
0. B. Widlund* 

On  Difference  Methods  for  Parabolic Equations 
and Alternating  Direction Implicit Methods  for 
Elliptic Equationst 

Abstract: Some  aspects  are  discussed of the development of the  theory of difference  approximations  to  parabolic  equations  in  its'rela- 
tion to the  basic  development of difference  methods  for hyperbolic and elliptic equations by Courant, Friedrichs and Lewy, Math. Ann. 
100, 32 (1928). The present paper also deals with the  related  problem of establishing the convergence of alternating  direction  implicit 
methods for elliptic  problems. 

Introduction 

In their famous  paper of  1928, Courant, Friedrichs, and 
Lewy" *)  paidlittle attention to partialdifferential equations 
of parabolic type.  They  considered  only a quite special 
difference approximation for a heat-conduction equation 
with constant coefficients. The  simple structure of their 
difference  equation  enabled  them to write  down  its solu- 
tion as a sum and to show that this  sum  converges to the 
well-known solution of the differential equation when 
the mesh  size  goes to zero.  Such an approach does not 
lend itself to straightforward generalizations to more 
complicated  problems. In spite of this, their paper  has 
greatly  influenced the development of the theory of dif- 
ference approximations to parabolic equations in that 
many of the ideas which  they  developed for hyperbolic and 
elliptic equations have  proved  useful in the study of para- 
bolic  problems. For a discussion of these  ideas we refer 
to the papers by Laxz1 and Parte? in this issue. 

In this paper we will  discuss  some  aspects of the develop- 
ment of the theory and point to some  mathematical  tech- 
niques that are now available  in the study of difference 
methods for parabolic  equations and the related  problem 
of establishing the convergence of alternating direction 
implicit  methods for elliptic  problems. 

Initial value problems for linear equations 

Let us first  consider the initial value  problem for a para- 
bolic equation of second order and with  one  space  variable, 
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-a < X  < a, 0 5 t 5 To < a, (1) 

u(x,  0) = uo(x), - a < x < a, 
where uo(x) and f(x, t )  are given,  bounded  functions. The 
coefficients are sufficiently smooth  bounded  functions and 
a. is bounded from below  by a strictly  positive  constant. 
Such equations have been  extensively studied; cf.  Ref. 13. 
Among other things it is known that the solution depends 
continuously on the initial value uo and the inhomogenous 
term f. Thus, there is a constant C independent of uo and f 
such that for t E [0, To], 

max lu(x, t)l I C(max Iuo(x)I + max If(x. t) l) .  (2) 

This is, of course, to be  expected  from  physical  con- 
siderations if  we think of (1) as a mathematical  model for 
heat flow.  When an inequality  like (2)  is  fulfilled for some 
differential equation and in  some  norm we will call such a 
problem well  posed  in that particular norm. 

To set  up  difference  approximations to (1)  we  first 
introduce lattices of  mesh points, 

z . t  ie 2 . t  

R(h,  X) = { ( x ,  t ) :  x = 0, fh, f 2 h ,  - * ; 

t = 0 ,  k ,  2k, * * , Nk = To; k = Ah'}.  

For simplicity we assume that there always is a natural 
number N such that Nk = To. When  we study the con- 
vergence  of the solution of a difference  scheme to  that of a 2319 
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differential equation we will  consider  a  whole  set of lattices 
R(hi, Xi) for which hi and ki  = Xihi go to zero. In many 
cases the mathematics of the problem is very  much  sim- 
plified  by  assuming that Xi is a  positive constant. In fact 
much  of the theory has been  developed  only for uniformly 
bounded X i  and it is not known to what  extent it can be 
generalized.  Why  such an extension  would  be of great in- 
terest  is  discussed in the next  two  sections of the paper. In 
the rest of this section we  will  always suppose that k/h2,  or 
in the case of an equation of order 2m that k/h2", is 
constant. 

All  useful  difference approximations to (1) which are of 
one-step  type  have the form 

x v b , ( x ,   t ,  h)T'u(x, t -I- k ,  h) 

= c , (x ,  t ,  h)T"u(x, t ,  h) + k f ( x ,  t ) ,  

(X, t> E m ,  A), 

4x9 0 ,  h) = uo(x), X = 0 ,  =th,  * e *  * (3) 

Here the sums are finite, the coefficients  sufficiently smooth 
functions of x, t and h, and T  is the translation operator 
defined  by  Tp(x) = p(x + h). To be able to compute 
u(x, k ,  h), u(x, 2k, h), etc. from (3) we must be able to 
invert the operator on the left-hand side.  This  is, of course, 
trivial if  only  one of the b,'s is  different from zero. We call 
such  methods explicit. In  the opposite  case, the implicit 
case, we must  demand that  the corresponding  algebraic 
problem is finite  dimensional. 

