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The IBM Systeml360 Model 9 1  : Storage  System 

Abstract: This paper discusses the design concepts employed in  the development of the IBM System/360 Model 91 storage system. 
Particular attention is paid to the exploitation of System/360 capabilities in  the areas of large storage capacity, concurrent operation, 
and flexibility, as they apply to the highly overlapped Model 91 system. 

An interleaved set of main storage modules is used with the Model 91 to help mask the difference between machine cycle time and 
storage access time. The set is connected to the central processor, peripheral storage control element and maintenance console by three 
time shared busses-one for addresses, one  for data-in, and  one for data-out. The main storage control element (MSCE) controls these 
busses to maximize the storage access rate. To achieve minimum access time, requests are normally sent directly to  the storage modules. 
The proper module is selected by the MSCE, the address gated in, and the storage cycle started. If the module is busy from a previous 
request, the request is stored in a request stack for a later attempt. If the request is accepted, it is stored in  an accept stack. This stack 
controls the data-out gating of the storage modules, and notifies the CPU of the destination of returning data. It also furnishes module 
busy information which controls  the recycling of rejected requests. 

An important feature is the ability of the MSCE to logically sequence store/fetch requests, by interlocking the rejected requests with 
the current request without any degradation of minimum access  time. Additionally, each address sent to the MSCE is compared with 
the addresses of waiting and in-process requests. This allows serial fetching of two adjacent single words of a double-word storage 
cycle. Fetches following stores to the  same location can be executed without waiting for a fetch storage cycle. 

Peripheral storage is provided in  the system for both block transfers of data  and individual word fetches and stores. All requests to 
peripheral storage are sent via the peripheral storage  control element. 

The MSCE is synchronized with the CPU  and uses the same machine cycle. Ideally, a request can be honored each machine cycle, 
but the actual rate is determined by storage module conflicts. The storage system performance is measured in access rate  and access  time. 
The MSCE has been simulated to measure the effects  of storage speeds, degree of interleaving, and changes in MSCE controls. 

Introduction 

In the development of a highly concurrent processing  sys- 
tem, there are two  principal  considerations : 

The maintenance of a high rate of information flow 
through the processor  requires a storage control system 
capable of transferring large volumes  of data with  a  mini- 
mum of interference. 

Throughput requirements dictate that the input/output 
handling and buffering  capability  be  equally efficient. 

The versatility of the Model 91 can be  partly  ascribed 
to a  highly  overlapped and flexible storage control system 
which  satisfies  these  criteria.  This  system is based on a 
hierarchic  concept of storage, with  implications of a wide 
performance range which can  vary  according to applica- 
tion. 

This paper is  intended as a description of that system. It 
is divided into four major sections, to correspond to the 

points of  view from which the design  may  be  considered. 
The first  section  discusses the hierarchic  concept and 
overall design  objectives.  Section two describes the main 
storage control element (MSCE) which  serves as receptor 
of processor  references and controller of all high-per- 
formance  main storage references. It identifies the require- 
ments  imposed on the MSCE from the points of  view  of the 
processor and the peripheral storage control element and 
explains  how  these  requirements were  met. (A &way, 
interleaved,  750-nanosecond  main storage is  assumed for 
the description.)  Section three deals  with the peripheral 
storage control element (PSCE), which controls the flow 
of data among the peripheral  elements of the system. The 
fourth section  explains the characteristic interaction of the 
elements of the hierarchy, as exemplified  by the main and 
peripheral storage control elements. 
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General design  considerations 

0 The hierarchic concept 

The hierarchic storage is  characterized by its  multilevel 
structure, consisting of a number of separate but inter- 
connected  components of varying  sizes and speeds.  Suc- 
cessful operation requires a versatile control scheme and 
depends  upon the ability of the operating system and 
controls to move  freely from  one  level to another in the 
hierarchy. 

The Model 91 storage  system  has three principal  media: 

1) High  performance  main storage: a storage of inter- 
mediate  size and capacity.  Variations in this capacity and 
in  speed and amount of interleaving  provide a measured 
performance  characteristic which lends  itself to applica- 
tion “tailoring.” 
2) Extended  main storage: This  medium  extends the 
capacity of core  storage to accommodate the total  ad- 
dressing potential of System/360. 
3) File storage and input/output 

Each of these  elements  is monitored and controlled by 
its own storage control function  (Fig.  1).  Within the defini- 
tion of a continuous addressing  spectrum  (pipeline*), it 
is  possible to establish  boundaries  within which  each  con- 
trol function can operate. 

To fully  exploit the hierarchic  concept, the interconnec- 
tion scheme  must  be able to move large quantities of data 
in  several  directions and at varying rates. As an example 
of this  requirement,  consider the K-K’ configuration of 
the Model 91. The K component, a high  performance  main 
storage,  can  develop a 172 megabyte/sec rate. The K’ 
component,  extended  main  storage,  can  also  develop a 
172 megabyte/sec rate, even though it is relatively  less 
accessible to the processor.  (Although  interference factors 
can  decrease the actual rates, interference  is  minimized 
because there is a choice  in the configuration of  32 storage 
units from which to select.) In addition the scheme  must 
accommodate the concurrency of operation required by 
the processor  (potentially 133  megabytes/sec), a storage 
channel, or  data mover (capable of transfers from any 
point to any point at a rate up to 64 megabytes/sec), and 
files and 1/0 (5-10 megabytes/sec  combined  rate). 

To meet  these  requirements the control system  would 
ideally  be able to create as much data transfer potential 
as there is storage potential. In the Model 91 K-K‘ there 
exists a potential data demand of  270 megabytes/sec and 
a potential storage  availability of  344 megabytes/sec. (The 
demand  is  equivalent to a 72-bit  word  every 30 nano- 
seconds  required to fully  satisfy all users of storage.) 
Other  configurations  can  extend the potential availability 
to more than 1,000  megabytes/sec. 
”___ 

“Pipeline,” in  this case, means  a  continuous  stream of operations 
or  instructions,  capable of being  executed  concurrently  without  neglect- 
ing  any  serial  dependence  among  successive  operations. 
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Figure 1 Block diagram of storage  system. 

Figure 2 Model 91 address flow. 
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In practice,  however, there are constraints. For example, 
the machine cycle (60 nsec)  generally  determines the maxi- 
mum  pipeline transfer rate, and the word  length cannot be 
substantially  greater than 72 bits because of cable and skew 
problems.  Consequently,  one  must  look to concurrency of 
transfer to achieve  high  efficiency. The organization of 
the Model 91 storage control system  is  therefore charac- 
terized,  within the hierarchic  concept, by this multiple 
transfer potential. The separate, bounded control functions 
mentioned  above  provide  each  type of storage with its 
own transfer path (Fig. 2). Control of high  performance 
main storage resides in the main storage control element 
(MSCE),  while  extended  main storage and input/output 
are controlled by the peripheral storage control element 
(PSCE). 

