
1. J. Boland

G. D. Granito

A. U. Marcotte
B. U. Messina

J. W. Smith

54

The IBM Systeml360 Model 9 1 : Storage System

Abstract: This paper discusses the design concepts employed in the development of the IBM System/360 Model 91 storage system.
Particular attention is paid to the exploitation of System/360 capabilities in the areas of large storage capacity, concurrent operation,
and flexibility, as they apply to the highly overlapped Model 91 system.

An interleaved set of main storage modules is used with the Model 91 to help mask the difference between machine cycle time and
storage access time. The set is connected to the central processor, peripheral storage control element and maintenance console by three
time shared busses-one for addresses, one for data-in, and one for data-out. The main storage control element (MSCE) controls these
busses to maximize the storage access rate. To achieve minimum access time, requests are normally sent directly to the storage modules.
The proper module is selected by the MSCE, the address gated in, and the storage cycle started. If the module is busy from a previous
request, the request is stored in a request stack for a later attempt. If the request is accepted, it is stored in an accept stack. This stack
controls the data-out gating of the storage modules, and notifies the CPU of the destination of returning data. It also furnishes module
busy information which controls the recycling of rejected requests.

An important feature is the ability of the MSCE to logically sequence store/fetch requests, by interlocking the rejected requests with
the current request without any degradation of minimum access time. Additionally, each address sent to the MSCE is compared with
the addresses of waiting and in-process requests. This allows serial fetching of two adjacent single words of a double-word storage
cycle. Fetches following stores to the same location can be executed without waiting for a fetch storage cycle.

Peripheral storage is provided in the system for both block transfers of data and individual word fetches and stores. All requests to
peripheral storage are sent via the peripheral storage control element.

The MSCE is synchronized with the CPU and uses the same machine cycle. Ideally, a request can be honored each machine cycle,
but the actual rate is determined by storage module conflicts. The storage system performance is measured in access rate and access time.
The MSCE has been simulated to measure the effects of storage speeds, degree of interleaving, and changes in MSCE controls.

Introduction

In the development of a highly concurrent processing sys-
tem, there are two principal considerations :

The maintenance of a high rate of information flow
through the processor requires a storage control system
capable of transferring large volumes of data with a mini-
mum of interference.

Throughput requirements dictate that the input/output
handling and buffering capability be equally efficient.

The versatility of the Model 91 can be partly ascribed
to a highly overlapped and flexible storage control system
which satisfies these criteria. This system is based on a
hierarchic concept of storage, with implications of a wide
performance range which can vary according to applica-
tion.

This paper is intended as a description of that system. It
is divided into four major sections, to correspond to the

points of view from which the design may be considered.
The first section discusses the hierarchic concept and
overall design objectives. Section two describes the main
storage control element (MSCE) which serves as receptor
of processor references and controller of all high-per-
formance main storage references. It identifies the require-
ments imposed on the MSCE from the points of view of the
processor and the peripheral storage control element and
explains how these requirements were met. (A &way,
interleaved, 750-nanosecond main storage is assumed for
the description.) Section three deals with the peripheral
storage control element (PSCE), which controls the flow
of data among the peripheral elements of the system. The
fourth section explains the characteristic interaction of the
elements of the hierarchy, as exemplified by the main and
peripheral storage control elements.

IBM JOURNAL JANUARY 1967

I

General design considerations

0 The hierarchic concept

The hierarchic storage is characterized by its multilevel
structure, consisting of a number of separate but inter-
connected components of varying sizes and speeds. Suc-
cessful operation requires a versatile control scheme and
depends upon the ability of the operating system and
controls to move freely from one level to another in the
hierarchy.

The Model 91 storage system has three principal media:

1) High performance main storage: a storage of inter-
mediate size and capacity. Variations in this capacity and
in speed and amount of interleaving provide a measured
performance characteristic which lends itself to applica-
tion “tailoring.”
2) Extended main storage: This medium extends the
capacity of core storage to accommodate the total ad-
dressing potential of System/360.
3) File storage and input/output

Each of these elements is monitored and controlled by
its own storage control function (Fig. 1). Within the defini-
tion of a continuous addressing spectrum (pipeline*), it
is possible to establish boundaries within which each con-
trol function can operate.

To fully exploit the hierarchic concept, the interconnec-
tion scheme must be able to move large quantities of data
in several directions and at varying rates. As an example
of this requirement, consider the K-K’ configuration of
the Model 91. The K component, a high performance main
storage, can develop a 172 megabyte/sec rate. The K’
component, extended main storage, can also develop a
172 megabyte/sec rate, even though it is relatively less
accessible to the processor. (Although interference factors
can decrease the actual rates, interference is minimized
because there is a choice in the configuration of 32 storage
units from which to select.) In addition the scheme must
accommodate the concurrency of operation required by
the processor (potentially 133 megabytes/sec), a storage
channel, or data mover (capable of transfers from any
point to any point at a rate up to 64 megabytes/sec), and
files and 1/0 (5-10 megabytes/sec combined rate).

To meet these requirements the control system would
ideally be able to create as much data transfer potential
as there is storage potential. In the Model 91 K-K‘ there
exists a potential data demand of 270 megabytes/sec and
a potential storage availability of 344 megabytes/sec. (The
demand is equivalent to a 72-bit word every 30 nano-
seconds required to fully satisfy all users of storage.)
Other configurations can extend the potential availability
to more than 1,000 megabytes/sec.
”___

“Pipeline,” in this case, means a continuous stream of operations
or instructions, capable of being executed concurrently without neglect-
ing any serial dependence among successive operations.

HIGH PERFORMANCE EXTENDED MAIN

I
I I
L”_L“

C I MAINTENANCE e l
”

i””1 -
PERIPHERAL PROCESSOR

1/0 CHANNELS;

Figure 1 Block diagram of storage system.

Figure 2 Model 91 address flow.

HIGH PERFORMANCE
MAIN STORAGE MAIN STORAGE

A + B
CHANNEL
STORAGE‘ A C B

FILES AND
INPUT/OUTPUT

FUNCTIONAL REPRESENTATION

In practice, however, there are constraints. For example,
the machine cycle (60 nsec) generally determines the maxi-
mum pipeline transfer rate, and the word length cannot be
substantially greater than 72 bits because of cable and skew
problems. Consequently, one must look to concurrency of
transfer to achieve high efficiency. The organization of
the Model 91 storage control system is therefore charac-
terized, within the hierarchic concept, by this multiple
transfer potential. The separate, bounded control functions
mentioned above provide each type of storage with its
own transfer path (Fig. 2). Control of high performance
main storage resides in the main storage control element
(MSCE), while extended main storage and input/output
are controlled by the peripheral storage control element
(PSCE).

