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On the Mathematical Theory of the
Linearly-Graded P-N Junction®

Abstract: This paper presents a numerical analysis of the mechanisms of operation within a linearly-graded p-n junction. Considered
in this analysis are three important modes of junction operation: equilibrium, forward bias, and reverse bias in the collector junction.
In addition, calculations of electrical space-charge layer capacitance are presented for the forward-biased linearly-graded junction. The
conclusions derived are compared, in graphical form, with the results of previous investigations of the linearly-graded junction.

Introduction

In his theory of p-n junctions in semiconductors, Shockley'
presented the first mathematical analysis applicable to
structures containing a linearly-graded impurity atom dis-
tribution. The Shockley analysis was based upon the
simplifying assumption that the space-charge layer of a
linearly-graded junction is completely depleted of mobile
charge carriers. This assumption eliminates from Poisson’s
equation the distribution terms for mobile holes and elec-
trons, and thereby reduces a difficult system of differential
equations to a single, mathematically tractable differential
equation. Despite this simplifying assumption, many
conclusions derived from the depletion layer approxi-
mation were subsequently verified by laboratory experi-
ment. For this reason, the depletion layer theory of a
linearly-graded p-n junction is an important part of the
semiconductor literature.

Shockley’s depletion layer theory contains restrictive
features rendering it inapplicable to several important
modes of junction operation. In particular, to assume that
the space-charge layer is free of mobile charge carriers is
to imply that his theoretical approximation is not appli-
cable to forward-biased p-n junctions, nor to reverse-
biased junctions containing a large electric current density
(such as the collector in a transistor). Although these
limitations of the depletion layer theory have been rec-
ognized by many workers, a rigorous analytical treatment
of the problem has not been reported. Instead, other
approaches have been used to simplify the mathematical
equations characterizing a semiconductor junction; each
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approach, however, has introduced a new set of uncer-
tainties concerning the analytical limitations arising from
the use of simplifying assumptions.

In Shockley’s treatment,’ an estimate was made con-
cerning the influence of mobile electrons and holes upon
the space-charge layer characteristics of a linearly-graded
junction. This estimate was limited to structures at thermal
and potential equilibrium. Shockley established that near
charge neutrality can be mathematically obtained within
the transition region* of a linearly-graded junction con-
taining a small impurity atom gradient. In this type of
junction, the space-charge layer modifications arising from
mobile holes and electrons were estimated by comparing
the space-charge electrical capacitance of a linearly-graded
p-n junction with the capacitance of one exhibiting near
charge neutrality.

For a linearly-graded junction, Morgan and Smits®
obtained numerical solutions of the complete Poisson’s
equation, including the charge distribution arising from
mobile holes and electrons. Although their investigation
was conducted with the aid of a computer, they eliminated
many mathematical difficulties by assuming a zero electric
current, even for a forward-biased junction. This partic-
ular treatment of the linearly-graded junction problem
has been severely criticized in the literature.? The basis of
this criticism is that by neglecting the influence of an
electric current within a forward-biased linearly-graded
junction, the Morgan and Smits analysis is inapplicable at

* Throughout this discussion, the transition point of a one-dimensional
p-n junction is defined as the location at which the predominant type of im-
purity atom changes from donor to acceptor. Similarly, the transition region of
a p-n junction represents that portion of the semiconductor material in the im-
mediate vicinity of the p-»n junction transition point.




moderate and large values of forward biasing voltage.
We show below that this criticism may not be justified over
most of the useful range of forward bias.

In a later treatment of the linearly-graded junction
problem, Sah® obtained an analytical approximation for
the solution of Poisson’s equation containing an electro-
static charge due both to ionized impurity atoms and to
mobile charge carriers (holes and electrons). The principal
difference between the analysis of Sah and the analysis of
Morgan and Smits lies in their respective methods for
solving this non-linear differential equation. Sah applied
Picard’s Algorithm,"”® obtaining only the first approxi-
mation from a recurrence relation for the solution of this
differential equation; Morgan and Smits obtained their
solution by numerical methods.

In this paper the analysis is based upon information
derived from numerical solutions of the complete set of
differential equations characterizing a linearly-graded p-n
junction. The system of equations used in this analysis
was previously outlined by Van Roosbroeck® in connection
with his investigations of the flow of electrons and holes
in semiconductor materials. By combining this large
number of equations, it can be shown that a set of three
simultaneous non-linear differential equations describes
the operation of a p-n junction. Finite difference methods
have been used to solve this set of equations, with the aid
of an electronic computer.

Although numerical techniques do not provide explicit
equations describing the physical and electrical properties
of a linearly-graded junction, such information has been
obtained in an indirect fashion. From a series of computer
calculations, parameters normally described by mathe-
matical formula are presented in a graphical form; thereby,
information derived from the present investigation is
readily available for semiconductor device design.

List of definitions

Qo Ionized impurity atom gradient

C Electrical capacitance

C(x) Ionized impurity atom distribution

D, Diffusion constant for electrons

D, Diffusion constant for holes

E Electric field

g Electric current density due to electrons

J,  Electric current density due to holes

Jr Total electric current density

K, A dimensionless variable

£,  Debye shielding distance

®.,.(x) Recombination rate for electrons

®R,(x) Recombination rate for holes

U Dimensionless electrostatic potential variable
V.  Applied junction biasing voltage

Vo  Equilibrium diffusion voltage of a p-n junction
Vr  Total p-n junction voltage (Vp + V.)

W  Electrostatic energy

n(x) Mobile electron distribution

p(x) Mobile hole distribution

q Electron charge

x A spatial variable

Xn Space-charge layer boundary in n-type material
X, Space-charge layer boundary in p-type material

y Dimensionless spatial variable
€ Permittivity of free space

K Dielectric constant

#n  D.g/kT

By  Dyg/kT

On Quasi-Fermi level for electrons
¢,  Quasi-Fermi level for holes
¥ Electrostatic potential

Analysis

In a homogeneous semiconductor, the steady-state hole
and electron distributions [p(x) and n(x)] are described by
the equations

U _ L (0 — n) + (o), (12)
1) = —qp, B2 — g px) 2 (1b)
709 = ap, B g B (10
0 = ®,(x) — é%”;ﬁﬁ, (1d)
0 = Ru(x) — é%)ﬁx) , (le)
1) = ) + 160, (19

assuming no trapping mechanisms within the material
under consideration.

Equation (1a) is Poisson’s equation, which relates the
divergence of the electric field [E(x) = — dy(x)/dx] to
the total electrostatic charge due to both mobile charge
carriers [p(x) and n(x)] and ionized impurity atoms [C(x)).
For a linearly-graded p-n junction, the net ionized impurity
atom distribution is described by the relation

Clx) = Qox, 2

where @, is the concentration gradient of these ionized
impurity atoms.