The paragraphs below summarize the specific  design 
objectives  which  were  developed for these units, and sub- 
sequent  sections  describe the operation of each. 

0 Control  system design objectives 

The key to success  in a highly parallel pipeline  processor 
is the ability to react  quickly  when the pipeline is diverted. 
Diversion  occurs in the form of branching in general, and 
data-dependent  branching in particular. Effective storage I 
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reaction  implies that a new  flow  be initiated in  minimum 
time.  Consequently, storage access  time  must  be  made as 
short as  possible.  Diversion of the pipeline  in the concur- 
rent  system  also  implies that many  accesses  will  be initiated 
without  being  used. It follows, therefore, that the storage 
control system  must  be able to provide  many  more trans- 
fers than can  actually  be  used by a particular  problem. 

The design  objective  of the Model 91  was the achieve- 
ment of a wide performance  range which could  vary  with 
system  application.  This  imposed  on the storage system 
the following  general  requirements : 

Control of  highly interleaved  storages of different  speeds. 
Overlap of a multiplicity of  high  speed 1/0 devices. 
Development of a very  high  performance storage 

Minimum  disturbance to the processor to achieve a 

Ability to accommodate  advanced  storage and 1/0 

Flexibility to react  quickly to various  application  needs. 

To develop  these  objectives,  simulation  methods  were 
used to test proposed  designs for the MSCE. The effects 
of interleaving, storage speed, and buffering  were  observed 
to determine  their  impact on processor  performance.  The 
impact of various  memory cycles on overlapped 1/0 
channels, under each  of  several  design  conditions,  was 
also  observed by simulation, to determine the form of the 
PSCE. 

With the refinement  provided by simulation, the general 
requirements were  defmed  in terms of the following  objec- 
tives for the final  storage  system  design: 

channel. 

wide performance  range. 

devices. 

1) An overall design  relatively  insensitive to storage  speed. 
2) Minimization of  access time to the processor  while 
maintaining  high data rates. 
3) Control of large  numbers of small  storage  arrays. 
4) I/O control for optimization of overlap  operations. 
5 )  Elimination of multiple  busses to the individual storage 
units. 
6) Buffering  of  mismatch  between fast 1/0 and slow 
storage. 
7) Storage  protection for highly  interleaved  variable  sets. 

By combining  proven  techniques  with  novel  concepts 
the design  of the MSCE and the PSCE  has  met  these 
objectives  very  well. The sections which  follow  describe 
that design (and its operation) in  detail. 

Main storage control element 

High  performance  storage principles 

From a CPU viewpoint, the ideal storage system  would 
be  one  large  storage unit with a cycle  time equal to the 

56 basic  machine cycle. The CPU can  then  issue storage 

requests on any, or every,  cycle.  Since  this  is  impossible 
with the fast cycle  of the Model 91, the technique of inter- 
leaving  is  used.  Consider a main storage system  composed 
of several (4 to 16) self-contained  storage  units, which are 
capable of simultaneous operation. Contiguous  addresses 
are interleaved  among the units in a sequential manner. 
For example, the sequential  address string N ,  N + 1, 
N + 2, N + 3 would  be stored in four different  units. The 
storage system  can  service a string of sequential  requests 
by starting, or selecting, a storage unit every  cycle until 
all are busy. 

Interleaving  also  improves the servicing of a string of 
random addresses,  since the large  number of units  reduces 
the probability that an address  will  go to a busy  unit. Thus 
the access rate of the storage  system  is a function of the 
number of interleaved  units, i.e.,  of the interleaving  factor. 
In practice, the interleaving factor is a binary number, 
which permits storage address  allocation to be  determined 
be  decoding the low order bits of the address  (for  example, 
the three low order bits for interleaving by 8, or Z3). 

Since the CPU issues storage requests at a one  per  cycle 
(or slower) rate, the use of a common  set of busses on a 
time-shared  basis  is  suggested. That is,  on  every  cycle 
a new address  can  be transmitted to all storage  units  over 
an address  bus. The same  is true for data words  on the 
busses to and from storage.  Since  bus cycles  can  be  wasted 
because of storage conflicts, the control of the busses 
affects the maximum data rate. 

Another performance  criterion for the storage system 
is the access time, which  is the time  which  elapses  between 
the issuing of an address by the CPU and the return of 
data  to the proper  sink  register.  The  minimum access 
time  is the sum of the storage unit read  time and the cable 
and logic  delays  in the MSCE. The average, or probabilis- 
tic, access  time  (which  includes the effect  of storage con- 
flicts)  is  limited by the interleaving  factor and the storage 
cycle  time. It also  depends  upon the organization of the 
MSCE,  which must  make  some  provision for conflicts. 

Design requirements 

Since the ultimate performance of the storage system  is 
limited by the storage units  themselves,  obvious  require- 
ments are that the MSCE  must  minimize its share of the 
access  time and optimize the data rates by properly  con- 
trolling the time-shared  busses.  Certain  logical  require- 
ments are imposed upon the MSCE by the design of other 
elements of the Model 91, particularly the instruction unit 
and the PSCE. 

The input to the MSCE  from the instruction unit is a 
storage request, which  consists  of an address, a return or 
sink  address to route the returning data, control bits to 
define the operation more  precisely, and data for store 
operations. The MSCE  must act on the request by selecting 
the proper storage unit and furnishing it with  an  address 
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and  data for stores. In case of a conflict, the MSCE must 
hold the request for later recycling, generally without 
stopping the instruction  unit. Several requests can be in 
the MSCE and in storage at  the same time, and these need 
not necessarily be handled  in sequence. The various  re- 
turning data words are correlated with their  sinks by the 
MSCE, which sends the sink address to the CPU a cycle 
before the  data. 

In general, requests do  not require servicing in sequence, 
but can instead be serviced in an  order which will optimize 
bus utilization. There is a requirement, however, that  the 
MSCE be able  to correctly sequence several stores, or 
stores and fetches, to  the same address. 

The storage  units considered in the design of the Model 
91 have word sizes  of 72 bits, including parity, and most 
units of the CPU are designed to use this  word size. Fixed- 
point and single-precision operations, however, require 
36-bit words. Since addresses sent to  the MSCE and  to  the 
storage  units define 72-bit words, two storage cycles could 
be used in accessing the  two halves of a storage word. To 
avoid  this  performance  degradation, the requirement 
known as Multi-Access was placed upon  the MSCE. This 
feature allows a memory data register to be read  out  as 
many times as desired without recycling the storage  unit. 

