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James W. Danielt

A Partial Error Analysis for the Solution of
Differential Equations in Simulation: A Look at
Fowler’s z-Transform Root-Locus Method*

Abstract: A partial analysis is made of the types of error of Fowler's method, which uses the z-transform procedure for

digital simulation of complex systems.

I. Introduction

In a series of recent papers' > M. E. Fowler and others at
IBM have developed a new technique for digital simulation
of complex systems, based on root-locus and z-transform
analysis; the present paper presents a partial analysis of
the nature of the error inherent in this new approach and
in others.

The complex simulation problems which often arise,
say, in the aerospace industry have some distinctive char-
acteristics. For one thing, the continuous system is often
stable and, if unstable, the only important requirement on
the numerical solution is that it indicate this instability;
for another, accuracy requirements may vary widely,
ranging from one percent during transients for angular
motion to 0.0019, for velocity and position, while the
requirement of short computation time remains constant.
Fowler’s method was designed primarily to allow the use
of a large time step in those parts of a simulation problem
which require only moderate accuracy during transients,
but somewhat greater precision in the steady-state values.
Although practical experience indicates the success of the
method,' no proofs have been given for even simple cases.

One reason for the lack of a theoretical analysis of the
error for Fowler’s method is that the method is to some
extent an “engineering” technique rather than a uniquely
defined “mathematical” one, in the sense that for large
systems of any interest the user makes many qualitative
judgments, such as whether or not the relevant root-loci
will “match,” a judgment which can not be expressed
by formulae. Also, since the method is designed for use
with a large time step, it is not clear that an analysis of
what happens when that time step converges to zero is at all
relevant. Nonetheless, for stable systems and in cases in
which the root matching technique can be well defined, it is
possible to analyze the resulting error; because the ideas
m;arch was performed while the author was a member of the
fIOB;%a.S)ISIemS Research and Development Center, Palo Alto, Cali-
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involved are not restricted to Fowler’s method alone, we
first present the analysis in a general form and proceed
with the application to Fowler’s method in Section 1V.

Many standard methods for solving differential equa-
tions use iteration formulae based on the classical theories
of interpolation, numerical differentiation and quadrature,
or Taylor series; for the purpose of analysis, such methods
are convenient because of the availability of information,
e.g., error estimates, concerning the underlying approach.
Fowler’s method and some other simulation methods
apparently have no such convenient existing theoretical
basis; it seems necessary and appropriate to analyze them
primarily from the viewpoint from which they often
arise, i.e., root-locus matching. To this end we choose
a “backward” error analysis in the sense that the numerical
solution x, is considered to equal x,(nT) where x,(¢) is
the exact solution to a differential equation that is a
slight perturbation of the one we seek to solve. The
numerical error |x, — y(nT)| can then be measured in
terms of these perturbations, which are in turn measured
by certain parameters of the solution method, in particular
by the accuracy of the root-locus approximation.

Il. Linear equations

We consider the system of N equations in N unknowns:
5+ al)y = <), 0
y(0) = y,, a(t) and c{(f) continuous.

We further assume that a., = lim,_,., a(?) exists and is finite.

Perhaps the simplest method of numerical solution of
(1) is Euler’s method, which takes the form x,., = x, +
T(c, — a.x,), Xo = Y., where x, approximates y(nT), and
a, = a(nT), c, = c(nT). If we define a, via e T =1 —
a,T, p,viaa, = (1 + poa,and¢, viac, = A 4+ p,c,,
then we see that x, = x,(uT), where x,(f) + @.x.(!) = Ca,
x,(nT) = x,.,(nT), x0) = y,, for t > nT. Thus the
numerical solution is a discretized continuous solution to
perturbed equations.




Returning to the general problem, we wish to compare
the solution y(¢) of (1) with the solutions to the equations:

%(t) + a.x,(t) = ¢,
xn(”T) = xn—1<nT)9

)

xo(o) = Jo,

where @, = (1 4+ p,)a, and ¢, = (1 4+ p,)c,, with @, and ¢,
some appropriate representation of a(f) and c(¢) on nT <
t < nT + T; the particular form of a,, c,, and p, is deter-
mined as in the above example by the specific method
in use.

