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A Partial Error Analysis for the Solution of 
Differential Equations in Simulation: A Look at 
Fowler’s  z-Transform  Root-Locus  Method* 

Abstract: A partial analysis is made of the types of error of Fowler’s  method,  which uses the z-transform procedure for 
digital  simulation of complex systems. 

1. Introduction 

In a series of recent p a p e r ~ l - ~  M. E. Fowler and others at 
IBM have developed a new technique for  digital  simulation 
of complex systems, based on root-locus and z-transform 
analysis; the present paper presents a partial analysis of 
the  nature of the  error inherent in this new approach  and 
in others. 

The complex simulation problems which often arise, 
say,  in the aerospace industry have some distinctive char- 
acteristics. For one thing, the continuous system is often 
stable and, if unstable, the only important requirement on 
the numerical  solution is that  it indicate  this  instability; 
for  another, accuracy requirements may vary widely, 
ranging from  one percent during transients for angular 
motion to 0.001% for velocity and position, while the 
requirement of short computation  time  remains  constant. 
Fowler’s method was designed primarily to allow the use 
of a large time step  in  those parts of a  simulation  problem 
which require only moderate accuracy during  transients, 
but somewhat  greater precision in the steady-state values. 
Although  practical experience indicates the success of the 
method: no proofs have been given for even simple cases. 

One  reason for  the lack of a theoretical analysis of the 
error  for Fowler’s method is that  the  method is to some 
extent an “engineering” technique rather  than a uniquely 
defined “mathematical” one, in the sense that  for large 
systems of any  interest the user makes  many  qualitative 
judgments,  such  as  whether or  not  the relevant root-loci 
will “match,” a judgment which can  not be expressed 
by formulae. Also, since the  method is designed for use 
with a large time  step, it is not clear that  an analysis of 
what  happens when that time  step converges to zero is at all 
relevant. Nonetheless, for stable systems and in cases in 
which the  root matching technique can  be well defined, it is 
possible to analyze the resulting error; because the ideas 
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involved are  not restricted to Fowler’s method alone, we 
first present the analysis in a general form  and proceed 
with the application to Fowler’s method  in Section IV. 

Many standard methods for solving differential equa- 
tions use iteration  formulae  based on  the classical theories 
of interpolation,  numerical differentiation and  quadrature, 
or Taylor  series; for  the purpose of analysis, such methods 
are convenient because of the availability of information, 
e.g., error estimates, concerning the underlying approach. 
Fowler’s method and some other simulation  methods 
apparently  have no such convenient existing theoretical 
basis; it seems necessary and  appropriate  to analyze them 
primarily from  the viewpoint from which they often 
arise, i.e., root-locus matching. To this end we choose 
a “backward” error analysis in the sense that  the numerical 
solution x, is considered to equal x,(nT) where x,(t) is 
the exact solution to a differential equation that is a 
slight perturbation of the  one we seek to solve. The 
numerical error \x, - y(nT)(  can then  be  measured  in 
terms of these perturbations, which are in turn measured 
by  certain  parameters of the  solution  method,  in  particular 
by the accuracy of the root-locus approximation. 

II. linear equations 

We consider the system of N equations  in N unknowns: 

J’ + U ( 0 Y  = c( t ) ,  
(1) 

y ( 0 )  = yo,  a( t )  and c( t )  continuous. 

We further assume that a,  = limt+- a(t) exists and is finite. 
Perhaps the simplest method of numerical  solution of 

(1) is Euler’s method, which takes the  form x , + ~  = x, + 
T(c, - u,x,), x. = y o ,  where x,  approximates y(nT) ,  and 
a, = a(nT), c,  = c(nT). If we define ii, via e-anT = 1 - 
a,T, p, via ii, = (1 + pn)an and C, via C, = (1 + pn)cn, 
then we see that x, = x,(nT), where x,(t) + Z,x,(t) = E,, 
x,(nT) = x,-,(nT), xo(0) = y o ,  for t 2 nT. Thus  the 
numerical  solution is a discretized continuous  solution to 
perturbed equations. 



Returning to  the general problem, we wish to compare 
the solution y( t )  of (1) with the  solutions to  the  equations: 

x & >  + si,x,(t) = ?,, 

x,(nT> 1 x,-,(nT), ~ " ( 0 )  = Y O ,  

where si, = (1 + pn)an and 2, = (1 + pn)cn, with a, and c, 
some appropriate representation of a(t) and c(t) on nT 5 
t 5 nT + T ;  the  particular  form of a,, c,, and pn is deter- 
mined as in the  above example by the specific method 
in use. 

