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Digital Simulation of Image-Forming Systems

In speaking about the simulation of continuous systems,
one usually has in mind the simulation of dynamic sys-
tems—that is, systems in which the variables are functions
of time. Such systems have frequently been simulated by
using an analog computer; but lately, digital simulation
techniques have become more popular.'

In this communication we will discuss systems whose
variables depend on space coordinates x and y, rather
than on the time coordinate t. We will call those systems
having space-dependent variables spatial systems. Photo-
optical image-forming systems, of course, are realizations
of spatial systems. Here the system variables, e.g., light
intensities, transmittances, or photographic densities, are
continuous functions of the two space coordinates x and y.
For simplicity, we will restrict the formulations in this
communication to one spatial dimension only. The exten-
sion to two dimensions is straightforward and does not add
anything significantly new.

When studying the theory of photo-optical image-
forming systems, it becomes apparent that one can look
upon them as consisting of a sequence of connected
blocks, very similar to the case of dynamic systems. We
find linear blocks which represent lenses, light spread in
the photographic emulsion, blurring caused by various
kinds of image motion, and so on. Nonlinear blocks may
represent the characteristic or H & D curve of the photo-
graphic emulsion. The most striking analogy between
dynamic systems and spatial systems is that both types
can be described either by their impulse response or by
their transfer function.*

This analogy suggests that the well-developed methods
of dynamic systems simulation might also be applied to
spatial systems. This is not possible, however, because
of a fundamental difference between the two types of
systems. In the time domain there is directionality, while
in the space domain there is none. Another way of saying
this is that the cause/effect relationship in time has no
analogy in space. The consequences of this difference for

* The first book about optical transfer theory was published by
P. M. Duffieux2 but is difficult to obtain. Two recent books (by E. L.
O’Neill and by E. H. Linfoot)? provide a comprehensive introduction.
Tutorial papers by F. H. Perrint and H. H. Hopkins® are also recom-
mended.

the problem of simulation are discussed in the second
section.

Simonds® used the digital computer to simulate the
photographic printing process with emphasis on the
influence of the adjacency effect. His computer program
is not available. Rabedeau’ also uses the digital computer
for simulation of photo-optical systems. His program
comes much closer than Simonds’ to being a general
image-forming systems simulator. Neither of these, how-
ever, provides a “simulation language” to permit applica-
tion to other types of simulation problems.

The Image Forming Systems Simulator mMsiM/1 was
designed with such a simulation language, which re-
sembles common English, to permit the engineer to apply
the program to photo-optical design problems.* The
third section describes briefly one application of this
language; a more detailed discussion has been published
elsewhere.®

Recently, in an independent effort, Lerman, Minnick,
and Shannon reported the design of another photo-optical
simulation language, FRAP.’

Gray and Kippenhan'® extended msiv/1 for use with
the IBM 7226 Special Graphic Data Processing System
in conjunction with the IBM 7044 Data Processing System.
A cathode ray tube display console and an associated
light pen of the IBM 7226 provide on-line communication
between the user and the program.

Dynamic systems vs spatial systems

The significant difference between dynamic and spatial
systems—the directionality in the time domain—has
already been pointed out by Elias."* If at time ¢ a unit
impulse (Dirac §-function) is applied to a linear block of
a dynamic system (the cause), the impulse response of
this block (the effect) is necessarily equal to zero for times
less than # (Fig. 1). The block cannot respond to an input
not yet received.

Now consider the corresponding situation for a linear
block of a spatial system, for example, a lens imaging the
object plane into the image plane. The input and output

* The program package is available from the IBM Program Informa-
tion Department, Hawthorne, New York 10532.
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variables are the light-intensity distributions in the object
plane and image plane, respectively.* A unit impulse
entering a dynamic block at time ¢’ corresponds to a line
source of light, located in the object plane at x’, entering
a spatial block.