Clearly we may write

E, + a,E, = f(t) = c(t) — & + (a, — a(0)y(r),
E(nT) = E,.\(nT),  Ef0) = 0,

where E (1) = () — x, (1), nT < t.
Writing d, = E,(nT), this yields

—anT
dir = e d, + Yns

nT+ T )
'YnEf eAan(nlJrlft)f"(t) dr.
nT

=0 (3)

For convenience, we write A, = e~ "*”. Thus (3) becomes

dosy = Audy + va, dy = 0. (4)

Define A=e*"",¢,= A, — A, where @, = (1 + pu)a. =
limit,7 . @, is assumed to exist. Then d,,. = Ad, +
e.d, + v., do = 0 which implies

p—1
dn+p = Apdn + E Ap_l_l’y’”‘i
=0

p—1 .‘
+ Z Ap#l?lenﬂ‘dm-i- (5)
i=0

Next we assume that |[e;|| < 7,,i> n,that |[47]| < ar®,
i> 0,and that ||y;||< T,,i> n.
From (5) it follows then that

neol| = ar” [1d]|

1 — 7 p—1 i
ol = +an, 27 . (6)
i=0
Defining
p—1 )
Dy, =an, 2, "7 lduil| + ar” ||d]|
i=0
we have
Dn.p+1 - an.p = an, Hdn+pH
= ann[Dn,,, + al, Lor }
1 —r
which yields
Dn,p+1 _S_ (r + ann)pDn.l
1 — 7

+a' 32 (r + an)” 'n I, T
=1

r

Finally,
1 —r 1
Hduinl] < al, I—:r; + (r + an)” an, + ar) {|da]|
»—1 i 1 — ¢
+ o’Tn, Z (r + am)”™ _rr
< ol T+ an) e + @) [[d,
4 @ Tam [1 — (r + am)™"
1 —r 1 — (r + an,)
— " + an) = . ()
a‘rln

Under certain additional assumptions (7) will give us the
error analysis we seek.

First, we wish to determine what happens as nT tends
to infinity in the case for which all eigenvalues of a., have
positive real parts and ¢, = lim,_,., () exists, i.e., for the
case in which the continuous solution, (1), tends to y, =
a,'c, as ¢ tends to infinity. We can draw valid conclusions
here if a., satisfies the same assumption as a.,; we assume
this. Then clearly we have r < 1 in (7), and, if we take
n so large that r + a7, < 1, sending p to infinity in (7)
yields

l_i_rr;[|di|i§afn<ll_r+ 2 ) (8)

i—w 1 —r— any,

for all large n.

To go further we must analyze T',. Recall that we assume
Ily:|| € I, i > n. Also from (3) and the definition of f;,
we have

H’Yi” <&+t HPJH 8is

where

iT+T
5 = Hf eI — ) dr
| iT

o

iT+T o
€ = H./ e T (g — a())y(r) dt
HWir

| !-

Further assuming that a,, ¢, tend to a., c, as n nears
infinity, we know that §;, ¢;, and g; approach zero as j
approaches infinity. Thus

g;

iT+7T o
f e—a,‘(11+1‘~!)(a]_y(t) _ Cj) dt
i

iT

Theorem 1: If a., c. exist, if a, and a. have all their
eigenvalues with positive real parts, if lim,r_. a, = au,
liMurae Cn = Cx, then for fixed T, the solutions y(t), x.(9)
of (1), 2) satisfy lim, ... |[Y(nT) — x,(nT)|| = 0.

