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On Difference Methods for Parabolic Equations
and Alternating Direction Implicit Methods for

Elliptic Equations’

Abstract: Some aspects are discussed of the development of the theory of difference approximations to parabolic equations in its rela-
tion to the basic development of difference methods for hyperbolic and elliptic equations by Courant, Friedrichs and Lewy, Math. Ann.
100, 32 (1928). The present paper also deals with the related problem of establishing the convergence of alternating direction implicit

methods for elliptic problems.

Introduction

In their famous paper of 1928, Courant, Friedrichs, and
Lewy® " paid little attention to partial differential equations
of parabolic type. They considered only a quite special
difference approximation for a heat-conduction equation
with constant coefficients. The simple structure of their
difference equation enabled them to write down its solu-
tion as a sum and to show that this sum converges to the
well-known solution of the differential equation when
the mesh size goes to zero. Such an approach does not
lend itself to straightforward generalizations to more
complicated problems. In spite of this, their paper has
greatly influenced the development of the theory of dif-
ference approximations to parabolic equations in that
many of the ideas which they developed for hyperbolic and
elliptic equations have proved useful in the study of para-
bolic problems. For a discussion of these ideas we refer
to the papers by Lax™ and Parter”” in this issue.

In this paper we will discuss some aspects of the develop-
ment of the theory and point to some mathematical tech-
niques that are now available in the study of difference
methods for parabolic equations and the related problem
of establishing the convergence of alternating direction
implicit methods for elliptic problems.

Initial value problems for linear equations

Let us first consider the initial value problem for a para-
bolic equation of second order and with one space variable,
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d o 0
b—;‘ = ay(x, ?) 5;‘; + ay(x, f) 55 + ax(x, u + f(x, 1),

— @ < X < o,
u(x, 0) = uy(x),

O_<_tSTO<°°, (1)
—o < x < ®,

where uy(x) and f(x, f) are given, bounded functions. The
coefficients are sufficiently smooth bounded functions and
a, is bounded from below by a strictly positive constant.
Such equations have been extensively studied; cf. Ref. 13.
Among other things it is known that the solution depends
continuously on the initial value «, and the inhomogenous
term f. Thus, there is a constant C independent of u, and f
such that for ¢t & [0, T],

max [u(x, )] < C(max |u(x)| + max |fx, D). (2)

This is, of course, to be expected from physical con-
siderations if we think of (1) as a mathematical model for
heat flow. When an inequality like (2) is fulfilled for some
differential equation and in some norm we will call such a
problem well posed in that particular norm.

To set up difference approximations to (1) we first
introduce lattices of mesh points,

R, N) = {(x, ): x = 0, h, =2k, -+ ;
t=0,k,2k, -, Nk = To; k = NH*}.

For simplicity we assume that there always is a natural
number N such that Nk = T,. When we study the con-
vergence of the solution of a difference scheme to that of a
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differential equation we will consider a whole set of lattices
R(h;, ;) for which ; and k; = \A% go to zero. In many
cases the mathematics of the problem is very much sim-
plified by assuming that \; is a positive constant. In fact
much of the theory has been developed only for uniformly
bounded \; and it is not known to what extent it can be
generalized. Why such an extension would be of great in-
terest is discussed in the next two sections of the paper. In
the rest of this section we will always suppose that k/#°, or
in the case of an equation of order 2m that k/A™™, is
constant.

All useful difference approximations to (1) which are of
one-step type have the form

Sb(x, t, )To(x, t + k, h)
= > ¢, (x,t, T v(x, t, h) + kf(x, 1),
(x, ) & R(h, N),

v(x, 0, B) = uy(x), x=0,kh -, (3)

Here the sums are finite, the coefficients sufficiently smooth
functions of x, ¢ and 4, and T is the translation operator
defined by To(x) = ¢(x 4 k). To be able to compute
v(x, k, h), v(x, 2k, h), etc. from (3) we must be able to
invert the operator on the left-hand side. This is, of course,
trivial if only one of the b,’s is different from zero. We call
such methods explicit. In the opposite case, the implicit
case, we must demand that the corresponding algebraic
problem is finite dimensional.