The PSCE carries different requirements because it is 
connected to the storage and  input/output channels. 
The storage  channel objectives include the ability for  the 
PSCE to make requests to  the MSCE in bursts, at a one 
per cycle rate. In addition, requests by the  input/output 
channels via the PSCE could not tolerate  uncontrolled 
delays in the MSCE caused by storage or bus conflicts, 

because overruns would result. Thus it was decided to give 
the PSCE the ability to  monitor  the busy status of main 
storage, and  to reserve main  storage  units. Given this 
ability, the PSCE can control its requests to  the MSCE 
so that they are guaranteed acceptance. This will be dis- 
cussed more fully in  later sections of this  paper. 

The  third requesting unit is the maintenance console, 
which stores and fetches from  manual keys, and also 
initiates the logging in  storage of machine status  for 
diagnostic purposes. Since a high data  rate is not impor- 
tant,  it was judged sufficient to allow the console one 
request in process at any time. 

MSCE Organization 
A main  storage control element, designed to meet the 
above requirements, is diagrammed  in Fig. 3. It consists 
of the following functional areas: 

Store address registers (SARs), which hold addresses of 
stores pending availability of store  data. 

Store  data buffers, which hold  store  data words from 
all areas of the processor pending availability of the proper 
storage  unit. 

The request stack, a set of four registers which holds 
rejected requests from  the processor pending availability 
of the storage  unit, and  thus buffers the processor from 
storage conflicts. 

The accept stack, a set of registers which holds  informa- 
tion on accepted requests in process. 

The storage  address  bus (SAB), which transmits ad- 
dresses to all  storage  units and to the PSCE. 57 
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REQUEST STACK 

Figure 4 Flow chart of CPU fetch. 

The sink return bus, which transmits the sink  address 
fetch to all sink  registers  one cycle before the fetch data. 

The storage-bus-out (SBO),  which transmits 64 bits and 
parity of data from storage units, the PSCE, protect 
storage and the maintenance  console keys to all data sinks. 

The storage-bus-in  (SBI), which transmits 64 bits and 
parity of data from  processor-filled data buffers, the PSCE, 
and the maintenance  console to storage. 

Protect storage, which stores the keys required  for the 
System/360  Protection Feature. 

Controls 

If there are no conflicts, the MSCE  can  accept a request 
each cycle from one of its sources-the processor,  PSCE, 
or maintenance  console. During each  cycle the MSCE 
controls determine which source will  be  allowed a request, 
and gates are conditioned to put the address on the address 
bus. This bus is  also  used to load the SARs, which hold 
store addresses until the data word is  generated by the 
processor. The main feature of the address  bus is its  direct 
path to storage, with no intervening  buffers, to minimize 
access  time. 

The general  organization  can  best  be understood by 
considering a simple  fetch  request. During the cycle  in 
which a request  is  gated on the address  bus, the address 
bus controls determine  its  disposition. A successful  request 
is  sent to  the proper storage unit, or to the PSCE if  ex- 
tended  main  storage  is  requested. A main storage request 
is  also  gated into the top position of the accept stack, the 
push-through stack which holds pertinent information 

58 about all requests in  process. 

1 I 

Any  rejected  processor  request  is stored in a position 
of the request  stack for later recycling.  Requests are not 
taken from the PSCE or maintenance  console  unless  they 
can  be  guaranteed  acceptance, and thus never  reside  in 
the request  stack. 

Each  address on the address  bus is compared  with 
addresses in the SARs, the request  stack and the accept 
stack.  Comparison  with an SAR forces  rejection of the 
request and it is stored in the request stack, since  its 
acceptance  would  cause an out-of-sequence  fetch.  Com- 
parison  with an address in the accept  stack  implies that 
the desired  word  is  being  fetched by a previous  request, 
and can  be obtained again  without  selecting a storage unit 
or waiting for it  to “go not busy.” This is the Multi- 
Access feature discussed  in a previous  section. As  imple- 
mented, it applies to a fetch  following either a fetch or a 
store. 

Comparison  with an address  in the request stack causes 
the request to be  tagged for a future Multi-Access opera- 
tion, and  to be  gated into another position of the request 
stack. The presence  in the stack of an outstanding request 
for the particular address  causes the second  request to be 
rejected,  keeping the two in the proper sequence. The flow 
chart in  Fig. 4 summarizes the handling of the fetch  request 
by the address bus logic. If the request is accepted, the 
MSCE  generates a select  pulse to start the proper storage 
unit. The selected unit latches the address, which  is on the 
bus  common to all units, and starts its cycle. 

While the storage unit is  cycling, the request is moving 
down the accept stack, one  position  each  machine cycle. 
The stack contains the bit code  designating the selected 
unit for n-2 positions, the word  address for five positions, 
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Figure 5 Timing  diagram for CPU fetch. 

and the sink  address of the fetch for k-2 positions,  where n 
is the number of machine cycles per storage cycle, and k is 
the smallest  number  of  machine  cycles  required for access. 
Storage-busy  information  is obtained from the designation 
field  of the stack, since a unit is  busy  only if its code  is  in 
any  stack  position. The same field  is  used to generate the 
data out gate (DOG), by decoding the k-3 position, and 
sending the decoded DOG lines to the proper data lines 
from  storage.  The DOGS are generated by the MSCE 
rather than by the individual storage units, to allow for 
Multi-Access operations. The full address  is kept in  five 
positions for comparisons for Multi-Access, as previously 
described. 

The sink  address  is  delayed in k-2 positions, the last 
position  being  used to defermine the sink for which the 
fetch  was  made. The sink  address  is  decoded, and the 
correct  sink  register  is  conditioned  one cycle before the 
fetch data appear  on the SBO. If there was no memory 
conflict, the data word  is  gated into the conditioned  sink 
register k cycles after initiation of the request. Figure 5 is 
a timing chart for a simple  fetch,  where k = 10, the case 
for a 750-nanosecond  memory  unit. For completeness, 
store timing  is  also  shown. As shown  in the flow chart, the 
request  could be  rejected and gated into the request stack 
for one of the following  reasons : (1) The requested storage 
unit was busy; (2) the request was to the PSCE, and the 
PSCE inhibit line  (queue full) was on; or ( 3 )  the address 
compared  with an address in a SAR or  the request  stack. 
Priority  logic controls the re-cycling of rejected  requests 
in a manner that optimizes the use of the address  bus, 

DATA TO SINK 

DATA  LATCHED  AT SINK a 

protects  against  improper  sequences, and guarantees  ac- 
ceptance of the request. 

Accept stack 

The accept  stack deserves a more  detailed  explanation 
since it generates  many of the necessary control functions. 
The relation  between  memory cycle  time,  access  time and 
depth of the stack has been  given  above. Figure 6 diagrams 
a stack  with proper depths for a 750-nanosecond unit, with 
overall access to the processor of ten cycles. 