The paragraphs below summarize the specific design
objectives which were developed for these units, and sub-
sequent sections describe the operation of each.

0 Control system design objectives

The key to success in a highly parallel pipeline processor
is the ability to react quickly when the pipeline is diverted.
Diversion occurs in the form of branching in general, and
data-dependent branching in particular. Effective storage I

MODEL 91 STORAGE SYSTEM

reaction implies that a new flow be initiated in minimum
time. Consequently, storage access time must be made as
short as possible. Diversion of the pipeline in the concur-
rent system also implies that many accesses will be initiated
without being used. It follows, therefore, that the storage
control system must be able to provide many more trans-
fers than can actually be used by a particular problem.

The design objective of the Model 91 was the achieve-
ment of a wide performance range which could vary with
system application. This imposed on the storage system
the following general requirements :

Control of highly interleaved storages of different speeds.
Overlap of a multiplicity of high speed 1/0 devices.
Development of a very high performance storage

Minimum disturbance to the processor to achieve a

Ability to accommodate advanced storage and 1/0

Flexibility to react quickly to various application needs.

To develop these objectives, simulation methods were
used to test proposed designs for the MSCE. The effects
of interleaving, storage speed, and buffering were observed
to determine their impact on processor performance. The
impact of various memory cycles on overlapped 1/0
channels, under each of several design conditions, was
also observed by simulation, to determine the form of the
PSCE.

With the refinement provided by simulation, the general
requirements were defmed in terms of the following objec-
tives for the final storage system design:

channel.

wide performance range.

devices.

1) An overall design relatively insensitive to storage speed.
2) Minimization of access time to the processor while
maintaining high data rates.
3) Control of large numbers of small storage arrays.
4) I/O control for optimization of overlap operations.
5) Elimination of multiple busses to the individual storage
units.
6) Buffering of mismatch between fast 1/0 and slow
storage.
7) Storage protection for highly interleaved variable sets.

By combining proven techniques with novel concepts
the design of the MSCE and the PSCE has met these
objectives very well. The sections which follow describe
that design (and its operation) in detail.

Main storage control element

High performance storage principles

From a CPU viewpoint, the ideal storage system would
be one large storage unit with a cycle time equal to the

56 basic machine cycle. The CPU can then issue storage

requests on any, or every, cycle. Since this is impossible
with the fast cycle of the Model 91, the technique of inter-
leaving is used. Consider a main storage system composed
of several (4 to 16) self-contained storage units, which are
capable of simultaneous operation. Contiguous addresses
are interleaved among the units in a sequential manner.
For example, the sequential address string N , N + 1,
N + 2, N + 3 would be stored in four different units. The
storage system can service a string of sequential requests
by starting, or selecting, a storage unit every cycle until
all are busy.

Interleaving also improves the servicing of a string of
random addresses, since the large number of units reduces
the probability that an address will go to a busy unit. Thus
the access rate of the storage system is a function of the
number of interleaved units, i.e., of the interleaving factor.
In practice, the interleaving factor is a binary number,
which permits storage address allocation to be determined
be decoding the low order bits of the address (for example,
the three low order bits for interleaving by 8, or Z3).

Since the CPU issues storage requests at a one per cycle
(or slower) rate, the use of a common set of busses on a
time-shared basis is suggested. That is, on every cycle
a new address can be transmitted to all storage units over
an address bus. The same is true for data words on the
busses to and from storage. Since bus cycles can be wasted
because of storage conflicts, the control of the busses
affects the maximum data rate.

Another performance criterion for the storage system
is the access time, which is the time which elapses between
the issuing of an address by the CPU and the return of
data to the proper sink register. The minimum access
time is the sum of the storage unit read time and the cable
and logic delays in the MSCE. The average, or probabilis-
tic, access time (which includes the effect of storage con-
flicts) is limited by the interleaving factor and the storage
cycle time. It also depends upon the organization of the
MSCE, which must make some provision for conflicts.

Design requirements

Since the ultimate performance of the storage system is
limited by the storage units themselves, obvious require-
ments are that the MSCE must minimize its share of the
access time and optimize the data rates by properly con-
trolling the time-shared busses. Certain logical require-
ments are imposed upon the MSCE by the design of other
elements of the Model 91, particularly the instruction unit
and the PSCE.

The input to the MSCE from the instruction unit is a
storage request, which consists of an address, a return or
sink address to route the returning data, control bits to
define the operation more precisely, and data for store
operations. The MSCE must act on the request by selecting
the proper storage unit and furnishing it with an address

BOLAND, GRANITO, MARCOTTE, MESSINA AND SMITH

P S C E q

CFU

CONSOLE (MC)
MAINTENANCE

k j : I

STORE ADDRESS

+
CONTROLS

STORAGE ADQRESS BUS
TIT

REQUEST ADDRESS
STACK COMPARE

CONTROLS
+

T 1

ADDRESS
COMPARE

CONTROLS

I

PSCE - CPU

MC

SINK ADDRESS RETURN BUS
MEMORY 1

HIGH PER-
FORMANCE

STORAGE
UNITS

L

PSCE MC PSCE MC

CPU
PSCE -

MC

STORAGE BUS OUT

STORE

BUFFERS

r
PSCE

STORAGE BUS IN

MC "?d
Figure 3 Block diagram of MSCE organization.

PE
*
iCE

and data for stores. In case of a conflict, the MSCE must
hold the request for later recycling, generally without
stopping the instruction unit. Several requests can be in
the MSCE and in storage at the same time, and these need
not necessarily be handled in sequence. The various re-
turning data words are correlated with their sinks by the
MSCE, which sends the sink address to the CPU a cycle
before the data.

In general, requests do not require servicing in sequence,
but can instead be serviced in an order which will optimize
bus utilization. There is a requirement, however, that the
MSCE be able to correctly sequence several stores, or
stores and fetches, to the same address.