Because no lens is ideal, the image of the line in the
image plane will be a more or less extended light distribu-
tion around x’ (Fig. 1). This light distribution in a spatial
system (the line-spread function) corresponds to the
impulse response in a dynamic system. From the physical
behavior of linear spatial blocks, we know that no con-
dition exists in the space domain which corresponds to
what we called directionality in the time domain. Although
the line-spread function may very well be asymmetrical,
it generally will be unequal to zero on both sides of x’.

In order to obtain the input-output relation of any
linear block in the form of a convolution, the response
of the block must be shift-invariant. This means that the
response must be independent of the particular position
chosen for the input. Because of the cause/effect relation
in the time domain, the convolution integrals for dynamic
and spatial systems differ:

Dynamic systems

ot) = f WA — 1) dr

Spatial systems

o
v(x) = f ulx) Alx — x’) dx’.

From this formulation, it becomes apparent that in
simulating a dynamic system, only the knowledge of the
past history [u(?’) for ¢ from — to ] is necessary in
order to find the present state of the system. Thus, the
simulation is performed by starting at an appropriate
initial time and then advancing time simultaneously
everywhere in the system. This is the well-known way
in which the analog computer performs the simulation
and in which all the computer programs for simulation
of dynamic systems work, in principle.

For spatial systems simulation, however, we must pro-
ceed from block to block and always determine the entire
output function ¢(x) from the entire input function u(x’).
Consequently, we cannot treat the space coordinate x as
equivalent to the time coordinate ¢ in a simulation pro-
cedure. Thus, we cannot use dynamic systems simulation
programs and apply them to spatial systems simulation.
The need for image-forming systems simulation programs
is apparent; and the next section describes the one we
have developed.

* We consider here an incoherent system, i.e., a system which is
linear in the light intensities. In contrast, a coherent system is linear
in the complex amplitudes.

IMPULSE RESPONSE
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Figure 1 Impulse response and line-spread function: re-
sponses of a linear block to the unit impulse (3-function)
for a continuous dynamic and a spatial system.

Image-forming systems simulation program

In optical systems analysis, it is generally accepted practice
to test the performance of the system for two separate
one-dimensional objects, both varying in perpendicular
directions. For example, in the image plane of a lens,
structures which vary radially are often better reproduced
than those varying tangentially. Therefore, it suffices if
the simulation program treats image formation for objects
that vary in one dimension only.

A digital computer program, the Image Forming
Systems Simulator mMsiM/1, has been developed and coded
in FORTRAN 1v. This program accepts as input a description
of an image-forming system, written in a simple problem-
oriented language. Programs written in this language
consist of a sequence of statements. The first statement
describes the desired object, that is, the one-dimensional
distribution of the object intensity, photographic density,
or transmittance. Standard objects provided are sine,
cosine, crenelate (square wave), line source (Dirac &-
function), slit, Gaussian function, and Dirac comb. It is
also possible to describe the object by a tabulated function.*)

After the object statement, there follow statements
containing descriptions of the spatial blocks together
with associated parameter values. Examples of available
blocks are: perfect lens (that is, diffraction-limited lens
with defocusing and longitudinal vibration); photo-

* The use of the program and the preparation of the data are de-
scribed in detail in the documentation accompanying the program
package.




graphic emulsion; linear and random image motion;
and transverse vibration. If the user wants to provide the
block characteristic in tabulated form (for example,
a line-spread function, a transfer function, or an H & D
curve), means are available to do so. The sequence of the
MsIM/1 statements must correspond to the sequence of
the spatial systems blocks in the order in which the light
passes through them on its way from the object to the
image. The execution of an misiM/1 program will result
in calculating the image produced by the specified one-
dimensional object.

In any sequence of linear spatial blocks, we can make
use of the convolution theorem. According to this, the
input-output relation can be written as (R) = W R)A(R),
where “~" denotes Fourier transform and R is the spatial
frequency measured in cycles per unit length. The Fourier
transform of the line-spread function, A(R), is the transfer
function of the block. Repeated application of this multi-
plicative relation means that for a sequence of linear
blocks the transfer functions can be multiplied together.
Thus we replace the multiple convolutions by much
simpler multiplications. This concept has been used in
the simulation program. If, then, a nonlinear block is
encountered, the program automatically performs the
necessary Fourier transformation from the frequency
domain to the space domain. Also, if there is a linear
block following a nonlinear one, the necessary Fourier
transformation is automatically executed.

