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Elliptic Equations’ 

Abstract: A brief  review  is  given  of  the  literature  on  numerical  methods  for  elliptic  problems  as  related to the  ideas  introduced  by  Cour- 
ant,  Friedrichs and Lewy  in  the  fundamental  paper  published  in Math. Ann. 100, 32 (1928). The  discussion  shows  how  the finite- 
difference  methods  have  subsequently been extended  and  applied  to  higher  order  elliptic  problems  and  how  the  recent  literature  has 
reported  methods  for  solving  large  algebraic  systems.  In  addition,  there  is a discussion of the  relation  between  the  Dirichlet  problem  and 
the  problem  of the random walk. 

Introduction 

The fundamental paper of Courant, Friedrichs, and 
Lewy6** (which  we denote by C-F-L)  contained an ex- 
tensive and thorough discussion  of  finite-difference  meth- 
ods for elliptic  problems.  While the actual results of this 
remarkable  paper are of value in themselves, the ideas 
introduced and developed there have  been fundamental 
to the field  ever  since. For example, the finite-difference 
equations are obtained from the variational problem 
(Dirichlet’s  principle)  related to the boundary value prob- 
lem. Moreover,  they anticipated Sobelev’s  lemma”  by 
proving a finite-difference variant for two  dimensions.$ 

In addition, the connection between the Dirichlet prob- 
lem and the problem of the random walkz4 is discussed. 

Boundary-value  problems 

One  of the major  problems  discussed is the Dirichlet 
problem for Laplace’s equation for a bounded plane 
region  with a smooth boundary. That is, 

The C-F-L paper  proceeds as follows. The finite-dif- 
ference analog of Eq.  (1)  is  set  down and its relationship 

to the minimum  problem  is  discussed. The discrete Green’s 
identities show that there exists a unique solution of this 
algebraic  problem.  Using the basic lemma on the interior 
equicontinuity of the solutions of this  problem (the dis- 
crete Sobelev’s  lemma) and the Ascoli-Arzela  compactness 
theorem, one obtains a sequence Uh,(x, y )  which con- 
verges (as h, + 0) to a harmonic function u(x,  y). The 
convergence  is  uniform  on  every  compact  subdomain. 
Finally, 

ss,. [. - f]% dx  dy 3 0 as r + 0 ,  ( 3) r 

where S ,  is a “boundary strip” of width r .  Moreover, this 
uniquely  characterizes the solution of Eq.  (1).  Therefore 
one  can  dispense  with the selection of subsequences and 
the family  of  solutions { Uh(x, y ) )  converges to u(x, y )  
uniformly on every compact  subdomain.  This  argument 
is then extended to the first  boundary-value  problem for 
the biharmonic equation. 

In his Gottingen dissertation W.  v. Koppenfel~’~ ex- 
tended  these  results to the general  second-order  elliptic 
equation with “smooth” coefficients. 

In 1941 I. G. PetrowskiiZo  modified the basic C-F-L 
approach to the Dirichlet  problem. In particular, he used 
the notion of a “barrier” function (see Ref. 7, pp. 306-312) 
to improve the treatment “near” the boundary. For ex- 
ample: if, at every point P E r there is a circle S such 
that S n G = { P}, then the convergence of Uh(x, y )  to 
u(x, y )  is uniform on G. Moreover,  this approach allows 
one to dispense  with the requirement of (2). 
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form-was  well  known  in Gottingen (see, e&, K. 0. Friedrichs’  dissertation, difference equations. M ~ ~ ~ ~ ~ ~ ~ ,  if u(~, ,,) E c4(@,, the 
Math. Ann., 1926). Already in 1912 Haar  had  observed  that  the Rayleigh-Ritz 
procedure  converges  in  the  maximum n o m  for the  plate  equation because Gerschgor- treatment gives an estimate of the ‘‘rate of 
functions of two  variables  can  be  bounded  by  the L2 norm of their  second 
partial  derivatives. convergence.” 

In 1930 S. Gerschgorin”  gave another treatment of the 
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In 1940 Sobelev  himselfz3  gave  a  general  finite-difference 
analog of the Sobelev  lemma. 
In 1953 L.  Bers’ used the Gerschgorin approach for 

“mildly nonlinear” elliptic  problems. In the same  year 
J. L.  Walsh and D. M. studied the Dirichlet 
problem in a rectangle-the  so-called  “model”  problem- 
and showed that the convergence of Uh(x, y )  to U(x, y )  
can be arbitrarily slow. 

In a  recent  series of papers (see Refs. 3-5) J. Bramble 
and B. Hubbard have  extended, for sufficiently smooth 
solutions U(x, y), the Gerschgorin treatment of the rate of 
convergence. 