Equations (1b) and (1c) give the electric current densities
within a semiconductor (J,, J,) arising from the transport
of mobile holes and electrons. These equations are funda-
mentally the same as those of M. Smoluchowski, rewritten
for hole and electron transport.” They express the de-
pendency of each electric current component (J, and J,)
upon the concentration gradients of holes and electrons,
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the mobility of these charge carriers, and the electrostagitia

potential gradient (electric field) within a semiconductd

P
For simplicity, the hole and electron mobilities (u,, u,),

and the hole and electron diffusion constants (D,, D,),
are often assumed invariant within a particular sample of
semiconductor material. This, of course, is sometimes an
unreasonable simplification. Experiment shows that within
a given sample of semicondictor material, the mobilities
and diffusion constants of holes and electrons often
undergo large changes.®* ™ Such changes arise at large
values of electric field and at large values of impurity atom
concentration. For this reason, the present paper considers
the influence of both electric field and impurity atom
density upon the mobility and diffusion properties of holes
and electrons.

Equations (1d) and (le) are the continuity equations
for holes and electrons exhibiting an unspecified mech-
anism for recombination. To avoid introducing specific
recombination and generation mechanisms, these equa-
tions will be simplified by completely neglecting such
mechanisms from the present analysis of a linearly-graded
junction; this is equivalent to assuming an infinite lifetime
for holes and electrons. Infinite minority carrier lifetimes
may appear to introduce severe limitations upon the appli-
cability of the present analysis, but this is not the case. The
influence of carrier generation upon p-» junction operation
is adequately considered in the literature.”* Furthermore,
in the present analysis the minority carrier sink usually
provided by bulk recombination is replaced by a sink at
the semiconductor boundary; thereby, a forward-biased
junction of infinite carrier lifetime will exhibit an electric
current.

Equation (1f) states that the total electric current density
(Jr) is the algebraic sum of electric current due to both
holes (J,) and electrons (J,).

The six equations (1) can be combined into three
simultaneous non-linear differential equations in three
variables: electrostatic potential, mobile hole concen-
tration, and mobile eleciron concentration. A rigorous
mathematical solution of the p-n junction problem requires
that this set be solved. Such a solution is a difficult task;
in fact, an attempt to solve this problem by traditional
analytical means will probably end in failure. It appears
reasonable to assume that there exists no rigorous analyti-
cal solution for this system of equations, and other means
must therefore be used in a mathematical investigation
of the junction problem.

The analysis presented in this paper is the result of a
numerical solution of the mathematical equations (1).
Three one-dimensional nodal arrays, each composed of
up to five thousand spatial locations, are used to represent
the junction under consideration. Boundary conditions
for each independent variable, in addition to the impurity
atom distribution, are introduced as constraints upon the
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ree” differential
equations, relaxation techniques are applied sequentially
to the three matrix arrays; this leads to solutions for
specific p-n junction problems. Because numerous texts
are available on the relaxation solution of partial differ-
ential equations, °~*° details concerning the method are
not repeated here.

For a linearly-graded p-r junction, the literature contains
four different approximation methods for the solution of
the system of differential equations. As previously stated,
the Shockley solution is based upon an assumption that
the structure under consideration is depleted of holes and
electrons. Morgan and Smits obtained a numerical solu-
tion, although they assumed an electric current of zero;
this simplification eliminates two of the three non-linear
differential equations. Sah used the same simplification
introduced by Morgan and Smits, and thereafter obtained
an approximate analytical solution for the differential
equation characterizing a linearly-graded p-n junction.
Both of these solutions are directed toward the analysis
of a forward-biased junction. In contrast, Kirk®® investi-
gated the abrupt collector junction at large values of col-
lector current, and thereafter suggested the applicability
of this model to diffused type structures. Kirk’s study was
intended to establish the more general properties of a
collector junction, and for this reason no attempt was
made to solve the mathematical problem in a rigorous
fashion.

The Morgan and Smits solution assumed that no electric
current is present in the structure, even at large values of
forward biasing voltage. After introducing this simplifi-
cation into (1), and writing the hole and electron densities
in terms of the quasi-Fermi levels ¢, and ¢,

n = n; exp [:;q; ¥ — so,.)] , and (3a)

p = n; exp [fj—, (er — xl/):l , (3b)

one obtains

kT U _ p(x)

qrdx’ ke (42)

don _ dey _

dx  dx 0, (4b)

where

p(x) = {C(x) — 2n; exp [ZkT( — <p,,):| sinh U}
©)

and

U=y e + o) (6)




Because the quasi-Fermi levels are assumed constant
(zero electric current), the normalized p-n junction electro-
static potential (6) is given by the solution of a single
non-linear differential equation (4a). Morgan and Smits
solved this problem by step-by-step numerical methods™
using an electronic computer.

There have been two basic criticisms® of the Morgan and
Smits analysis: First, the assumption of a zero electric cur-
rent placed severe limitations upon the applicability of the
analysis and, second, the computer solution did not pro-
vide analytical equations characterizing junction operation.
Thereafter, however, Sah used the same mathematical sim-
plification (zero electric current) used by Morgan and
Smits and, after applying Picard’s Algorithm to a modified
form of Eq. (4a), obtained an approximate analytical solu-
tion for this particular boundary value problem.

In principle, there are many differential equations to
which the Picard method can be applied, although in prac-
tice one is seldom able to complete such a task. If we write
Eq. (4a) in the form

2
42U _ 4sinh U, + B, %)
dz
a guess can be introduced for U,. By solving this differ-
ential equation, a first-approximation is obtained for the
required solution. The approximate solution is next sub-
stituted for U, in (7), and this equation is again solved;
a better approximation is thereby obtained for the required
solution. In theory, after an infinite number of similar
iterations, an exact solution will be obtained for this differ-
ential equation. It is to be emphasized, however, that in
solving a differential equation by the Picard technique,
no general method exists whereby one can establish the
error resulting from a finite number of iterations.

The complicated nature of this differential equation has
prevented an extensive application of Picard’s Algorithm.
To cope with this difficulty, Sah first introduced the ex-
pression®

UO = EZ’ (8)

where £ is a constant of proportionality. This substitution
results in a linear differential equation of elementary form,
and thus a solution was readily obtained. A second itera-
tion in this process becomes difficult, if not impossible. For
this reason, the solution was limited to a first approxima-
tion for the required potential distribution. Thereafter,
two guesses were made for a magnitude of the propor-
tionality constant in Eq. (8). The first guess (Approx. 1
in Ref. 3) was assumed inferior to the second guess (Ap-
prox. 2 in Ref. 3); it can be shown that this first guess is
actually superior, and the resulting electrostatic potential
distribution formula is satisfactory for most engineering
purposes.

~ The mathematical investigations of Morgan and Smits,
and also those of Sah, introduce important questions
concerning the validity of the simplifying assumptions,
For example, there is no information concerning the rela-
tive error arising from a zero-current analysis of forward
biased linearly-graded p-n junctions. Further, the approxi-
mate analytical solution obtained by Sah, in conjunction
with questions concerning the magnitude of £ in Eq. (8),
has resulted in a situation for which it is exceedingly diffi-
cult to evaluate accurately the relative error arising from
the approximation method.

For the reverse-biased collector junction, Kirk™ assumed
that only one type of mobile charge carrier existed within
the collector junction space-charge layer. This situation
will arise in transistors containing a forward-biased
emitter junction. In addition, Kirk restricted his analysis
to transistors operating at large values of collector junction
biasing voltage. Kirk’s restriction results from an assump-
tion that mobile charge carriers maintain a terminal veloc-
ity throughout the entire collector junction space-charge
layer. With the foregoing assumptions, solving Poisson’s
equation (1a) is a straightforward problem and is com-
parable to Shockley’s space-charge analysis of linearly-
graded p-n junctions. Because there is no experimental
evidence indicating that holes exhibit a terminal velocity,
p-n-p transistor operation is excluded from Kirk’s analysis.
Furthermore, it will be shown that electrons can be as-
sumed to be at their terminal velocity only at substantial
values of collector junction reverse biasing voltage.

