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Elliptic Equations’

S. V. Parter*

Abstract: A brief review is given of the literature on numerical methods for elliptic problems as related to the ideas introduced by Cour-
ant, Friedrichs and Lewy in the fundamental paper published in Math. Ann. 100, 32 (1928). The discussion shows how the finite-
difference methods have subsequently been extended and applied to higher order elliptic problems and how the recent literature has
reported methods for solving large algebraic systems. In addition, there is a discussion of the relation between the Dirichlet problem and

the problem of the random walk.

Introduction

The fundamental paper of Courant, Friedrichs, and
Lewy®** (which we denote by C-F-L) contained an ex-
tensive and thorough discussion of finite-difference meth-
ods for elliptic problems. While the actual results of this
remarkable paper are of value in themselves, the ideas
introduced and developed there have been fundamental
to the field ever since. For example, the finite-difference
equations are obtained from the wvariational problem
(Dirichlet’s principle) related to the boundary value prob-
lem. Moreover, they anticipated Sobelev’s lemma® by
proving a finite-difference variant for two dimensions.}

In addition, the connection between the Dirichlet prob-
lem and the problem of the random walk™ is discussed.

Boundary-value problems

One of the major problems discussed is the Dirichlet
problem for Laplace’s equation for a bounded plane
region with a smooth boundary. That is,

_u , u
Au - ax2+ ayz b 0’

(n
ulx, y) = fx,», () &T.
It is assumed that f(x, ) & C(G) and

0+ Q]

‘/:/‘; [<ax + 3y dxdy < o, (2)
The C-F-L paper proceeds as follows. The finite-dif-

ference analog of Eq. (1) is set down and its relationship
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} The continuous version of Sobelev’s lemma-although not in its sharpest
form-was well known in Gdottingen (see, e.g., K. O. Friedrichs’ dissertation,
Math. Ann., 1926). Already in 1912 Haar had observed that the Rayleigh-Ritz
procedure converges in the maximum norm for the plate equation because
functions of two variables can be bounded by the L? norm of their second
partial derivatives.
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to the minimum problem is discussed. The discrete Green’s
identities show that there exists a unique solution of this
algebraic problem. Using the basic lemma on the interior
equicontinuity of the solutions of this problem (the dis-
crete Sobelev’s lemma) and the Ascoli-Arzela compactness
theorem, one obtains a sequence U, (x, ») which con-
verges (as h, — 0) to a harmonic function u(x, y). The
convergence is uniform on every compact subdomain.
Finally,

%/‘/;r[u-—-ffdxdy—»o as r—0, (3)

where S, is a “boundary strip” of width r. Moreover, this
uniquely characterizes the solution of Eq. (1). Therefore
one can dispense with the selection of subsequences and
the family of solutions {U,(x, )} converges to u(x, y)
uniformly on every compact subdomain. This argument
is then extended to the first boundary-value problem for
the biharmonic equation.

In his Géttingen dissertation W. v. Koppenfels'® ex-
tended these results to the general second-order elliptic
equation with “smooth” coefficients.

In 1941 I. G. Petrowskii’® modified the basic C-F-L
approach to the Dirichlet problem. In particular, he used
the notion of a “barrier” function (see Ref. 7, pp. 306-312)
to improve the treatment “near” the boundary. For ex-
ample: if, at every point P & T there is a circle S such
that S M\ G = {P}, then the convergence of U,(x, y) to
u(x, y) is uniform on G. Moreover, this approach allows
one to dispense with the requirement of (2).

In 1930 S. Gerschgorin'® gave another treatment of the
Dirichlet problem. His approach is easily extended to more
general second order equations and more general finite-
difference equations. Moreover, if U(x, y) € C*G), the
Gerschgorin treatment gives an estimate of the “rate of
convergence.”




In 1940 Sobelev himself”® gave a general finite-difference
analog of the Sobelev lemma.

In 1953 L. Bers® used the Gerschgorin approach for
“mildly nonlinear” elliptic problems. In the same year
J. L. Walsh and D. M. Young” studied the Dirichlet
problem in a rectangle—the so-called “model” problem—
and showed that the convergence of U,(x, y) to U(x, y)
can be arbitrarily slow.