Clearly we may write 

E, + = m(t)  c(t)  - C,, + (% - a ( t ) ) y ( t ) ,  

E,(nT) = E,-,(nT), E,(O) = 0, 

where E,(t) = y( t )  - x,(t), nT 5 t. 
Writing d,, = E,(nT), this yields 

d,L+l = e-"'?'d, + y,?, do = 0 ,  
n T +  T 

Y n  = 

For convenience, we write A, = e-""T. Thus (3) becomes 

I, e 
- a , ( n T + T - l )  f&> d l .  

& + I  = Andn + ynr do = 0.  

Define A e-rimT, e, = A ,  - A, where ii, = (1 + p,)a, = 

limitnT+, i i n  is assumed to exist. Then d,+, = Ad, + + y n  , do = 0 which implies 
" 1 

Defining 

Under certain additional assumptions (7) will give us the 
error analysis we seek. 

First, we wish to determine what  happens  as nT tends 
to infinity in  the case for which all eigenvalues of a,  have 
positive real parts  and c ,  = limt+, c(t) exists, i.e., for the 
case in which the continuous  solution, y(t), tends toy, = 

ai 'c ,  as t tends to infinity. We can draw valid conclusions 
here if ii, satisfies the same  assumption  as a,  ; we assume 
this. Then clearly we have r < 1 in (7), and, if  we take 
n so large that r + 017, < 1, sending p to infinity in (7) 
yields 

for  all large n. 
TO go further we must analyze rn. Recall that we assume 

I [y i I 5 r,, i 2 n. Also from (3) and  the definition of f j ,  
we have 

I IYI I I  I 6i + e ,  + I/P,I I gi, 
where 

Further assuming that a,, c, tend to a,, c, as n nears 
infinity, we know that 6i, ci, and gi approach zero  as j 
approaches infinity. Thus 

Theorem 1: If  a,, c ,  exist, if a ,  and 6, have all their 
eigenvalues with  positive real parts, if limn,,, a,, = a,, 
limn,,, c, = c,, then for fixed T,  the solutions y(t),  x,(t) 
of (l), (2) satisfy limn+, I \An73 - x,(nT)I I = 0. 

Next we wish to analyze the  order of the  error at t = nT 
as T approaches zero. Because of the boundedness of 473 

ERROR ANALYSIS OF FOWLER'S METHOD 



a(t), if p, (and a,) is bounded, we have I le-anT 1 I 5 1 + PT 
for some P. Thus, from (3), we have 

lldnll I - [(I + or)" - 11 I (e" - 11, 
r0 r 
PT  PT 

ro 2 SUP l l r t l  I .  
220 

Let us assume that there exist constants a,, cy2, a3,  a4, 

g ,  I a 4 T ,  for all n. Then  (10)  yields 

I IXnbT)  - Y ( n  I I 
eBt - 1 

- 0  
< (a T"'" + azTP"" + a3a4 T P 3 )  . (1 1) 

Theorem 2: If there exist constants al, a2,  a3, a4, 

g,  5 a4T for all n ,  then, dejiningp = min ( P I  - 1, pz - 1, p3) ,  
I Ix,(nT) - y(nT)I I tends to  zero  like T" as T tends to  zero 
with nT = t jixed; that is, there exists a constant a such 
that Ilx,(nT) - y(nT)II I aTp (a depends on t). 

p l ,pz ,p3,  such that 6, I a1TP', E, I C Y ~ T ~ ' ,  llpnll 5 aBT"*, 

Intuitively, (11) says that our  total  error comes from 
three distinct types of error: (i) the error in representing 
the  input c(t ) ;  (ii) the  error in representing the time  varying 
parameter a(t); (iii) the error in matching the  roots of the 
difference and the differential equations. Errors of type 
(i) are measured by 6, errors of  type  (ii)  by E, and errors 
of type (iii) by p. 

111. Nonlinear equations 

For systems of nonlinear differential equations we can 
arrive at roughly the same results, using  essentially the 
same standard analysis  given  in  Section 11; of course, 
rather strong assumptions must be made in some cases. 
For completeness we demonstrate the techniques  involved. 

Consider the nonlinear system analogous to (l), i.e., 

P + 4 ,  Y(t)>Y(t> = c ( d ,  Y ( 0 )  = Y o .  (12) 

Suppose there exists a continuous solution y( t ) ,  and denote 
a(t, y( t ) )  by a(t). Then the solution y( t )  to (12) also solves 

z + a(r)z = c ( t ) ,  z (0)  = yo ( 12') 