In order to ensure that the difference equation will have
something to do with the differential equation we demand
that (3) is consistent (formally convergent) to (1); i.e., for
all sufficiently smooth functions ¢(x, #),

o {(2 = 0T 0% )
1;.1_.[? {(at o ax® i dx N

- S b retw 1 40 - St t)]} o,

By Taylor expansion it is easy to check whether or not a
difference equation is consistent to a given differential
equation. It is also very simple to construct many consist-
ent difference equations to any given differential equation.
But consistency alone does not guarantee that the dif-
ference between the solutions of (1) and (3) is small for
small mesh sizes. On the contrary, as pointed out in the
paper by Courant, Friedrichs and Lewy, we can expect
many consistent difference equations to have an error
growth which will make them completely useless for
calculations of approximate solutions to the differential
equation. As is shown in Ref. 29 we will get uniform con-
vergence of the solution of (3) to the solution of the well-
posed problem (1) if the difference method is not only
consistent but also stable. Equation (3) is said to be stable
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if there is a constant C, independent of u,, f and the mesh
size such that

max |o(x, ¢, B)| £ C(max |uo(x)| + max |f(x, £)]). (4)

Observe that (4) is the analogue to (2) for the difference
equation. For a detailed discussion of stability, conver-
gence, etc., we refer to Ref, 29.

We will now discuss two methods to prove the stability
of consistent difference schemes. We first show that (4)
holds if (a) the method is explicit, i.e. by = 1,5, = 0,7 # 0;
and (b) ¢, > 0. For from (3) and (b) we immediately get

max |o(x, ¢t + k, B)| < max 2 ¢,(x, t, h)
~max |o(x, ¢, &)| + k max |f(x, ?)|.

If we expand c,(x, ¢, k) in Taylor series in # and use the
consistency we can show that

Doelx, t,h) £ 1+ Ck,

where C is a constant independent of x, ¢ and k. Thus

max |v(x, nk, B)| £ (1 + Ck)" max |uo(x)|
+ (1 + Ck)"nk max |f(x, t)]
< exp (CTy)(max |us(x)| + T, max [f(x, £)]).

For a further discussion of this technique we refer to
Refs. 8 and 14.

Condition (b) above is far from necessary and it is
also hard to see how the technique could be extended to
systems of parabolic equations. In 1952 Fritz John'” gave
a new sufficient stability condition, introducing a mathe-
matical technique which has since been extended to treat
more complicated parabolic problems. His paper is an
outstanding contribution to the understanding of dif-
ference approximations to partial differential equations.
John treated the explicit case and phrased his stability
condition in terms of the characteristic polynomial

gx, t, 6) = D, c.(x, t, 0) exp (irf).
He proved that if

max [g(x, ¢, 0)| < exp (—afb®), 6] <,
z.t

a some constant > 0, 5

the difference equation is stable. (Observe that g is a 2n-
periodic function in 6.)

John’s result have been extended by Aronson'™ and
by the author.**'*® They considered systems of partial dif-
ferential equations that are parabolic in the sense of
Petrowskii. (For details and definitions see Refs. 35 and 36.)
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For any difference approximation, implicit or explicit,
define a characteristic matrix which corresponds to the
characteristic polynomial above. Denote the eigenvalues of
that matrix by ¢;(x, ¢, 8) where x and 0 are vectors with
s components, where s is the number of space variables in
our differential equation. It is shown in Refs. 35 and 36
that the difference scheme is stable both in the uniform
norm and the L’-norm if

max |o;(x, 7, 8)| < exp (—a Z 6™, 16,1 < =,
z,t

a some constant > 0. (6)

This is the exact counterpart to (5). One of the main tools
in the proof of this result is a matrix theorem by Kreiss™
that gives necessary and sufficient conditions for L’-
stability for systems of difference equations with constant
coefficients. For an extension of the results above to
linear multistep difference schemes we refer to Refs. 35
and 36.

To what extent is (6) a necessary condition for stability
and a reasonable behavior of the error? Is (6) a natural
condition for consistent difference equations?