The storage units considered in the design of the Model
91 have word sizes of 72 bits, including parity, and most
units of the CPU are designed to use this word size. Fixed-
point and single-precision operations, however, require
36-bit words. Since addresses sent to the MSCE and to the
storage units define 72-bit words, two storage cycles could
be used in accessing the two halves of a storage word. To
avoid this performance degradation, the requirement
known as Multi-Access was placed upon the MSCE. This
feature allows a memory data register to be read out as
many times as desired without recycling the storage unit.

The PSCE carries different requirements because it is
connected to the storage and input/output channels.
The storage channel objectives include the ability for the
PSCE to make requests to the MSCE in bursts, at a one
per cycle rate. In addition, requests by the input/output
channels via the PSCE could not tolerate uncontrolled
delays in the MSCE caused by storage or bus conflicts,

because overruns would result. Thus it was decided to give
the PSCE the ability to monitor the busy status of main
storage, and to reserve main storage units. Given this
ability, the PSCE can control its requests to the MSCE
so that they are guaranteed acceptance. This will be dis-
cussed more fully in later sections of this paper.

The third requesting unit is the maintenance console,
which stores and fetches from manual keys, and also
initiates the logging in storage of machine status for
diagnostic purposes. Since a high data rate is not impor-
tant, it was judged sufficient to allow the console one
request in process at any time.

MSCE Organization
A main storage control element, designed to meet the
above requirements, is diagrammed in Fig. 3. It consists
of the following functional areas:

Store address registers (SARs), which hold addresses of
stores pending availability of store data.

Store data buffers, which hold store data words from
all areas of the processor pending availability of the proper
storage unit.

The request stack, a set of four registers which holds
rejected requests from the processor pending availability
of the storage unit, and thus buffers the processor from
storage conflicts.

The accept stack, a set of registers which holds informa-
tion on accepted requests in process.

The storage address bus (SAB), which transmits ad-
dresses to all storage units and to the PSCE. 57

MODEL 91 STORAGE SYSTEM

REQUEST STACK

Figure 4 Flow chart of CPU fetch.

The sink return bus, which transmits the sink address
fetch to all sink registers one cycle before the fetch data.

The storage-bus-out (SBO), which transmits 64 bits and
parity of data from storage units, the PSCE, protect
storage and the maintenance console keys to all data sinks.

The storage-bus-in (SBI), which transmits 64 bits and
parity of data from processor-filled data buffers, the PSCE,
and the maintenance console to storage.

Protect storage, which stores the keys required for the
System/360 Protection Feature.

Controls

If there are no conflicts, the MSCE can accept a request
each cycle from one of its sources-the processor, PSCE,
or maintenance console. During each cycle the MSCE
controls determine which source will be allowed a request,
and gates are conditioned to put the address on the address
bus. This bus is also used to load the SARs, which hold
store addresses until the data word is generated by the
processor. The main feature of the address bus is its direct
path to storage, with no intervening buffers, to minimize
access time.

The general organization can best be understood by
considering a simple fetch request. During the cycle in
which a request is gated on the address bus, the address
bus controls determine its disposition. A successful request
is sent to the proper storage unit, or to the PSCE if ex-
tended main storage is requested. A main storage request
is also gated into the top position of the accept stack, the
push-through stack which holds pertinent information

58 about all requests in process.

1 I

Any rejected processor request is stored in a position
of the request stack for later recycling. Requests are not
taken from the PSCE or maintenance console unless they
can be guaranteed acceptance, and thus never reside in
the request stack.

Each address on the address bus is compared with
addresses in the SARs, the request stack and the accept
stack. Comparison with an SAR forces rejection of the
request and it is stored in the request stack, since its
acceptance would cause an out-of-sequence fetch. Com-
parison with an address in the accept stack implies that
the desired word is being fetched by a previous request,
and can be obtained again without selecting a storage unit
or waiting for it to “go not busy.” This is the Multi-
Access feature discussed in a previous section. As imple-
mented, it applies to a fetch following either a fetch or a
store.

Comparison with an address in the request stack causes
the request to be tagged for a future Multi-Access opera-
tion, and to be gated into another position of the request
stack. The presence in the stack of an outstanding request
for the particular address causes the second request to be
rejected, keeping the two in the proper sequence. The flow
chart in Fig. 4 summarizes the handling of the fetch request
by the address bus logic. If the request is accepted, the
MSCE generates a select pulse to start the proper storage
unit. The selected unit latches the address, which is on the
bus common to all units, and starts its cycle.

While the storage unit is cycling, the request is moving
down the accept stack, one position each machine cycle.
The stack contains the bit code designating the selected
unit for n-2 positions, the word address for five positions,

BOLAND, GRANITO, MARCOTTE, MESSINA AND SMITH

p-ACCESS TIME = 10 CYCLES (K = 10) .
BUSY,~TO~PRIORITY--"- -I I

BUSYN.TO-REQUEST---+ I

BUSY,-TO.PSCE t i

ADDRESS TO SAB H

MEMORY. CYCLE I I

ACCEPTSTACK POSITIONSI I I * I I I I I I 7 I I lo I I
I 1

DATA TO sBr
STORE

DATA-IN-GATE AT MEMORY h

Figure 5 Timing diagram for CPU fetch.

and the sink address of the fetch for k-2 positions, where n
is the number of machine cycles per storage cycle, and k is
the smallest number of machine cycles required for access.
Storage-busy information is obtained from the designation
field of the stack, since a unit is busy only if its code is in
any stack position. The same field is used to generate the
data out gate (DOG), by decoding the k-3 position, and
sending the decoded DOG lines to the proper data lines
from storage. The DOGS are generated by the MSCE
rather than by the individual storage units, to allow for
Multi-Access operations. The full address is kept in five
positions for comparisons for Multi-Access, as previously
described.

The sink address is delayed in k-2 positions, the last
position being used to defermine the sink for which the
fetch was made. The sink address is decoded, and the
correct sink register is conditioned one cycle before the
fetch data appear on the SBO. If there was no memory
conflict, the data word is gated into the conditioned sink
register k cycles after initiation of the request. Figure 5 is
a timing chart for a simple fetch, where k = 10, the case
for a 750-nanosecond memory unit. For completeness,
store timing is also shown. As shown in the flow chart, the
request could be rejected and gated into the request stack
for one of the following reasons : (1) The requested storage
unit was busy; (2) the request was to the PSCE, and the
PSCE inhibit line (queue full) was on; or (3) the address
compared with an address in a SAR or the request stack.
Priority logic controls the re-cycling of rejected requests
in a manner that optimizes the use of the address bus,

DATA TO SINK

DATA LATCHED AT SINK a

protects against improper sequences, and guarantees ac-
ceptance of the request.