More recently  this author and P.  Jamet14  have  applied 
the basic  C-F-L approach together  with the “barrier” 
idea to second-order  elliptic operators whose  coefficients 
become  singular  on  a portion of the boundary. 

W. Littman17 (1958), V. K. SaulevZ1 and V. T h ~ m C e ~ ~  
have studied higher order elliptic  problems  making  use of 
many  of the C-F-L ideas  (in particular, the Sobelev  in- 
equalities). 

The algebraic problem 

While C-F-L established that the system of finite-dif- 
ference equations possess a unique solution and mentions 
some  early  work on relaxation  methods, it contains no 
results on methods for solving  these  large  algebraic  sys- 
tems. As the actual computation of  such  solutions  became 
important, many authors turned to a  more  extensive  dis- 
cussion of this  problem. 

Let A be  an n by n nonsingular matrix and consider the 
problem 

AX = Y. (4) 

Let A = P - N be  a  “splitting” of A,  where P” exists 
and is  “easily”  obtained.  Consider the “direct  iterative 
method” 

PX,,, = Nx, + Y. (5 )  

It is well known that the vectors X, converge to the solu- 
tion X of  Eq. (4) if and only if the spectral radius p of 
P”N = K satisfies 

p < 1. (6) 

In 1949 H.  Geiringer”  discussed  certain “structural” 
properties of K which would guarantee (6). In 1950 S. P. 
Frankel’  studied the case  where  Eq. (4) arises  from the 
hite-difference equations for the model  problem. He ob- 
tained explicit  formulas for p = p(h) when the iterative 
method was the Jacobi method, the Gauss-Seidel method, 
and the extrapolated Gauss-Seidel  method (Successive 
Over-Relaxation, or SOR). 

In 1954 D. M.  Young3’  gave a  general  theory of the 
relationship of those  methods  based on “Property A”. 
Let the matrix A satisfy  Property A and be  “consistently 

ordered.”  Let p be  any  eigenvalue of B, the associated 
Jacobi matrix.  Then - p  is also an eigenvalue of B. Let 
w > 0 be the parameter of an SOR  method. Let X # 0. 
Then X is an eigenvalue of this SOR method if and only if 

x + w - - l  
wx1’2 = P  (7) 

for some p (eigenvalue of B). The  Gauss-Seidel  method is 
given  by o = 1. 

This  theory was then  extended to “block”  iterative 
methods by R. J. Arms,  L. D. Gates and B. Zondek’ and 
B. Friedman.” 

This approach to the algebraic  convergence  problem 
has been  extended  by  R. S. Varga“  who  related it  to the 
Perron-Frobenius theory of non-negative  matrices. Varga 
has used  his  theory of “regular  splitting” to develop 
general  comparison  theorems. He has also obtained esti- 
mates for p(h) in the model  problem. 

More recently the present author‘g has used the basic 
compactness  ideas of C-F-L to establish a general  asymp- 
totic formula for p(h)  when the matrix A arises from a  self- 
adjoint, uniformly  elliptic,  second-order operator L. In 
fact, the method has also been applied to higher order 
equations.lgVz6 Suppose that A = A(h) and P = P(h) are 
both positive  definite.  Suppose the splitting A = P - N 
satisfies “Property B’-loosely speaking this means that 
the matrices N(h) are uniformly  bounded and there is a 
smooth function Q(x, y)  2 Qo > 0 such that 

AX A y ( N G ,  4 11 Q(x, Y ) @ ( x ,  Y)%, JJ) dx du 

when &, !$ are the vectors obtained from point evaluation 
of the continuous  functions @(x, y ) ,  *(x, y). 

Then, under some  minor additional conditions, 

p(h) = 1 - A Ax AY -I- P(& AY), (8) 

where A is the minimal  eigenvalue of 

~ L U  + AQU = Q, 

\U = o on r. 
Concluding  remarks 

The literature on numerical  methods for elliptic  problems 
is  now so vast that it proves  impossible, in any  modest 
space, to mention all important papers in the field. Thus, 
the specific papers mentioned in this  brief  sketch are ones 
permitted by space  limitations,  immediate  relevance to the 
subject at hand, and this  author’s  knowledge of the litera- 
ture. Additionally, we  wish to mention, in particular, the 
“alternating direction  iterative  methods” for the algebraic 
problem  discussed  by  Olof  WidlundZ9 and the work of 
H. F. Weinberger” on the elliptic  eigenvalue  problem. Fur- 
ther, the interested  reader will fhd excellent bibliographies 
in  Refs. 8, 13, 16, and 31. 245 
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