 
This  suggests  trying O(0) > 0, which  proves to be correct. 
In the numerical  calculations Eqs. (37)-(39) were  used for 
V X 5 7.68. In Figures 5 ,  6, and 7, respectively, 
0, X, and Yare plotted as functions of 4 for V X lo-” = 
0, 4, 6, and 7.68. 

Galt3 has noted that the relationship  between  wall 
velocity and applied field does not remain  linear at large 
fields, but takes on a curvature opposite to that of the 
calculated  results  shown in Figure 4. At the temperature 
of 201 O K considered in this paper, the nonlinearity  begins 289 
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0.25 

V X IO-‘ = 7.68 

Figure 5 6 (radians) as a function of Q (radians) across 
a domain  wall  moving  with  different  velocities V (cm/sec), 
B 0 for V = 0. 

Figure 6 X = d+/dp  as a function of Q (radians) across 
a domain  wall  moving  with  different  velocities V (cm/sec). 

0.3C 

0.2: 

0.2c 

0.15 

0.1c 

0.05 

u 
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Y -0.05 I I I I 
0 I 2 3 4 

I @  

Figure 7 Y = d e / d p  as a function of Q (radians) across 
a domain  wall  moving  with  different  velocities V (cm/sec). 
Y 0 for V = 0. 

at a wall velocity of the  order of lo4 cm/sec, which is well 
inside the linear region of the calculated curve. Oscilloscope 
traces  obtained by Galt indicate that in the nonlinear 
region the wall velocity becomes increasingly nonuniform 
as the field increases. This effect has  not been explained. 
Consideration of nonuniform wall velocities and variable 
wall shapes is outside the scope of the time-independent 
treatment presented here, but such possibilities at higher 
velocities merit study. 
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