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Abstract: This  paper  presents a numerical  analysis  of the mechanisms  of  operation  within a linearly-graded p-n junction.  Considered 
in  this  analysis  are  three  important  modes of junction  operation: equilibrium, forward  bias.  and  reverse  bias in the collector  junction. 
In  addition,  calculations of electrical  space-charge  layer  capacitance  are  presented for the  forward-biased  linearly-graded  junction.  The 
conclusions  derived  are  compared,  in  graphical  form,  with  the  results of previous  investigations of the  linearly-graded  junction. 

Introduction 

In his theory of p-n junctions in  semiconductors, Shockley’ 
presented the first  mathematical  analysis applicable to 
structures containing a linearly-graded impurity atom dis- 
tribution. The Shockley  analysis  was  based upon the 
simplifying  assumption that  the space-charge  layer of a 
linearly-graded junction is completely  depleted of mobile 
charge carriers. This assumption eliminates from Poisson’s 
equation the distribution terms for mobile  holes and elec- 
trons, and thereby  reduces a difficult  system of differential 
equations to a single,  mathematically tractable differential 
equation. Despite this simplifying assumption, many 
conclusions  derived from the depletion  layer approxi- 
mation were  subsequently verified  by laboratory experi- 
ment. For this reason, the depletion  layer  theory of a 
linearly-graded p-n junction is an important part of the 
semiconductor literature. 

Shockley’s depletion  layer theory contains restrictive 
features rendering it inapplicable to several important 
modes of junction operation. In particular, to assume that 
the space-charge  layer  is  free of mobile charge carriers is 
to imply that his  theoretical approximation is not appli- 
cable to forward-biased p-n junctions, nor to reverse- 
biased junctions containing a large  electric current density 
(such as the collector  in a transistor). Although  these 
limitations of the depletion  layer theory have  been  rec- 
ognized by many  workers, a rigorous  analytical treatment 
of the problem  has not been reported. Instead, other 
approaches have been  used to simplify the mathematical 
equations characterizing a semiconductor junction; each 
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approach, however, has introduced a new set  of  uncer- 
tainties concerning the analytical  limitations  arising  from 
the use of simplifying  assumptions. 
In Shockley’s  treatment,’ an estimate was  made  con- 

cerning the influence of mobile  electrons and holes upon 
the space-charge  layer  characteristics of a linearly-graded 
junction. This estimate was  limited to structures at thermal 
and potential  equilibrium.  Shockley  established that near 
charge neutrality can be  mathematically  obtained  within 
the transition region*  of a linearly-graded junction con- 
taining a small impurity atom gradient. In this type of 
junction, the space-charge  layer  modifications  arising  from 
mobile  holes and electrons  were  estimated by comparing 
the space-charge  electrical  capacitance of a linearly-graded 
p-n junction with the capacitance of one exhibiting  near 
charge  neutrality. 

For a linearly-graded junction, Morgan and Smitsa 
obtained numerical solutions of the complete Poisson’s 
equation, including the charge distribution arising from 
mobile  holes and electrons.  Although their investigation 
was  conducted  with the aid of a computer, they  eliminated 
many  mathematical  difficulties by assuming a zero  electric 
current, even for a forward-biased  junction.  This  partic- 
ular treatment of the linearly-graded junction problem 
has been  severely  criticized  in the literat~re.~ The basis of 
this criticism is that by  neglecting the influence of an 
electric current within a forward-biased  linearly-graded 
junction, the Morgan and Smits  analysis is inapplicable at 

p-n junction is defined as the location at which  the  predominant  type of im- 
* Throughout  this  discussion,  the  transition  point of a  one-dimensional 

a p-n junction  represents  that  portion of the  semiconductor  material in the  im- 
purity atom changes  from donor to acceptor.  Similarly,  the  transition  region of 

mediate  vicinity of the p-n junction  transition  point. 
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moderate and large values  of forward biasing  voltage. 
We show  below that this criticism may not be  justified  over 
most of the useful range of forward  bias. 

In a later treatment of the linearly-graded junction 
problem,  Sah3 obtained an analytical approximation for 
the solution of Poisson’s equation containing an electro- 
static charge due both to ionized  impurity atoms and to 
mobile charge carriers (holes and electrons). The principal 
difference  between the analysis of Sah and the analysis of 
Morgan and Smits  lies in their  respective methods for 
solving this non-linear  differential equation. Sah  applied 
Picard’s Alg~rithm:‘~ obtaining only the first approxi- 
mation from a recurrence  relation for the solution of this 
differential equation; Morgan and Smits obtained their 
solution by numerical  methods. 

In this paper the analysis  is  based upon information 
derived from numerical solutions of the complete  set of 
differential equations characterizing a linearly-graded p-n 
junction. The system of equations used in this analysis 
was  previously  outlined by  Van  Roosbroeck‘  in  connection 
with  his  investigations of the flow  of electrons and holes 
in semiconductor  materials. By combining this large 
number of equations, it can  be  shown that a set of three 
simultaneous non-linear  differential equations describes 
the operation of a p-n junction. Finite difference  methods 
have  been  used to solve this set of equations, with the aid 
of an electronic  computer. 

Although  numerical  techniques do not provide  explicit 
equations describing the physical and electrical  properties 
of a linearly-graded junction, such information has been 
obtained in an indirect  fashion. From a series of computer 
calculations,  parameters  normally  described by mathe- 
matical  formula are presented in a graphical form; thereby, 
information derived from the present  investigation  is 
readily  available for semiconductor  device design. 

List of definitions 

a, Ionized  impurity atom gradient 
C Electrical  capacitance 
C(x)  Ionized  impurity atom distribution 
D, Diffusion constant for electrons 
D p  Diffusion constant for holes 
E Electric field 
J ,  Electric current density due to electrons 
J ,  Electric current density  due to holes 
Jr  Total electric current density 
KO A dimensionless  variable 
C, Debye  shielding  distance 
@,(x) Recombination rate for electrons 
@,(x) Recombination rate for  holes 
U Dimensionless  electrostatic potential variable 
V ,  Applied junction biasing  voltage 
V,  Equilibrium  diffusion  voltage of a p-n junction 
V ,  Total p-n junction voltage ( VD + V,) 

Electrostatic  energy 
Mobile  electron distribution 
Mobile hole distribution 
Electron charge 
A spatial variable 
Space-charge  layer boundary in n-type material 
Space-charge  layer boundary in p-type material 
Dimensionless spatial variable 
Permittivity of free  space 
Dielectric constant 
Dnq/kT 
D,q/kT 
Quasi-Fermi level for electrons 
Quasi-Fermi level for holes 
Electrostatic potential 

Analysis 

In a homogeneous  semiconductor, the steady-state hole 
and electron distributions [p(x) and n(x)] are described by 
the equations 

~- d2J.(x) -- [C(X) - .(x) + Q(X)], 4 
dx2 K E o  

- 

0 = &,(x) - - ~- 1 d J P ( 4  

q dx ’ 

assuming no trapping mechanisms  within the material 
under  consideration. 

Equation (la) is  Poisson’s equation, which relates the 
divergence of the electric field [E(x) = - d$(x)/dx] to 
the total electrostatic  charge  due to both mobile charge 
carriers [p(x) and n(x)] and ionized  impurity atoms [C(x)]. 
For a linearly-graded p-n junction, the net  ionized  impurity 
atom distribution is  described by the relation 

C(X) = aox, (2) 

where a, is the concentration gradient of these  ionized 
impurity atoms. 

Equations (lb) and (IC) give the electric current densities 
within a semiconductor (J , ,  J , )  arising from the transport 
of  mobile  holes and electrons.  These equations are funda- 
mentally the same as those of M. Smoluchowski,  rewritten 
for hole and electron  transport:  They  express the de- 
pendency of each  electric current component ( J ,  and J,,) 
upon the concentration gradients of holes and electrons, 258 
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the mobility of these  charge carriers, and the electrost 
potential gradient  (electric  field)  within a semiconduc 

For simplicity, the hole and electron  mobilities O.,, p,,), 
and the hole and electron  diffusion constants (D,, DJ, 
are often  assumed invariant within a particular sample of 
semiconductor  material.  This, of course,  is  sometimes an 
unreasonable  simplification.  Experiment  shows that within 
a given sample of semicondictor material, the mobilities 
and diffusion constants of holes and electrons often 
undergo large changes.'-13  Such  changes arise at large 
values of electric field and at large  values of impurity atom 
concentration. For this reason, the present  paper  considers 
the influence of both electric field and impurity atom 
density upon the mobility and diffusion  properties of holes 
and electrons. 

