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Hyperbolic Difference Equations: A Review of the 
Courant-Friedrichs-Lewy Paper in the Light of 
Recent Developments 

Abstract: The  portion of the Courant-Friedrichs-Lwy paper [Math. Ann. 100, 32 (1928)] that was  devoted to hyperbolic  difference 
equations is  critically  reviewed in terms of its basic contribution to the numerical solution of partial  differential  equations.  Some  subse- 
quent developments are  then  discussed,  including  recent  literature  related to the von  Neumann condition, some  irreversible  schemes, 
generalizations of the energy method,  some new  difference  schemes, and mixed  initial  boundary  value  problems. 

Introduction 

At the time  their  paper was written, Courant, Friedrichs 
and Lewy’ were interested in difference equations as a 
tool for proving the existence of solutions of partial dif- 
ferential  equations; discretization was a way of construct- 
ing a sequence of finite dimensional problems whose 
solutions  tended  in the limit to  the solution of the con- 
tinuous problem.** For this reason the  authors developed 
a method which was applicable to equations with variable 
coefficients; for  the same reason they were not interested 
in  studying all possible difference schemes but were satisfied 
when they found  one  that worked. 

Today the methods of functional analysis-projection, 
mollification-are so well developed (thanks in large part 
to the pioneering work of Friedrichs) that descent to  the 
finite dimensional case is not necessary for proving the 
existence of solutions of linear problems.+ On  the  other 
hand,  the onset of the Second World War  brought  an 
unprecedented (and  unabated) pressure on  the technologi- 
cal centers to provide  numerical  solutions of partial- 
differential equations; here the ideas introduced by 
C-F-L-the famous stability condition, energy inequalities, 
and  the leap  frog difference method-turned out to be 
basic. This is an outstanding  instance of research under- 
taken for purely theoretical purposes’ turning out to be of 
immense practical  importance. 

Courant Institute of Mathematical Sciences. New York University. 
** Courant was inspired  partly  by  Euler’s use of discretization in the 

calculus of variations. Also. the authors were aware of the importance of dif- 
ference methods for elliptic equations. 

one for dealing with severely nonlinear problems, as indicated by the success of 
t Quite to the contrary, the difference method may he the only effective 

Glimm’s recent work on shock waves.6 

work of Prandtl in hyperbolic problems of compressible gas dynamics. They 
I Curiously, in the late twenties the authors were interested through the 

considered solving these equations numerically by the method of character- 
istics but not by difference schemes. 

The difference schemes of Courant-Friedrichs-Lewy 

Here is a brief description of Part I1 of the paper,  con- 
cerning hyperbolic equations: The  authors  start by point- 
ing out  that a scheme cannot be a convergent one if the 
ratio of the time and space mesh is so large that  the domain 
of dependence of a point in the difference scheme does not 
contain  all  points of its  domain of dependence in the dif- 
ferential equation; such a scheme ignores information 
which does influence the value of the solution of the dif- 
ferential  equation.  This  fact is obvious to  those who are 
used to thinking in these terms but was very much un- 
suspected by quite a large number of otherwise eminent 
scientists who,  in  their  haste to use too large a value of 
At, fell into  the  trap of using difference schemes that could 
not converge and which in  fact  did diverge spectacularly. 

The  authors  start with the centered difference scheme 
for  the one-dimensional wave equation where Ax/At  
equals the  sound speed. The resulting difference equations 
are extremely simple and can  be solved explicitly. Then 
the  authors  turn to the centered difference scheme for  the 
wave equation on  an  arbitrary grid and remark that they 
will not bother to write  down an explicit representation of 
the solution because “it is too complicated to yield a 
limiting value easily as the meshwidth tends to zero;” 
thereby they failed to discover the von Neumann stability 
criterion.* 

The convergence of the difference scheme is proved by 
carrying over the energy method developed by Friedrichs 
and Lewy for  the wave e q ~ a t i o n . ~  The crux of that method 
is a quadratic integral  identity  obtained  as follows: multi- 
ply the wave equation by U t ,  write the  product as a di- 

twenty years later. 
* The explicit representation was given by Lewy in a paper16 published 235 
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vergence, integrate it over a lens-shaped domain, convert 
the volume integral into a surface integral and finally 
recognize that if the faces of the lens are space-like, the 
integrals  over them are positive  definite. To derive an 
analogous identity for their scheme, the authors multiply 
the difference equation by the centered approximation 
to U, ; they  write the resulting quadratic function as a 
divergence  sum  over a tetrahedral region bounded by 
diagonal planes and observe that if the faces  of the tetra- 
hedron slope  steeper  then the characteristic cone, then the 
surface  sums  over  them are positive.  Although the authors 
do  not emphasize it, the writing of the quadratic function 
as a divergence  is  much  trickier for the difference  scheme 
than for the differential operator; in the differential  case 
it is  merely integration by parts; once  one  has seen it 
he  can  almost  certainly  remember it or reconstruct it. 
In contrast, although I have  seen the difference  identity 
(8) [on  page 63 of the original paper] a dozen  times, 
whenever I prepare to lecture on it I waste  half an hour in 
trying to rediscover it, then at last resort to looking it up. 