To answer the first question let us first note that we
must require all o; to lie inside or on the unit circle, or
else we violate the von Neumann condition and must
expect a very rapid error growth. (Cf. Ref. 29.) Could
[¢;] < 1 be used as a general stability criterion instead
of (6)? The answer is no, for it was shown in Ref. 36 that
there are equations which fulfil this condition and still
are wildly unstable. But, as is shown in Ref. 35, we can
guarantee the fulfilment of (6), and thus the stability, for
consistent approximations by the slightly more restrictive
condition |¢;] < 1, 0 # 0, |8;| < =. This condition is in
fact very natural. The typical situation is, namely, that
(6) is fuifilled for a consistent difference method for a
neighborhood of 8 = 0 and that we can adjust the value
of k/K™ so that |o;] < 1for all |6,] < .

We conclude this section by pointing out that, once we
have established the stability of a difference equation, it is
quite simple to get an error bound if we have a differential
equation with a sufficiently smooth solution. For details
we again refer to Ref. 29.

The energy method

There are many interesting and important problems which
cannot be treated with the theory of the previous section.
Suppose, for example, that we want to design good dif-
ference methods for a mixed initial-boundary value prob-
lem for a parabolic equation and that the problem cannot
be transformed into a pure initial value problem by some
periodic extension. There is then good reason to expect
that we will encounter many new difficulties, for it is well

known from the theory of partial differential equations
that the introduction of boundary values makes most
problems more complicated. No general theory exists as
yet which tells us how to choose convergent difference
approximations to such problems. Some progress has,
however, been made in the case of the one-space variable.
We especially want to mention the work by Kreiss."®'*
He showed how to construct stable differential approxima-
tions to properly posed differential equations. For this
he used the energy method, which means among other
things that his norm was an L*-norm instead of the uniform
norm discussed in the previous section.

It is well known from the theory of partial differential
equations that it is often easier to prove results in the
I’-norm than in other norms. This is also true for the
theory of difference approximations. The techniques such
as summation by parts, etc., that are used in the energy
method are direct counterparts to quite old tricks from
the theory of partial differential equations. In many cases
the energy method supplies not only estimates for the
I’-norm of the solution but also certain divided differences
of the solution. By use of Sobolev inequalities these can
give stability and error bounds in the maximum norm.
See for example Refs. 22-26.

Let us illustrate the energy method with a simple para-
bolic equation,

du/dt = u/dx’, 0<x <1

u(x, 0) = wuo(x), u(0,1) = u(1, 1) = 0.

We use the energy method to prove that

(3/91) fol [ulx, )] dx <0, (3/81) fol [, (x, )17 dx <0

so that the L>-norm of both the solution and its first deriva-
tive with respect to x are non-increasing. To get the first
inequality we multiply the equation by u(x, #) and integrate
by parts on the right-hand side, to get the second we
multiply by 8*u/0x” and use partial integration for the
left-hand side. We can use the same technique to derive
similar inequalities for the solutions of certain simple dif-
ference approximations to parabolic problems.

Just as in the theory of differentia) equations, this old-
fashioned energy method enables us to settle certain
questions for difference equations with coefficients which
depend on the solution or which are not smooth. See,
for example, Refs. 11, 25, 26.

Finally, we can sometimes use the energy method to
prove stability and give error bounds without imposing
restrictions between &k and 4. This gives us better error
bounds than can be obtained by use of the theory of the
previous section.

DIFFERENCE METHODS FOR PARABOLIC EQUATIONS
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Alternating direction implicit methods

In order to compute approximate solutions to second-
order parabolic equations with one space variable, many
have chosen to use implicit schemes. The reason for this
is that there are implicit methods that are stable for all
values of k/#’. Such methods are called unconditionally
stable. This gives a great and desirable flexibility in the
choice of the mesh size and we can, for example, use very
long time steps. With few exceptions the explicit methods
do not share this property. In the first instance it might,
however, appear as if the inversion of the operator on the
left-hand side of (3) might be quite time consuming. This
is not necessarily so. For in many cases this operator cor-
responds to a positive definite tridiagonal matrix which
can be inverted by Gaussian elimination using only a
number of arithmetic operations which is proportional to
the order of the matrix. Cf. Ref. 29.