Equations (Id) and (le) are the continuity equations 
for holes and electrons  exhibiting an unspecified  mech- 
anism for recombination. To avoid introducing specific 
recombination and generation  mechanisms,  these  equa- 
tions will be  simplified by completely  neglecting  such 
mechanisms  from the present  analysis of a linearly-graded 
junction; this is equivalent to assuming an infinite  lifetime 
for holes and electrons.  Infinite  minority  carrier  lifetimes 
may appear to introduce severe limitations upon the appli- 
cability of the present  analysis, but this is not the case. The 
influence of carrier  generation upon p-n junction operation 
is adequately  considered in the 1iterat~re.l~ Furthermore, 
in the present  analysis the minority carrier sink  usually 
provided  by bulk recombination  is  replaced by a sink at 
the semiconductor boundary; thereby, a forward-biased 
junction of infinite  carrier  lifetime will exhibit an electric 
current. 

Equation (If) states that the total electric current density 
(JT)  is the algebraic  sum of electric current due to both 
holes (J , )  and electrons (JJ. 

The six equations (1) can be  combined into three 
simultaneous  non-linear  differential equations in three 
variables:  electrostatic potential, mobile hole concen- 
tration, and mobile  electron concentration. A rigorous 
mathematical solution of the p-n junction problem  requires 
that this  set  be  solved.  Such a solution is a difficult task; 
in fact, an attempt to solve this problem by traditional 
analytical  means will probably  end in failure. It appears 
reasonable to assume that there exists no rigorous analyti- 
cal  solution for this system of equations, and other means 
must therefore be used in a mathematical  investigation 
of the junction problem. 

The analysis  presented in this paper is the result of a 
numerical solution of the mathematical equations (1). 
Three one-dimensional nodal arrays, each  composed of 
up to five thousand spatial locations, are used to represent 
the junction under consideration.  Boundary conditions 
for each  independent  variable, in addition to the impurity 

254 atom distribution, are introduced as constraints upon the 

and 

equations, relaxation  techniques are applied  sequentially 
to the three  matrix arrays; this  leads to solutions for 
specific p-n junction problems.  Because  numerous  texts 
are available on the relaxation solution of partial differ- 
ential equations, '-'' details  concerning the method are 
not  repeated  here. 

For a linearly-gradedp-n junction, the literature contains 
four different approximation methods for the solution of 
the system of differential equations. As  previously stated, 
the Shockley solution is based upon an assumption that 
the structure under consideration is depleted of holes and 
electrons. Morgan and Smits obtained a numerical  solu- 
tion, although they  assumed an electric current of zero; 
this simplification  eliminates  two of the three non-linear 
differential equations. Sah used the same  simplification 
introduced by Morgan and Smits, and thereafter obtained 
an approximate analytical solution for the differential 
equation characterizing a linearly-graded p-n junction. 
Both of these solutions are directed toward the analysis 
of a forward-biased junction. In contrast, KirkZo investi- 
gated the abrupt collector junction at large values of col- 
lector current, and thereafter  suggested the applicability 
of this model to diffused  type structures. Kirk's study was 
intended to establish the more general  properties of a 
collector junction, and for this reason no attempt was 
made to solve the mathematical  problem in a rigorous 
fashion. 

The Morgan and Smits solution assumed that no electric 
current is present in the structure, even at large  values of 
forward  biasing  voltage.  After introducing this simplifi- 
cation into (l), and writing the hole and electron  densities 
in terms of the quasi-Fermi levels 'p, and pn, 

p,,) 1 1  sinh U 
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Because the quasi-Fermi levels are assumed constant 
(zero electric current), the normalized p-n junction electro- 
static  potential (6) is given by the solution of a single 
non-linear differential equation (4a). Morgan and Smits 
solved this problem by step-by-step numerical methodsz1 
using an electronic computer. 

There have been two basic criticisms3 of the Morgan and 
Smits analysis: First,  the assumption of a zero electric cur- 
rent placed severe limitations upon the applicability of the 
analysis and, second, the computer  solution  did not pro- 
vide analytical equations characterizing junction  operation. 
Thereafter, however, Sah used the same mathematical sim- 
plification (zero electric current) used by Morgan and 
Smits and, after applying Picard's Algorithm to a modified 
form of Eq. (4a), obtained an approximate analytical solu- 
tion  for  this particular boundary value problem. 

In principle, there are many differential equations to 
which the Picard method can be applied, although in prac- 
tice one is seldom able to complete such a task. If  we write 
Eq. (4a) in  the form 

dZ U 
dz 

a guess can be introduced  for Uo. By solving this differ- 
ential  equation, a first-approximation is obtained  for the 
required solution. The approximate  solution is next sub- 
stituted  for Uo in (7), and this  equation is again solved; 
a better approximation is thereby obtained  for the required 
solution. In theory, after an infinite number of similar 
iterations, an exact solution will be obtained for this differ- 
ential  equation. It is to be emphasized, however, that in 
solving a differential equation by the Picard technique, 
no general method exists whereby one  can establish the 
error resulting from a finite number of iterations. 

The complicated nature of this differential equation has 
prevented an extensive application of Picard's Algorithm. 
To cope  with this difficulty, Sah first introduced the ex- 
pression3 

uo = Fz, ( 8) 

7 = A sinh Uo + Bz, (7) 

where E is a constant of proportionality. This  substitution 
results in a linear differential equation of elementary form, 
and  thus a solution was readily obtained. A second itera- 
tion in this process becomes difficult, if not impossible. For 
this reason, the solution was limited to a first approxima- 
tion  for the required potential distribution. Thereafter, 
two guesses  were made  for a magnitude of the propor- 
tionality constant in Eq. (8). The first guess (Approx. 1 
in Ref. 3) was assumed inferior to  the second guess (Ap- 
prox. 2 in Ref. 3); it  can be shown that this first guess is 
actually superior, and  the resulting electrostatic potential 
distribution formula is satisfactory for most engineering 
purposes. 

The mathematical investigations of Morgan and Smits, 
knd also  those of Sah, introduce important questions 
concerning the validity of the simplifying assumptions. 
For example, there is no information concerning the rela- 
tive error arising from a zero-current analysis of forward 
biased linearly-graded p-n junctions. Further,  the approxi- 
mate analytical solution  obtained by Sah, in conjunction 
with questions concerning the magnitude of 5 in Eq. (8), 
has resulted in a situation  for which it is exceedingly  diffi- 
cult to evaluate accurately the relative error arising from 
the approximation  method. 

For the reverse-biased collector junction, Kirkz0 assumed 
that only one  type of mobile charge carrier existed within 
the collector junction space-charge layer. This  situation 
will arise in transistors containing a forward-biased 
emitter junction. In addition, Kirk restricted his analysis 
to transistors  operating at large values of collector junction 
biasing voltage. Kirk's restriction results from an assump- 
tion  that mobile charge carriers  maintain a terminal veloc- 
ity throughout the entire collector junction space-charge 
layer. With the foregoing assumptions, solving Poisson's 
equation (la) is a straightforward problem and is com- 
parable to Shockley's space-charge analysis of linearly- 
graded p-n junctions. Because there is no experimental 
evidence indicating that holes exhibit a terminal velocity, 
p-n-p transistor  operation  is excluded from  Kirk's analysis. 
Furthermore, it will be shown that electrons can be as- 
sumed to  be at their  terminal velocity only at substantial 
values of collector junction reverse biasing voltage. 