The problem that led to the adoption of the accept 
stack was the requirement for three kinds of busy  informa- 
tion from each  main storage unit.  This was complicated 
by the fact that multi-accesses to a unit could effectively 
make it busy for varying  periods. The accept  stack  solved 
this problem,  with  several  by-products, as shown by the 
following  list  of its functions : 

1) Stores the coded  designation of each  busy  storage 
unit, from which  busy information is  derived. 
2) Delays the sink  addresses, and correlates them with 
their respective data words. 
3)  Generates data  out gates to gate  fetched data words 
to the SBO at  the proper time. 
4) Stores the main  storage  address for five  cycles, to com- 
pare with  requests on the bus and identify  Multi-Access 
cases. 
5) Aids in maintenance, by  effectively  allowing  single 
cycling  of  main storage fetches, and by correlating various 
errors with the requests  causing  them. 59 
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Figure 4 Block diagram of accept  stack organization (750-nsec storage unit). 

In Fig. 6, the stack itself  is  seen to consist of three  major 
fields  with  varying  depths.  The  deepest  field, storage unit 
designation,  is  used to generate busy information and data 
out gates.  Each  position  has a decoder, the output of 
which  identifies a storage unit as  busy to any  request 
placed on the SAB. In cases of Multi-Access, the same  code 
can appear in  more than one  position. The three  types of 
busy information, busy-to-select,  busy-to-priority and 
busy-to-PSCE are generated by examining  eleven, ten and 
eight  positions  respectively as shown.  They  represent 
varying  degrees of “look-ahead” on busy status. Their  use 
will  be  explained  more  fully in the section on controls. 

Position 7 is  decoded to generate data-out gates.  This 
means that the seven-cycle  delay through the seven  posi- 
tions  plus the communication  time to the storage unit 
equals the internal access  time  of the unit. 

The “sink and control” field  is  used  mainly to delay the 
sink  address sufficiently to correlate it with  returning data. 
A total of eight cycles  in the push-through stack, plus 
communication  time to the sink  registers,  equals the proper 
delay to select the sinks one cycle  before the return of data. 
This field is used also to carry error information, which  is 
inserted  in the proper  position  depending  upon the source 
of the error. For example, if an address  parity error is 
detected at storage an error bit  is  inserted  in  position 
three, since the request  causing the error has been shifted 
down to that position. 

The address field  is  used to compare for Multi-Access 
conditions.  Because of circuit  loading  limitations on the 
address  bus, the depth is  limited to five positions.  However, 

60 machine  simulation runs were  made  on a variety of prob- 

lems  with  different depths, and fortunately no improvement 
was noted  with  increased  depth.  The  address field  is  used 
also, in  conjunction  with the aforementioned error bits, 
as a maintenance aid. If an error bit  is  detected in position 
5, indicating that an error was associated  with the partic- 
ular request, the address field is gated into a special  “snap- 
shot” register and saved for later use in diagnostics. 

Controls 

The controls in the MSCE  consist  explicitly of two  func- 
tions. First, a decision  must  be  made as to which address- 
ing  source  should  be  gated to the address  bus.  Second, 
given some  address on the address  bus, a decision  must 
be  made as to which storage unit should be  selected,  if 
any.  Within  each control function there are, of course, 
many other subtle decisions  required to effect  logical 
sequencing.  Implicit control of SBO,  SBI, and sink ad- 
dress returns is a function of the push-down  codes  in the 
accept  stack. 
For the first  decision,  priority, the general order of service 
is : 

1) PSCE to (main)  storage. 
2) Maintenance  console to storage. 
3) Request  stack to (main)  storage for Multi-Access. 
4) SAR to storage. 
5) Request  stack to storage. 
6) Processor to storage. 

A new priority  decision  is  made  every  cycle,  resulting  in a 
time-multiplexed  pipeline of priority-address bus- 
fetch/store. 
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When no requesting  source of priority  higher than the 
processor  requires the SAB,  processor  fetch  requests are 
gated to the SAB  (usually  on the cycle  following the 
address  generation)  without a prior test of storage availa- 
bility.  With a sufficient interleave factor and a short storage 
cycle the requests  seldom  encounter  busy  units. Thus the 
requirement of minimum  access  time  can  be attained. AI- 
though store requests are held  in  SAR’s  where a storage- 
busy test  could  be  performed, the SAR’s are gated to the 
SAB without the test. Thus the SARs are unloaded as soon 
as  possible to make  them  available  again to the instruction 
unit, which considers a store operation completed  once 
it loads a SAR. 

Simulation  has  demonstrated that recycling  of requests 
from the request  stack after a fixed-time  wait  results  in 
secondary  rejections  which  reduce  bus  efficiency and com- 
plicate the control of real-time  PSCE  requests.  Hence, 
initially  rejected  processor  addresses are recycled  only  once 
to the optimized  address  bus,  according to storage-avail- 
able and first-in,  first-out  discipline. 

Because  PSCE  requests for main  storage  require a very 
high data rate, the address  bus efficiency for the PSCE 
must  also  be  high.  Hence,  PSCE  requests to main  storage 
are granted priority  within the PSCE  itself  as a function of 
impending  availability of  specific storage  units. 

To optimize the overlap of storage  units,  in  priority 
and on the address  bus,  their  imminent  availability  (i.e., 
non-busy status) is as valuable as their actual availability. 
Hence, three levels  of  busy status are decoded for each 
storage unit : 

1) Busy-to-PSCE  signal,  which turns off four cycles  before 
actual time-out of the storage unit. 
2) Busy-to-priority  signal, which turns off two  cycles  be- 
fore actual time-out of the storage unit. 
3) Busy-to-select  signal,  which turns off one  cycle  before 
actual time-out of the storage unit. 

These  signals  allow the MSCE to “look-ahead’’  in order: 

To respond to a PSCE  reservation for a storage unit, 
acknowledging the availability of the unit. Four cycle 
look-ahead  covers the communication  delay  between the 
MSCE and PSCE and allows the PSCE to execute a 
priority cycle  (busy-to-PSCE). 

To execute  priority for the maintenance  console or 
request stack, each of  which  needs to know  when a specific 
storage unit is to be available  during an address  bus cycle 
(busy-to-priority). 

To allow the generation of a select  signal for a busy 
storage unit during  address  bus  time, if the unit is to be 
available on the following  cycle  (busy-to-select). 

The second control function  is  concerned  with the dis- 
position of the contents of the address bus on the cycle 
following the associated  priority cycle.  When the address 

bus  is  valid, the decoded  main  storage unit or the PSCE 
is  selected  if available. If the unit to be  selected is not 
available, the request is routed into the request  stack 
where it resides until the desired  storage unit becomes 
available. When a main  storage unit is  selected,  certain 
fields are routed into the push-through  accept  stack for 
use later in  controlling data out gate (DOG) generation, 
sink  address returns, SBI,  SBO, storage busy  decode, and 
Multi-Access  compares.  Special  interlocks  in the form of 
address comparators (address bus vs. pending SARs and 
pending  requests  in the request  stack) order stores to the 
same  address and recognize and re-order  out-of-sequence 
store/fetch requests to the same  address.  These  interlocks 
also  link  these  same store/fetch or fetch/fetch  requests 
to the same  address for Multi-Access. 