The equilibrium junction

The initial studies of linearly-graded junction theory were
directed toward structures at thermal equilibrium. From
Boltzmann statistics, Shockley’ obtained mathematical
equations relating the mobile charge carrier densities (holes
and electrons) to the electrostatic potential. Thereafter,
these Boltzmann equations were combined with Poisson’s
equation for a linearly-graded p-n junction. Resulting
from this combination is a non-linear differential equation
that mathematically characterizes the operation of a
linearly-graded p-n junction at thermal and potential
equilibrium,

%g - 7; (sinh U — 3), )
where

U = qy/kT, (10a)
y = @x/2n;, (10b)
K, = £,80/2n;, and (10¢)
&5 = rekT/2¢°n;. (10d)
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Figure 1 Equilibrium space-charge layer distribution in a
linearly-graded silicon p-n junction. (Note change of scale
in abscissa.)

Recognizing the inherent difficulties associated with
solving Eq. (9), Shockley obtained two limiting approxi-
mations for the solution of this equation. He first assumed
that the dimensionless parameter K, is very small, thereby
implying a condition of near charge neutrality throughout
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the entire semiconductor structure; charge neutrality re-
duces Poisson’s equation (9) to Laplace’s equation. This
assumption further implies that the hole and electron
densities are everywhere sufficient to neutralize the electro-
static charge arising from both ionized impurity atoms and
the thermally-generated mobile charge carriers.

Similarly, Shockley investigated other solutions of Eq.
(9), this time assuming that the dimensionless parameter K,
is indefinitely large. In this situation, Eq. (9) does not re-
duce to Laplace’s equation; instead, this equation retains
a large electrostatic charge. From physical arguments,
it is readily shown the electrostatic charge in Poisson’s
equation (9) arises from hole and electron depletion
throughout the immediate vicinity of a junction transition
point. In this form Eq. (9) is a second-order nonlinear
differential equation having no exact analytical solution;
approximation methods are therefore necessary. From
approximations previously used by Schottky,” Schottky
and Spenke,”® and Mott,** Shockley eliminated from Eq.
(9) the influence of mobile holes and electrons (by removing
the term sinh U), thereby obtaining a mathematically
tractable boundary value problem.

A more general formulation of the linearly-graded
junction problem has now established that the dimension-
less parameter K, in Eq. (10c) is dependent upon the
applied junction biasing voltage.” For this reason, it is
particularly important to consider the physical meaning
of this dimensionless parameter, and the inherent char-
acteristics of linearly-graded p-n junctions at intermediate
values of X,.

Before discussing the equilibrium p-n junction, we
shall first consider a basic property of semiconductor
material: its tendency to maintain charge neutrality. If
throughout a region of semiconductor material the number
of holes (electrons) deviates appreciably from the corre-
sponding number of ionized acceptor (donor) atoms, the
resulting electrostatic forces will yield a potential energy
per hole (electron) that is enormously greater than the
mean thermal energy. In this situation, unless special
mechanisms are present to support these large differences
of potential, the mobile charge carriers will rapidly move
in such a way as to restore charge neutrality.

The quantity £, defined by Eq. (10d), is called the
Debye length (or the Debye shielding distance), since
Debye®™® has shown that the electric field of a point charge
in an electrolyte varies as (1/r) exp(—r/£,). From his anal-
ysis, Debye established that at distances greater than £p
(when £; < r), the electric field arising from a point charge
is shielded by mobile charges of opposite sign. Whereas the
direct application of Debye’s equations to semiconductor
material is open to question, Debye shielding is certainly
a mechanism encountered in linearly-graded junctions.

From Egs. (10c) and (10d), K, is the dimensionless
ratio of the Debye shielding distance in a semiconductor
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Figure 2 Space-charge layer characteristics of a linearly-
graded p-n junction at equilibrium (silicon) (Ko, = 8 X 108;
Qo = 1022).

(£p), and a characteristic length of the impurity atom
concentration gradient (2n;/®,). When K, is small (small
impurity atom gradient), the Debye theory shows that
mobile charge carriers (holes and electrons) tend to main-
tain charge neutrality throughout the semiconductor
structure. In contrast, when K, is large (large impurity
atom gradient) the electric field is sufficient to deplete the
semiconductor junction of mobile charge carriers, and
thereby establish a well defined space-charge region.

Figure 1 illustrates the calculated equilibrium space-
charge distribution for three different linearly-graded p-n
junctions at room temperature: @, = 10'%, 10'%, and 10,
corresponding to K, = 8 X 107", 8 X 10°, and 8 X 10°,
respectively. This series of calculations was performed by
numerical methods, using the differential equations (1).

Electrons

Number/cm3

1
100 80 60

Microns

Figure 3 Space-charge layer characteristics of a linearly-
graded p-n junction at equilibrium (silicon) (K, = 8 X 107
Qo = 10%).

From Fig. 1, the magnitude of K, (as established by the
impurity atom gradient) determines the degree of impurity
ion neutralization occuring within a p-n junction space-
charge region. At large values of impurity atom gradient
(K, large), the total electrostatic charge density is approxi-
mately equal to the density of ionized impurity atoms
C(x). In contrast, at small values of impurity atom-
gradient (K, small), the electrostatic charge density is every-
where smaller than the density of ionized impurity atoms.
Although Fig. 1 provides little insight into the mechanism
by which charge neutralization arises in a linearly-graded
p-n junction, this illustration is qualitatively consistent
with the Debye theory for electrostatic shielding.

Further insight into the mechanisms of charge neutral-
ization can be obtained from Figs. 2 and 3. At large values
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Figure 4 Calculated space-charge distribution within a
linearly-graded p-n junction.

of impurity atom gradient (@, = 10 atoms/cm*) the
space-charge layer is substantially free of mobile charge
carriers (holes and electrons), and therefore the entire
electrostatic charge arises from ionized impurity atoms
(Fig. 2). In contrast, at small values of impurity atom
gradient (Fig. 3) the space-charge electric field is insuffi-
cient to cause hole and electron depletion. Clearly, from
the Debye theory, structures containing a small impurity
atom gradient (K, small) also contain large quantities
of majority carriers within each side of the space-charge
layer (electrons in the n-type region and holes in the p-type
region), and these mobile charge carriers partially neutral-
ize the electrostatic charge arising from ionized impurity
atoms.

In this discussion of Shockley’s analysis, we next direct
our attention to equilibrium junctions containing a well
defined space-charge region (K, large). As previously
stated, Shockley assumed this type of structure was com-
pletely depleted of mobile holes and electrons, and thereby
reduced Eq. (9) to a tractable differential equation. This
simplifying assumption has one obvious difficulty: by
eliminating the mobile charge carrier terms from Poisson’s
equation, Shockley also removed from this equation any
mechanism by which the space-charge layer could ter-
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minate upon charge-neutral semiconductor material.
For this reason, to mathematically approximate the
mechanism of space-charge layer termination Shockley
was forced to adopt an artifical set of space-charge layer
boundary conditions.