The equilibrium junction 

The initial studies of linearly-graded junction theory were 
directed toward  structures at thermal equilibrium. From 
Boltzmann statistics, Shockleyl obtained mathematical 
equations relating the mobile charge carrier densities (holes 
and electrons) to  the electrostatic potential. Thereafter, 
these Boltzmann equations were combined with Poisson's 
equation  for a linearly-graded p-n junction. Resulting 
from this combination is a non-linear differential equation 
that mathematically characterizes the operation of a 
linearly-graded p-n junction at thermal and potential 
equilibrium, 

" d 2 U  ( ' h U - y ) ,  
dY2 = sm 

where 
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Figure 1 Equilibrium  space-charge  layer  distribution  in a 
linearly-graded  silicon p-n junction. (Note change of scale 
in abscissa.) 

Recognizing the inherent  difficulties  associated  with 
solving Eq. (9), Shockley obtained two  limiting approxi- 
mations for the solution of this equation. He first  assumed 
that the dimensionless  parameter KO is very small,  thereby 

256 implying a condition of near charge neutrality throughout 
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the entire semiconductor structure; charge neutrality re- 
duces  Poisson’s equation (9) to Laplace’s equation. This 
assumption further implies that  the hole and electron 
densities are everywhere  sufficient to neutralize the electro- 
static charge  arising  from both ionized impurity atoms and 
the thermally-generated  mobile charge carriers. 

Similarly,  Shockley  investigated other solutions of  Eq. 
(9), this time  assuming that the dimensionless  parameter KO 
is  indefinitely  large. In this situation, Eq. (9) does not re- 
duce to Laplace’s equation; instead, this equation retains 
a large electrostatic  charge. From physical  arguments, 
it is readily  shown the electrostatic  charge  in Poisson’s 
equation (9) arises from hole and electron  depletion 
throughout the immediate  vicinity of a junction transition 
point. In this form Eq. (9) is a second-order  nonlinear 
differential equation having no exact  analytical solution; 
approximation methods are therefore necessary. From 
approximations previously  used  by  Schottky?  Schottky 
and Spenke? and Mott? Shockley  eliminated from Eq. 
(9) the influence of mobile  holes  and  electrons  (by  removing 
the term sinh U), thereby obtaining a mathematically 
tractable boundary value  problem. 

A more general formulation of the linearly-graded 
junction problem has now established that the dimension- 
less  parameter KO in Eq. (1Oc) is dependent upon the 
applied junction biasing voltage.’ For this reason, it is 
particularly important to consider the physical  meaning 
of this dimensionless  parameter, and the inherent char- 
acteristics of linearly-graded p-n junctions at intermediate 
values of KO. 

Before  discussing the equilibrium p-n junction, we 
shall  first  consider a basic property of semiconductor 
material: its tendency to maintain  charge  neutrality. If 
throughout a region of semiconductor  material the number 
of holes  (electrons)  deviates  appreciably from the corre- 
sponding  number of ionized  acceptor (donor) atoms, the 
resulting  electrostatic  forces will  yield a potential  energy 
per hole (electron) that is  enormously  greater than the 
mean thermal energy. In this situation, unless  special 
mechanisms are present to support these  large  differences 
of potential, the mobile  charge carriers will rapidly  move 
in  such a way as  to restore charge  neutrality. 

The quantity a,, defined  by  Eq.  (lOd),  is  called the 
Debye  length (or the Debye  shielding  distance),  since 
Debye’‘ has shown that  the electric field  of a point  charge 
in an electrolyte  varies as (l/r) exp (-r/Su). From hisanal- 
ysis, Debye  established that at distances  greater than 3, 
(when 2, < r), the electric field arising from a point  charge 
is shielded  by  mobile  charges  of opposite sign.  Whereas the 
direct application of  Debye’s equations to semiconductor 
material is open to question,  Debye  shielding  is  certainly 
a mechanism  encountered in linearly-graded  junctions. 

From Eqs. (1Oc) and (lOd), KO is the dimensionless 
ratio of the Debye  shielding  distance in a semiconductor 



I 
0 6 2  
X Electric field 

s 
8 0  I 

, 
4 -  

9 2 -  - 

0.03 - - >" 0.04 I I I I 

I I I I I I I 

I / I  

/ r 
E 
i o  I I I 1 I 1 I 

0.16 0 1 2  00s  0.04 o 0.04 on8 0.12 0.16 

Microns 

Figure 2 Space-charge  layer  characteristics of a linearly- 
graded p-n junction  at  equilibrium (silicon) (KO = 8 X los; 
a, = IO"). 

(SD), and a characteristic length of the impurity atom 
concentration gradient (2ni /a0) .  When KO is  small  (small 
impurity atom gradient), the Debye  theory  shows that 
mobile  charge carriers (holes and electrons) tend to main- 
tain charge neutrality throughout the semiconductor 
structure. In contrast, when KO is large  (large impurity 
atom gradient) the electric field  is  sufficient to deplete the 
semiconductor junction of mobile  charge carriers, and 
thereby  establish a well  defined space-charge  region. 

Figure 1 illustrates the calculated  equilibrium  space- 
charge distribution for three different  linearly-graded p-n 
junctions at room temperature: a, = and loz2, 
corresponding to KO = 8 X lo-', 8 X lo2, and 8 X lo8, 
respectively.  This  series  of calculations was  performed  by 
numerical  methods,  using the differential equations (1). 

Figure 3 Space-charge  layer  characteristics of a linearly- 
graded p-n junction at equilibrium  (silicon) (KO = 8 x lo-'; 
a. = 1 0 ~ ~ ) .  

From Fig. 1, the magnitude of KO (as established by the 
impurity atom gradient) determines the degree of impurity 
ion neutralization occuring  within a p-n junction space- 
charge  region.  At  large  values of impurity atom gradient 
(KO large), the total electrostatic charge density  is approxi- 
mately equal to the density of ionized  impurity atoms 
C(x). In contrast, at small  values  of  impurity atom- 
gradient (KO small), the electrostatic  charge  density  is  every- 
where  smaller than the density of  ionized  impurity  atoms. 
Although Fig. 1 provides little insight into the mechanism 
by  which charge  neutralization  arises  in a linearly-graded 
p-n junction, this illustration is qualitatively  consistent 
with the Debye  theory for electrostatic  shielding. 

Further insight into the mechanisms of charge neutral- 
ization can be  obtained from Figs. 2 and 3. At  large  values 257 
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Figure 4 Calculated  space-charge  distribution within a 
linearly-graded p-n junction. 

of impurity atom gradient (ao = loz2 atoms/cm4) the 
space-charge  layer is substantially free of mobile charge 
carriers (holes and electrons), and therefore the entire 
electrostatic charge arises from ionized impurity atoms 
(Fig. 2). In contrast, at small values of impurity atom 
gradient (Fig. 3) the space-charge electric  field  is  insuffi- 
cient to cause hole and electron depletion. Clearly, from 
the Debye theory, structures containing a small impurity 
atom gradient (KO small) also contain large quantities 
of majority carriers within each side of the space-charge 
layer (electrons in  the n-type region and holes in  the p-type 
region), and these mobile charge carriers partially neutral- 
ize the electrostatic charge arising from ionized impurity 
atoms. 

In this discussion of Shockley’s analysis, we next direct 
our attention to equilibrium junctions containing a well 
defined space-charge region (KO large).  As  previously 
stated, Shockley  assumed this type of structure was com- 
pletely  depleted of mobile holes and electrons, and thereby 
reduced Eq. (9) to a tractable differential equation. This 
simplifying assumption has one obvious difficulty: by 
eliminating the mobile charge carrier terms from Poisson’s 
equation, Shockley also removed from this equation any 

258 mechanism by which the space-charge layer could ter- 

minate upon charge-neutral semiconductor material. 
For this reason, to mathematically approximate the 
mechanism of space-charge layer termination Shockley 
was forced to adopt an artifical set of space-charge  layer 
boundary conditions. 