Accept stack

The accept stack deserves a more detailed explanation
since it generates many of the necessary control functions.
The relation between memory cycle time, access time and
depth of the stack has been given above. Figure 6 diagrams
a stack with proper depths for a 750-nanosecond unit, with
overall access to the processor of ten cycles.

The problem that led to the adoption of the accept
stack was the requirement for three kinds of busy informa-
tion from each main storage unit. This was complicated
by the fact that multi-accesses to a unit could effectively
make it busy for varying periods. The accept stack solved
this problem, with several by-products, as shown by the
following list of its functions :

1) Stores the coded designation of each busy storage
unit, from which busy information is derived.
2) Delays the sink addresses, and correlates them with
their respective data words.
3) Generates data out gates to gate fetched data words
to the SBO at the proper time.
4) Stores the main storage address for five cycles, to com-
pare with requests on the bus and identify Multi-Access
cases.
5) Aids in maintenance, by effectively allowing single
cycling of main storage fetches, and by correlating various
errors with the requests causing them. 59

MODEL 91 STORAGE SYSTEM

r”E COMPARE

11

I 1

1 PSCE X
DATA OUT GATE (DOG)

(PER MS UNIT)
1

SINK ADDRESS
RETURN DECODER

SNAPSHOT REGISTER
ADDRESS

T TO CONSOLE

TO PSCE

--TO CPU

Figure 4 Block diagram of accept stack organization (750-nsec storage unit).

In Fig. 6, the stack itself is seen to consist of three major
fields with varying depths. The deepest field, storage unit
designation, is used to generate busy information and data
out gates. Each position has a decoder, the output of
which identifies a storage unit as busy to any request
placed on the SAB. In cases of Multi-Access, the same code
can appear in more than one position. The three types of
busy information, busy-to-select, busy-to-priority and
busy-to-PSCE are generated by examining eleven, ten and
eight positions respectively as shown. They represent
varying degrees of “look-ahead” on busy status. Their use
will be explained more fully in the section on controls.

Position 7 is decoded to generate data-out gates. This
means that the seven-cycle delay through the seven posi-
tions plus the communication time to the storage unit
equals the internal access time of the unit.

The “sink and control” field is used mainly to delay the
sink address sufficiently to correlate it with returning data.
A total of eight cycles in the push-through stack, plus
communication time to the sink registers, equals the proper
delay to select the sinks one cycle before the return of data.
This field is used also to carry error information, which is
inserted in the proper position depending upon the source
of the error. For example, if an address parity error is
detected at storage an error bit is inserted in position
three, since the request causing the error has been shifted
down to that position.

The address field is used to compare for Multi-Access
conditions. Because of circuit loading limitations on the
address bus, the depth is limited to five positions. However,

60 machine simulation runs were made on a variety of prob-

lems with different depths, and fortunately no improvement
was noted with increased depth. The address field is used
also, in conjunction with the aforementioned error bits,
as a maintenance aid. If an error bit is detected in position
5, indicating that an error was associated with the partic-
ular request, the address field is gated into a special “snap-
shot” register and saved for later use in diagnostics.

Controls

The controls in the MSCE consist explicitly of two func-
tions. First, a decision must be made as to which address-
ing source should be gated to the address bus. Second,
given some address on the address bus, a decision must
be made as to which storage unit should be selected, if
any. Within each control function there are, of course,
many other subtle decisions required to effect logical
sequencing. Implicit control of SBO, SBI, and sink ad-
dress returns is a function of the push-down codes in the
accept stack.
For the first decision, priority, the general order of service
is :

1) PSCE to (main) storage.
2) Maintenance console to storage.
3) Request stack to (main) storage for Multi-Access.
4) SAR to storage.
5) Request stack to storage.
6) Processor to storage.

A new priority decision is made every cycle, resulting in a
time-multiplexed pipeline of priority-address bus-
fetch/store.

BOLAND, GRANITO, MARCOTTE, MESSINA AND SMITH

When no requesting source of priority higher than the
processor requires the SAB, processor fetch requests are
gated to the SAB (usually on the cycle following the
address generation) without a prior test of storage availa-
bility. With a sufficient interleave factor and a short storage
cycle the requests seldom encounter busy units. Thus the
requirement of minimum access time can be attained. AI-
though store requests are held in SAR’s where a storage-
busy test could be performed, the SAR’s are gated to the
SAB without the test. Thus the SARs are unloaded as soon
as possible to make them available again to the instruction
unit, which considers a store operation completed once
it loads a SAR.

Simulation has demonstrated that recycling of requests
from the request stack after a fixed-time wait results in
secondary rejections which reduce bus efficiency and com-
plicate the control of real-time PSCE requests. Hence,
initially rejected processor addresses are recycled only once
to the optimized address bus, according to storage-avail-
able and first-in, first-out discipline.

Because PSCE requests for main storage require a very
high data rate, the address bus efficiency for the PSCE
must also be high. Hence, PSCE requests to main storage
are granted priority within the PSCE itself as a function of
impending availability of specific storage units.

To optimize the overlap of storage units, in priority
and on the address bus, their imminent availability (i.e.,
non-busy status) is as valuable as their actual availability.
Hence, three levels of busy status are decoded for each
storage unit :

1) Busy-to-PSCE signal, which turns off four cycles before
actual time-out of the storage unit.
2) Busy-to-priority signal, which turns off two cycles be-
fore actual time-out of the storage unit.
3) Busy-to-select signal, which turns off one cycle before
actual time-out of the storage unit.

These signals allow the MSCE to “look-ahead’’ in order:

To respond to a PSCE reservation for a storage unit,
acknowledging the availability of the unit. Four cycle
look-ahead covers the communication delay between the
MSCE and PSCE and allows the PSCE to execute a
priority cycle (busy-to-PSCE).

To execute priority for the maintenance console or
request stack, each of which needs to know when a specific
storage unit is to be available during an address bus cycle
(busy-to-priority).

To allow the generation of a select signal for a busy
storage unit during address bus time, if the unit is to be
available on the following cycle (busy-to-select).