In the two- or multi-dimensional case the situation will
be somewhat different. If we write up the obvious generali-
zation of implicit one-dimensional methods we have to
invert a rather general matrix at each time step. No very
fast method is available for this.

The situation improved very much when Peaceman and
Rachford®® invented the first alternating direction im-
plicit method (ADI-method). Studying the first initial-
boundary value problem

ou/ot = 8°u/ox> + 3°u/dy”,
for (x, y) inside a unit square, @)

with u(x, y, 0) = ue(x, y), u(x, y, £) = o(x, y, ©) for (x, y) on
the boundary of the square, they constructed an uncon-
ditionally stable method for which the operator on the
left-hand side corresponds to the product of two matrices.
These matrices are both similar via permutations to posi-
tive definite tridiagonal matrices and they can therefore
be inverted very rapidly. The same idea has been used to
construct many other ADI-methods. Cf. Refs. 9, 10, 12, 30.

It has turned out to be rather hard to analyze these ADI-
methods for more general parabolic problems, more
general regions and without restrictions on k/A°. Con-
siderable progress is, however, reported in Refs. 15, 16,
23, 24, and 31.

In fact we are very much interested in being able to prove
results without restricting k/h°. Now the most interesting
idea, perhaps, in the paper of Peaceman and Rachford®®
is still to be mentioned. They noted that if the boundary
values of (7) are independent of ¢ we end up having the
solution of Poisson’s equation when ¢ — o, Using their
difference method for the parabolic equation they then
constructed an iterative method for the solution of a dif-
ference analogue to Poisson’s equation. To do this they
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chose not only to proceed with very large time steps but
also showed that if you vary the length of time steps be-
tween the different steps you can speed up the convergence
of the iterative method considerably. Thus, if the time
steps are cleverly chosen you can reduce the I*-norm of
the error by a factor

{ 1 — [tan (wh/z)]”’"}2 ®
1 + [tan (wh/2))V™)

in m time steps. It turns out that in this simple case this
method is far superior to any other known iterative method
if the number of mesh points is sufficiently large.

The method can be generalized quite easily to other
second-order elliptic problems with more complicated
regions. However, except when certain operators commute,
the theory of Douglas’, which was published in a com-
panion paper with Ref. 28, does not easily extend. As was
shown by Birkhoff and Varga® this commutativity condi-
tion is very restrictive both for the coefficients and the
region, which has to be rectangular. It is, however, known
from experience that this iterative method often works very
well in practice in non-commutative cases although di-
vergence sometimes has been observed.”

Recently the author’” was able to extend the theory to a
non-commutative case. For a class of elliptic equations
with sufficiently smooth coefficients and with Dirichlet data
given on a rectangle, a variant of the Peaceman-Rachford
method can be made to have as large an asymptotic rate
of convergence as comparable commutative cases when
the mesh size is sufficiently small. The variant of the origi-
nal ADI-method results from the following consideration.
Instead of setting up a difference method for du/3t = Pu,
where P is the elliptic operator, and then trying to com-
pute the values of the solution when t — « we can as well
use some other parabolic equation c(x, ¥)du/dt = Pu,
¢ strictly positive.

It turns out that by a proper choice of ¢ we can make
our ijterative scheme rapidly convergent for small values
of h and good choices of the time steps.

The proof of this result is essentially based on the
energy method. If the more mathematically sophisticated
techniques discussed in the second section of this paper
could be extended to cases with general k and A, etc., we
might hope that this would lead to a better understanding
of these potentially extremely powerful iterative methods.

Concluding remarks

In this paper we have tried to convey some of the flavor
of the field rather than to give its complete history. For
surveys, details and references on the theory for parabolic
equations we refer the reader to Refs. 8, 14, 29, 32, 33, and
38 and for additional material on alternating direction
implicit methods for elliptic problems, to Refs. 5, 34
and 38.
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