From Shockley’s simplified form of Poisson’s equation,
physical arguments can be used to show that the space-
charge electric field is maximum at the junction transition
point, and that this field decreases with distance into both
the n-type and p-type semiconductor material. At specific
locations this electric field becomes zero, and thereafter
it changes sign and increases in magnitude to infinity. At
these points of zero electric field Shockley assumed that
the space-charge layer terminates, and he mathematically
represented this boundary by an abrupt transition from
Poisson’s equation to Laplace’s equation. The result of
this simplifying assumption is a discontinuous termination
of the space-charge in both the n-type and p-type semi-
conductor material.

Figure 4 provides a comparison between several different
calculations of the equilibrium space-charge distribution
within a linearly-graded p-n junction. This illustration
shows that the depletion layer method yields only a crude
approximation. Further, Fig. 4 also shows that although
the Sah solution is an improvement over the depletion
layer concept, that solution is also an imprecise approxi-
mation. Finally, numerical calculations from the Morgan
and Smits analysis are found to be in substantial agreement
with a numerical solution of Egs. (1); their computation
of the space-charge distribution can thus be considered
accurate and free of unnecessary approximations.

Before further comparisons are made among these
theoretical methods, it is first necessary to define a location
for the termination of each type of mathematically calcu-
lated space-charge layer. In the depletion layer theory this
question offers little difficalty because Shockley’s discon-
tinuous termination provides a well-defined boundary.
In contrast, Sah assumed that charge neutrality represented
an outer boundary for a p-r junction space-charge layer.
From Fig. 4, it is clear that Sah’s calculation of the equilib-
rium space-charge width yields a magnitude slightly
greater than the value given by the depletion layer theory.
Throughout the present investigation, the space-charge
layer is assumed to be terminated at locations where the
electrostatic charge density is one-half its maximum value
on each side of the structure. In most practical situations,
this defined location for the space-charge layer boundary
is in substantial agreement with other investigations of
the linearly-graded junction problem.

From these arbitrary definitions for the space-charge
layer boundaries, Fig. 5 presents the calculated space-
charge layer width using three different methods for solving
this problem: Shockley’s depletion layer theory, Sah’s
approximation, and a numerical solution of Egs. (1).
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Figure 5 Equilibrium space-charge layer width in a linearly-
graded p-n junction.

Although these three analytical methods yield nearly the
same magnitude, it is emphasized that the space-charge
layer width is an arbitrarily defined parameter. Small
modifications in the definition for space-charge layer
termination could substantially change any (or all) of the
solutions illustrated in Fig. 5.
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Figure 6 Equilibrium diffusion voltage for a linearly-
graded p-r junction.

For a linearly-graded p-n junction, the equilibrium
diffusion voltage ¥, is also an arbitrarily defined param-
eter. This situation arises from an impurity atom gradient
within the semiconductor material outside the p-z junction
space-charge layer. At thermal equilibrium this semi-
conductor material contains sufficient electrostatic charge
to generate a small electric field. The magnitude of this
electric field is determined by the impurity atom gradient.
At thermal equilibrium, the drift component imparted to
mobile charge carriers (by this “built-in” electric field)
must have the same magnitude (but in the opposite di-
rection) as the diffusion component arising from the mobile
charge carrier gradient. For this reason, the equilibrium
diffusion voltage of a linearly-graded p-n junction will
increase with an increase in the distance over which this
voltage is determined.

In the present discussion, the equilibrium diffusion
voltage V', is defined as the total difference of potential
between specified locations on each side of the structure,
and these locations are established by the theoretical space-
charge layer width (Fig. 5). The calculated equilibrium
diffusion voltage is illustrated in Fig. 6. In this illustration,
it is shown that all three analytical methods (Shockley,
Sah, and the present analysis) are in substantial agreement.
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The linearly-graded collector junction

The transistor cut-off frequency (f,) is a widely accepted
measure of its current gain-bandwidth product (a frequency
at which the short circuit common-emitter current gain
becomes unity). Theoretically, f, should increase with an
increase of collector current (at a given collector voltage),
although some workers have shown substantial deviations
from this theory.”* " Above some critical value of collector
current f, is found to decrease with increasing collector
current. Kirk’s explanation® for this experimential obser-
vation is based upon the existence of a current-dependent
mobile carrier density within the space-charge layer of the
collector junction.**

In his investigation Kirk recognized that minority
carriers within the collector junction space-charge layer
(due to a large collector current) cannot be considered
negligible in comparison to the fixed charge density of
that region. He established that large values of collector
current result in a spatial displacemant of the collector
junction space-charge layer edge, and that this displace-
ment is in a direction tending to increase the transistor base
width. It is qualitatively shown that this increase of base
width provides a partial explanation for the experimentally
observed high current fall-off of f,.

Kirk used an abrupt p-n junction to approximate the
mechanisms encountered in a collector junction of mesa
geometry. This, of course, is a crude approximation for
the modern diffused transistor. Nevertheless his analysis
yields important contributions to the design of diffused
collector junctions. It is often observed that the electrical
characteristics of a diffused junction lie between those of
an abrupt and a linearly-graded structure.’’'*" For this
reason, Kirk’s analysis outlines an important part of the
large-current mechanisms encountered in diffused collector
junctions; additional mechanisms are established in the
present analysis of a linearly-graded junction. Future
investigations will probably show that the large-current
characteristics of an abrupt and a linearly-graded collector
junction can be combined to explain the large-current
properties of a diffused collector junction.

In the present investigation, numerical solutions of the
collector junction problem are accomplished by previously
outlined techniques. Infinite minority carrier lifetimes
(7. and 7,) are assumed in the differential equations used
to describe the operation of this semiconductor structure.
Such an assumption eliminates from the analytical model
any electric current due to either recombination or genera-
tion within the space-charge layer and the adjacent semi-
conductor material. In addition, it is also assumed that the
entire collector current arises from a single type of charge
carrier (either holes or electrons), as would be encountered
at the collector junction of a transistor containing a
forward-biased emitter junction.
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Important considerations in the analysis of a collector
junction are the mechanisms influencing electron and hole
mobility. Semiconductor materials containing a large im-
purity atom density are known to exhibit reduced hole
and electron mobilities.*” Further, elementary aspects of
lattice scattering theory show that the average drift velo-
city of conduction band electrons and valence band holes
is proportional to an applied electric field, but this propor-
tionality is not always encountered in a practical semi-
conductor device.®* ™ For example, at large values of
electric field the electron velocity appears nearly field-
independent, and in this environment it is frequently
suggested that electrons exhibit a terminal velocity.
Qualitative theoretical investigations of this subject have
led to a satisfactory phenomenological explanation for
the large-field drift characteristics of holes and electrons,”
although we are presently unable to quantitatively es-
tablish carrier velocities by other than experimental means.

Throughout the present analysis, published values are
used for the small-field drift mobilities of holes and elec-
trons.'* At each node within a relaxation matrix, the mo-
bilities of holes and electrons are adjusted in accordance
with the impurity atom density characterizing the device
under consideration.