The available nonlinear blocks provide application of
a point-to-point nonlinearity of the form v = F(u). The
nonlinear function F may be supplied by the user in
tabular form.

In order to allow the user to study the influence of
particular blocks on the performance of the system,
MSIM/1 provides means for supplying to the program
several sets of parameters for each block instead of one
set only. An important application of this feature is the
study of the performance of a lens system across its image
field. Tolerances for depth of focus are determined easily
by the use of different amounts of defocusing. The resolu-
tion of an image-forming system can be obtained by using
periodic object functions with various spatial frequencies.

Imsmm/1 allows the user to request printing or plotting
of intermediate images produced by any one of the blocks
and thus enables him to find the weakest link in the chain
of system components. He may request as output the
space domain or the frequency domain, and the program
automatically performs any necessary Fourier transforma-
tions.

Figure 2 shows an example of an mMsmM/1 program.
FEach statement is punched on one card, whereby blanks
may be inserted freely. Parameter values may be written
as signed or unsigned decimal numbers, with or without
decimal point. The statements of Fig. 2 describe the

JOB 12345 CAMERA EXAMPLE (RESCLUTICN OF 3-B8AR-TARGET)

APERIDDIC TABLE {1,y .5y 1.0) (1, .25, 1.Q) (1, <125, 1.0} EVEN
PLOT SPACE (1) (2) (3) SP
OENSITY TRANSMITTANCE CONVERSION
MAGNIFICATION (.1)
PERFECT LENS ({250)
EMULSION SPREAD (100)
CHARACTERISTIC CURVE (2, 1.25)
PLDT SPACE (12} (22) $22) s P
TABLE (1y1) {040} {0,-0.9} (.24-0.9) {.2,0) {.4,0} (.4,~0.9)
{e65-0.6) (+650) (840} (.8,-0.9} (14-0.9) (1,0}
TABLE (243) (04408) (+25,01) [.5¢.27) {.75¢.69) (141.4T)
(1e25,2.5) (1.5,3.14)
END

Figure 2 IMsiM/1 program for the simulation of a camera.

simulation of a simple camera with a three-bar target
as object. The target is imaged by a diffraction limited
lens (PERFECT LENS) with a reduction in size of 10:1. The
target is described to the program in terms of its photo-
graphic density distribution by the APERIODIC TABLE state-
ment in connection with TABLE 1. The three groups of
parameter values, each enclosed in parentheses, signify
that there are three runs to be executed. The target sizes
differ by a factor of one-half between consecutive runs.
Two output statements (PLOT SPACE) provide graphs of
the object and image for each of the three runs.

The graphs produced by the example program are
shown in Fig. 3. The first graph of each run shows the
target: three lines with a photographic density of 0.1 on
a dark background of density 1. The second graphs show
the images, which are negatives of the object. The sequence
of three runs demonstrates the deterioration of the image
with decreasing size of the target (note the different
abscissa scales between second and third run).

Execution time on an IBM 7094 Data Processing
System was 27 seconds. This includes time required for
creation of the plotting tape, but not for execution of the
off-line plotting.

Summary

In this communication we discussed briefly the difference
between spatial and dynamic systems. Because the impulse
response of a dynamic block and the impulse response
(spread function) of a spatial block differ in a fundamental
way, spatial systems cannot be simulated by applying
the techniques developed for dynamic systems simulation.
Therefore, there is a need for spatial systems simulation
programs.

We then described the Image Forming Systems Simulator
MsIM/1, a computer program developed for the simulation
of incoherent photo-optical systems. Such a program
provides a convenient tool for the photo-optical design
engineer to study the performance of photo-optical systems
before they actually are built.
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Figure 3 Graphs produced by the camera example of Figure 2. The plot Nos. 1, 2, and 3 represent the objects, while Nos. 12,
410 22, and 32 represent the images on the photographic material. (Ordinates are photographic densities.)
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