Next we wish to analyze the order of the error at t = nT
as T approaches zero. Because of the boundedness of
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a(n), if p, (and a,) is bounded, we have |[e™**T|| < 14 BT
for some B3. Thus, from (3), we have

llal} < ;—‘)T[a FBTY — 1] < (P — 1),

- AT (10)
Iy > sup [yl

Let us assume that there exist constants o, as, o3, oy,
P1, P2, ps such that 6, < a, T, ¢, < a2Tm, [|Pn|| < ang,
g, < a,T, for all n. Then (10) yields

% (nT) — y(nT)]

eﬁt

< _—B_”—l (T 4+ 0T + aa, T™). (11)

Theorem 2: If there exist constants ai, Qs 03, O,
D1, Pa, D3, such that 8, < a;T™, e, < a, T, || pn]] < a3 T™,
g. < a,T for all n, then, defining p = min (p, — 1, p, — 1, p3),
||%,(nT) — ¥(nT)|| tends to zero like T” as T tends to zero
with nT = 1 fixed; that is, there exists a constant « such
that ||x,(nT) — y(rT)|| < aT” (a depends on 1).

Intuitively, (11) says that our total error comes from
three distinct types of error: (i) the error in representing
the input ¢(7); (ii) the error in representing the time varying
parameter a(t); (iii) the error in matching the roots of the
difference and the differential equations. Errors of type
(i) are measured by &, errors of type (ii) by ¢, and errors
of type (iii) by p.

Ill. Nonlinear equations

For systems of nonlinear differential equations we can
arrive at roughly the same results, using essentially the
same standard analysis given in Section II; of course,
rather strong assumptions must be made in some cases.
For completeness we demonstrate the techniques involved.

Consider the nonlinear system analogous to (1), i.e.,

y + a(t, y(O)y() = (),  »(0) = y,. (12)

Suppose there exists a continuous solution y(¢), and denote
a(t, y()) by a(r). Then the solution y(¢) to (12) also solves

2(0) = o (12')

Under the assumptions of Theorem 2 for this equation,
we conclude that the numbers w,(nT) defined via

z 4+ a(z = (1),

Wi + 3w, = ¢, (13)

Wn(nT) = wn—l(nT)’ WO(O) = Yo

satisfy |Iw,(nT) — y(nT)|| < aT”, where « depends on T
and p depends upon the method of approximation, as in
Theorem 2. Introducing slightly new notation we have

a(yn) = 1 + play)la0n), ¢ = [ + play)lc.,

where 1 denotes the identity matrix and p(¥) a matrix.
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From (13) we deduce that w.(f) + a.(w)w.() = ¢, +
[a(w,) — a.(y)Iw(f). Thus

Wa(t) 4 @u(wa) wa(r)
= ¢, + pla,(y))en + [au(w,) — @(y)Iwa().  (14)

However, the numbers we actually compute satisfy
not (14) but

xa(6) + au(x)x. (1) = ci,
xn(nT) = xn~1(nT)’

(15)

xo(O) = Yo,
where
an(xn) = [1 + P(an(xn»]an(xn)s

Gy = [1 + P(an(xn))]cm
Solving (14) and (15) we deduce

Wy = eAdn(wn)Twn + Eln(wn)

— (1 =™ NYew + plan(wa)en)

@) = a,e)) [ T T 4 0 ar,
0 (19

Sar = €T, 4 g ()
X (1= e Dlew 4 planxa))es).

Subtracting yields

—an(wa) T

Wpe1 — Xpy1 — € Wy

- e—d"(hl)Txn + Hans (17)

where the definition of u, is obvious.