In order to ensure that the difference equation will have 
something to  do with the differential equation we demand 
that (3) is  consistent  (formally  convergent) to (1); i.e., for 
all sufficiently  smooth  functions p(x, t),  

By Taylor  expansion it is  easy to check  whether or not a 
difference equation is  consistent to a given differential 
equation. It is  also very simple to construct many  consist- 
ent difference equations to any given differential equation. 
But  consistency alone does not guarantee that  the dif- 
ference  between the solutions of (1) and (3) is small for 
small mesh  sizes.  On the contrary, as pointed out in the 
paper by Courant, Friedrichs and Lewy,  we can expect 
many  consistent  difference equations to have an error 
growth which  will  make  them  completely  useless for 
calculations of approximate solutions to the differential 
equation. As is shown in Ref. 29 we will  get  uniform  con- 
vergence of the solution of (3) to the solution of the well- 
posed  problem (1) if the difference method is not only 

240 consistent but also  stable. Equation (3) is said to be stable 
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if there is a constant C, independent of uo, f and the mesh 
size  such that 

max lu(x, t ,  h)l i C(max Iuo(x)I + max If(x, t ) l ) .  (4)  

Observe that (4)  is the analogue to (2) for the difference 
equation. For a  detailed  discussion of stability,  conver- 
gence,  etc., we refer to Ref. 29. 

We will  now  discuss  two  methods to prove the stability 
of  consistent difference schemes.  We  first  show that (4) 
holds if (a) the method  is  explicit,  i.e. bo = 1,b, = 0, r # 0; 
and (b) c ,  2 0. For from (3) and (b) we immediately  get 

max lu(x, t -I- k ,  h)l i max c,(x, t ,  h) 

2 9 1  z 2 . t  

2 2 

emax lu(x, t ,  h)l + k max If(x, t ) l .  

If we expand c,(x, t ,  h) in Taylor series  in h and use the 
consistency we can  show that 

2 2 

c,(x,  t ,  h) i 1 + C k ,  

where C is  a constant independent of x, t and h. Thus 

max lu(x, nk ,  h)l i (1 + Ck)" max Iuo(x)I 
2 2 

4- (1 + Ck)"nk max !!(X, t ) [  
2 . t  

i exp (CTo)(max I ~ o ( x > I  -k TO max If(x, t )  I). 
2 2 . t  

For a further discussion of this technique we refer to 
Refs. 8 and 14. 

Condition (b)  above is far from necessary and it is 
also hard to see  how the technique  could  be  extended to 
systems of parabolic  equations. In 1952 Fritz John"  gave 
a new  sufficient  stability  condition, introducing a mathe- 
matical technique which has  since  been  extended to treat 
more complicated parabolic problems.  His paper is an 
outstanding contribution to the understanding of dif- 
ference approximations to partial differential  equations. 
John treated the explicit  case and phrased his stability 
condition in terms of the characteristic  polynomial 

g(x ,  t ,  e) = c,(x, t ,  0) exp (ire).  

He proved that if 

max I&, t ,  e)! i ~ X P  (-ae2), le1 I T, 
2 . 1  

a some constant > 0, (5 )  

the difference equation is stable.  (Observe that g is a 2n- 
periodic function in e.) 

John's  result  have  been  extended by Aron~on"~ and 
by the a~thor .3~ '~ '  They  considered  systems of partial dif- 
ferential equations that are parabolic in the sense of 
Petrowskii. (For details anddefinitions see  Refs. 35 and 36.) 



characteristic  polynomial  above. Denote the eigenvalues of 
that matrix by ui(x, f ,  8) where x and 8 are vectors  with 
s components,  where s is the number  of  space  variables  in 
our differential  equation. It is shown in Refs. 35 and 36 
that the difference  scheme  is  stable both in {he uniform 
norm and the L2-norm if 

max (uj(x, t ,  8)l P exp (-a [ O i l  5 a, 
Z , t  

(Y some constant > 0 .  (6) 

This is the exact counterpart to (5). One of the main tools 
in the proof of this  result  is a matrix  theorem by  Kreiss" 
that gives  necessary and sufficient conditions for Lz- 
stability for systems  of  difference equations with constant 
coefficients. For an extension of the results  above to 

~ linear  multistep  difference schemes  we  refer to Refs. 35 
and 36. 

To what  extent  is (6) a necessary  condition for stability 
and a reasonable  behavior of the error? Is (6) a natural 
condition for consistent  difference equations? 