If extended storage is  decoded, the address  bus is gated 
into a buffer  in the PSCE, from which point the address  is 
decoded further to select the appropriate storage unit 
according to the discipline of the PSCE.  If this buffer  is 
not available the request  is  gated into the request stack 
in the MSCE until the buffer  becomes  available. Note 
that because of the PSCE-MSCE  single  buffer  interface, 
the PSCE  can  expand  capacity,  increase  speed,  etc.,  with- 
out affecting  MSCE control design. 

Storage protection 

The  storage  protection feature in the Model 91 performs 
the same function as in other members of the System/360 
family,  which  is the protection  from unauthorized fetches 
and stores.  All attached storage is  considered to be in 
blocks of  2048 bytes, and a 4-bit key  is kept in a protect 
storage  for  each  block.  Each  request  initiates the read-out 
of the proper address  key, which  is  compared  with a key 
furnished by the requesting  source. A mismatch  effectively 
cancels the operation. 

Since a protect operation can  be  required on every 
MSCE cycle, this suggests either an interleaved  set of 
protect storage  units, or one unit with a 60-nsec  cycle. If an 
interleaved  set  is  used,  each unit must  be of sufficient  size 
to store all keys required by the storage  system. Further- 
more, the access  time  of the unit must  be  fast  enough to 
cancel  stores when  mismatches are detected, a requirement 
which  becomes more  difficult as the attachment of faster 
units  is  considered.  These factors, as well as the requirement 
for adaptability to various storage units,  led to the adop- 
tion of a single  high-speed protect storage. The 60-nsec 
cycle requirement  is  met by implementing the protect 
storage in  extra-high-performance logic. 

Variations of storage 

Interfaces between the MSCE and other units  have been 
designed to allow  variations  in  interleaving factor, capacity, 
and storage speed.  Simulation of a random addressing 
source  has  demonstrated the relative  improvement in 61 
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Figure 7 Simulation results. (a) Average access time vs. interleave  factor; (b) MSCE capacity vs. interleave factor. 

average data rate that is  encountered as interleaving and 
speed are improved (see  Fig. 7). The same  simulation 
indicates the average access time on a given storage unit 
as a function of interleave  factor. MSCE design accom- 
modates the flexibility  in storage configuration by modular 
circuit  replacement,  yielding  interleave  factors of 4, 8, 
or 16. Storage cycle time  can  range up to 750 nsec  by 
varying the number of vertical  push-down  positions in 
the accept  stack. 

Note that the data  rate  and the average access  time 
improve  almost  linearly  with  improvement in storage 
speed,  whereas the interleave factor yields an exponentially 
diminishing  improvement  (see  Fig. 7). The theoretical 
improvement  due to interleaving  can  be  achieved  only by 
diligent attention to optimal physical distribution of logic 

62 and the connection of the interleaved  units. Total logic 

and cable  delay from a requesting  source to storage to 
the data sink has been normalized to two cycles. Inter- 
leaving of the operation of storage  units  greater than 
16  ways  would  exceed the two-normalized  logic and cable 
delay  cycles. The result  is an increase  in  access  time 
because the physical  expansion of logic and cabling  is not 
linear. The effect  of interleaving, then, needs to be con- 
sidered  more than casually. 

Peripheral storage  control element (PSCE) 

Design requirements 

The governing  requirements for the PSCE were  twofold. 
The first  requirement was compatibility  with other high 
performance  models of  System/360. The second  require- 
ment  was the maximization of storage utilization. The 
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first  requirement  helped define the minimum number, 
types, and speed of 1/0 units that must  communicate 
through the PSCE. This did not, however,  define the maxi- 
mum  capability. The second  requirement pointed out a 
need for something  more elaborate than a switch to handle 
the congestion that could  develop from an attempt to 
transfer data to and from  extended  main storage or high 
performance  main storage. 

Bench marks 

The requirements were such that a set of bench marks 
was required to prove the superiority of any particular 
concept. Three bench marks were  defined and used  during 
the initial design phase for cost/performance evaluations. 

Bench mark definition  was  difficult  since little was 
known about all the likely  applications or 1/0 configura- 
tions that would  develop for the Model 91.  Much  was 
known of special applications and problems but little was 
known about the use of extended  main  storage.  Before the 
bench marks were  defined, an attempt was made to answer 
the following  questions: 

How  much 1/0 would a typical  Model 91 configuration 
contain ? 

What are the maximum data rates of the 1/0 units? 
With the availability of high performance I/O, what  is 

the requirement for overlapping I/O? 
What  is the chaining  requirement for high  performance 

What  aggregate 1/0 rates would the PSCE  be  expected 
to handle? 

What  is the storage range that the PSCE  would  be 
expected to handle? 

What  is a typical size for storage configuration? 
Should  storage  be  interleaved? If yes, what should the 

interleave  factor be? 
What are typical random rates for processor activity? 
Should the Model  91  be  able to share storage with 

peripheral  processors ? 
What  is the minimum  acceptable  storage  channel rate? 
What is the maximum  transfer rate expected for the 

peripheral  processor ? 

I/O? 

The questions were not simply  resolved. It was  difficult 
to  put limits on any  condition  because the best performance 
was  desired in all areas. It was  possible,  however, to 
develop a small  number of reasonable  alternatives, and 
the following  bench marks were  defined for comparing 
alternate PSCE  designs : 

I. Storage: 4 or 8 way interleave, 8 psec  cycle 
I/O* : 2 - 1.25  megabyte/sec  devices 

Peripheral processor (PPE): 6.66 megabyte/sec 
Storage channel (X)*  : maximum rate 

1 - .150  megabyte/sec  device 

11. Storage: 4 or 8 way interleave, 8 psec  cycle 
I/O* : 2 - 1.25  megabyte/sec  devices 

1 - .150 megabyte/sec device 
1 - 90 kilobytes/sec device 

PPE* : - 6.66 megabyte/sec 
Central processor (CPU)+ : maximum rate 

111. Extended  Main Storage: 4 or 8 way interleave 
I/O* : 1 - 1.25 megabyte/sec device 
1 - .150  megabyte/sec  device 
1 - 90 kilobyte/sec device 
SC* : maximum rate 

These  bench marks were  used to help  select the design 
approach with the most  potential.  They were not used as 
ultimate objectives.  Once a design  concept was  selected, 
simulation was  used to help  evaluate cost/performance. 