The second control function is concerned with the dis-
position of the contents of the address bus on the cycle
following the associated priority cycle. When the address

bus is valid, the decoded main storage unit or the PSCE
is selected if available. If the unit to be selected is not
available, the request is routed into the request stack
where it resides until the desired storage unit becomes
available. When a main storage unit is selected, certain
fields are routed into the push-through accept stack for
use later in controlling data out gate (DOG) generation,
sink address returns, SBI, SBO, storage busy decode, and
Multi-Access compares. Special interlocks in the form of
address comparators (address bus vs. pending SARs and
pending requests in the request stack) order stores to the
same address and recognize and re-order out-of-sequence
store/fetch requests to the same address. These interlocks
also link these same store/fetch or fetch/fetch requests
to the same address for Multi-Access.

If extended storage is decoded, the address bus is gated
into a buffer in the PSCE, from which point the address is
decoded further to select the appropriate storage unit
according to the discipline of the PSCE. If this buffer is
not available the request is gated into the request stack
in the MSCE until the buffer becomes available. Note
that because of the PSCE-MSCE single buffer interface,
the PSCE can expand capacity, increase speed, etc., with-
out affecting MSCE control design.

Storage protection

The storage protection feature in the Model 91 performs
the same function as in other members of the System/360
family, which is the protection from unauthorized fetches
and stores. All attached storage is considered to be in
blocks of 2048 bytes, and a 4-bit key is kept in a protect
storage for each block. Each request initiates the read-out
of the proper address key, which is compared with a key
furnished by the requesting source. A mismatch effectively
cancels the operation.

Since a protect operation can be required on every
MSCE cycle, this suggests either an interleaved set of
protect storage units, or one unit with a 60-nsec cycle. If an
interleaved set is used, each unit must be of sufficient size
to store all keys required by the storage system. Further-
more, the access time of the unit must be fast enough to
cancel stores when mismatches are detected, a requirement
which becomes more difficult as the attachment of faster
units is considered. These factors, as well as the requirement
for adaptability to various storage units, led to the adop-
tion of a single high-speed protect storage. The 60-nsec
cycle requirement is met by implementing the protect
storage in extra-high-performance logic.

Variations of storage

Interfaces between the MSCE and other units have been
designed to allow variations in interleaving factor, capacity,
and storage speed. Simulation of a random addressing
source has demonstrated the relative improvement in 61

MODEL 91 STORAGE SYSTEM

\
MEMORY CYCLE = 2 CPU CYCLES

@ MINIMUM ACCESS = 3 CPU CYCLES

2 MEMORY CYCLE = 8 C W CYCLES
MINIMUM ACCESS = 6 CPU CYCLES

3 MEMORY CYCLE = 13 CPU CYCLES
MINIMUM ACCESS = 10 CPU CYCLES

I I I
4 8 16

INTERLEAVE FACTOR

I I I
4 8 16

VTERLEAVE FACTOR

Figure 7 Simulation results. (a) Average access time vs. interleave factor; (b) MSCE capacity vs. interleave factor.

average data rate that is encountered as interleaving and
speed are improved (see Fig. 7). The same simulation
indicates the average access time on a given storage unit
as a function of interleave factor. MSCE design accom-
modates the flexibility in storage configuration by modular
circuit replacement, yielding interleave factors of 4, 8,
or 16. Storage cycle time can range up to 750 nsec by
varying the number of vertical push-down positions in
the accept stack.

Note that the data rate and the average access time
improve almost linearly with improvement in storage
speed, whereas the interleave factor yields an exponentially
diminishing improvement (see Fig. 7). The theoretical
improvement due to interleaving can be achieved only by
diligent attention to optimal physical distribution of logic

62 and the connection of the interleaved units. Total logic

and cable delay from a requesting source to storage to
the data sink has been normalized to two cycles. Inter-
leaving of the operation of storage units greater than
16 ways would exceed the two-normalized logic and cable
delay cycles. The result is an increase in access time
because the physical expansion of logic and cabling is not
linear. The effect of interleaving, then, needs to be con-
sidered more than casually.

Peripheral storage control element (PSCE)

Design requirements

The governing requirements for the PSCE were twofold.
The first requirement was compatibility with other high
performance models of System/360. The second require-
ment was the maximization of storage utilization. The

BOLAND, GRANITO, MARCOTTE, MESSINA AND SMITH

first requirement helped define the minimum number,
types, and speed of 1/0 units that must communicate
through the PSCE. This did not, however, define the maxi-
mum capability. The second requirement pointed out a
need for something more elaborate than a switch to handle
the congestion that could develop from an attempt to
transfer data to and from extended main storage or high
performance main storage.

Bench marks

The requirements were such that a set of bench marks
was required to prove the superiority of any particular
concept. Three bench marks were defined and used during
the initial design phase for cost/performance evaluations.

Bench mark definition was difficult since little was
known about all the likely applications or 1/0 configura-
tions that would develop for the Model 91. Much was
known of special applications and problems but little was
known about the use of extended main storage. Before the
bench marks were defined, an attempt was made to answer
the following questions:

How much 1/0 would a typical Model 91 configuration
contain ?

What are the maximum data rates of the 1/0 units?
With the availability of high performance I/O, what is

the requirement for overlapping I/O?
What is the chaining requirement for high performance

What aggregate 1/0 rates would the PSCE be expected
to handle?

What is the storage range that the PSCE would be
expected to handle?

What is a typical size for storage configuration?
Should storage be interleaved? If yes, what should the

interleave factor be?
What are typical random rates for processor activity?
Should the Model 91 be able to share storage with

peripheral processors ?
What is the minimum acceptable storage channel rate?
What is the maximum transfer rate expected for the

peripheral processor ?

I/O?

The questions were not simply resolved. It was difficult
to put limits on any condition because the best performance
was desired in all areas. It was possible, however, to
develop a small number of reasonable alternatives, and
the following bench marks were defined for comparing
alternate PSCE designs :

I. Storage: 4 or 8 way interleave, 8 psec cycle
I/O* : 2 - 1.25 megabyte/sec devices

Peripheral processor (PPE): 6.66 megabyte/sec
Storage channel (X)* : maximum rate

1 - .150 megabyte/sec device

11. Storage: 4 or 8 way interleave, 8 psec cycle
I/O* : 2 - 1.25 megabyte/sec devices

1 - .150 megabyte/sec device
1 - 90 kilobytes/sec device

PPE* : - 6.66 megabyte/sec
Central processor (CPU)+ : maximum rate

111. Extended Main Storage: 4 or 8 way interleave
I/O* : 1 - 1.25 megabyte/sec device
1 - .150 megabyte/sec device
1 - 90 kilobyte/sec device
SC* : maximum rate

These bench marks were used to help select the design
approach with the most potential. They were not used as
ultimate objectives. Once a design concept was selected,
simulation was used to help evaluate cost/performance.

