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Hyperbolic Difference Equations: A Review of the
Courant-Friedrichs-Lewy Paper in the Light of

Recent Developments

Abstract: The portion of the Courant-Friedrichs-Lewy paper [Math. Ann. 100, 32 (1928)] that was devoted to hyperbolic difference
equations is critically reviewed in terms of its basic contribution to the numerical solution of partial differential equations. Some subse-
quent developments are then discussed, including recent literature related to the von Neumann condition, some irreversible schemes,
generalizations of the energy method, some new difference schemes, and mixed initial boundary value problems.

Introduction

At the time their paper was written, Courant, Friedrichs
and Lewy” were interested in difference equations as a
tool for proving the existence of solutions of partial dif-
ferential equations; discretization was a way of construct-
ing a sequence of finite dimensional problems whose
solutions tended in the limit to the solution of the con-
tinuous problem.** For this reason the authors developed
a method which was applicable to equations with variable
coefficients; for the same reason they were not interested
in studying all possible difference schemes but were satisfied
when they found one that worked.

Today the methods of functional analysis—projection,
mollification-—are so well developed (thanks in large part
to the pioneering work of Friedrichs) that descent to the
finite dimensional case is not necessary for proving the
existence of solutions of linear problems.f On the other
hand, the onset of the Second World War brought an
unprecedented (and unabated) pressure on the technologi-
cal centers to provide numerical solutions of partial-
differential equations; here the ideas introduced by
C-F-L—the famous stability condition, energy inequalities,
and the leap frog difference method—turned out to be
basic. This is an outstanding instance of research under-
taken for purely theoretical purposes§ turning out to be of
immense practical importance.

® Courant Institute of Mathematical Sciences, New York University.

** Courant was inspired partly by Euler’s use of discretization in the
calculus of variations. Also, the authors were aware of the importance of dif-
ference methods for elliptic equations.

1 Quite to the contrary, the difference method may be the only effective
one for dealing with severely nonlinear problems, as indicated by the success of
Glimm’s recent work on shock waves.$

§ Curiously, in the late twenties the authors were interested through the
work of Prandtl] in hyperbolic problems of compressible gas dynamics. They
considered solving these equations numerically by the method of character-
istics but not by difference schemes.

The difference schemes of Courant-Friedrichs-Lewy

Here is a brief description of Part II of the paper, con-
cerning hyperbolic equations: The authors start by point-
ing out that a scheme cannot be a convergent one if the
ratio of the time and space mesh is so large that the domain
of dependence of a point in the difference scheme does not
contain all points of its domain of dependence in the dif-
ferential equation; such a scheme ignores information
which does influence the value of the solution of the dif-
ferential equation. This fact is obvious to those who are
used to thinking in these terms but was very much un-
suspected by quite a large number of otherwise eminent
scientists who, in their haste to use too large a value of
At, fell into the trap of using difference schemes that could
not converge and which in fact did diverge spectacularly.

The authors start with the centered difference scheme
for the one-dimensional wave equation where Ax/At
equals the sound speed. The resulting difference equations
are extremely simple and can be solved explicitly. Then
the authors turn to the centered difference scheme for the
wave equation on an arbitrary grid and remark that they
will not bother to write down an explicit representation of
the solution because “it is too complicated to yield a
limiting value easily as the meshwidth tends to zero;”
thereby they failed to discover the von Neumann stability
criterion.*

The convergence of the difference scheme is proved by
carrying over the energy method developed by Friedrichs
and Lewy for the wave equation.” The crux of that method
is a quadratic integral identity obtained as follows: multi-
ply the wave equation by U,, write the product as a di-

* The explicit representation was given by Lewy in a paper!¢ published
twenty years later.
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vergence, integrate it over a lens-shaped domain, convert
the volume integral into a surface integral and finally
recognize that if the faces of the lens are space-like, the
integrals over them are positive definite. To derive an
analogous identity for their scheme, the authors multiply
the difference equation by the centered approximation
to U,; they write the resulting quadratic function as a
divergence sum over a tetrahedral region bounded by
diagonal planes and observe that if the faces of the tetra-
hedron slope steeper then the characteristic cone, then the
surface sums over them are positive. Although the authors
do not emphasize it, the writing of the quadratic function
as a divergence is much trickier for the difference scheme
than for the differential operator; in the differential case
it is merely integration by parts; once one has seen it
he can almost certainly remember it or reconstruct it.
In contrast, although I have seen the difference identity
(8) [on page 63 of the original paper] a dozen times,
whenever I prepare to lecture on it I waste half an hour in
trying to rediscover it, then at last resort to looking it up.