Speed matching and  other problems 
The speed  matching  problems were  as  varied as the com- 
bination of interfaces and speed  variations  possible at 
each  interface of the PSCE. The variations in the inter- 
faces are due in part to the different storage technologies, 
storage  hierarchies,  bussing  needs and circuit  requirements 
that may exist for various  system  configurations. The 
storage  hierarchies  present  many  unique  engineering prob- 
lems in the area of the boundary  detection which is used 
for interleaving, bus assignment, and storage protection. 

One of the most  difficult  speed  matching  problems that, 
the PSCE had to contend with  was that of allowing  high 
speed 1/0  to operate into a storage unit with a cycle time 
greater than the cycle time of the requesting 1 / 0  unit. 
This  same  mismatch  exists for the processor and the 
storage channel (SC) but, since  these units can  wait  in- 
definitely for service,  they are not subject to overrun as 
are the 1 / 0  units. The traditional approach to the 1 / 0  
problem has been to allow 1/0 units to have priority over 
any other element  in a system. If the priority approach 
did not solve the problem,  then it was  usually  necessary 
to bypass  any  bus  in the path to storage and create an 
independent path for I/O. This approach had led to the 
development of "multi-tailed''  storages. 

Standard solutions were found to be inadequate because 
their implementation  would  only  partially  solve the 1/0 
problem and still do nothing to improve the processor 
or SC rates. In the past, if the 1/0 rate into storage was 
such that it could not tolerate a conflict, the 1/0 would 
block the processor until the risk of overrun was past. 

It was  decided that any new solution would  be  acceptable 
only if it met the following  requirements: 

CPU, peripheral processor and SC to have  access to 
storage without the use  of  multi-input storage units. 

More than one  high  speed 1/0 channel to be able to 
use storage in an overlapped  mode. 
"___ 

* Sequential  addressing. 
7 Random  addressing. 63 
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Table 1 PSCE bench mark  evaluation. 

No. of SC(a)  CPU PPE(b) 
Bench Storage  Units No. of store or sc fetch  fetch 

Case 
Storage 

mark @ 8 sec buffers fetch  rate  rate  rate utilization 

1 I 8 12 All fetch 2.35 ... 0.53 69% 
2 8 12 All store 
3 

4 . 0  
8 12 50% fetch, 2.96 . . .  0.56 80% 

90% 

4 I 8 16 All fetch 3.64 ... 
5 I 12 All fetch ... 0 . 6  

4 
82% 

6 
0.96 

I1 8 2.35  0 .6  
0 .3  

12 
100% 

7 I1 4 12 .5   0 .42 88% 
70% 

8 111 8 12 All fetch 
9 111 8 All store 6 .7  

5.7 
12 

86% 
100% 

111 8 12 50% fetch, 6.2 . . .  ... 93% 

11 I11 4 12 All fetch 2.7 100% 

I 
I 

... 0 . 6  

%yo store 

...  ... 

... ... 
... ... 
. . .  ... 

10 
50% store 

. . .  ... 

NOTE: All rates  in  megabytedsec. 
(a)  Storage channel 
(b) Peripheral processor (PPE) 

A processor  request for a busy  storage unit should not 
inhibit its ability to make other requests. 

Storage  interleaving  must  be  possible  in order to im- 
prove the accessibility of requested data. 

No unit must resort to blocking  storages in order to 
guarantee their availability at a later  time. 

Due to the built-in  overhead of a storage control unit, 
it must  be able to handle  requests  in a pipeline  fashion, 
a pipeline  technique  being  one which  allows concurrent 
execution of multiple operations while taking into con- 
sideration the serial  dependence of the operations. 

The  design  must  lend  itself to growth and be able to 
adjust to different storage hierarchies. 

The design must  be  balanced to maximize the use  of 
storage to all users. 

The design  must  be  able to adjust to different storage 
configurations for proper  boundary  detection. 

New concepts 

It was  decided that the most  promising  concept for meet- 
ing the basic  requirements was a bus organized around a 
buffer stack, or queue. The use of buffers  was  certainly 
not new but the manner in which they  were to be  used 
provided the flexibility and performance that was  desired. 
The queue  developed has the following operating char- 
acteristics : 

A variable  number of queue  positions are dynamically 
reserved for 1/0 inputs. The number  reserved  depends on 
the speed and number of 1/0 units  in operation. 

The  queue  is  used to store outstanding requests  made 
by all users. 

Input requests to the queue are on a first  come,  first 
served  basis  except for simultaneous  requests, which are 

64 handled  in a fixed priority order. 

Output from the queue to storage is  based  on a three- 
level  decision. The fist decision  level  checks for available 
storage. The next  decision  level  determines the unit that 
will have  priority out of those requesting an available 
storage. The last decision  level  selects the first  request for 
the unit getting  priority. 

Output from the queue  destined for channels  is  handled 
on a request  basis.  All other output (peripheral processor, 
CPU, and storage channel)  is  handled when no higher 
requests are outstanding. 

The queue  can  overlap all input and output operations. 
That is, at any point in  time it can  handle data returns 
from storage, two input priority  requests, an output 
priority  storage  selection, and the return of a word to a 
channel and to the CPU. 

Outstanding requests in the queue may  be handled out 
of sequence. 

Queue  positions  must  be  available for use by the proces- 
sor and the storage  channel when not reserved by channels. 

Simulation 

The operating characteristics  listed  above were  selected 
and developed for the PSCE only after a study of data 
obtained by simulating  different  bus  designs.  Simulation, 
based on the bench marks previously  described,  pointed 
to bottlenecks that would  have  caused an unbalanced 
bus under certain 1/0 configurations. The simulation 
results  shown in Table 1 give an indication of probable 
storage utilization  with a PSCE design  of 12 queues 
working into an 8-psec storage. 

Queue design 

The decision to use a bus design  with a shared buffer stack 
(queue) was made after studies  indicated that all of the 
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proposed  bus  designs  contained  several buffers.  However, 
the designs  differed  in the way the buffers  were  used and 
distributed among the individual control sections of the 
bus. It was found that, for approximately the same cost 
as  designs  with distributed buffers, it was  possible to build 
a bus  with a shared stack. It was  necessary to build the 
registers of the central stack so that they  could  be  used 
by all control sections of the bus. This required that they 
be more elaborate than would  be the case if they had been 
designed to the specific requirements of one  application. 
The increased  complexity  is  more than balanced by the 
improved data rates that are possible for the processor 
and storage channel. The storage channel rates as a func- 
tion of available  queues and storage  access  time are shown 
in  Table 2. (A more  detailed  explanation of these rates is 
given  below.) It is  obvious by looking at the table that 
the best  storage channel rate is obtained by  using all 
available  queues. It was  decided that 8 registers should be 
used  in the queue  because it was found that assuming 
a 3/4-psec  storage  cycle and 4 channels  with 1.25 mega- 
byte  devices, at least 6 registers  were  needed to handle 
the simultaneous operation of 6 or more  channels. 