The large-field electrical properties of silicon and
germanium have not been established in an unqualified
fashion. In 1951, Shockley*’ conducted theoretical investi-
gations on this topic, as applied to germanium. He estab-
lished that a large electric field could produce electron
temperatures up to 4000°K when, in fact, the material
retained a lattice temperature of 300°K. This increased
electron temperature produces an increased energy loss
to acoustical modes of lattice vibration; thereby, the elec-
tron velocity increases as the square root of the electric
field. A further increase of electron temperature produces
a transfer of electron energy to optical modes of lattice
vibration. Theory predicts that this additional mechanism
results in an electron velocity that is constant and inde-
pendent of the electric field.

In conjunction with this theoretical study, Ryder and
Shockley®® experimentally verified that the large-field drift
velocity of electrons in germanium is proportional to the
square root of the electric field. They also established that
a very large electric field produces a terminal electron
velocity. Furthermore, in a later study of this question
Ryder® established that holes and electrons exhibit a
similar field-dependent drift mobility, and that this phe-
nomenon could be observed in both silicon and german-
ium. Although a field-dependent velocity was obtained for
both holes and electrons in germanium, only electron con-
duction in silicon was found to exhibit a terminal velocity.
Ryder believed that holes in silicon could be made to
exhibit a terminal velocity, if these holes were subjected
to a sufficiently large electric field.




At a later time, Gunn'® conducted similar investigations
on the large-field electrical properties of n-type germanium.
Although his experiments place doubt upon some details
arising from Ryder’s experiments, general agreement was
obtained concerning the large field characteristics of
electrons in germanium. Thereafter, Prior conducted
similar measurements upon silicon and germanium
throughout a wide range of material resistivity and electric
field. Prior’s investigation showed that a terminal carrier
velocity is a unique characteristic of n-type germanium,
and neither p-type germanium nor z-type or p-type silicon
exhibit this phenomenon.

Granted that the foregoing presents a rather incon-
clusive picture concerning large-field characteristics of
mobile charge carriers in silicon and germanium, the
assumption of a terminal carrier velocity has nevertheless
become traditional in mathematical investigations of
collector junction operation.”®***'*® This assumption repre-
sents a convenient simplification, rather than an unquali-
fied physical characteristic. Further experimental work
appears necessary before positive statements can be made
concerning the influence of a large electric field upon
carrier mobility.

For purposes of consistency, the present analysis is
based upon the published experimental results of Ryder.®
From this information, approximate equations have been
developed to describe the relation between hole or electron
velocities and an associated electric field. These equations
are used to generate a correction factor for the drift mo-
bility of holes and electrons in all calculations pertaining
to semiconductor devices containing a sufficiently large
electric field.

In an r-p-n transistor, collector junction space-charge
displacement is one consequence of a large collector
current density. For many years it was implicitly assumed
that the electron velocity becomes infinite in a collector
junction space-charge layer; Matz’® emphasized the in-
accuracy of this assumption. The finite electron velocity
throughout this region results in a collector junction space-
charge layer (at large current densities) that contains
sufficient mobile electrons to modify the structure electri-
cally, This situation is illustrated in Fig. 7. In this illu-
stration, the applied reverse biasing voltage (10 volts) was
selected to assure that electrons attain the terminal velocity
experimentally determined by Ryder,” and that this
terminal velocity is maintained throughout a large portion
of the total space-charge layer.

In previous investigations of this subject, the mobile
charge carrier velocity was assumed constant throughout
an entire collector junction space-charge layer. Experi-
mental uncertainties concerning this assumption make
it important to consider situations where a terminal velocity
characteristic does not exist. For example, it can be shown
from Ryder’s experimental data that many n-p-n transistors
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Figure 7 Calculated space-charge layer characteristics of a
linearly-graded collector junction in a silicon n-p-n transis-
tor: (@) J, = 0; (b) J. = 3 X 10° amps/cm?% (¢) J. = 10*
amps/cm2.

require a substantial collector junction biasing voltage to
attain the terminal electron velocity. In a low-voltage
mode of collector junction operation, the electron velocity
(and hence the electron density) is everywhere dependent
upon the space-charge layer electric field. Regions con-
taining a small electric field also contain a large electron
density; this results in a non-uniform space-charge dis-
placement, and hence substantial space-charge distortion.

Figure 8 illustrates such distortion. At a reasonable
value of reverse biasing voltage the collector junction in
Fig. 7 exhibits a nearly linear translation with an increase
of collector current. In contrast, after removing the reverse
biasing voltage (Fig. 8) this same collector junction under-
goes substantial space-charge layer distortion.

At present, no experimental evidence is available to
show that holes exhibit a terminal velocity in a silicon
p-n junction. For this reason, space-charge layer distortion
may be a fundamental characteristic of the collector
junction in a p-n-p transistor. This situation is illustrated
in Fig. 9, which presents calculated space-charge layer
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Figure 8 Calculated space-charge layer characteristics of a
linearly-graded collector junction in a silicon n-p-n transis-
tor: (a) J. = 0; (b) J. = 3 X 10° amps/cm?; (¢) J. = 10*
amps/cm2.

characteristics for the junction shown in Fig. 7 (at the
same reverse biasing voltage), except that the collector
current is now assumed to arise from holes rather than
electrons. Here we encounter the same basic type of dis-
tortion as that shown in Fig. 8, although Ryder’s experi-
ments imply that this distortion (Fig. 9) will exist at all
values of collector junction biasing voltage.

These illustrative examples show that calculations of
collector junction displacement are not necessarily a simple
task, unless, of course, one can assume the existence of a
terminal carrier velocity. For this reason, Fig. 10 presents
detailed calculations establishing the linearly-graded collec-
tor junction displacement within both s-p-n and p-n-p
transistors; this calculation is applicable over the range of
collector current densities usually encountered in transistor
operation (0 < J, < 10° amps/cm®). Again, it is empha-
sized that these calculations are based upon Ryder’s
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Figure 9 Calculated space-charge layer characteristics of a
linearly-graded collector junction in a silicon p-n-p transis-
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measurements of the high field mobilities for holes and
electrons, and that these measurements have been placed in
question by other workers.

The forward-biased junction

Previous investigations of the forward-biased, linearly-
graded junction®'® were based upon a hypothetical model
assumed free of minority carrier sources or sinks. This
assumption implies that neither minority carrier generation
nor recombination takes place within the device under
consideration. In addition, this assumption implies that
all ohmic contacts exhibit a recombination velocity of
zero. A semiconductor structure of this type would have
little practical value because no steady-state electric current
could arise from the application of a forward biasing
voltage. Initally, after applying a forward biasing voltage,
a transient electric current could be observed at the p-n




junction; given sufficient time, this electric current would
decrease to zero and, thereafter, the structure would
assume a state of quasi-equilibrium.

The state of quasi-equilibrium (forward-biased yet zero
electric current) represents a situation where the mobile
charge carrier densities (holes and electrons) are modified
throughout an entire semiconductor device; the p-type
material contains an excess of mobile electrons and,
similarly, the n-type material contains an excess of holes.
The magnitude of these excess carrier densities is accurately
specified by the Boltzmann relations for a p-n junction.
Because a space-charge can result from the introduction
of excess minority carriers into otherwise charge neutral
semiconductor material, an increase is also obtained in the
density of majority carriers. Simultaneous with the in-
jection of excess minority carriers by a forward-biased
junction, a nearly equal quantity of majority carriers is
introduced by the ohmic contacts; near charge neutrality
is thereby maintained in the semiconductor material
adjacent to a forward biased p-» junction.