Assuming that a(¢, ©) is uniformly bounded and satisfies
a Lipschitz condition in u, and recalling our assumption
that the function p(:) is of order T? as T approaches zero,
it is simple to deduce that there exist constants 3, 8, such
that ||u.}| < 817" + B.T ||w, — x.||. These conditions
further imply that there exists a constant 8; such that
[lem® @ T w, — e x| <A+ B3T) [wa — x|
as T nears zero. Thus

Hwn+1 - xn+l|*
< (1 + 8.T + BaT) HWn - xn” + ﬁlTpH- (18)

Thus, just as in the steps leading up to Theorem 2, we
can easily show that there exists a constant 8, = B(1),
t = nT,such that ||w, — x,|| < B,T7 as T approaches zero.
Since a similar relation has already been demonstrated
between w, and y(nT), we have

Theorem 3: Suppose that the assumptions of Theorem 2
for the linear equation (12') are valid; this then defines the
order p. If a(t, u) is uniformly bounded and satisfies a Lip-
schitz condition in u, then there exists a B = ((¢) such that
for t = nT fixed as T approaches zero, ||x, — y(nT)|| < BT".




As usual, to prove anything about the final values we
must make stronger assumptions.

Theorem 4: [f, to the assumptions of Theorem 3, we
add the assumption that im,_,., a(t, u) = a. uniformly in u,
with all the eigenvalues of a, and a, having positive real
parts, and if the final value of the continuous solution y(¥) is
Ve, then im,_. x, exists and equals y.,.

Sketch of Proof: Defining 4., = e **", we replace the
expressions e~ 7T and ¢ **7 jn (17) by A. plus
error terms. Since |[42|] < ar”, r < 1, we can proceed
exactly as we did prior to Theorem 1, deducing that
lim; ., ||x; — w;|| £ M, X constant, where u; < M,
i 2 n. But our assumptions imply that u; tends to zero.
Thus x., exists and equals w., = yo. Q.E.D.

Thus we are able to prove convergence to the correct
final value in those cases in which the nonlinearity “dis-
appears” for a large time, leaving an otherwise stable
system.

IV. Examples; Fowler’s method

Before we examine the error in approximation by Fowler’s
method, let us show how the previous results can be used
to derive error bounds for a simpler method for the sake
of clarity.

A. Euler’s method

Euler’s method was stated at the start of Section II; con-
sider its application to y + a(t, y)y = (1), ¥(0) = y,. We
define p(a) via e " **™"" = 1 — uT. Thus a,(y,) = 1/T
In 1 — a,0)7) = a0l + 3a,(,)T + - -], yielding
ps = 1. Clearly p1 = p, = 2, so that the error is of order T,
as is well known. If a(t, u) approaches a.,, clearly we require
T to be small for stability (if a,, is stable).

B. Fowler’s method

We first present a trivial example solely to illustrate the
ideas involved; consider the first-order scalar equation
v+ alt, y)y = (), y(0) = y,, where we assume 0 < m <
a(t, y) < M, lim,_,, a(t, ) = a@a, lim,_,, c(t) = c.. The
z-transform based simulation for this gives the iteration
Xor1 = (1 — xa,Tx, -+ «Tc,, where a, and ¢, approximate
a(t, ¥), and ¢(¢) and « is a suitable factor. Most simply we
let a, = a(nT, x,), ¢, = e(nT),and xk = (1 — ¢ ¥7)/MT,
this choice of « guaranteeing that a, defined by ¢™ "7 =
1 — ka,T is bounded away from zero. To detect the order
of the error we write &, = —1/TIn (1 — «a,T) = —1/T
In[l — a,T(1 — AT/2 --)] = a1l — {(4 — a,)/2}
T + ---] which states that p is of order 7. By our choice
of a, and ¢, this implies that the error is of order T, while
our choice of x guarantees the attainment of the correct
final value and the stability of the iteration defining x..

We next present a somewhat more complex example
for which Fowler’s method can be precisely stated for all T,

yielding an error estimate; we do not, however, describe
how the simulation is determined since the application of
the method has been described thoroughly elsewhere.*"*
Consider the nonlinear system

{yl ' {yl _ {CIJ , (19)
Y2 Y2 C2
where A is a nonlinear function of ¢, yi, and y, satisfying
0< m< A< M,lim_, A = A,; for clarity, let
A(t, y1, y2) = 4+ 51277 — 3.25¢7 777 500,75 <
A < 5, A, = 4. As A varies, the “instantaneous eigen-
values” of the system are s, = 1 &= \/1 — A.