Speed matching and other problems
The speed matching problems were as varied as the com-
bination of interfaces and speed variations possible at
each interface of the PSCE. The variations in the inter-
faces are due in part to the different storage technologies,
storage hierarchies, bussing needs and circuit requirements
that may exist for various system configurations. The
storage hierarchies present many unique engineering prob-
lems in the area of the boundary detection which is used
for interleaving, bus assignment, and storage protection.

One of the most difficult speed matching problems that,
the PSCE had to contend with was that of allowing high
speed 1/0 to operate into a storage unit with a cycle time
greater than the cycle time of the requesting 1 / 0 unit.
This same mismatch exists for the processor and the
storage channel (SC) but, since these units can wait in-
definitely for service, they are not subject to overrun as
are the 1 / 0 units. The traditional approach to the 1 / 0
problem has been to allow 1/0 units to have priority over
any other element in a system. If the priority approach
did not solve the problem, then it was usually necessary
to bypass any bus in the path to storage and create an
independent path for I/O. This approach had led to the
development of "multi-tailed'' storages.

Standard solutions were found to be inadequate because
their implementation would only partially solve the 1/0
problem and still do nothing to improve the processor
or SC rates. In the past, if the 1/0 rate into storage was
such that it could not tolerate a conflict, the 1/0 would
block the processor until the risk of overrun was past.

It was decided that any new solution would be acceptable
only if it met the following requirements:

CPU, peripheral processor and SC to have access to
storage without the use of multi-input storage units.

More than one high speed 1/0 channel to be able to
use storage in an overlapped mode.
"___

* Sequential addressing.
7 Random addressing. 63

MODEL 91 STORAGE SYSTEM

Table 1 PSCE bench mark evaluation.

No. of SC(a) CPU PPE(b)
Bench Storage Units No. of store or sc fetch fetch

Case
Storage

mark @ 8 sec buffers fetch rate rate rate utilization

1 I 8 12 All fetch 2.35 ... 0.53 69%
2 8 12 All store
3

4 . 0
8 12 50% fetch, 2.96 . . . 0.56 80%

90%

4 I 8 16 All fetch 3.64 ...
5 I 12 All fetch ... 0 . 6

4
82%

6
0.96

I1 8 2.35 0 .6
0 .3

12
100%

7 I1 4 12 .5 0 .42 88%
70%

8 111 8 12 All fetch
9 111 8 All store 6 .7

5.7
12

86%
100%

111 8 12 50% fetch, 6.2 93%

11 I11 4 12 All fetch 2.7 100%

I
I

... 0 . 6

%yo store

... ...

... ...
... ...
.

10
50% store

.

NOTE: All rates in megabytedsec.
(a) Storage channel
(b) Peripheral processor (PPE)

A processor request for a busy storage unit should not
inhibit its ability to make other requests.

Storage interleaving must be possible in order to im-
prove the accessibility of requested data.

No unit must resort to blocking storages in order to
guarantee their availability at a later time.

Due to the built-in overhead of a storage control unit,
it must be able to handle requests in a pipeline fashion,
a pipeline technique being one which allows concurrent
execution of multiple operations while taking into con-
sideration the serial dependence of the operations.

The design must lend itself to growth and be able to
adjust to different storage hierarchies.

The design must be balanced to maximize the use of
storage to all users.

The design must be able to adjust to different storage
configurations for proper boundary detection.

New concepts

It was decided that the most promising concept for meet-
ing the basic requirements was a bus organized around a
buffer stack, or queue. The use of buffers was certainly
not new but the manner in which they were to be used
provided the flexibility and performance that was desired.
The queue developed has the following operating char-
acteristics :

A variable number of queue positions are dynamically
reserved for 1/0 inputs. The number reserved depends on
the speed and number of 1/0 units in operation.

The queue is used to store outstanding requests made
by all users.

Input requests to the queue are on a first come, first
served basis except for simultaneous requests, which are

64 handled in a fixed priority order.

Output from the queue to storage is based on a three-
level decision. The fist decision level checks for available
storage. The next decision level determines the unit that
will have priority out of those requesting an available
storage. The last decision level selects the first request for
the unit getting priority.

Output from the queue destined for channels is handled
on a request basis. All other output (peripheral processor,
CPU, and storage channel) is handled when no higher
requests are outstanding.

The queue can overlap all input and output operations.
That is, at any point in time it can handle data returns
from storage, two input priority requests, an output
priority storage selection, and the return of a word to a
channel and to the CPU.

Outstanding requests in the queue may be handled out
of sequence.

Queue positions must be available for use by the proces-
sor and the storage channel when not reserved by channels.

Simulation

The operating characteristics listed above were selected
and developed for the PSCE only after a study of data
obtained by simulating different bus designs. Simulation,
based on the bench marks previously described, pointed
to bottlenecks that would have caused an unbalanced
bus under certain 1/0 configurations. The simulation
results shown in Table 1 give an indication of probable
storage utilization with a PSCE design of 12 queues
working into an 8-psec storage.

Queue design

The decision to use a bus design with a shared buffer stack
(queue) was made after studies indicated that all of the

BOLAND, GRANITO, MARCOTTE, MESSINA AND SMITH

proposed bus designs contained several buffers. However,
the designs differed in the way the buffers were used and
distributed among the individual control sections of the
bus. It was found that, for approximately the same cost
as designs with distributed buffers, it was possible to build
a bus with a shared stack. It was necessary to build the
registers of the central stack so that they could be used
by all control sections of the bus. This required that they
be more elaborate than would be the case if they had been
designed to the specific requirements of one application.
The increased complexity is more than balanced by the
improved data rates that are possible for the processor
and storage channel. The storage channel rates as a func-
tion of available queues and storage access time are shown
in Table 2. (A more detailed explanation of these rates is
given below.) It is obvious by looking at the table that
the best storage channel rate is obtained by using all
available queues. It was decided that 8 registers should be
used in the queue because it was found that assuming
a 3/4-psec storage cycle and 4 channels with 1.25 mega-
byte devices, at least 6 registers were needed to handle
the simultaneous operation of 6 or more channels.