From Shockley’s  simplified form of  Poisson’s equation, 
physical arguments can be used to show that the space- 
charge electric field is  maximum at the junction transition 
point, and that this field  decreases with distance into  both 
the n-type and p-type semiconductor material. At specific 
locations this electric  field  becomes zero, and thereafter 
it changes sign and increases  in magnitude to infinity. At 
these points of zero electric  field  Shockley assumed that 
the space-charge layer terminates, and  he mathematically 
represented this boundary by an abrupt transition from 
Poisson’s equation to Laplace’s equation. The result of 
this simplifying assumption is a discontinuous termination 
of the space-charge in  both  the n-type and p-type semi- 
conductor material. 

Figure 4 provides a comparison between  several  different 
calculations of the equilibrium space-charge distribution 
within a linearly-graded p-n junction. This illustration 
shows that the depletion layer method yields only a crude 
approximation. Further, Fig. 4 also shows that although 
the Sah solution is an improvement over the depletion 
layer concept, that solution is also an imprecise approxi- 
mation. Finally, numerical calculations from the Morgan 
and Smits analysis are found to be in substantial agreement 
with a numerical solution of Eqs. (1); their computation 
of the space-charge distribution can thus be considered 
accurate and free of unnecessary approximations. 

Before further comparisons are made among these 
theoretical methods, it is  first  necessary to define a location 
for the termination of each type of mathematically calcu- 
lated space-charge layer. In the depletion layer theory this 
question offers little difficulty  because  Shockley’s discon- 
tinuous termination provides a well-defined boundary. 
In contrast, Sah assumed that charge neutrality represented 
an outer boundary for a p-n junction space-charge layer. 
From Fig. 4, it is  clear that Sah‘s calculation of the equilib- 
rium space-charge width yields a magnitude slightly 
greater than the value given  by the depletion layer theory. 
Throughout the present investigation, the space-charge 
layer  is  assumed to be terminated at locations where the 
electrostatic charge density is one-half its maximum  value 
on each side of the structure. In most practical situations, 
this defined location for the space-charge layer boundary 
is in substantial agreement with other investigations of 
the linearly-graded junction problem. 

From these arbitrary definitions for the space-charge 
layer boundaries, Fig. 5 presents the calculated space- 
charge layer width using three different methods for solving 
this problem: Shockley’s depletion layer theory, Sah’s 
approximation, and a numerical solution of Eqs. (1). 
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Figure 5 Equilibrium  space-charge layer width  in a linearly- 
graded p-n junction. 

Although these three  analytical  methods yield nearly the 
same  magnitude, it is emphasized that  the space-charge 
layer width is an arbitrarily defined parameter. Small 
modifications in  the definition for space-charge layer 
termination  could  substantially change any (or all) of the 
solutions  illustrated  in  Fig. 5. 
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Figure 6 Equilibrium  diffusion  voltage for a linearly- 
graded p-n junction. 

For a linearly-graded p-n junction,  the equilibrium 
diffusion voltage V,  is also an arbitrarily defined param- 
eter. This  situation arises from  an impurity atom gradient 
within the semiconductor  material  outside the p-n junction 
space-charge layer. At  thermal equilibrium  this semi- 
conductor  material  contains sufficient electrostatic charge 
to generate a small electric field. The magnitude of this 
electric field is determined by the impurity atom gradient. 
At  thermal equilibrium, the drift  component  imparted to 
mobile  charge  carriers (by this “built-in” electric field) 
must  have the same  magnitude (but in the  opposite di- 
rection) as  the diffusion component  arising  from the mobile 
charge  carrier gradient. For this  reason, the equilibrium 
diffusion voltage of a linearly-graded p-n junction will 
increase with an increase in  the distance over which this 
voltage is determined. 

In  the present discussion, the equilibrium diffusion 
voltage VD is defined as the  total difference of potential 
between specified locations on each side of the structure, 
and these  locations are established by the theoretical space- 
charge layer width (Fig. 5) .  The calculated equilibrium 
diffusion voltage is illustrated in Fig. 6. In this  illustration, 
it is shown that all  three  analytical  methods (Shockley, 
Sah,  and  the present analysis) are in  substantial agreement. 259 
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The linearly-graded collector  junction 

The transistor cut-off  frequency (ft) is a widely accepted 
measure of its current gain-bandwidth product (a  frequency 
at which the short circuit  common-emitter current gain 
becomes  unity).  Theoretically, f t  should increase  with an 
increase of collector current (at a given collector  voltage), 
although some  workers  have  shown substantial deviations 
from this theory.'6-28  Above  some  critical  value of collector 
current f t  is found to decrease  with  increasing  collector 
current. Kirk's  explanation" for this experimential  obser- 
vation is based upon the existence  of a current-dependent 
mobile carrier density  within the space-charge  layer of the 
collector Juncti0n.2~ 

In his investigation Kirk recognized that minority 
carriers within the collector junction space-charge  layer 
(due to a large collector current) cannot be  considered 
negligible in comparison to the fixed charge density of 
that region. He established that large  values  of  collector 
current result in a spatial displacemant of the collector 
junction space-charge  layer edge, and that this displace- 
ment  is in a direction  tending to increase the transistor base 
width. It is qualitatively  shown that this increase of base 
width  provides a partial explanation for the experimentally 
observed  high current fall-off  of It. 

Kirk used an abrupt p-n junction to approximate the 
mechanisms  encountered in a collector  junction of  mesa 
geometry.  This, of course, is a crude approximation for 
the modern diffused transistor. Nevertheless his analysis 
yields important contributions to the design of diffused 
collector  junctions. It is  often  observed that the electrical 
characteristics of a diffused junction lie  between those of 
an abrupt and a linearly-graded ~ t r u c t u r e . ~ ~ ' ~ ~  For this 
reason,  Kirk's  analysis outlines an important part of the 
large-current  mechanisms  encountered in diffused  collector 
junctions; additional mechanisms are established in the 
present  analysis of a linearly-graded junction. Future 
investigations will probably  show that  the large-current 
characteristics of an abrupt and a linearly-graded collector 
junction can be  combined to explain the large-current 
properties of a diffused  collector junction. 

In  the present  investigation,  numerical solutions of the 
collector junction problem are accomplished by previously 
outlined  techniques.  Infinite  minority carrier lifetimes 
( T ~  and T = )  are assumed in the differential equations used 
to describe the operation of this semiconductor structure. 
Such an assumption  eliminates from the analytical  model 
any  electric current due to either recombination or genera- 
tion within the space-charge  layer and the adjacent  semi- 
conductor material. In addition, it is also  assumed that  the 
entire collector current arises  from a single  type of charge 
carrier (either  holes or electrons), as would  be  encountered 
at the collector junction of a transistor containing a 
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Important considerations in the analysis of a collector 
junction are the mechanisms  influencing  electron and hole 
mobility.  Semiconductor  materials containing a large  im- 
purity atom density are known to exhibit  reduced  hole 
and electron  mobilities?' Further, elementary  aspects of 
lattice scattering theory show that the average drift velo- 
city of conduction band electrons and valence band holes 
is proportional to  an applied  electric  field, but this propor- 
tionality  is not always  encountered in a practical  semi- 
conductor de~ice .~- '~  For example, at large values of 
electric field the electron  velocity appears nearly field- 
independent, and in this environment it is frequently 
suggested that electrons  exhibit a terminal velocity. 
Qualitative theoretical investigations of this subject  have 
led to a satisfactory  phenomenological explanation for 
the large-field drift characteristics  of  holes and electrons," 
although we are presently unable to quantitatively  es- 
tablish carrier velocities by other than experimental  means. 

Throughout the present  analysis,  published  values are 
used for the small-field drift mobilities of holes and elec- 
t ron~. '~  At each node within a relaxation matrix, the mo- 
bilities of holes and electrons are adjusted in accordance 
with the impurity atom density  characterizing the device 
under consideration. 

The large-field  electrical  properties  of  silicon and 
germanium  have not been  established in an unqualified 
fashion. In 1951, Shockley'2  conducted theoretical investi- 
gations on this topic, as applied to germanium. He estab- 
lished that a large electric field could  produce  electron 
temperatures up to 4000°K  when,  in fact, the material 
retained a lattice temperature of 300°K. This increased 
electron temperature produces an increased  energy loss 
to acoustical  modes of lattice vibration; thereby, the elec- 
tron velocity  increases as  the square root of the electric 
field. A further increase of electron temperature produces 
a transfer of electron  energy to optical modes of lattice 
vibration. Theory  predicts that this additional mechanism 
results in an electron  velocity that is constant and inde- 
pendent of the electric field. 