It has been argued that mathematical investigations
based upon a hypothetical zero-current model have
limited applicability to practical semiconductor devices.
This may (or may not) be true for most p-n junctions
(abrupt, diffused, etc.). For the linearly-graded junction,
however, inherent characteristics limit the electric current
to a value substantially smaller than encountered in other
types of structures. This limitation means that a forward-
biased linearly-graded junction undergoes only small de-
viations from thermal equilibrium; it will therefore be
shown that, for the linearly-graded junction, a zero-current
model has little influence upon the applicability of the
analysis.

First, let us consider the mathematical characteristics
of this zero-current model of a forward-biased junction.
From the Morgan and Smits analysis, Eq. (4a) can be
rewritten into the form*

N

Zy—z— = I (sinh U — y), (11)
where

¥ = 5% exp (=g Vu/24T), (122)
L3 = kekT/2q°n;, (12b)
K = K, exp (—3qV,/4kT), and (12¢)
Ko = @0:81)/2"11‘. (12d)

1t should be noted that when the applied junction voltage
V, is zero, Eq. (11) becomes identical to the equation (9)
for a linearly-graded junction at equilibrium.

* This mathematical form is attributed to J. L. Moll by S. P. Morgan and
F. M. Smits (see Ref, 3).
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Figure 10 Calculated displacement (Ax;) of a linearly-
graded collector junction in silicon.

From (9) and (11), important similarities can be shown
between a forward-biased junction and a junction at
both potential and thermal equilibrium. For an equilibrium
junction, Eq. (9) contains a characterizing dimensionless
parameter K,, the magnitude of which determines the
degree of space-charge neutralization arising from mobile
charge carriers. Similarly, for a forward-biased junction,
Eq. (11), K, is replaced by a dimensionless parameter K,
and the magnitude of this parameter is determined by both
K, and the applied junction biasing voltage in Eq. (12c).
Therefore, it is not surprising that a forward-biased
linearly-graded junction exhibits many physical properties
that were previously shown for an equilibrium junction of
small impurity atom gradient.

263

THEORY OF THE P-N JUNCTION




264

Charge density x 10~ 14/q

Charge density X 10~14/q

Charge density X 10712/q

4.0 3.0 2.0 1.0

<o
=}
g
=}
w
=}
+
=}

Microns

Figure 11 Space-charge characteristics of a forward-biased
linearly-graded p-n junction (silicon). (@, = 10" atoms/
cmt.)

For example, consider the equilibrium p-n junction
calculations shown in Fig. 1. At small values of impurity
atom gradient, this illustration shows (in conjunction with
Fig. 3) that the space-charge layer contains sufficient
majority carriers (electrons within the n-type material and
holes within the p-type material) to partially neutralize
the electrostatic charge arising from ionized impurity
atoms. In similar fashion, the forward-biased linearly-
graded junction (Fig. 11) exhibits space-charge layer
neutralization, and the degree of this neutralization is
determined by both the impurity atom gradient @, and the
forward biasing voltage V.
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Figure 12 Space-charge layer characteristics of a forward-
biased, linearly-graded p-n junction (silicon).

Figure 12 provides further evidence of similarities be-
tween an equilibrium junction containing a small impurity
atom gradient (Fig. 3) and a forward-biased junction.
Figure 12 shows that the calculated space-charge layer of a
forward-biased junction contains large quantities of holes
and electrons. These mobile charge carriers appear as
majority carriers (holes within the p-type material and
electrons within the n-type material), and for this reason
we obtain substantial neutralization of the electrostatic
charge arising from ionized impurity atoms. An important
consequence of this mechanism is that in a forward-biased
linearly-graded junction, the electrostatic charge density
is everywhere appreciably less than the ionized impurity
atom density.

Using previous definitions of the space-charge layer
boundaries, Fig. 13 presents one-half the calculated space-
charge layer width of a forward-biased, linearly-graded
junction. Illustrated in this figure are the calculations from
three different methods for solving the linearly-graded
junction problem: a traditional extension of Shockley’s
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Figure 13 Space-charge layer width within a linearly-
graded p-n junction (silicon).

theory, Sah’s approximation, and a numerical solution of
Eqgs. (1). At small values of forward biasing voltage, the
difference between these three analytical methods is negli-
gible; the space-charge layer width decreases with an
increase of forward biasing voltage. At large values of
forward biasing voltage, however, a large increase of
space-charge layer width results from a comparatively
small increase of biasing voltage. This modification in
junction operation is clearly a result of space-charge
neutralization arising from majority carriers within each
side of the structure under consideration.

As previously stated, this particular series of calculations
(Fig. 13) is based upon an analytical model in which no
steady-state electric current is permitted. To establish
the consequences of this simplification, similar calculations
were performed upon models containing hole current,
electron current, and an equal quantity of both hole cur-
rent and electron current. In these computations an in-
finite minority carrier lifetime was always maintained,
and the electric current was attained by mathematically
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Figure 14 Hole and electron distribution within the space-
charge layer of a linearly-graded p-n junction (silicon).

locating a minority carrier sink in the immediate vicinity
of the p-n junction space-charge layer. In this fashion, by
locating a sink in either the n-type or the p-type material,
an electric current would arise from either holes or elec-
trons, respectively. If, instead, sinks were located on both
sides of the junction, an electric current would arise from
both holes and electrons.

This series of calculations (non-zero electric current)
was performed for p-n junctions throughout a wide range
of impurity atom gradients ®,, throughout a large var-
iation of the forward biasing voltage, and at many different
values of electric current. The results of these calculations
can be outlined by a single statement: An exceedingly
large value of current density is required to induce only
minor deviations from the zero-current model.

An example of such a calculation is illustrated in Fig. 14.
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In this figure, it can be observed that an electron current
density of 5 X 10° amps/cm2 results in a factor-of-10
(approx.) decrease in the electron (minority carrier) density
at the p-type space-charge layer edge, and a change of the
same absolute magnitude in the hole density (majority
carrier) at this location.

Previous discussions have established that majority (not
minority) carriers have the greater influence upon the
space-charge distribution within a forward-biased linearly-
graded p-n junction. Figure 14 also illustrates a mechanism
encountered in all forward-biased junction calculations:
the introduction of an electric current has only a minor
influence upon the majority carrier distribution in both
p-type and n-type material. For this reason, it is concluded
that the zero-current model of a forward-biased linearly-
graded junction provides an adequate characterization of
the space-charge distribution at large values of electric
current. Although this approximation can introduce error
in the calculated minority carrier density (up to a factor of
10 at the space-charge layer edge), the influence of this
error upon most of electrical properties of the structure
is very small.