To answer the first  question let us first note that we 
must  require all u i  to lie  inside or on the unit circle, or 
else we violate the von  Neumann  condition and must 
expect a very rapid error growth.  (Cf.  Ref. 29.) Could 
[ui  1 _< 1 be  used as a general stability criterion instead 1 of (6)? The answer  is  no, for it was  shown in Ref. 36 that 
there are equations which  fulfil this condition and still 
are wildly unstable.  But,  as  is  shown  in Ref. 35, we can 
guarantee the fulfilment of (6), and thus the stability, for 
consistent  approximations by the slightly  more  restrictive 
condition lui I < 1, 8 # 0, lei( 5 T. This  condition  is in 
fact very natural. The typical situation is, namely, that 
(6) is  fulfilled for a consistent  difference  method for a 
neighborhood of 8 = 0 and that we can adjust the value 
of k/hz" so that Iuil < 1 for all 10il 5 T. 

We conclude  this  section by pointing out that, once we 
have  established the stability of a difference equation, it is 
quite  simple to get an error bound if  we have a differential 
equation with a sufficiently smooth  solution. For details 
we again  refer to Ref. 29. 

I 

The energy method 

, There are many  interesting and important problems which 
cannot be treated with the theory of the previous  section. 
Suppose, for example, that we want to design good dif- 
ference  methods for a mixed initial-boundary  value prob- 
lem for a parabolic equation and that the problem cannot 
be transformed into a pure initial value  problem by some 
periodic  extension. There is  then  good  reason to expect 
that we will  encounter  many new  difficulties, for it is  well 

problems  more  complicated. No general  theory  exists as 
yet  which  tells us how to choose  convergent  difference 
approximations to such  problems.  Some  progress  has, 
however,  been  made  in the case of the one-space  variable. 
We especially  want to mention the work  by Kreiss.1s'20 
He  showed  how to construct stable differential approxima- 
tions to properly  posed  differential  equations. For this 
he  used the energy  method, which  means  among  other 
things that his norm was an L2-norm  instead of the uniform 
norm discussed  in the previous  section. 

It is  well  known from the theory of partial differential 
equations that  it is often  easier to prove  results  in the 
Lz-norm than in other norms. This is  also true for the 
theory of difference  approximations. The techniques  such 
as summation by parts, etc., that  are used in the energy 
method are direct counterparts to quite old tricks  from 
the theory of partial differential equations. In many  cases 
the energy  method  supplies not only  estimates for the 
Lz-norm of the solution but also  certain  divided  differences 
of the solution. By use  of  Sobolev  inequalities  these  can 
give stability and error bounds in the maximum  norm. 
See for example  Refs. 22-26. 

Let us illustrate the energy  method  with a simple para- 
bolic equation, 1 

u(x ,  0) = uo(x), u(0,  t )  = u(1,  t) = 0. 

We use the energy  method to prove that 

so that the L2-norm of both the solution and its  first  deriva- 
tive  with  respect to x are non-increasing. To get the first 
inequality we multiply the equation by u(x, t )  and integrate 
by parts on the right-hand side, to get the second we 
multiply by azu/axz and use partial integration for the 
left-hand  side. We can use the same  technique to derive 
similar  inequalities for the solutions of certain  simple  dif- 
ference approximations to parabolic problems. 

Just as in the theory of differential equations, this old- 
fashioned  energy  method  enables us to settle certain 
questions for difference equations with  coefficients  which 
depend on the solution or which are  not smooth. See, 
for example,  Refs. 11, 25, 26. 

Finally, we can  sometimes  use the energy  method to 
prove  stability and give error bounds without imposing 
restrictions between k and h. This gives us better error 
bounds than can  be obtained by use of the theory of the 
previous  section. 24 1 
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Alternating direction implicit methods 

In order to compute approximate solutions to second- 
order parabolic equations with  one  space  variable,  many 
have  chosen to use implicit  schemes. The reason for this 
is that there are implicit  methods that  are stable for all 
values  of k/h2.  Such  methods are called unconditionally 
stable. This gives a great and desirable  flexibility  in the 
choice of the mesh  size and we can, for example,  use  very 
long  time  steps.  With few exceptions the explicit  methods 
do not share this property. In  the first instance it might, 
however, appear as if the inversion of the operator on the 
left-hand side of (3)  might  be quite time  consuming. This 
is not necessarily so. For in  many  cases  this operator cor- 
responds to a positive  definite tridiagonal matrix which 
can  be  inverted by Gaussian  elimination  using  only a 
number of arithmetic operations which  is proportional to 
the order of the matrix. Cf.  Ref. 29. 