In conjunction with this theoretical study, Ryder and 
ShockleyY3  experimentally  verified that  the large-field drift 
velocity of electrons in germanium  is proportional to the 
square root of the electric  field. They also  established that 
a very large  electric field produces a terminal electron 
velocity. Furthermore, in a later study of this question 
Ryder'  established that holes and electrons  exhibit a 
similar  field-dependent  drift  mobility, and that this phe- 
nomenon  could  be  observed in both silicon and german- 
ium.  Although a field-dependent velocity  was obtained for 
both holes and electrons in germanium,  only  electron  con- 
duction in  silicon was found to exhibit a terminal velocity. 
Ryder  believed that holes in silicon  could  be  made to 
exhibit a terminal velocity, if these  holes were subjected 
to a sufficiently large  electric field. 



At a later time,  Gunn"  conducted  similar  investigations 
on the large-field  electrical  properties of n-type  germanium. 
Although  his  experiments place doubt upon  some  details 
arising from Ryder's  experiments,  general  agreement  was 
obtained concerning the large field characteristics of 
electrons in germanium.  Thereafter,  Prior"  conducted 
similar  measurements upon silicon and germanium 
throughout a wide range of material  resistivity and electric 
field. Prior's  investigation  showed that a terminal carrier 
velocity is a unique  characteristic of n-type  germanium, 
and neither  p-type  germanium  nor  n-type or p-type  silicon 
exhibit this phenomenon. 

Granted that the foregoing  presents a rather incon- 
clusive picture concerning  large-field  characteristics of 
mobile charge carriers in silicon and germanium, the 
assumption of a terminal carrier velocity has nevertheless 
become traditional in mathematical  investigations of 
collector junction  pera at ion.^^'^^'^^ This  assumption  repre- 
sents a convenient  simplification, rather than an unquali- 
fied  physical  characteristic. Further experimental  work 
appears necessary  before  positive statements can  be  made 
concerning the influence  of a large electric  field  upon 
carrier mobility. 

For purposes of consistency, the present  analysis  is 
based  upon the published  experimental  results of Ryder.' 
From this information, approximate equations have  been 
developed to describe the relation  between  hole or electron 
velocities and an associated  electric field. These equations 
are used to generate a correction factor for the drift  mo- 
bility of holes and electrons  in all calculations  pertaining 
to semiconductor  devices containing a sufficiently large 
electric field. 

In  an n-p-n transistor, collector junction space-charge 
displacement is one  consequence of a large  collector 
current density. For many  years it was  implicitly  assumed 
that  the electron  velocity  becomes  infinite  in a collector 
junction space-charge layer; MatzZg emphasized the in- 
accuracy of this assumption. The finite  electron  velocity 
throughout this region  results  in a collector junction space- 
charge layer (at large current densities) that contains 
sufficient  mobile  electrons to modify the structure electri- 
cally. This situation is  illustrated  in  Fig. 7. In this illu- 
stration, the applied  reverse  biasing  voltage (10 volts) was 
selected to assure that electrons attain the terminal velocity 
experimentally  determined by  Ryder; and that this 
terminal velocity  is maintained throughout a large portion 
of the total space-charge  layer. 

In  previous  investigations of this subject, the mobile 
charge carrier velocity  was  assumed constant throughout 
an entire collector junction space-charge  layer.  Experi- 
mental  uncertainties  concerning this assumption  make 
it important to consider situations where a terminal velocity 
characteristic does not exist. For example, it can be  shown 
from  Ryder's  experimental data that many n-p-n transistors 
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Figure 7 Calculated  space-charge  layer  characteristics of a 
linearly-graded  collector  junction in a silicon n-p-n transis- 
tor:  (a) J ,  = 0; (b) J ,  = 3 x 105 amps/cm2; (c) J ,  = lo4 
amps/cmZ. 

require a substantial collector junction biasing  voltage to 
attain  the terminal electron  velocity. In a low-voltage 
mode of collector junction operation, the electron velocity 
(and hence the electron  density) is everywhere  dependent 
upon the space-charge  layer  electric field. Regions con- 
taining a small  electric field also contain a large  electron 
density; this results in a non-uniform  space-charge  dis- 
placement, and hence substantial space-charge distortion. 

Figure 8 illustrates such distortion. At a reasonable 
value of reverse  biasing  voltage the collector junction in 
Fig. 7 exhibits a nearly  linear translation with an increase 
of collector current. In contrast, after removing the reverse 
biasing  voltage  (Fig. 8) this same  collector junction under- 
goes substantial space-charge  layer distortion. 

At  present, no experimental  evidence is available to 
show that holes  exhibit a terminal velocity in a silicon 
p-n junction. For this reason,  space-charge  layer distortion 
may  be a fundamental characteristic of the collector 
junction in a p-n-p transistor. This situation is illustrated 
in  Fig. 9, which presents  calculated  space-charge  layer 261 
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Figure 8 Calculated space-charge  layer  characteristics of a 
linearly-graded  collector junction in a silicon n-p-n transis- 
tor: (a) J ,  = 0; (b) J ,  = 3 x 103 amps/cmz; (c) J ,  = lo4 
amps/cmz. 

characteristics for  the  junction shown in Fig. 7 (at  the 
same reverse biasing voltage), except that  the collector 
current is now assumed to arise from holes rather  than 
electrons. Here we encounter the same basic type of dis- 
tortion  as  that shown in Fig. 8, although Ryder's experi- 
ments imply that  this distortion (Fig. 9) will exist at all 
values of collector junction biasing voltage. 

These  illustrative examples show that calculations of 
collector junction displacement are  not necessarily a simple 
task, unless, of course, one  can assume the existence of a 
terminal  carrier velocity. For this  reason, Fig. 10 presents 
detailed calculations establishing the linearly-graded collec- 
tor  junction displacement within both n-p-n and p-n-p 
transistors;  this calculation is applicable over the  range of 
collector current densities usually encountered  in  transistor 
operation (0 5 J ,  5 lo5 amps/cm2). Again, it is empha- 
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Figure 9 Calculated space-charge  layer  characteristics of a 
linearly-graded collector junction in a silicon p-n-p transis- 
tor: (a)  J ,  = 0; (b) J ,  = 3 x lo? amps/cm'; (c) J ,  = lo4 
amps/cm2. 

measurements of the high field mobilities for holes and 
electrons, and  that these measurements  have been placed in 
question by other workers. 

The forward-biased junction 

Previous investigations of the forward-biased, linearly- 
graded junction' '3 were based upon a hypothetical  model 
assumed free of minority  carrier  sources or sinks. This 
assumption implies that neither minority  carrier  generation 
nor recombination takes place within the device under 
consideration. In addition, this assumption implies that 
all  ohmic  contacts exhibit a recombination velocity of 
zero. A semiconductor  structure of this  type would have 
little  practical  value because no steady-state electric current 
could  arise from  the application of a forward biasing 
voltage. Initally,  after  applying a forward biasing voltage, 
a transient electric current  could be observed at the p-n 
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junction; given sufficient time, this electric current would 
decrease to zero and, thereafter, the  structure would 
assume a state of quasi-equilibrium. 

The  state of quasi-equilibrium (forward-biased yet zero 
electric current)  represents a situation  where the mobile 
charge  carrier densities (holes and electrons) are modified 
throughout  an  entire semiconductor device; the p-type 
material  contains an excess  of mobile electrons and, 
similarly, the n-type material  contains an excess of holes. 
The magnitude of these excess carrier densities is accurately 
specified by the Boltzmann  relations for a p-n junction. 
Because a space-charge can result from  the introduction 
of excess minority  carriers into otherwise charge  neutral 
semiconductor  material, an increase is also  obtained in  the 
density of majority  carriers.  Simultaneous  with the in- 
jection of excess minority carriers  by a forward-biased 
junction, a nearly equal quantity of majority  carriers is 
introduced by the ohmic contacts; near  charge  neutrality 
is thereby  maintained  in the semiconductor  material 
adjacent to a forward biased p-n junction. 