In  the last section of the paper the authors give an 
ingenious  difference  scheme for a certain  class of second- 
order hyperbolic  differential equations with a cross term 
and prove its convergence  when the cross term is not  too 
large.  They  observe that by a change of variables  one  can 
bring  locally  every  hyperbolic equation into a form  where 
the cross term is not too large.  This is satisfactory if one 
is  interested, as the authors are, in  proving  existence of 
solutions, but it may  be  decidedly  unsatisfactory if one is 
interested in calculating  solutions.  Nevertheless, the 
method may be practical for equations to which it is 
applicable. 

An interesting feature of this  method  (one not mentioned 
explicitly  by the authors) is that the restriction that has to 
be  placed on At to achieve  convergence  is  more  severe 
than merely requiring that the domain of dependence of 
the difference  scheme contain the true domain of de- 
pendence. 

Once the energy  identities are derived, the authors prove 
convergence  swiftly and elegantly.  They  observe that be- 
cause of the positivity of the terms entering the energy 
identity, one obtains inequalities for the energy norm of 
the solution at time t in terms of the energy norm of the 
initial data. Analogous  estimates are derived for the higher 
difference quotients of the solution by  observing that 
these  difference quotients satisfy an equation similar to 
the original  one,  obtained from it by differencing.  With 
these bounds for the difference quotients, an estimate* 
for the maximum norm in terms of the energy norm of dif- 
ference quotients is  used and compactness  is  invoked to 
select a subsequence  which,  together  with  its  difference 

sion of that inequality, although not its sharpest form, was well known  in 
This is the discrete analog of the Sohelev inequality; the continuous ver- 

236 Gottingen as an important tool in the theory of partial differential equations. 
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quotients, converge to a limit. That limit  solves the original 
differential equation and has the prescribed initial data; 
on the other hand, it follows from the energy identity for 
the differential equation that there can be no more than 
one such  solution. This shows that any other convergent 
subsequence  has the same  limit and therefore the original 
sequence  itself  converges. 

This  indirect argument gives no error estimates; of 
course,  using the energy  inequality the authors could  have 
estimated the difference  between  exact and approximate 
solution with the greatest of ease, had they  bothered. 

Some  recent developments 

We turn now to recent  developments;  these  might  be 
grouped coveniently into the following  five  subjects: 

1) the von Neumann condition, 
2) irreversible  schemes, 
3) generalizations of the energy  method, 
4) new  difference  schemes, and 
5) mixed initial and boundary  value  problems. 

The new  developments  will  be illustrated rather than 
summarized. (For a full treatment we recommend the 
forthcoming  second  edition of Robert D. Richtmyer's 
book, Initial Value Problems). 

For simplicity we shall discuss  first-order  systems and 
one-level  difference operators associated  with them rather 
than the second-order equations and second-level  schemes 
discussed in C-F-L. In a one-level  scheme the value of the 
approximate solution at time t + 6 is obtained by applying 
an operator Sa to its values at time t. Sa is a difference 
operator of the form Sa = s,TU, a a multi-index, Tu 
translation by 6a, and s, a matrix-valued  function. The 
operators Sa act on vector-valued  functions normed by 
the Lz norm. 

In C-F-L, the authors proved the convergence of their 
difference  schemes by energy inequalities; in the operator 
language introduced here  these  express the uniform bound- 
edness of powers  of the operators Sa, i.e., the existence of 
two constants a and b such that 

I IS:ll STae , where t = n6, 

the norm being the L2 operator norm. A scheme satisfy- 
ing (1) is  called stable; the procedure of C-F-L demon- 
strates that every stable scheme  is convergent. It turns out 
that something  like the converse of this also is true: a 
scheme  which  converges for all square integrable data is 
stable in the sense of (1). Schemes  which  converge  only 
for C" data need  be stable in a weaker  sense  only that 
these  exists an integer N such that 

IlS;ll 5 aeatcN, where t = n6. 

a t  (1) 



The accuracy of a difference  scheme  is  measured by how 
closely solutions of the differential equation satisfy the 
difference equation. A scheme is accurate of order m if 
for every  smooth solution u of the differential equation 
there is a constant k such that 

Ilu(t + 6) - Ss~(t)lI I k6"". (2) 

The method of C-F-L  shows that if a scheme  is stable in 
the sense of (l), and accurate of order m in the sense of 
(2), then for smooth data the overall error is O(6"): 

I lu(t)  - S;u(O)[l I peat a", t = n6. (3) 

Somewhat  surprisingly, Strang proved in Ref. 20 that the 
same error estimate (3) holds  also for weakly stable schemes 
which satisfy merely (l)N, provided that the solution u is 
sufficiently  differentiable. 

Weak stability  is very hard to verify for operators with 
variable coefficients  since it is an unstable  concept,  in the 
following  sense: If Ss satisfy (I),,,, an operator Si = Ss + M 
where the IIM([ 5 const. X 6, need not satisfy ( l )N.  In 
contrast, the class of strongly stable operators satisfying 
(1) is stable in  this  sense. 