In the last section of the paper the authors give an
ingenious difference scheme for a certain class of second-
order hyperbolic differential equations with a cross term
and prove its convergence when the cross term is not too
large. They observe that by a change of variables one can
bring locally every hyperbolic equation into a form where
the cross term is not too large. This is satisfactory if one
is interested, as the authors are, in proving existence of
solutions, but it may be decidedly unsatisfactory if one is
interested in calculating solutions. Nevertheless, the
method may be practical for equations to which it is
applicable.

An interesting feature of this method (one not mentioned
explicitly by the authors) is that the restriction that has to
be placed on At¢ to achieve convergence is more severe
than merely requiring that the domain of dependence of
the difference scheme contain the true domain of de-
pendence.

Once the energy identities are derived, the authors prove
convergence swiftly and elegantly. They observe that be-
cause of the positivity of the terms entering the energy
identity, one obtains inequalities for the energy norm of
the solution at time ¢ in terms of the energy norm of the
initial data. Analogous estimates are derived for the higher
difference quotients of the solution by observing that
these difference quotients satisfy an equation similar to
the original one, obtained from it by differencing. With
these bounds for the difference quotients, an estimate*
for the maximum norm in terms of the energy norm of dif-
ference quotients is used and compactness is invoked to
select a subsequence which, together with its difference

® This is the discrete analog of the Sobelev inequality; the continuous ver-
sion of that inequality, although not its sharpest form, was well known in
Géttingen as an important tool in the theory of partial differential equations.

quotients, converge to a limit. That limit solves the original
differential equation and has the prescribed initial data;
on the other hand, it follows from the energy identity for
the differential equation that there can be no more than
one such solution. This shows that any other convergent
subsequence has the same limit and therefore the original
sequence itself converges.

This indirect argument gives no error estimates; of
course, using the energy inequality the authors could have
estimated the difference between exact and approximate
solution with the greatest of ease, had they bothered.

Some recent developments

We turn now to recent developments; these might be
grouped coveniently into the following five subjects:

1) the von Neumann condition,

2) irreversible schemes,

3) generalizations of the energy method,

4) new difference schemes, and

5) mixed initial and boundary value problems.

The new developments will be illustrated rather than
summarized. (For a full treatment we recommend the
forthcoming second edition of Robert D. Richtmyer’s
book, Initial Value Problems).

For simplicity we shall discuss first-order systems and
one-level difference operators associated with them rather
than the second-order equations and second-level schemes
discussed in C-F-L. In a one-level scheme the value of the
approximate solution at time ¢ 4 & is obtained by applying
an operator S; to its values at time ¢. S; is a difference
operator of the form S; = Z 5.T%, a a multi-index, T
translation by &a, and s, a matrix-valued function. The
operators S; act on vector-valued functions normed by
the L* norm.

In C-F-L, the authors proved the convergence of their
difference schemes by energy inequalities; in the operator
language introduced here these express the uniform bound-
edness of powers of the operators S, i.e., the existence of
two constants a and b such that

[183]| <rae’*, where ¢ = ns, (1)

the norm being the L? operator norm. A scheme satisfy-
ing (1) is called stable; the procedure of C-F-L demon-
strates that every stable scheme is convergent. It turns out
that something like the converse of this also is true: a
scheme which converges for all square integrable data is
stable in the sense of (1). Schemes which converge only
for C” data need be stable in a weaker sense only that
these exists an integer N such that

[183]] < ae’'c", where t = nd.
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The accuracy of a difference scheme is measured by how
closely solutions of the differential equation satisfy the
difference equation. A scheme is accurate of order m if
for every smooth solution u of the differential equation
there is a constant k such that

|Ju(t + &) — Ssu(n)|] < k8™ (2

The method of C-F-L shows that if a scheme is stable in
the sense of (1), and accurate of order m in the sense of
(2), then for smooth data the overall error is O(8™):

[lu(®) — S(0)|| < pe* 8", ¢t = ud. 3)

Somewhat surprisingly, Strang proved in Ref, 20 that the
same error estimate (3) holds also for weakly stable schemes
which satisfy merely (1), provided that the solution u is
sufficiently differentiable.