It has been argued that mathematical investigations 
based upon a hypothetical  zero-current  model  have 
limited applicability to practical  semiconductor devices. 
This may (or may not) be true  for most p-n junctions 
(abrupt, diffused, etc.). For  the linearly-graded junction, 
however, inherent  characteristics limit the electric current 
to a value  substantially smaller than encountered in  other 
types of structures. This limitation  means that a forward- 
biased linearly-graded junction undergoes only small de- 
viations from  thermal equilibrium; it will therefore be 
shown that,  for  the linearly-graded junction, a zero-current 
model has little influence upon  the applicability of the 
analysis. 

First, let us consider the mathematical  characteristics 
of this zero-current model of a forward-biased  junction. 
From  the  Morgan  and Smits analysis, Eq. (4a) can  be 
rewritten into  the  form* 

d 2 U  - -3 (sinh U - y ) ,  
1 

dy2 K 
" - 

where 

y = __ exp (- q Va/2kT), 

2; = ~ ~ ~ k T / 2 q ' n ~ ,  ( 12b) 

K = KO exp (- 39 Va/4kT),  and (12c) 

KO = aoCD/2ni .  (1 2 4  

It should be noted that when the applied junction voltage 
V ,  is zero, Eq. (11) becomes identical to the  equation (9) 
for a linearly-graded junction at equilibrium. 

@OX 

2ni (1 2 4  

F. M. Smits (see Ref. 3). 
* This mathematical form is attributed to J. L. Moll by S. P. Morgan and 
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Figure 10 Calculated displacement (AxJ) of a iinearly- 
graded  collector junction in silicon. 

From (9) and  (ll),  important similarities can  be shown 
between a forward-biased  junction and a junction at 
both potential and  thermal equilibrium. For an equilibrium 
junction, Eq. (9) contains a characterizing dimensionless 
parameter KO, the magnitude of which determines the 
degree of space-charge neutralization  arising from mobile 
charge carriers. Similarly, for a forward-biased  junction, 
Eq. ( l l) ,  KO is replaced by a dimensionless parameter K ,  
and  the magnitude of this  parameter is determined by both 
KO and  the applied junction biasing voltage in  Eq. (12c). 
Therefore, it is not surprising that a forward-biased 
linearly-graded junction exhibits  many physical properties 
that were previously shown for  an equilibrium junction of 
small  impurity atom gradient. 263 
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Figure  11 Space-charge  characteristics of a forward-biased 
linearly-graded p-n junction (silicon). (aa = 10" atoms/ 
cm4.) 

For example,  consider the equilibrium p-n junction 
calculations  shown in  Fig.  1.  At  small  values  of impurity 
atom gradient, this illustration shows  (in  conjunction  with 
Fig. 3) that  the space-charge  layer contains sufficient 
majority carriers (electrons  within the n-type  material and 
holes  within the p-type  material) to partially  neutralize 
the electrostatic  charge  arising from ionized  impurity 
atoms. In similar  fashion, the forward-biased  linearly- 
graded junction (Fig.  11)  exhibits  space-charge  layer 
neutralization, and the degree  of this neutralization is 
determined by both the impurity atom gradient a, and the 
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Figure 12 Space-charge  layer  characteristics of a forward- 
biased,  linearly-graded p-n junction  (silicon). 

Figure  12  provides further evidence of similarities  be- 
tween an equilibrium junction containing a small  impurity 
atom gradient  (Fig. 3) and a forward-biased junction. 
Figure 12  shows that the calculated  space-charge  layer of a 
forward-biased junction contains large quantities of holes 
and electrons.  These  mobile charge carriers appear as 
majority carriers (holes  within the p-type  material and 
electrons  within the n-type  material), and for this reason 
we obtain substantial neutralization of the electrostatic 
charge  arising from ionized  impurity  atoms. An important 
consequence of this mechanism  is that in a forward-biased 
linearly-graded junction, the electrostatic charge density 
is everywhere  appreciably  less than the ionized impurity 
atom density. 

Using  previous  definitions of the space-charge  layer 
boundaries, Fig. 13 presents  one-half the calculated  space- 
charge layer  width of a forward-biased,  linearly-graded 
junction. Illustrated in this figure are the calculations from 
three different methods for solving the linearly-graded 
junction problem: a traditional extension of Shockley's 
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theory, Sah’s approximation, and a numerical solution of 
Eqs. (1). At small  values of forward biasing  voltage, the 
difference  between  these three analytical  methods is negli- 
gible; the space-charge  layer  width  decreases  with an 
increase of forward  biasing  voltage.  At large values  of 
forward biasing  voltage,  however, a large  increase  of 
space-charge  layer  width  results from a comparatively 
small  increase of biasing  voltage. This modification in 
junction operation is clearly a result of space-charge 
neutralization arising from majority carriers within  each 
side of the structure under  consideration. 

As  previously stated, this particular series  of  calculations 
(Fig. 13) is  based  upon an analytical model in which no 
steady-state electric current is permitted. To establish 
the consequences of this simplification,  similar  calculations 
were  performed upon models containing hole current, 
electron current, and an equal quantity of both hole cur- 
rent and electron current. In these computations an in- 
finite  minority carrier lifetime  was  always  maintained, 
and the electric current was attained by mathematically 
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Figure 14 Hole  and  electron  distribution  within  the  space- 
charge  layer of a linearly-graded p-n junction  (silicon). 

locating a minority carrier sink in the immediate  vicinity 
of the p-n junction space-charge  layer. In this  fashion, by 
locating a sink in either the n-type or the p-type material, 
an electric current would arise from either holes or elec- 
trons, respectively. If, instead, sinks  were  located on both 
sides of the junction, an electric current would arise from 
both holes and electrons. 

This series of calculations  (non-zero  electric current) 
was performed for p-n junctions throughout a wide  range 
of impurity atom gradients a,, throughout a large var- 
iation of the forward biasing  voltage, and at many different 
values of electric current. The results of these  calculations 
can be outlined by a single statement: An exceedingly 
large value of current density  is required to induce only 
minor deviations from the zero-current model. 

An example  of  such a calculation  is  illustrated in Fig. 14. 265 
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In this figure, it can be  observed that  an electron current 
density of 5 X lo3 amps/cm2 results in a factor-of-10 
(approx.)  decrease in the electron  (minority carrier) density 
at the p-type  space-charge  layer edge, and a change of the 
same absolute magnitude  in the hole  density  (majority 
carrier) at this location. 

Previous  discussions have established that majority (not 
minority) carriers have the greater  influence upon the 
space-charge distribution within a forward-biased  linearly- 
graded p-n junction. Figure  14  also illustrates a mechanism 
encountered  in all forward-biased junction calculations: 
the introduction of an electric current has only a minor 
influence upon the majority carrier distribution in both 
p-type and n-type  material. For this reason, it is concluded 
that the zero-current  model of a forward-biased  linearly- 
graded junction provides an adequate characterization of 
the space-charge distribution at large  values  of  electric 
current. Although this approximation can introduce error 
in the calculated  minority carrier density (up to a factor of 
10 at  the space-charge  layer  edge), the influence of this 
error upon most of electrical  properties of the structure 
is  very  small. 

Space-charge layer capacitance 

The depletion  layer  concept of p-n junction operation is 
based  upon an assumption that  the electrostatic  charge 
density  is  everywhere equal to  the density of ionized  im- 
purity atoms; therefore the space-charge  region is com- 
pletely  depleted of mobile  holes and electrons. In this 
structure the mechanisms contributing to electrical  capac- 
itance are similar to the mechanisms  encountered  within 
a parallel  plate capacitor. From classical electrostatic~,3~'~' 
the electrical  capacitance  is given  by 

where V,  is the  total difference of electrostatic potential 
across the region  under consideration, and W is the electro- 
static energy 

W = / E2(x)   dx .  
ZP 

L Jz, 

In Eq. (14), the parameter E(x) is the electric field distri- 
bution, and (x,,, x,,) are defined boundaries for the space- 
charge  region. 