Space-charge layer capacitance

The depletion layer concept of p-n junction operation is
based upon an assumption that the electrostatic charge
density is everywhere equal to the density of ionized im-
purity atoms; therefore the space-charge region is com-
pletely depleted of mobile holes and electrons. In this
structure the mechanisms contributing to electrical capac-
itance are similar to the mechanisms encountered within
a parallel plate capacitor. From classical electrostatics,*®**”
the electrical capacitance is given by

_ L dW)
¢= Vr <dVT ’ (13)

where V7 is the total difference of electrostatic potential
across the region under consideration, and W is the electro-
static energy

- f E(x) dx. (14)

In Eq. (14), the parameter E(x) is the electric field distri-
bution, and (x,, x,) are defined boundaries for the space-
charge region.

For a reverse-biased linearly-graded junction, this class-
ical equation for electrical capacitance is in substantial
agreement with the depletion layer theory. Such agreement
implies an essential mechanism contributing to the space-
charge layer electrical capacitance during this mode of
junction operation: an increase in applied biasing voltage
results in an increase in electrostatic energy. Despite the
relatively crude depletion layer approximation for a p-n
junction space-charge region (Fig. 4), this approximation
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Figure 15 Calculated electrostatic energy in the space-charge
layer of a linearly-graded junction (silicon).

is nevertheless adequate for electrical capacitance calcu-
lations. Furthermore, the depletion layer theory provides
a degree of mathematical simplicity not obtainable in more
rigorous computations of p-n junction capacitance.

Morgan and Smits® have established that electrostatic
energy storage is important also in the operation of a for-
ward-biased linearly-graded p-n junction. Through a ma-
nipulation of the integrated hole density equation for this
semiconductor device, Morgan and Smits have shown two
mechanisms contributing to the electrical capacitance:
a storage of electrostatic energy (space-charge capacitance),
and a storage of excess minority carriers (neutral capaci-
tance),

c

Il

17, (x) dx

I

2 -2 * () dx — de o(%) dx, (15)
where £ is a defined mathematical boundary of the struc-
ture. From this analysis, electrostatic energy storage
arises from the same mechanism encountered in a reverse-
biased p-n junction: a change of applied biasing voltage
alters the electrostatic charge resulting from ionized donor
and acceptor atoms. In contrast, Morgan and Smits
classified excess minority carrier storage as a charge
neutral process because the electrostatic charge arising
from minority carriers is almost completely neutralized by
excess majority carriers®® (conductivity modulation).




Figure 15 illustrates the computed electrostatic energy
W within the space-charge layer of a linearly-graded
junction. Because this calculation was for junctions of
arbitrary impurity atom gradient and applied biasing volt-
age, the parameters in Fig. 15 are given in a generalized
form. If Fig. 15 is applied to a practical linearly-graded p-n
junction (for example, to a junction containing an impurity
atom gradient &, of 10*), the applied biasing voltage ¥,
ranges from about 0.4 volts in the reverse (low current)
direction, to a forward biasing voltage nearly equal to the
equilibrium junction diffusion voltage.

The calculations illustrated in Fig. 15 were conducted
with an assumed electric current of zero, even at large
values of forward biasing voltage. To determine the con-
sequences of this simplification, numerous values of electro-
static energy were calculated at current densities up to
nearly 10* amps/cm’; at no time did a significant change
arise from large values of electric current density. This
observation is consistent with other calculations pertaining
to the influence of an electric current upon the junction
space~charge layer. The electrostatic charge distribution
in a forward-biased junction is determined by the density
of majority carriers within the space-charge layer, and
these majority carriers are little influenced by the presence
of an electric current.

From Fig. 15, an extension of the depletion layer approx-
imation provides a satisfactory method for calculating the
space-charge layer electrostatic energy at moderate values
of forward biasing voltage. In contrast, at large values of
forward biasing voltage this depletion layer concept is not
applicable; the space-charge layer becomes densely popu-
lated with mobile charge carriers, and these carriers have
a significant influence upon the total electrostatic energy.
The biasing voltage at which this transition takes place
depends upon the junction impurity atom gradient, and
for this reason a simple, generally applicable rule cannot
be stated. Instead, a “rule-of-thumb’’ important to device
engineering is stated: at operating levels yielding a signif-
icant electric current, the space-charge layer can be
assumed to contain a large quantity of mobile charge
carriers.

At small values of forward biasing voltage, the electro-
static energy within a linearly-graded p-» junction can be
approximated by the empirical formula

W= a V3, (16)

where V', is the total junction voltage (both diffusion and
applied) and «, is a constant of proportionality.

At large values of forward biasing voltage, majority
carriers within the junction space-charge layer result in
an electrostatic energy approximated by the empirical
formula

W = a,Vy?, an

where a5, is a constant of proportionality. Although the
two approximation equations (16) and (17) exhibit a
discontinuous transition between the large and small bias
modes of junction operation, detailed calculations of this
region (Fig. 15) show that a smooth transition actually
exists.

From the approximation of (16) and (17}, in conjunction
with (13), the capacitance of this semiconductor structure
is given by

C~p V", (18)

at small values of forward biasing voltage. Further, at
large values of forward biasing voltage this same space-
charge capacitance is

C ~ B, V¥*, (19)

From these approximation equations, at small values of
forward biasing voltage the space-charge capacitance of
this junction increases (with an increase of voltage) until
the structure becomes dominated by mobile charge
carriers; a further increase of forward biasing voltage
results in a decrease of space-charge capacitance.

From these electrostatic energy calculations (Fig. 15)
a parabolic approximation equation was used to obtain a
smooth transition between the two modes of junction
operation: large and small values of forward biasing volt-
age. Thereafter this approximation equation, in con-
junction with (13), was used to establish the space-charge
layer capacitance arising from electrostatic energy storage.

A direct comparison has been made between the elec-
trical capacitance component obtained from these electro-
static energy calculations (Fig. 15) and the space-charge
capacitance calculations of Morgan and Smits. Substantial
agreement is obtained at small values of forward biasing
voltage (throughout the region where negligible charge
neutralization arises from majority carriers within the
junction space-charge layer). At large values of forward
biasing voltage Fig. 15 yields an electrical capacitance of
approximately one-half the value determined by Morgan
and Smits. It has been established that the principal
differences between these two calculations are the assumed
mathematical boundaries of the problem.

In the Morgan and Smits calculation, mathematical
boundaries are located on each side of the p-n junction
space-charge region, and the separation between these
boundaries is assumed sufficient to maintain a difference
of potential of 20 kT/g (=0.5 volts). Boundaries of this
type are used by Morgan and Smits in all computations
of junction capacitance, even for devices operating at
large values of forward biasing voltage. A consequence of
this assumption is easily seen by its application to a
forward-biased junction. For example, consider a linearly-
graded junction containing an impurity atom gradient &,
of 10** atoms/cm.* An external forward biasing voltage of
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Figure 16 Space-charge layer capacitance of a linearly-
graded p-n junction (silicon). (@, = impurity atom gradient
in atoms/cm®.)

0.885 volts would locate the mathematical boundaries at
approximately 125 microns on each side of the junction,
while the total space-charge layer width is only 0.04
microns.