Table 2 Storage channel best case transfer rates.

Number of Transfer rate, megabyteslsec
queues available cb)Access = (b)Access =

to storage channel I1 cycles I O cycles

1 (a) 7.74
2
3
4
5
6
7
8
0

8.35
15.7
23.5
31.4
39.2
47.1
54.7
62.5

16.7
25.0
33.3
41.7
50.0
58.3
66.6

SC Locked Out

(b) Access = Storage access time measured at PSCE tailgate for 3/4
(a) For single word boundary, use this entry only.

psec storage.

PSCE Organization

The design of the PSCE merges several functions into one
integrated unit. This organization consists of four major
areas: queue and busses, queue priority, common channel
controls, and storage channel (Fig. 8).

Queue and busses

The effectiveness of the queue depends in great measure
upon its accessibility. The busses that communicate with
the queue were planned with a goal of allowing simul-
taneous execution whenever feasible. These busses can
be grouped in four main categories :

Unit entry busses There is a unit entry bus shared by
all requesting units which provides access to all queues. In

"""""""""" _I

I PSCE I

- 1 I

5-2860

CHAN ccc
MSCE HPMS

FILES
OUEUE

EMS

I
L """""_ 1

Figure 8 Block diagram of PSCE organization.

addition, two unit entry address busses are provided, one
for the CPU and another shared by the other requesting
units. The independent processor address path was pro-
vided because of the high incidence of fetch requests as
compared to store requests and, since access to extended
main storage depends in part upon access to the queue,
the separate address path improves the overall access time.

Unit return busses Two unit return busses are provided,
one for the processor and another for all other requesting
units. These busses are fed from each queue and return
data to the requesting units. The separate CPU bus is
included to minimize access time. In general, when a fetch
is made, a queue register is held as a sink for the returning
data. Data returns from storage are placed in the queue and
can be sent immediately to the requesting unit or held until
requested by 1/0 channels. The separate processor re-
turn bus allowed improvements in this procedure since,
with the separate bus, the processor will not encounter
conflicts with higher-priority unit returns. A further im-
provement was realized by utilizing the processor re-
turn bus in such a way that data returning from extended
main storage could be sent directly to the processor with-
out passing through the queue. This approach allows
queues being used for fetches to be made available im-
mediately after the fetch request is sent to storage. This
means that fewer queues are required to handle any given
processor request rate and more queues are available to
other units.

Storage request busses Two storage request busses are
provided, one for extended main storage and another for
high performance main storage via the MSCE. These
busses provide independent select paths to the two groups
of storage and, since traffic to both groups can be high,
these paths eliminate unnecessary inter-group conflicts
which tend to increase access time.

Storage return busses Three independent storage busses 65

MODEL 91 STORAGE SYSTEM

are provided in order to simultaneously handle up to
three different storage access times. One is for returns
from the MSCE and the others provide for up to two
different storage speeds.

Queue priority

Queue priority can best be described in two parts, input
priority and output priority.

Input priority In general, input priority is concerned
with entry to the queue. The key functions performed are:

Maintain dynamic queue availability status.
Reserve queues for 1/0 channels upon request from

the common channel control section of the PSCE.
Assign unreserved queues to incoming requests based

upon unit priority and queue availability.
0 Assign reserved queues to 1/0 channel requests. A
pre-priority function among individual 1/0 channels is
performed by the channel controls which present a single
request to input priority.

Route returning storage data to the proper queues and
update queue status as a result of these returns.

Output priority Output priority continually monitors the
status of the queue in order to determine actions to be
taken on the storage request busses and unit return busses.
The following decision mechanism is simultaneously
applied for each storage request bus:

Compare available storage status with all requests in
the queue in order to determine which request should
access storage.

If more then one request finds an available storage unit
then select the highest priority unit among those requesting.
0 If there is more than one outstanding request from a
selecting unit, storage accesses are made on a first-in,
first-out basis.

For the unit return busses the following actions are taken:
Route memory returns to the central processor.
Inform other units of returns available in the queue and

return them on a first-in, first-out basis when requested.

Storage channel

The function of the storage channel is to provide fast
data transfer from storage to storage, overlapped with
other system activity. The storage channel operates as an
independent unit with respect to the queue and is not
treated as “just another channel.” Communication delays
encountered in conventionally independent 1/0 channels
have been eliminated by integrating the storage channel
with the PSCE.

Of the units that require access to storage, the storage
channel was given lowest priority. 1/0 channels require
higher priority because of their overrun nature; the periph-

66 era1 processor, which may also have 1/0 channels oper-

BOLAND, GRANITO, MARCOTTE, MESSINA AND SMITH

ating, also requires higher priority; since CPU accesses
imply an immediate need for storage and storage channel
accesses imply a future or less immediate requirement, the
CPU was also given higher priority. This decision was
based on the fact that delayed processor access delays the
system immediately while delayed storage channel access
may delay the system in the future.

1/0 activity and especially CPU activity will cause
conflicts with storage channel activity. Every storage con-
flict will delay the storage channel and high interleaving
of storage will help only to reduce the probability of such
conflicts. However, if the storage channel can circumvent
a current conflict and attempt its next access, the prob-
ability of a second storage conflict is considerably reduced.
This, of course is the central philosophy of the PSCE, i.e.,
to permit units to access storage out of sequence in order
to better utilize the high interleave and thereby increase
both the overall rate of each unit and the effective use of
storage.

The storage channel can initiate a fetch request every
cycle and does so as long as space is available in the queue.
Each queue register used becomes a sink for the data from
storage. If this data were returned to the storage channel,
it would eventually be sent back to the queue for storing
in memory. It is not desirable to permit this round trip of
data from queue to channel and back, because it would
add handling time and buffering requirements to the
storage channel. Instead, the data remain in the queue and
a mechanism is provided to bring the store address to the
queue.

The fact that fetches are made out of sequence from the
queue implies that these store addresses would have to be
supplied out of sequence in order to complete the data
transfer as quickly as possible. Generation of out-of-
sequence store addresses entails extensive address buf-
fering and sequence controls, and a different mechanism,
called re-address, is used. When the storage channel sends
a fetch request to the queue, the data field of the queue
register is “empty.” In addition to the normal entry of the
fetch address, the store address for that word is generated
and placed in the “empty” data field. Whenever the fetch
address is sent from the queue to storage, the store address
is moved from the data field to the address field where it
waits for the data to return from storage. As soon as the
data return the store can be made, thereby allowing storage
channel stores to be made out of sequence as well as
fetches.