For a reverse-biased  linearly-graded junction, this class- 
ical equation for electrical  capacitance is in substantial 
agreement  with the depletion  layer  theory.  Such  agreement 
implies an essential  mechanism contributing to the space- 
charge layer  electrical  capacitance  during this mode of 
junction operation: an increase in applied  biasing  voltage 
results in an increase in electrostatic  energy.  Despite the 
relatively crude depletion  layer approximation for a p-n 

266 junction space-charge  region  (Fig. 4), this approximation 

Parabolic  approximation 

"" Straight line approximation 

3 9 102 I I I I I  I I I I I  I I I I  
10-2 IO" 100 1( 

Figure 15 Calculated  electrostatic  energy  in  the  space-charge 
layer of a linearly-graded  junction  (silicon). 

is  nevertheless adequate for electrical  capacitance  calcu- 
lations. Furthermore, the depletion  layer theory provides 
a degree of mathematical  simplicity not obtainable in more 
rigorous computations of p-n junction capacitance. 

Morgan and Smits2  have  established that electrostatic 
energy storage is important also  in the operation of a for- 
ward-biased  linearly-graded p-n junction. Through a ma- 
nipulation of the integrated  hole  density equation for this 
semiconductor  device,  Morgan and Smits  have  shown two 
mechanisms contributing to the electrical  capacitance: 
a storage of electrostatic  energy  (space-charge  capacitance), 
and a storage of  excess minority carriers (neutral capaci- 
tance), 

where 8 is a defined mathematical boundary of the struc- 
ture. From this analysis,  electrostatic  energy storage 
arises  from the same  mechanism  encountered in a reverse- 
biased p-n junction: a change of applied  biasing  voltage 
alters the electrostatic  charge  resulting  from  ionized donor 
and acceptor atoms. In contrast, Morgan and Smits 
classified  excess minority carrier storage as a charge 
neutral process  because the electrostatic charge arising 
from minority carriers is almost completely  neutralized by 
excess majority carriers3* (conductivity  modulation). 
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Figure  15  illustrates the computed  electrostatic energy 
W within the space-charge layer of a linearly-graded 
junction. Because this calculation was for  junctions of 
arbitrary impurity atom gradient and applied biasing volt- 
age, the parameters  in  Fig. 15 are given in a generalized 
form. If Fig. 15 is applied to a practical linearly-graded p-n 
junction  (for example, to a  junction  containing an impurity 
atom gradient a, of loz3), the applied biasing voltage V,  
ranges from  about 0.4 volts in the reverse (low current) 
direction, to a  forward biasing voltage nearly equal  to  the 
equilibrium junction diffusion voltage. 

The calculations  illustrated  in Fig. 15 were conducted 
with an assumed electric current of zero, even at large 
values of forward biasing voltage. To determine the con- 
sequences of this simplification, numerous values of electro- 
static energy were calculated at  current densities up  to 
nearly lo4 amps/cm2;  at  no time  did  a significant change 
arise from large values of electric current density. This 
observation is consistent with other  calculations  pertaining 
to  the influence of an electric current upon  the junction 
space-charge layer. The electrostatic  charge  distribution 
in  a  forward-biased  junction is determined by the density 
of majority carriers within the space-charge layer, and 
these  majority  carriers are little influenced by the presence 
of an electric current. 

From Fig. 15, an extension of the depletion layer approx- 
imation provides a satisfactory method for calculating the 
space-charge layer electrostatic energy at  moderate values 
of forward biasing voltage. In  contrast,  at large values of 
forward biasing voltage this depletion layer concept is not 
applicable; the space-charge layer becomes densely popu- 
lated with mobile charge  carriers, and these carriers have 
a significant influence upon  the  total electrostatic energy. 
The biasing voltage at which this transition takes place 
depends upon  the junction  impurity atom gradient, and 
for this  reason a simple, generally applicable  rule cannot 
be stated.  Instead, a “rule-of-thumb” important  to device 
engineering is stated:  at operating levels yielding a signif- 
icant electric current, the space-charge layer can be 
assumed to contain a large quantity of mobile  charge 
carriers. 

At small values of forward biasing voltage, the electro- 
static energy within a linearly-graded p-n junction  can be 
approximated by the empirical  formula 

w = CY, VT , 
where V7, is the total junction voltage (both diffusion and 
applied) and a1 is a constant of proportionality. 

At large values of forward  biasing voltage, majority 
carriers within the junction space-charge layer result in 
an electrostatic energy approximated by the empirical 
formula 

5/3 (16) 

w = CYy vy , (1 7) 

where  CY^ is a constant of proportionality.  Although the 
two approximation  equations (16) and (17) exhibit a 
discontinuous  transition between the large and small bias 
modes of junction operation, detailed calculations of this 
region (Fig. 15) show that a smooth  transition actually 
exists. 

From  the approximation of (16) and (17), in  conjunction 
with (13), the capacitance of this  semiconductor structure 
is given  by 

c N p1 V,”3, (1 8) 

at small values of forward biasing voltage. Further, at 
large values of forward  biasing voltage this same space- 
charge  capacitance is 

c N p2  v;’2. (19) 

From these approximation  equations, at small values of 
forward biasing voltage the space-charge capacitance of 
this  junction increases (with an increase of voltage) until 
the  structure becomes dominated  by  mobile  charge 
carriers;  a  further increase of forward  biasing voltage 
results  in  a decrease of space-charge capacitance. 

From these  electrostatic energy calculations  (Fig. 15) 
a parabolic  approximation equation was used to obtain a 
smooth transition between the  two modes of junction 
operation: large and small values of forward biasing volt- 
age. Thereafter  this  approximation  equation, in con- 
junction  with (13), was used to establish the space-charge 
layer capacitance  arising from electrostatic energy storage. 

A  direct  comparison has been made between the elec- 
trical  capacitance  component  obtained from these electro- 
static energy calculations (Fig. 15) and  the space-charge 
capacitance  calculations of Morgan  and Smits. Substantial 
agreement is obtained at small values of forward biasing 
voltage (throughout  the region where negligible charge 
neutralization  arises from majority  carriers within the 
junction space-charge layer). At  large values of forward 
biasing voltage Fig.  15 yields an electrical capacitance of 
approximately one-half the value determined by Morgan 
and Smits. It has been established that  the principal 
differences between these two calculations are  the assumed 
mathematical  boundaries of the problem. 

In  the  Morgan  and Smits  calculation,  mathematical 
boundaries are located on each side of the p-n junction 
space-charge region, and  the separation between these 
boundaries is assumed sufficient to maintain a difference 
of potential of 20 kT/q  ( ~ 0 . 5  volts). Boundaries of this 
type are used by Morgan  and Smits in  all computations 
of junction capacitance, even for devices operating at 
large values of forward biasing voltage. A consequence of 
this assumption is easily seen by its application to a 
forward-biased junction. For example, consider a linearly- 
graded junction containing an impurity atom gradient a0 
of loz4 a t o m ~ l c r n . ~  An external forward biasing voltage of 
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Figure 16 Space-charge  layer  capacitance of a linearly- 
graded p-n junction (silicon). (ao = impurity atom  gradient 
in atoms/cm4.) 

0.885 volts  would locate the mathematical boundaries at 
approximately 125 microns on each side of the junction, 
while the  total space-charge  layer  width is only 0.04 
microns. 

From this example it is apparent that  the Morgan and 
Smits calculation of space-charge capacitance includes 
substantial semiconductor  material outside the junction 
space-charge  layer. If this extra semiconductor material is 
charge neutral or if, instead, this material contains a 
space-charge that is totally  independent of the junction 
biasing  voltage, the boundaries used  by Morgan and Smits 
have no influence  upon the calculated  capacitance.  Neither 
requirement  is  satisfied  in a calculation of space-charge 
capacitance for a forward-biased junction. Minority 
carrier injection, in association  with  conductivity  mod- 
ulation, yields a space-charge  density that is  small  when 
compared  with the density of  excess minority  carriers, 
yet this space-charge is sufficient to modify the theoretical 
space-charge  capacitance at large  values  of  forward  biasing 
voltage.  In contrast, the capacitance determined from Fig. 