Fowler’s method, applied to simulate the continuous
system (19), gives the difference equations (in vector
notation):

+ 0 4

-1 2

{ N (n+1) 1 —k AT e
X, _

N _ AT
sz ——7— (l—e”)l-{—K—z“

(n) KCy ™
X1
x[} + T o . (20
X2 *2T (Cz + Tcl)

The behaviour of such a system is influenced by the
“instantaneous roots” z, satisfying (z — 1z — e *) +
1kAT( — e *T)z = 0; the crucial part of Fowler’s method
is to match the two loci z, and e *47 as closely as possible
over the entire range of A, keeping |z,]| < 1 if possible.
This is easily accomplished by picking « such that z, =

e °47 at the extreme value 4 = 5. If we write
alt, yi, y2) = { 0 4
-1 2
and
. = [ 0 AT, x™, x;"’)]
—1 2

and note that x = 1 — 2T + O(T?), then defining a, as
usual from (20) we have a, = a1 4+ 0(T)); choosing
¢ = ¢,(nT) for i = 1, 2 then yields a total error of order
T. We also note that the difference equation (20) is now
stable and that we obtain the correct final value. The close
matching of the loci (in fact for all 4in 0.75 < 4 < 5
there exists 4’ in 0.75 < 4’ < Swith z,. = ¢ °47) implies
that the dynamics of the solution to (20) will closely match
those of the solution to (19).

In the last example the proof of the order of convergence
was made possible by the existence of a fixed rule for
setting up the difference equations, i.e. force z, = e 47
at A = 5; any time that such a rule exists we can estimate
the error via Sections II and III. Unfortunately it seems
impossible to give a more precise analysis of the errors
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resulting from Fowler’s method without restricting the
equations considered to entirely unrealistic special cases;*
the method as it stands is an excellent approach to practical
problems but its very flexibility limits our ability to analyze
it completely.

V. Concluding remarks

Although, as we mentioned in Section I, the order of con-
vergence is sometimes of little practical interest, we regret
that a completely general analysis of Fowler’s method
was not possible; perhaps a more important limitation,
however, lies in the strong assumptions used. The ap-
propriate stability condition for the continuous system
is that a(#, x)x be strongly monotone in x, a much weaker
condition than we imposed. One might hypothesize that
if a continuous system is stable and is simulated by a
discrete system with close enough root-loci, then the
discrete system is also stable and converges to the correct

* For example, the system (12) sometimes leads to the Fowler’s
simulation axny1 = (1 — Tkap)xn —+ Tken, where an = a(nT, x),
¢n = ¢(nT), and « is a constant matrix chosen such that @, is uni-
formly positive definite and satisfies dn = an (1 + O(T)), thus giving
a total error of order T; the example (19), (20) shows however that
this is not a widely applicable special case.

J. W. DANIEL

final value; this is true, for example, in the Fowler simula-
tion of the (only apparently) nonlinear system

e o b=
0

Y2 L Yo 1 —»n
whose matrix has one positive and one negative root. In
complete generality this hypothesis is probably untrue;
we wonder under what assumptions it is valid.

Ra!

Ve
»(0) = 10, »2(0) = 0.9,

References

1. IBM Publication (E20-8186), Flight Simulation Experience
Using a New IBM Numerical Technique.

2. IBM Publication (E20-0029-1), Numerical Techniques for
Real-Time Digital Flight Simulation.

3. M. E. Fowler, “Numerical Methods for the Synthesis of
Linear Control Systems,” Automatica, 1, 207-225 (1963).

4, M. E. Fowler, “A New Numerical Method for Simulation,”
Simulation, 6, 324-330 (1965).

5. M. E. Fowler, “An Example Showing the Use of Root
Locus Techniques to Study Nonlinear Systems,” Technical
Report, IBM Systems Research and Development Center,
Palo Alto, California, August 12, 1964,

Received April 26, 1966