Under the assumptions of Theorem 2 for this equation, 
we conclude that the numbers w,(nT) defined  via 

w, + a,w, = tn, 

4 n T )  = w,-l(nT), wo(0)  = yo  

satisfy I(w,(nT) - y(nT) / I  5 aTP,  where a depends on T 
and p depends upon the method of approximation, as in 
Theorem 2. Introducing slightly  new notation we have 
G ( Y ~ )  t1 + ~ ( d ~ J ) l d ~ n h  tn = t1 + p ( a n ( ~ n ) ) l ~ n ,  
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From (13) we deduce that W,(t) + a,(w,)w,(t) = 5, + 
[fin(wn> - G(Y~)Iw~(O.  Thus 

in(t> + an(wn)wn(t> 

However, the numbers we actually compute satisfy 
not (14) but 

X"(t> + &(xn)xn(t> = 4 ,  

xn(nT) = xn-,(nT), xo(0) = Yo, 

where 

an(xJ = [ 1  + ~ ( a n ( x n > > l ~ ( x n > ,  

zn [ I  + p(an(xn>)]cn* 
Solving  (14) and (1 5 )  we deduce 

w , , ~  = e w n ) T w n  + a,(w,) "a ( 

- (1 - e - a n ( w " ) T  + p(a,(w,>>cJ 

+ (Z,(w,> - a,(y,)) j T  e - a m ( w " ) ( T - t )  w,(n T + t )  d t ,  
0 

(16) 
x,+,  = e-"""x, + an(xn)-l 

X (1 - e-an'z"'T)(c, + p(a,(x,))c,). 

Subtracting yields 

W,+l - x,+1 = e - a n ( w n ) T  w, - e - a n ( z , L ) T  x, + pn, (17) 

where the definition of pn is obvious. 
Assuming that a(t, u)  is uniformly bounded and satisfies 

a Lipschitz condition in u, and recalling our assumption 
that  the function p ( . )  is of order TP as T approaches zero, 
it is simple to deduce that there exist constants P1, P2 such 
that llpnll 5 PIT"+' + P2T llwn - x,ll. These conditions 
further imply that there exists a constant P3 such that 

as T nears zero. Thus 

I l e - a " ( w n ) T  w, - T 

I l w n + l  - &+Il l  
- < (1 + P2T + P3T) IIwn - x,jl + PIT'''. (18) 

x,II I (1 + P3T)  I l w m  - xnll 

Thus, just as in the steps leading up  to Theorem 2,  we 
can easily  show that there exists a constant P4 = P4(f), 

t = nT, such that I Iw, - x,l I I P4TP as T approaches zero. 
Since a similar relation has already been demonstrated 
between w, and y(nT), we have 

Theorem 3: Suppose that the assumptions of Theorem 2 
for the linear equation (12') are valid; this  then dejines the 
order p .  If a(t, u) is uniformly bounded and satisjies a Lip- 
schitz condition in u, then there exists a = P ( t )  such that 
for t = nTjixedas Tapproaches zero, I (x ,  - y(nT)I 1 5 PT". 



As usual, to prove anything about  the final values we 
must  make  stronger assumptions. 

Theorem 4: If, to the assumptions of Theorem 3, we 
add the assumption that Emt+, a(t, u) = a, uniformly in u, 
with all the eigenvalues of a ,  and ii, having positive real 
parts, and if thefinal value of the  continuous solution y( t )  is  
y, ,  then Ea+, x,  exists and equals y , .  

Sketch of Proof: Defining A ,  = e-amT , we replace the 
in (17) by A ,  plus 

error terms. Since I IA,“I I 5 arm, r < 1 ,  we can proceed 
exactly as we did prior  to Theorem 1, deducing that 
limi+, llxi - wil I 5 M ,  X constant, where p i  5 M,, 
i 2 n. But our assumptions imply that p i  tends to zero. 
Thus x ,  exists and equals w,  = y,. Q.E.D. 

Thus we are able to prove convergence to  the correct 
final value in  those cases in which the nonlinearity “dis- 
appears” for a large time, leaving an otherwise stable 
system. 

IV. Examples; Fowler’s method 

Before we examine the  error in  approximation by Fowler’s 
method, let us show how the previous results can be used 
to derive error bounds for a simpler method  for  the  sake 
of clarity. 

A. Euler’s method 

Euler’s method was stated  at  the  start of Section 11; con- 
sider its  application to 3 + a(t, y)y  = c(t),  y(0) = y,,. We 
define p(a) via e - ( l + p ( u ) ) u T  = 1 - UT.  Thus an(yn) = 1 / T  
In ( 1  - a,(y,)T) = cl,(yn)[1 + &,(yn)T + . . . I ,  yielding 

p 3  = 1 .  Clearly pl = p 2  = 2, so that  the  error is of order T,  
as is well known. If a(t, u) approaches a,, clearly we require 
T to be small for stability (if a, is stable). 