In the two- or multi-dimensional case the situation will 
be  somewhat  different. If we write up the obvious  generali- 
zation of implicit  one-dimensional  methods we have to 
invert a rather general  matrix at each  time  step. No very 
fast  method  is  available for this. 

The situation improved very  much  when  Peaceman and 
Rachford” invented the first alternating direction  im- 
plicit  method (ADI-method). Studying the first initial- 
boundary value  problem 

au/at = a2u/ax2 + a2u/ay2, 

for (x ,  y )  inside a unit square, (7) 

with u(x, Y, 0) = d x ,  Y ) ,  4% Y, 0 = dx,  Y, t )  for (x ,  Y) on 
the boundary of the square, they  constructed an uncon- 
ditionally stable method for which the operator on the 
left-hand  side  corresponds to the product of two  matrices. 
These  matrices are both  similar  via permutations to posi- 
tive  definite tridiagonal matrices and they  can  therefore 
be  inverted very rapidly. The same  idea  has  been  used to 
construct many  other  ADI-methods. Cf.  Refs. 9, 10, 12,30. 

It has turned out to be rather hard to analyze  these  ADI- 
methods for more  general  parabolic  problems,  more 
general  regions and without  restrictions  on k/h2. Con- 
siderable  progress  is, however, reported in  Refs. 15, 16, 
23, 24, and 31. 

In fact we are very  much interested  in  being able to prove 
results without restricting k/h2.  Now the most  interesting 
idea,  perhaps,  in the paper of Peaceman and Rachford2’ 
is  still to be  mentioned.  They noted that if the boundary 
values of (7) are independent  of t we end up having the 
solution of Poisson’s equation when t -+ Q). Using  their 
difference  method for the parabolic equation they  then 
constructed an iterative  method for the solution of a dif- 
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chose not only to proceed  with very large  time  steps but 
also showed that if  you vary the length of time  steps be- 
tween the different  steps  you can speed up the convergence 
of the iterative  method  considerably. Thus, if the time 
steps are cleverly  chosen  you  can  reduce the L2-norm of 
the error by a factor 

{ 1 + [tan (?r/1/2)]”~ > *  ( 8) 
1 - [tan (?rh/2)]”“ 

in m time  steps. It turns out that in  this  simple  case this 
method  is far superior to any other known  iterative  method 
if the number of  mesh points is  sufficiently  large. 

The method  can  be  generalized quite easily to other 
second-order  elliptic  problems  with  more  complicated 
regions.  However,  except  when  certain operators commute, 
the theory of Douglas7, which  was published  in a com- 
panion  paper  with  Ref. 28, does not easily  extend.  As  was 
shown  by  Birkhoff and Varga4 this commutativity  condi- 
tion  is very restrictive  both for the coefficients and the 
region, which has to be  rectangular. It is,  however, known 
from  experience that this  iterative  method  often  works very 
well in practice in non-commutative  cases although di- 
vergence  sometimes  has  been  observed.’ 

Recently the authop’ was  able to extend the theory to a 
non-commutative  case. For a class of elliptic  equations 
with  sufficiently  smooth  coefficients and with  Dirichlet data 
given on a rectangle, a variant of the Peaceman-Rachford 
method  can  be  made to have as large an asymptotic rate 
of convergence as comparable  commutative  cases when 
the mesh  size  is  sufficiently  small. The  variant of the origi- 
nal ADI-method  results  from the following  consideration. 
Instead of setting up a difference  method for du/dt = Pu, 
where P is the elliptic operator, and then  trying to com- 
pute the values  of the solution when t 4 a we can as well 
use  some other parabolic equation c(x, y)du/at  = Pu, 
c strictly  positive. 

It turns out  that by a proper  choice of c we can make 
our iterative scheme rapidly  convergent for small  values 
of h and good  choices of the time  steps. 

The proof of this  result  is  essentially  based on the 
energy  method. If the more  mathematically  sophisticated 
techniques  discussed  in the second  section of this paper 
could  be  extended to cases  with  general k and h, etc., we 
might hope that this  would  lead to a better  understanding 
of these  potentially  extremely  powerful  iterative  methods. 

Concluding  remarks 

In this  paper we have tried to convey  some of the flavor 
of the field rather than to give its complete  history. For 
surveys,  details and references on the theory for parabolic 
equations we refer the reader to Refs. 8, 14,29,32,33, and 
38 and for additional material on alternating direction 
implicit  methods for elliptic  problems, to Refs. 5 ,  34 
and 38. 
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