268 15 in conjunction with  Eq. (13) results  only from space- 

charge layer  electrostatic  energy, and not from the electro- 
static energy  of  minority carrier storage; the magnitude 
of this capacitance is therefore smaller than  the value 
calculated by Morgan and Smits. 

In addition to space-charge neutralization, minority 
carrier storage contributes significantly to the electrical 
capacitance of a forward-biased junction. Detailed  calcu- 
lations of this mechanism  show that a forward biased 
linearly-graded junction stores excess minority carriers 
within both the p-n junction space-charge  layer and the 
adjacent  semiconductor  material.  Neglecting the time  con- 
stant associated  with  increasing and decreasing this large 
quantity of  excess minority carriers (thereby  implying a 
low  frequency), minority carrier storage appears as a 
capacitance (sometimes  called a diffusion  capacitance) 
when  viewed at the external  terminals of the device. 

Throughout the present  investigation,  minority carrier 
storage capacitance was  derived  from  calculations of  excess 
minority carriers within the space-charge  layer of a for- 
ward-biased  linearly-graded  junction.  These calculations 
were performed for a wide range of biasing  voltage, and 
thereafter graphic techniques  were used to determine the 
rate at which this quantity of  excess carriers changes  with 
applied  voltage; this derivative  represents the carrier 
storage capacitance. 

Figure 16 illustrates the  total calculated  low-frequency 
electrical capacitance exhibited by the space-charge  region 
within a linearly-graded junction. This total is  composed 
of both the capacitance arising from an energy storage 
within the electrostatic field (space-charge  capacitance) 
and the minority carrier storage within this same  region 
(sometimes  called the neutral capacitance or the diffusion 
capacitance). 

Figure 16 shows two basically  different  regions in the 
capacitance characteristic of a forward-biased junction : 
a low-voltage  region that exhibits a small  increase of 
capacitance  with  voltage, and a high-voltage  region 
(biasing  voltage  nearly equal the equilitrium junction 
diffusion  voltage)  where the capacitance  increases  rapidly 
with  voltage. The low-voltage  capacitance  is  established by 
electrostatic  energy storage within the space-charge  layer, 
and the magnitude of this capacitance is determined by 
Fig. 15 in conjunction with  Eq. (13). At large  values of 
biasing  voltage, an increased  capacitance arises from 
minority carrier storage. It is emphasized that any  minority 
carrier storage process  is a function of both frequency and 
electric current; Fig. 16 represents the low-frequency and 
zero-current  capacitance.  Similar  calculations  have  been 
conducted for junctions at large electric current densities 
(up to lo4 amps/cmz).  Such  calculations  show that Fig. 16 
illustrates the maximum  minority carrier storage capaci- 
tance for a p-n junction space-charge layer; a large electric 
current density can reduce this capacitance  component to 
one-half its zero-current  magnitude. 
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For purposes of comparison,  Fig. 17 illustrates the 
theoretical  electrical  capacitance of a forward-biased, 
linearly-graded p-n junction, as derived from the analysis 
of Morgan and Smits, Sah, and from Fig. 16. This calcu- 
lation is based upon an assumed  impurity atom gradient 
of loz4 atoms/cm4, and an electric current of zero. 

Figure 17 shows that  at small  values of forward biasing 
voltage, substantial agreement  exists  between  these three 
computations of electrical  capacitance. In contrast, at 
large values of forward biasing  voltage (0.6 < V,) un- 
satisfactory  agreement is obtained; yet this particular 
range of forward  biasing  voltage  is the one most  frequently 
used in semiconductor device operation. Because  electrical 
capacitance  is an important property of p-n junctions, the 
disagreement illustrated in Fig. 17 has been  investigated. 
Resulting  from this investigation  is an understanding of 
the source of disagreement, and some  inherent limitations 
upon the applicability of each mathematical computation 
of p-n junction electrical  capacitance. 

As in their computation of space-charge  capacitance, 
the stored charge  capacitance (neutral capacitance)  calcu- 
lations of Morgan and Smits  were  conducted  upon an 
analytical  model of unusually large physical  dimensions. 
For example, at  an applied junction biasing  voltage of 
0.6 volts  in  Fig. 17, Morgan and Smits  calculated the stored 
minority carriers within a region of 0.37 microns on each 
side of the space-charge  layer (the space-charge  layer  width 
is 0.032 microns).  Similarly, at  an applied  biasing  voltage 
of 0.86 volts this region  increased to 59 microns on each 
side of the structure (the space-charge  layer  width  is 0.036 
microns). If, instead, the Morgan and Smits computation 
is restricted to the space-charge  layer of this junction 
(Fig. 13), agreement  is obtained with the computations 
illustrated  in  Fig. 16. 

Sah's computation of junction capacitance is derived 
from a mathematical  model  in substantial agreement  with 
the model  used for Fig. 16. The principal  difference  be- 
tween  Sah's calculation and Fig. 16 lies in the approx- 
imation methods  used.  Unless this boundary problem  is 
solved in a rigorous fashion,  small errors arising  from an 
approximate solution lead to significant quantitative errors 
in a computation of the complicated  electrical  parameters 
associated  with a p-n junction. 

It is important to consider the applicability and utility 
of linearly-graded-junction  theory in the field  of  semi- 
conductor device  design. From a practical point of  view, 
few laboratory techniques  presently  exist  whereby a truly 
linearly-graded junction can be fabricated. For this reason, 
the principal  usefulness of linearly-graded-junction  theory 
arises from an assumption that this structure is a simplified 
mathematical approximation for a diffused p-n junction. 
Such an assumption appears reasonable  if the approx- 
imation is limited to the junction space-charge layer; 
throughout this region a linearly-graded impurity profile 
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Figure 17 Electrical  capacitance of a linearly-graded p-n 
junction (silicon) (ao = 10'' atomslcm') . 

is often (but not always) a satisfactory  first approximation 
for a diffused impurity atom profile. If, instead, the 
linearly-graded  model  is  applied to regions of a diffused 
junction far  removed from the space-charge  layer,  sig- 
nificant  analytical errors could  result from an unwise 
application of this simplified  model. 

The principal  difference  between  Fig. 16 and the Morgan 
and Smits  analysis  is the magnitude of minority carrier 
storage capacitance  resulting  from a given forward  biasing 
voltage.  Figure 16 represents the electrical capacitance at- 
tributable to a linearly-graded junction space-charge layer; 
only this portion of the capacitance is  assumed to be a 
reasonable approximation for the mechanisms  encountered 
in a diffused p-n junction. In contrast, the capacitance 
computations of Morgan and Smits  include minority 
carrier storage within the semiconductor  material adjacent 
to the junction space-charge  layer, and the length of this 
region is often equal to (or greater than)  the material 
thicknesses  used in device fabrication. For diffused  semi- 
conductor devices, it is proposed that minority carrier 
storage outside a p-n junction space-charge  layer is seldom 
approximated by similar storage mechanisms  within a 
linearly-graded  junction. 

Figure 16 indicates that  the design  of  linearly-graded 
junctions can be  optimized to yield a minimum  space- 
charge  layer  capacitance. At a given forward biasing  volt- 
age, a large  electrical  capacitance is obtained for devices 
containing an excessively  small  impurity atom gradient; 
this capacitance is due to excess minority carrier storage 
within the junction space-charge  layer.  Similarly, at this 269 
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same biasing voltage an  excessively large  impurity atom 
gradient  also  results in a large electrical capacitance; this 
capacitance is due  to electrostatic mechanisms within the 
space-charge layer. Between these two limiting conditions, 
a minimum space-charge layer  capacitance is encountered 
at a specific impurity atom  gradient;  the particular  gradient 
yielding this minimum capacitance is presumed to be  opti- 
mum for the particular biasing voltage under considera- 
tion. 
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