Weak stability is very hard to verify for operators with
variable coefficients since it is an unstable concept, in the
following sense: If S ; satisfy (1)y, an operator S{ = S; + M
where the ||[M|| < const. X §, need not satisfy (1)y. In
contrast, the class of strongly stable operators satisfying
(1) is stable in this sense.

In Ref. 23 Thomée makes a precise and surprisingly
delicate study of the degree of stability of a class of opera-
tors in the maximum norm.

The symbol (amplification matrix) of the operator S is

S(x, £) = D Sax)e*t.

For operators with coefficients independent of x it follows
immediately from the isometric character of Fourier trans-
formation that necessary and sufficient for stability is the
uniform boundedness of all powers of the symbol. This
reduces a stability question to a pure matrix problem;
this matrix problem, however, turns out to be trickier
than it seems at first glance. An obvious necessary condi-
tion, the famous one due to von Neumann, is for the
spectrum of such a matrix to lie in the unit disc in the
complex plane. An obvious sufficient condition is for
the norm of this matrix to be <1. A non-obvious suf-
ficient condition is that the numerical range of the matrix
be in the unit disc.' *** Necessary and sufficient conditions
were given by Kreiss® and Buchanan;' see also Morton'"
and Morton and Schechter.*®

If the difference scheme is reversible, i.e., can be used
to compute solutions both forward and backward in time,
then both positive and negative powers of the symbol have
to be bounded. In this case the von Neumann condition
requires that the spectrum be located on the unit circle.
One of the new developments has been the observation
that although hyperbolic problems are reversible, irrever-

sible difference schemes for them can be quite uvseful.
Such a difference scheme was introduced by Friedrichs in
Ref. 4. In some nonlinear cases the slight dissipation which
makes the difference scheme irreversible is even indis-
pensable.

It is not hard to show that the von Neumann condition is
necessary for the stability of schemes with variable coef-
ficients as well. Von Neumann conjectured that it is also
sufficient; something like this has been demonstrated by a
surprisingly elaborate extension of the energy method.

In the hands of Courant, Friedrichs, and Lewy, energy
inequalities were derived from energy identities, obtained
from difference analogs of formulas for the differentiation
of products. This has been generalized and systematized by
Lees'® who has devised a large number of inequalities in
this way. It was observed in Ref. 11 that all such energy
inequalities can be obtained by the purely algebraic method
of expressing certain non-negative symbols as sums of
squares; according to Hilbert’s theory of higher order
positive forms, this is not always possible and so the classi-
cal energy method has inherent limitations. Nonetheless,
it is possible to derive energy inequalities without energy
identities as was done, for instance, in Ref. 13 with the
aid of a certain amount of dissipation, and in Ref. 12 with
the aid of nothing at all except sufficient differentiability
of the coefficients. The theorem of Lax and Nirenberg
reads: If the symbol is a sufficiently differentiable function
of x, £ and if |S(x, £)| < 1 for all x and £, then the operator
S; satisfies the inequality.

[18s]] < 1 + Ka. 4)

Obviously the expression of (4) implies stability in any
finite time interval. The more delicate problem of proving
stability when the symbol is not bounded by inequality (1)
in norm but merely satisfies the von Neumann condition
has been handled by Kreiss.” He found that if in addition to
the von Neumann condition one requires dissipation in a
definite sense then it is possible to introduce a new norm
equivalent to the L® norm for which inequality (4) is true.
The proof of the surprisingly delicate matrix theorems
needed to do this have been simplified by Parlett.*®

As already mentioned, earlier practical needs have called
for a whole army of novel difference schemes. Among these
one might single out the crude but useful method intro-
duced by Friedrichs,® the more accurate methods devised
by Du Fort-Frankel,” by Lax-Wendroff,"* and the high-
order schemes studied by Strang,”* and many others.
As more and more complicated schemes are being tried
for more and more complicated systems of equations in
more and more variables, the verification of the von
Neumann condition, although merely algebraic, becomes
quite difficult and is often done numerically on the ma-
chine.
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Almost all problems of practical importance involve
boundary conditions as well as initial conditions. There is
a large body of practical experience with these and a
modest body of theory. An analog of the von Neumann
condition has been given by Godunov and Ryabenkii’
using some observations of Gelfand. In spite of interesting
beginnings, such as the work of Strang” who has found
a relation to the theory of Wiener-Hopf equations, and
some recent work of Kreiss'® using high-order extrapola-
tion, there is as yet no general theory for problems with
variable coefficients.
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