In Ref. 23 ThomCe  makes a precise and surprisingly 
delicate study of the degree of stability of a class of opera- 
tors in the maximum norm. 

The symbol  (amplification  matrix) of the operator S6 is 

~ ( x ,  i )  = Sa(x)e idE.  

For operators with  coefficients  independent of x it follows 
immediately from the isometric character of Fourier trans- 
formation that necessary and sufficient for stability  is the 
uniform  boundedness of all powers  of the symbol. This 
reduces a stability  question to a pure  matrix problem; 
this matrix  problem,  however, turns out to be  trickier 
than it seems at first  glance. An obvious  necessary  condi- 
tion, the famous  one  due to von  Neumann,  is for the 
spectrum of such a matrix to lie in the unit disc  in the 
complex  plane. An obvious  sufficient  condition  is for 
the norm of this  matrix to be 5 1. A non-obvious  suf- 
ficient  condition is that the numerical  range of the matrix 
be in the unit disc.' 3 '4  Necessary and sufficient conditions 
were  given  by  Kreiss' and Buchanan;'  see also M ~ r t o n ' ~  
and Morton and Schechter." 

If the difference  scheme  is  reversible,  i.e., can be  used 
to compute solutions both forward and backward  in  time, 
then both positive and negative  powers of the symbol  have 
to be  bounded. In this  case the von  Neumann  condition 
requires that the spectrum be located on the unit circle. 
One of the new developments has been the observation 
that although hyperbolic  problems are reversible,  irrever- 

sible  difference  schemes for them  can  be quite useful. 
Such a difference  scheme  was  introduced by Friedrichs in 
Ref. 4. In some  nonlinear  cases the slight  dissipation which 
makes the difference  scheme  irreversible  is  even  indis- 
pensable. 

It is not hard to show that the von  Neumann  condition  is 
necessary for the stability of  schemes  with variable  coef- 
ficients as well.  Von Neumann  conjectured that  it is  also 
sufficient;  something  like  this has been demonstrated by a 
surprisingly elaborate extension of the energy  method. 

In the hands of Courant, Friedrichs, and Lewy,  energy 
inequalities  were  derived from energy  identities, obtained 
from difference  analogs of formulas for the differentiation 
of products.  This  has been  generalized and systematized  by 
Lees'5  who has  devised a large  number of inequalities  in 
this way. It was  observed  in  Ref. 11 that all such  energy 
inequalities  can  be obtained by the purely  algebraic  method 
of expressing  certain  non-negative  symbols as sums of 
squares; according to Hilbert's  theory of higher order 
positive  forms, this is not always  possible and so the classi- 
cal energy  method  has  inherent  limitations.  Nonetheless, 
it is  possible to derive  energy  inequalities  without  energy 
identities as was done, for instance, in Ref. 13 with the 
aid of a certain amount of dissipation, and in  Ref. 12 with 
the aid of nothing at all except  sufficient  differentiability 
of the coefficients. The theorem of Lax and Nirenberg 
reads: If the symbol  is a sufficiently differentiable  function 
of x ,  E and if IS(x, ()I 5 1 for all x and E, then the operator 
Ss satisfies the inequality. 

IlSsll I 1 + K6. (4) 

Obviously the expression of (4) implies  stability  in  any 
finite  time  interval. The more  delicate  problem of proving 
stability when the symbol  is not bounded by inequality (1) 
in norm but merely  satisfies the von  Neumann condition 
has been  handled by  Kreiss.' He found that if in addition to 
the von Neumann condition one  requires  dissipation in a 
definite  sense  then it is  possible to introduce a new norm 
equivalent to the L2 norm for which inequality (4) is  true. 
The proof of the surprisingly  delicate  matrix  theorems 
needed to  do this  have  been  simplified by  Parlett." 

As already  mentioned,  earlier  practical  needs  have  called 
for a whole  army of novel  difference  schemes.  Among  these 
one might  single out the crude but useful  method intro- 
duced by Friedrichs; the more accurate methods  devised 
by Du Fort-Frankel: by Lax-Wendr~ff,'~ and the high- 
order schemes  studied  by Strang?l and many  others. 
As more and more  complicated schemes are being tried 
for more and more  complicated  systems of equations in 
more and more  variables, the verification of the von 
Neumann condition, although merely algebraic, becomes 
quite difficult and is  often done numerically on the ma- 
chine. 237 
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Almost all problems  of  practical  importance  involve 
boundary  conditions as well as initial  conditions.  There is 
a large  body of practical  experience  with these and a 
modest  body of theory. An analog  of the von Neumann 
condition has been given by  Godunov and Ryabenki? 
using some  observations  of  Gelfand. In spite of interesting 
beginnings,  such  as  the  work of Strang” who has found 
a relation to the theory of Wiener-Hopf  equations, and 
some  recent  work of Kreiss’’ using  high-order  extrapola- 
tion, there is as yet no general  theory  for  problems  with 
variable coefficients. 
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