From this example it is apparent that the Morgan and
Smits calculation of space-charge capacitance includes
substantial semiconductor material outside the junction
space-charge layer. If this extra semiconductor material is
charge neutral or if, instead, this material contains a
space-charge that is totally independent of the junction
biasing voltage, the boundaries used by Morgan and Smits
have no influence upon the calculated capacitance. Neither
requirement is satisfied in a calculation of space-charge
capacitance for a forward-biased junction. Minority
carrier injection, in association with conductivity mod-
ulation, yields a space-charge density that is small when
compared with the density of excess minority carriers,
yet this space-charge is sufficient to modify the theoretical
space-charge capacitance at large values of forward biasing
voltage. In contrast, the capacitance determined from Fig.
15 in conjunction with Eq. (13) results only from space-

charge layer electrostatic energy, and not from the electro-
static energy of minority carrier storage; the magnitude
of this capacitance is therefore smaller than the value
calculated by Morgan and Smits.

In addition to space-charge neutralization, minority
carrier storage contributes significantly to the electrical
capacitance of a forward-biased junction. Detailed calcu-
lations of this mechanism show that a forward biased
linearly-graded junction stores excess minority carriers
within both the p-n junction space-charge layer and the
adjacent semiconductor material. Neglecting the time con-
stant associated with increasing and decreasing this large
quantity of excess minority carriers (thereby implying a
low frequency), minority carrier storage appears as a
capacitance (sometimes called a diffusion capacitance)
when viewed at the external terminals of the device.

Throughout the present investigation, minority carrier
storage capacitance was derived from calculations of excess
minority carriers within the space-charge layer of a for-
ward-biased linearly-graded junction. These calculations
were performed for a wide range of biasing voltage, and
thereafter graphic techniques were used to determine the
rate at which this quantity of excess cartiers changes with
applied voltage; this derivative represents the carrier
storage capacitance.

Figure 16 illustrates the total calculated low-frequency
electrical capacitance exhibited by the space-charge region
within a linearly-graded junction. This total is composed
of both the capacitance arising from an energy storage
within the electrostatic field (space-charge capacitance)
and the minority carrier storage within this same region
(sometimes called the neutral capacitance or the diffusion
capacitance).

Figure 16 shows two basically different regions in the
capacitance characteristic of a forward-biased junction:
a low-voltage region that exhibits a small increase of
capacitance with voltage, and a high-voltage region
(biasing voltage nearly equal the equilitrium junction
diffusion voltage) where the capacitance increases rapidly
with voltage. The low-voltage capacitance is established by
electrostatic energy storage within the space-charge layer,
and the magnitude of this capacitance is determined by
Fig. 15 in conjunction with Eq. (13). At large values of
biasing voltage, an increased capacitance arises from
minority carrier storage. It is emphasized that any minority
carrier storage process is a function of both frequency and
electric current; Fig. 16 represents the low-frequency and
zero-current capacitance. Similar calculations have been
conducted for junctions at large electric current densities
(up to 10* amps/cm®). Such calculations show that Fig. 16
illustrates the maximum minority carrier storage capaci-
tance for a p-n junction space-charge layer; a large electric
current density can reduce this capacitance component to
one-half its zero-current magnitude.



For purposes of comparison, Fig. 17 illustrates the
theoretical electrical capacitance of a forward-biased,
linearly-graded p-» junction, as derived from the analysis
of Morgan and Smits, Sah, and from Fig. 16, This calcu-
lation is based upon an assumed impurity atom gradient
of 10** atoms/cm®, and an electric current of zero.

Figure 17 shows that at small values of forward biasing
voltage, substantial agreement exists between these three
computations of electrical capacitance. In contrast, at
large values of forward biasing voltage (0.6 < V,) un-
satisfactory agreement is obtained; yet this particular
range of forward biasing voltage is the one most frequently
used in semiconductor device operation. Because electrical
capacitance is an important property of p-n junctions, the
disagreement illustrated in Fig. 17 has been investigated.
Resulting from this investigation is an understanding of
the source of disagreement, and some inherent limitations
upon the applicability of each mathematical computation
of p-n junction electrical capacitance.

As in their computation of space-charge capacitance,
the stored charge capacitance (neutral capacitance) calcu-
lations of Morgan and Smits were conducted upon an
analytical model of unusually large physical dimensions.
For example, at an applied junction biasing voltage of
0.6 volts in Fig. 17, Morgan and Smits calculated the stored
minority carriers within a region of 0.37 microns on each
side of the space-charge layer (the space-charge layer width
is 0.032 microns). Similarly, at an applied biasing voltage
of 0.86 volts this region increased to 59 microns on each
side of the structure (the space-charge layer width is 0.036
microns). If, instead, the Morgan and Smits computation
is restricted to the space-charge layer of this junction
(Fig. 13), agreement is obtained with the computations
illustrated in Fig. 16.

Sah’s computation of junction capacitance is derived
from a mathematical model in substantial agreement with
the model used for Fig. 16, The principal difference be-
tween Sah’s calculation and Fig. 16 lies in the approx-
imation methods used. Unless this boundary problem is
solved in a rigorous fashion, small errors arising from an
approximate solution lead to significant quantitative errors
in a computation of the complicated electrical parameters
associated with a p-» junction.

It is important to consider the applicability and utility
of linearly-graded-junction theory in the field of semi-
conductor device design. From a practical point of view,
few laboratory techniques presently exist whereby a truly
linearly-graded junction can be fabricated. For this reason,
the principal usefulness of linearly-graded-junction theory
arises from an assumption that this structure is a simplified

mathematical approximation for a diffused p-n junction.
Such an assumption appears reasonable if the approx-
imation is limited to the junction space-charge layer;
throughout this region a linearly-graded impurity profile
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Figure 17 Electrical capacitance of a linearly-graded p-n
junction (silicon) (@, = 10** atoms/cm*).

is often (but not always) a satisfactory first approximation
for a diffused impurity atom profile. If, instead, the
linearly-graded model is applied to regions of a diffused
junction far removed from the space-charge layer, sig-
nificant analytical errors could result from an unwise
application of this simplified model.

The principal difference between Fig. 16 and the Morgan
and Smits analysis is the magnitude of minority carrier
storage capacitance resulting from a given forward biasing
voltage. Figure 16 represents the electrical capacitance at-
tributable to a linearly-graded junction space-charge layer;
only this portion of the capacitance is assumed to be a
reasonable approximation for the mechanisms encountered
in a diffused p-n junction. In contrast, the capacitance
computations of Morgan and Smits include minority
carrier storage within the semiconductor material adjacent
to the junction space-charge layer, and the length of this
region is often equal to (or greater than) the material
thicknesses used in device fabrication. For diffused semi-
conductor devices, it is proposed that minority carrier
storage outside a p-n junction space-charge layer is seldom
approximated by similar storage mechanisms within a
linearly-graded junction.

Figure 16 indicates that the design of linearly-graded
junctions can be optimized to yield a minimum space-
charge layer capacitance. At a given forward biasing volt-
age, a large electrical capacitance is obtained for devices
containing an excessively small impurity atom gradient;
this capacitance is due to excess minority carrier storage
within the junction space-charge layer. Similarly, at this
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same biasing voltage an excessively large impurity atom
gradient also results in a large electrical capacitance; this
capacitance is due to electrostatic mechanisms within the
space-charge layer. Between these two limiting conditions,
a minimum space-charge layer capacitance is encountered
at a specific impurity atom gradient; the particular gradient
yielding this minimum capacitance is presumed to be opti-
mum for the particular biasing voltage under considera-
tion.
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