Table 2 Storage  channel best case transfer  rates. 

Number of Transfer rate, megabyteslsec 
queues available cb)Access = (b )Access = 

to storage channel I1 cycles I O  cycles 

1 ( a )  7.74  
2 
3 
4 
5 
6 
7 
8 
0 

8.35 
15.7 
23.5 
31.4 
39.2 
47.1 
54.7 
62.5 

16.7 
25.0 
33.3 
41.7 
50.0 
58.3 
66.6 

SC Locked Out 

(b) Access = Storage access time measured at PSCE tailgate for 3/4 
(a) For single word boundary, use this entry only. 

psec storage. 

PSCE Organization 

The design of the PSCE merges  several  functions into one 
integrated unit. This  organization  consists of four major 
areas: queue and busses,  queue priority, common  channel 
controls, and storage channel (Fig. 8). 

Queue and busses 

The effectiveness  of the queue  depends  in  great  measure 
upon  its  accessibility. The busses that communicate  with 
the queue were planned  with a goal of  allowing  simul- 
taneous execution  whenever  feasible.  These  busses  can 
be  grouped  in four main  categories : 

Unit entry busses There  is a unit entry bus shared by 
all requesting  units which  provides  access to all queues. In 
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Figure 8 Block diagram  of PSCE organization. 

addition, two unit entry address busses are provided,  one 
for the CPU and another shared by the other requesting 
units. The independent  processor  address path was pro- 
vided  because of the high  incidence of fetch  requests as 
compared to store requests and, since  access to extended 
main storage depends  in part upon access to the queue, 
the separate address path improves the overall access  time. 

Unit return  busses Two unit return busses are provided, 
one for the processor and another for all other requesting 
units.  These busses are fed from each  queue and return 
data  to the requesting  units. The separate CPU bus  is 
included to minimize  access  time. In general, when a fetch 
is  made, a queue  register  is  held  as a sink for the returning 
data. Data returns from storage are placed  in the queue and 
can  be  sent  immediately to the requesting unit or held until 
requested by 1/0 channels. The separate processor  re- 
turn bus  allowed  improvements  in  this  procedure  since, 
with the separate bus, the processor  will not encounter 
conflicts  with  higher-priority unit returns. A further im- 
provement was  realized  by  utilizing the processor  re- 
turn bus  in  such a way that data returning from extended 
main  storage  could  be  sent  directly to the processor  with- 
out passing through the queue.  This approach allows 
queues  being  used for fetches to be  made  available  im- 
mediately after the fetch  request  is  sent to storage.  This 
means that fewer  queues are required to handle  any given 
processor  request rate and more  queues are available to 
other units. 

Storage request  busses Two storage request  busses are 
provided, one for extended  main  storage and another for 
high  performance  main storage via the MSCE. These 
busses  provide  independent  select paths to the two groups 
of storage and, since  traffic to both groups  can  be  high, 
these paths eliminate  unnecessary inter-group conflicts 
which tend to increase access  time. 

Storage return  busses Three independent storage busses 65 
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are provided  in order to simultaneously  handle  up to 
three  different  storage  access  times.  One is for returns 
from the MSCE and the others provide  for  up to two 
different  storage  speeds. 

Queue priority 

Queue  priority  can  best be described  in  two parts, input 
priority and output priority. 

Input priority In general, input priority is  concerned 
with  entry to the queue. The key functions  performed are: 

Maintain  dynamic  queue  availability status. 
Reserve  queues for 1/0 channels upon request from 

the common  channel control section of the PSCE. 
Assign  unreserved  queues to incoming  requests  based 

upon unit priority and queue  availability. 
0 Assign  reserved  queues to 1/0 channel  requests. A 
pre-priority  function  among  individual 1/0 channels is 
performed by the channel controls which present a single 
request to input priority. 

Route returning storage data  to  the proper  queues and 
update queue status as a result of these returns. 

Output priority Output priority  continually monitors the 
status of the queue  in order to determine  actions to be 
taken on the storage request  busses and unit return busses. 
The following  decision  mechanism is simultaneously 
applied for each storage request bus: 

Compare available storage status with all requests in 
the queue in order to determine which request should 
access storage. 

If more then one  request  finds an available storage unit 
then  select the highest  priority unit among those requesting. 
0 If there is  more than one outstanding request from a 
selecting unit, storage accesses are made on a first-in, 
first-out basis. 

For the unit return busses the following  actions are taken: 
Route memory returns to the central processor. 
Inform other units of returns available in the queue and 

return them on a first-in,  first-out  basis when requested. 

Storage channel 

The function of the storage channel is to provide fast 
data transfer from storage to storage,  overlapped  with 
other system  activity. The storage channel operates as an 
independent unit with  respect to the queue and is not 
treated as “just another channel.”  Communication  delays 
encountered in conventionally  independent 1/0 channels 
have  been  eliminated  by integrating the storage  channel 
with the PSCE. 

Of the units that require access to storage, the storage 
channel was  given  lowest priority. 1/0 channels  require 
higher priority because of their overrun nature; the periph- 

66 era1  processor, which  may also  have 1/0 channels oper- 
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ating,  also  requires  higher priority; since CPU accesses 
imply an immediate  need for storage and storage channel 
accesses  imply a future or less immediate  requirement, the 
CPU was also given  higher  priority.  This  decision  was 
based on the fact that delayed  processor  access  delays the 
system  immediately  while  delayed  storage  channel  access 
may delay the system in the future. 

1/0 activity and especially CPU activity  will  cause 
conflicts  with storage channel  activity. Every storage  con- 
flict will  delay the storage  channel and high  interleaving 
of storage will  help  only to reduce the probability of such 
conflicts.  However, if the storage channel  can  circumvent 
a current conflict and attempt its next  access, the prob- 
ability of a second storage conflict  is  considerably  reduced. 
This, of course  is the central  philosophy of the PSCE,  i.e., 
to permit units to access  storage out of sequence  in order 
to better utilize the high interleave and thereby  increase 
both the overall rate of each unit and the effective  use  of 
storage. 

The storage channel  can initiate a fetch  request every 
cycle and does so as long  as  space  is  available  in the queue. 
Each  queue  register  used becomes a sink for the data from 
storage. If this data were returned to the storage channel, 
it would  eventually  be  sent  back to the queue for storing 
in memory. It is not desirable to permit this round trip of 
data from queue to channel and back,  because it would 
add handling  time and buffering  requirements to the 
storage channel. Instead, the data remain  in the queue and 
a mechanism  is  provided to bring the store address to the 
queue. 