B. Fowler’s method 

We first present a trivial example solely to illustrate the 
ideas involved; consider the first-order scalar equation 
j + a(t ,   y)y = c(t), y(0) = yo ,  where we assume 0 < m 5 
a(t, y )  5 M, Iirnt+, a( t ,   y )  = a,, 1imt+- c(t) = c,. The 
z-transform based simulation for this gives the iteration 
x , + ~  = (1 - K U , T ) X ,  + KTc,, where a, and c, approximate 
a(t ,  y ) ,  and c( t )  and K is a suitable  factor.  Most simply we 
let a, = a(nT,  x,), c, = c(nT), and K = ( 1  - e-”’)/MT, 
this choice of K guaranteeing that i in  defined by e-anT = 

1 - KU,T is bounded  away from zero. To detect the  order 
of the  error we write ii, = - l / T  In ( 1  - K U , T )  = - l / T  
In [l - anT(l - A T / 2  . . - ) I  = - { ( A  - 4 / 2 }  
T + . . .] which states that p is of order T.  By our choice 
of a, and c, this implies that the error is of order T ,  while 
our choice of K guarantees the  attainment of the correct 
final value and  the stability of the iteration defining x,,. 

We next present a somewhat more complex example 
fm which Fowler’s method can be precisely stated  for all T ,  

expressions e - 6 n ( W n )  T and e - d n ( * n )  T 

yielding an  error estimate; we do  not, however, describe 
how the simulation is determined since the application of 
the  method  has been described thoroughly 
Consider the nonlinear system 

where A is a nonlinear  function of t ,  yl, and y ,  satisfying 
0 < m 5 A 5 M ,  limt+, A = A , ;  for clarity, let 
A(t ,  yl, y,)  = 4 + 5.12te-t - 3.25e-‘-’‘ 2 - y ’ 2  , so 0.75 5 
A 5 5 ,  A ,  = 4. As A varies, the “instantaneous eigen- 
values” of the system are sA = 1 f dl - A .  

Fowler’s method,  applied to simulate the continuous 
system (19), gives the difference equations (in vector 
notation) : 

The behaviour of such a system is influenced by the 
“instantaneous roots” za satisfying (z - I)(Z - e-2T)  + 
 KAT(^ - e-2T)Z = 0 ;  the crucial part of Fowler’s method 
is to match the two loci za and e-” A T  as closely as possible 
over the entire  range of A ,  keeping Iza I < 1 if possible. 
This is easily accomplished by picking K such that ZA = 

at  the extreme value A = 5 .  If we write 
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and 

0 A(nT,  X : , ) ,  x:’) 

- 1  2 

and  note  that K = 1 - 2T + O(T2), then defining ii, as 
usual from (20) we have ii, = a,(l + O(T)); choosing 
cf”’ = c,(nT) for i = 1 ,  2 then yields a total  error of order 
T.  We also note  that  the difference equation (20) is now 
stable and  that we obtain  the correct final value. The close 
matching of the loci (in fact for all A in 0.75 5 A 5 5 
there exists A’ in 0.75 5 A’ 5 5 with z A r  = e - a A T )  implies 
that  the dynamics of the solution to (20) will closely match 
those of the solution to (19). 

In  the last example the proof of the  order of convergence 
was made possible by the existence of a fixed rule for 
setting up  the difference equations, i.e. force zA = 

at A = 5 ;  any time that such a rule exists we can estimate 
the  error via Sections I1 and 111. Unfortunately it seems 
impossible to give a more precise analysis of the  errors 



resulting from Fowler’s method  without restricting the 
equations considered to entirely unrealistic special cases ;* 
the method  as it  stands is an excellent approach to practical 
problems but  its very flexibility limits our ability to analyze 
it completely. 

V. Concluding remarks 

Although,  as we mentioned in Section I, the  order of con- 
vergence is sometimes of little practical  interest, we regret 
that a completely general analysis of Fowler’s method 
was not possible; perhaps  a  more important limitation, 
however, lies in the  strong assumptions used. The  ap- 
propriate stability condition for  the continuous system 
is that a(t, x)x be strongly monotone in x, a much weaker 
condition than we imposed. One might hypothesize that 
if a continuous system is stable and is simulated by a 
discrete system with close enough  root-loci,  then the 
discrete system is also stable and converges to the correct 

*For  example, the system (12) sometimes  leads to  the Fowler’s 
simulation xn+l = (1 - Tnan)xn + Tnc*. where a,, = a(nT. x*),  

formly  positive  definite  and satisfies in = an (1 + O(T)). thus giving 
cn = c (nT) ,  and K is a  constant  matrix chosen such that a,, is uni- 

a  total  error of order T ;  the  example (19), (20) shows however that 
this is not  a widely applicable special case. 

~ ~~ ~~~~ ~~~ ~~ 

final value;  this is true, for example, in t h  

~~ __ 

le Fowler simula- 
tion of the (only apparently)  nonlinear system 

Y , ( O )  = 10, Y,(O) = 0.9, 

whose matrix has  one positive and  one negative root. In 
complete generality this hypothesis is probably untrue; 
we wonder  under  what  assumptions it is valid. 
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