Since queue availability is a decisive factor in storage
channel transfer rates, any factor which tends to increase
queue availability also tends to increase this rate. As
storage access time decreases, queues become available
more quickly because the total fetch-store time is decreased.
Table 2 shows the effect of the access time of the 3/4-psec
storage unit on storage channel transfer rates.

As system activity into storage increases, storage con-
flicts also increase and the number of queues available
becomes more important in order to provide some mini-
mum storage channel rate. Table 3 illustrates this fact by
showing estimated transfer rates of the storage channel as
a function of queues available and of storage conflicts,
assuming a ten cycle access time. It should be noted that
since a simple algorithm was used, these rates are only
representative, but they do serve to illustrate the point.

Common channel control

The common channel control (CCC) uses one interface to
provide for the attachment of up to five IBM 2860 Selector
Channels plus one IBM 2870 Multiplexor Channel to the
Model 91. The Selector Channels communicate directly
with the CCC which in turn communicates with the input
and output control sections of the PSCE. The CCC also has
the potential for attachment of two very high performance
channels (2.5 megabyte/sec rate) through a second inter-
face. This interface is designed to minimize the communica-
tion time required to service a channel request. It is ex-
pected that the time required to service a channel will be
reduced from 1 psec for the standard interface to approxi-
mately 0.2 psec for this second interface.

The CCC will accept a modified Selector Channel inter-
face. The change in the interface was made to provide
buffer control for channels that control devices with rates
5 1.25 megabytes. The changes allow words to be re-
turned to different channels in a sequence different from
that in which the requests were generated. This permits
an aggregate channel rate which is higher than is normally
possible over the standard Selector Channel interface. In
addition, the changes permit the CCC to pre-fetch data
for 1.25 megabyte/sec devices. Pre-fetching permits the
overlapping of storage access time with channel service
time. This overlapping allows the CCC to control the
operation of four IBM 2860 Selector Channels with 1.25
megabyte/sec devices (no data chaining) into a 3/4 psec.
memory without the risk of overrun. Without pre-fetching
it would only be possible to run two Selector Channels
with the same restrictions stated above.

PSCE serviceability

A feature included in the design of the PSCE permits it
to be operated in a mode that does not depend on the
availability of 1/0 equipment, storage or processors. The
PSCE queue and controls can be exercised in a loop to
repeat particular patterns. A separate maintenance panel
is provided for the special PSCE maintenance features.
The panel also permits maintenance on the PSCE to be
overlapped with maintenance of other parts of the CPU.
Serviceability of the PSCE is enhanced by these features:

Variable effective queue size permits failures to be
isolated.

Table 3 Storage channel transfer rates (assuming 750-nsec
extended main storage and 750-nsec high performance main
storage.

No. of queues

storage channel Case I Case II Case I l l
available to Transfer rate, megabyteslsec

1 (a) 8.3 6 .0
2

4.8
16.6 11.9 19.5

3 24.9 17.5 13.7
4 33.3 23 .O 17.0
5 41.6 28.4 21.7
6 49.8 33.6 25.4
7 58.3 38.6 29.0
8 66.4 43.5 32.4

CASE I: Probability of EMS busy = 0
Probability of HPMS busy = 0

CASE 11: Probability of one of EMS or HPMS busy = 1/2
Probability of both EMS and HPMS busy = 0

CASE 111: Probability of both EMS and HPMS busy = 1/2
Probability of both EMS and HPMS not busy =
1 /2.

(a) Use this entry for addresses on single word boundaries.

0 Queue contents on stores can be saved until storage
advance time. This allows correlation of storage-detected
errors with the contents of the queue register that generated
the storage select.

A register in the queue can “freeze” its contents on error.
This feature allows all data associated with a request to
be retained for future display or log out.

PSCE-MSCE interaction

It should be noted that the queue buffers are general
purpose whereas the processor request stack in the MSCE
has no provision for data bits, uses the processor data
buffers, and is tailored to processor requests. Consequently,
the PSCE buffering capabilities (8 queue positions) are
utilized by both PSCE-to-main storage requests and by
processor-to-extended storage requests. PSCE-to-main
storage requests appear at the MSCE from the queue
only after the specific storage unit has been reserved and
becomes available for selection. Thus, two-way communi-
cation, on a main storage interleave-factor basis (4, 8, or
16), exists between the MSCE and the PSCE for PSCE-
to-main storage requests. In other words, the PSCE moni-
tors the state of each main storage unit.

Processor-to-extended storage requests can appear at
the PSCE at any time (provided queue positions are avail-
able), independently of the immediate availability of
the desired extended storage. Again, the PSCE buffering
capability is utilized by stacking processor requests in
the queue until service time. In effect, then, the processor
requests monitor the state of the queue, rather than the 67

MODEL 91 STORAGE SYSTEM

state of extended storage units. Processor-to-extended
storage requests are (1) transmitted across the interface,
(2) buffered in the queue, (3) transmitted to priority con-
trols, and (4) permitted to select extended main storage.
Conversely, PSCE-to-main storage requests (1) are buf-
fered in the queue (2) enter priority (3) are transmitted
across the interface, and (4) select main storage. Both
types of requests use the queue as a buffer and enter priority
only after the requesting address enters the queue.

The MSCE and the PSCE are synchronized to receive
fetched data from each other on any cycle, although the
control technique is different in each control element. The
PSCE has unique data paths for main storage data returns
and extended storage returns to the queue. The MSCE

68

BOLAND, GRANITO, MARCOTTE, MESSINA AND SMITH

accepts data from extended storage by orthogonally
multiplexing the main storage and extended storage.

Acknowledgments

The design of the storage system was a group effort with
many contributors. In particular Messrs. M. C. Dales,
S. A. Calta, H. A. Carlson, A. Gomez, L. W. Kaumeyer,
J. Kloepping, and J. V. Mizzi contributed in the early
phases of design. Also, the instruction unit design group
gave valuable suggestions and criticisms. The simulations
mentioned were developed by Mr. P. S. Cheng and Mr.
J. R. Johnson.

Received November I , 1965.