The fact that fetches are made out of sequence  from the 
queue  implies that these store addresses  would  have to be 
supplied out of sequence in order to complete the data 
transfer  as  quickly as possible. Generation of out-of- 
sequence store addresses entails extensive  address  buf- 
fering and sequence controls, and a different  mechanism, 
called  re-address,  is  used. When the storage channel  sends 
a fetch  request to the queue, the data field  of the queue 
register  is  “empty.” In addition to the normal entry of the 
fetch  address, the store address for that word  is  generated 
and placed  in the “empty” data field.  Whenever the fetch 
address  is  sent from the queue to storage, the store address 
is  moved  from the data field to the address field  where it 
waits for the  data to return from storage. As soon as the 
data return the store can be made,  thereby  allowing storage 
channel stores to be  made out of sequence as well as 
fetches. 

Since  queue  availability  is a decisive factor in storage 
channel transfer rates, any factor which tends to increase 
queue  availability  also tends to increase this rate. As 
storage access time  decreases,  queues  become  available 
more  quickly  because the total fetch-store time is  decreased. 
Table 2 shows the effect  of the access  time  of the 3/4-psec 
storage unit on storage channel transfer rates. 



As system  activity into storage  increases,  storage  con- 
flicts  also  increase and the number of queues  available 
becomes more important in order to provide  some  mini- 
mum storage channel rate. Table 3 illustrates this fact by 
showing  estimated transfer rates of the storage channel as 
a function of  queues  available and of storage conflicts, 
assuming a ten cycle  access  time. It should be noted that 
since a simple  algorithm was used,  these rates are only 
representative, but they do serve to illustrate the point. 

Common channel control 

The common  channel control (CCC)  uses  one  interface to 
provide for the attachment of up to five  IBM 2860 Selector 
Channels  plus  one  IBM 2870 Multiplexor Channel to  the 
Model 91. The Selector  Channels  communicate  directly 
with the CCC which  in turn communicates  with the input 
and output control sections of the PSCE. The CCC  also has 
the potential for attachment of two very  high  performance 
channels (2.5 megabyte/sec  rate) through a second inter- 
face.  This  interface  is  designed to minimize the communica- 
tion time  required to service a channel request. It is  ex- 
pected that the time  required to service a channel will  be 
reduced from 1 psec for the standard interface to approxi- 
mately 0.2 psec for this second  interface. 

The CCC will accept a modified  Selector Channel inter- 
face. The change  in the interface was made to provide 
buffer control for  channels that control devices  with rates 
5 1.25 megabytes. The changes  allow  words to be  re- 
turned to different  channels  in a sequence  different  from 
that in  which the requests were generated.  This  permits 
an aggregate  channel rate which is higher than is  normally 
possible  over the standard Selector Channel interface. In 
addition, the changes  permit the CCC to pre-fetch data 
for 1.25 megabyte/sec devices. Pre-fetching  permits the 
overlapping of storage access time  with  channel  service 
time.  This  overlapping  allows the CCC to control the 
operation of four  IBM 2860 Selector  Channels  with 1.25 
megabyte/sec devices (no data chaining) into a 3/4 psec. 
memory  without the risk of overrun. Without pre-fetching 
it would  only  be  possible to run two  Selector  Channels 
with the same  restrictions stated above. 

PSCE serviceability 

A feature included  in the design  of the PSCE  permits it 
to be operated in a mode that does not depend on the 
availability of 1/0 equipment, storage or processors. The 
PSCE  queue and controls can  be  exercised in a loop to 
repeat particular patterns. A separate maintenance  panel 
is provided for the special  PSCE  maintenance  features. 
The panel  also  permits  maintenance on the PSCE to be 
overlapped  with  maintenance of other parts of the CPU. 
Serviceability of the PSCE  is  enhanced by these features: 

Variable  effective  queue  size  permits  failures to be 
isolated. 

Table 3 Storage  channel  transfer  rates  (assuming  750-nsec 
extended main storage and 750-nsec  high  performance  main 
storage. 

No. of queues 

storage channel Case I Case II Case I l l  
available to Transfer rate, megabyteslsec 

1 (a )  8.3 6 .0  
2 

4.8 
16.6  11.9  19.5 

3 24.9  17.5  13.7 
4 33.3 23 .O 17.0 
5 41.6  28.4  21.7 
6 49.8  33.6  25.4 
7 58.3  38.6 29.0 
8 66.4  43.5  32.4 

CASE I: Probability  of  EMS  busy = 0 
Probability of HPMS busy = 0 

CASE 11: Probability of one of EMS  or  HPMS busy = 1/2 
Probability  of  both  EMS  and  HPMS  busy = 0 

CASE 111: Probability of both  EMS and HPMS  busy = 1/2 
Probability of both  EMS  and  HPMS not busy = 
1 /2. 

(a) Use this  entry  for addresses on single word boundaries. 

0 Queue contents on stores can  be  saved until storage 
advance  time.  This  allows correlation of storage-detected 
errors with the contents of the queue  register that generated 
the storage  select. 

A register in the queue  can  “freeze” its contents on error. 
This feature allows all data associated  with a request to 
be retained for future display or log out. 

PSCE-MSCE interaction 

It should be noted that the queue  buffers are general 
purpose whereas the processor  request  stack in the MSCE 
has no provision for data bits, uses the processor data 
buffers, and is tailored to processor  requests.  Consequently, 
the PSCE  buffering  capabilities (8 queue  positions) are 
utilized by both PSCE-to-main  storage  requests and by 
processor-to-extended  storage  requests.  PSCE-to-main 
storage requests appear at the MSCE from the queue 
only after the specific storage unit has  been  reserved and 
becomes  available for selection.  Thus,  two-way  communi- 
cation, on a main  storage  interleave-factor  basis (4, 8, or 
16), exists  between the MSCE and the PSCE for PSCE- 
to-main storage requests. In other words, the PSCE  moni- 
tors the state of each  main storage unit. 

Processor-to-extended storage requests  can appear at 
the PSCE at any  time  (provided  queue  positions are avail- 
able),  independently of the immediate  availability of 
the desired  extended  storage.  Again, the PSCE  buffering 
capability  is  utilized by stacking  processor  requests in 
the queue until service  time. In effect, then, the processor 
requests  monitor the state of the queue, rather than the 67 
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state of extended storage units.  Processor-to-extended 
storage requests are (1) transmitted across the interface, 
(2) buffered in the queue, (3) transmitted to priority con- 
trols, and (4) permitted to select  extended  main  storage. 
Conversely,  PSCE-to-main storage requests (1) are buf- 
fered in the queue (2) enter priority (3) are transmitted 
across the interface, and (4)  select  main  storage.  Both 
types of requests  use the queue as a buffer and enter priority 
only after the requesting  address  enters the queue. 

The MSCE and the PSCE are synchronized to receive 
fetched data from each other on any cycle, although the 
control technique  is  different in each control element. The 
PSCE  has unique data paths for main storage data returns 
and extended storage returns to the queue. The MSCE 
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accepts data from extended storage by orthogonally 
multiplexing the main storage and extended  storage. 
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