In a recent series of papers (see Refs. 3-5) J. Bramble
and B. Hubbard have extended, for sufficiently smooth
solutions U(x, y), the Gerschgorin treatment of the rate of
convergence.

More recently this author and P. Jamet'* have applied
the basic C-F-L approach together with the “barrier”
idea to second-order elliptic operators whose coefficients
become singular on a portion of the boundary.

W. Littman'” (1958), V. K. Saulev*' and V. Thomée®®
have studied higher order elliptic problems making use of
many of the C-F-L ideas (in particular, the Sobelev in-
equalities).

The algebraic problem

While C-F-L established that the system of finite-dif-
ference equations possess a unique solution and mentions
some early work on relaxation methods, it contains no
results on methods for solving these large algebraic sys-
tems. As the actual computation of such solutions became
important, many authors turned to a more extensive dis-
cussion of this problem.

Let 4 be an n by » nonsingular matrix and consider the
problem

AX = Y. 4)

Let A = P — N be a “splitting” of 4, where P~ exists
and is “easily” obtained. Consider the “direct iterative
method”

PX,,, = NX, + Y. Q)

It is well known that the vectors X, converge to the solu-
tion X of Eq. (4) if and only if the spectral radius p of
PN = K satisfies

p <1, (6)

In 1949 H. Geiringer' discussed certain “structural”
properties of K which would guarantee (6). In 1950 S. P.
Frankel® studied the case where Eq. (4) arises from the
finite-difference equations for the model problem. He ob-
tained explicit formulas for p = p(h) when the iterative
method was the Jacobi method, the Gauss-Seidel method,
and the extrapolated Gauss-Seidel method (Successive
Over-Relaxation, or SOR).

In 1954 D. M. Young’® gave a general theory of the
relationship of those methods based on ‘“‘Property A”.
Let the matrix 4 satisfy Property A and be “consistently

ordered.” Let u be any eigenvalue of B, the associated
Jacobi matrix. Then —y is also an eigenvalue of B. Let
@ > 0 be the parameter of an SOR method. Let A # 0.
Then A is an eigenvalue of this SOR method if and only if

Adw—1

o T @)
for some u (eigenvalue of B). The Gauss-Seidel method is
given by w = 1.

This theory was then extended to “block” iterative
methods by R. J. Arms, L. D. Gates and B. Zondek' and
B. Friedman.'

This approach to the algebraic convergence problem
has been extended by R. S. Varga®® who related it to the
Perron-Frobenius theory of non-negative matrices. Varga
has used his theory of “regular splitting” to develop
general comparison theorems. He has also obtained esti-
mates for p(h) in the model problem.

More recently the present author'® has used the basic
compactness ideas of C-F-L to establish a general asymp-
totic formula for p(/#) when the matrix 4 arises from a self-
adjoint, uniformly elliptic, second-order operator L. In
fact, the method has also been applied to higher order
equations.”®'?® Suppose that 4 = A(k) and P = P(h) are
both positive definite. Suppose the splitting 4 = P — N
satisfies “Property B”—loosely speaking this means that
the matrices N(#t) are uniformly bounded and there is a
smooth function Q(x, y) > Q, > 0 such that

Ax Ay(N®, ¥) — ff O(x, y)®(x, »)¥(x, y) dx dy

when &), " are the vectors obtained from point evaluation
of the continuous functions ®(x, y), ¥(x, »).
Then, under some minor additional conditions,

p(h) = 1 — A Ax Ay + p(Ax Ay), ®
where A is the minimal eigenvalue of
LU+ AQU = 0,
{ o
U=0 on T.

Concluding remarks

The literature on numerical methods for elliptic problems
is now so vast that it proves impossible, in any modest
space, to mention all important papers in the field. Thus,
the specific papers mentioned in this brief sketch are ones
permitted by space limitations, immediate relevance to the
subject at hand, and this author’s knowledge of the litera-
ture. Additionally, we wish to mention, in particular, the
“alternating direction iterative methods” for the algebraic
problem discussed by Olof Widlund®® and the work of
H. F. Weinberger®® on the elliptic eigenvalue problem. Fur-
ther, the interested reader will find excellent bibliographies
in Refs. 8, 13, 16, and 31.
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