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Short Communication 

Digital Simulation of Image-Forming  Systems 

In speaking about  the simulation of continuous systems, 
one usually has  in mind the simulation of dynamic sys- 
tems-that is, systems  in  which the variables are functions 
of time.  Such  systems  have frequently been simulated by 
using an analog computer; but lately, digital simulation 
techniques have become more popular.' 

In this communication we  will discuss  systems  whose 
variables depend on space coordinates x and y ,  rather 
than  on  the time coordinate t. We will call those systems 
having space-dependent variables spatial systems. Photo- 
optical image-forming  systems, of course, are realizations 
of spatial systems. Here the system variables, e.g., light 
intensities, transmittances, or photographic densities, are 
continuous functions of the two space coordinates x and y .  
For simplicity, we  will restrict the formulations in this 
communication to one spatial dimension only. The exten- 
sion to two dimensions  is straightforward and does not add 
anything significantly  new. 

When studying the theory of photo-optical image- 
forming systems, it becomes apparent that one can look 
upon them as consisting of a sequence of connected 
blocks,  very similar to the case of dynamic  systems. We 
find linear blocks  which represent lenses,  light spread in 
the photographic emulsion, blurring caused by various 
kinds of image motion, and so on. Nonlinear blocks  may 
represent the characteristic or H & D curve of the photo- 
graphic emulsion. The most striking analogy between 
dynamic  systems and spatial systems  is that both types 
can be  described either by their impulse  response or by 
their transfer function.* 

This analogy suggests that the well-developed methods 
of dynamic systems simulation might also be applied to 
spatial systems. This is not possible,  however,  because 
of a fundamental difference  between the two types of 
systems. In the time domain there is directionality, while 
in the space domain there is none. Another way  of saying 
this is that the cause/effect relationship in time has no 
analogy in  space. The consequences of this difference for 

P. hf. Duffieuxz but is difficult to obtain.  Two  recent books (by E. L. 
* The first book about  optical transfer  theory was published  by 

O'Neill  and  by E. H. Linfoot)3  provide  a  comprehensive  introduction. 
Tutorial  papers by F. H.  Perrind  and H. H. Hopkins5 are  also  recom- 
mended. 

the problem of simulation are discussed in the second 
section. 

Simonds'  used the digital computer to simulate the 
photographic printing process with emphasis on the 
influence of the adjacency  effect. His computer program 
is not available. Rabedeau7 also uses the digital computer 
for simulation of photo-optical systems. His program 
comes  much  closer than Simonds' to being a general 
image-forming  systems simulator. Neither of these, how- 
ever,  provides a "simulation  language" to permit applica- 
tion to  other types of simulation problems. 

The Image Forming Systems Simulator IMSIM/~  was 
designed  with such a simulation language,  which  re- 
sembles common English, to permit the engineer to apply 
the program to photo-optical design  problems.* The 
third section describes  briefly one application of this 
language; a more detailed discussion has been published 
elsewhere.8 

Recently, in an independent effort, Lerman, Minnick, 
and Shannon reported the design of another photo-optical 
simulation language,  FRAP.' 

Gray and Kippenhan" extended IMSIM/~  for use with 
the IBM 7226 Special Graphic Data Processing  System 
in conjunction with the IBM 7044 Data Processing  System. 
A cathode ray tube display console and  an associated 
light  pen of the IBM 7226 provide on-line communication 
between the user and the program. 

Dynamic systems vs spatial systems 

The significant  difference  between dynamic and spatial 
systems-the directionality in the time domain-has 
already been pointed out by Elias."  If at time t' a unit 
impulse (Dirac &function) is applied to a linear block of 
a dynamic system (the cause), the impulse response of 
this block (the effect)  is  necessarily equal to zero for times 
less than t' (Fig. 1). The block cannot respond to  an input 
not yet  received. 

Now consider the corresponding situation for a linear 
block of a spatial system, for example, a lens  imaging the 
object plane into  the image  plane. The  input and output 

* The  program  package is available  from  the I B M  Program  Informa- 
tion  Department,  Hawthorne,  New York 10532. 407 
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variables are the light-intensity distributions in the object 
plane and image plane, respectively.* A unit impulse 
entering a dynamic block at time t’ corresponds to a line 
source of light, located in the object plane at x’, entering 
a spatial block. 

Because no lens is ideal, the image of the line in the 
image plane will be a  more or less extended light distribu- 
tion around x’ (Fig. 1). This light distribution in a  spatial 
system (the line-spread function) corresponds to the 
impulse response in a dynamic system. From  the physical 
behavior of linear spatial blocks, we know that  no con- 
dition exists in the space domain which corresponds to 
what we called directionality in the time domain. Although 
the line-spread function may very  well be asymmetrical, 
it generally will be unequal to zero on both sides of x’. 

In order to obtain  the  input-output relation of any 
linear block in the form of a convolution, the response 
of the block must be shift-invariant. This means that the 
response must be independent of the particular position 
chosen for  the  input. Because of the cause/effect relation 
in the time domain,  the convolution integrals for dynamic 
and spatial systems  differ : 

Dynamic s y s t e m  

u(t)  = ~ ( t ’ )  A( t  - t’)  dt‘ L 
1: 

Spatiul  systems 

.(x) = u(x’) A(x  - x’) dx’. 

From this formulation, it becomes apparent  that in 
simulating a dynamic system, only the knowledge of the 
past history [u(t’) for t’ from - to t] is necessary in 
order to find the present state of the system. Thus, the 
simulation is performed by starting at  an appropriate 
initial time and then advancing time simultaneously 
everywhere in the system. This is the well-known way 
in  which the  analog  computer performs the simulation 
and in which all the computer programs for simulation 
of dynamic systems work, in principle. 

For spatial systems simulation, however, we must pro- 
ceed from block to block and always determine the  entire 
output function c(x)  from  the entire input function u(x’). 
Consequently, we cannot treat  the space coordinate x as 
equivalent to  the time coordinate t in a simulation pro- 
cedure. Thus, we cannot use dynamic systems simulation 
programs and apply them to spatial systems simulation. 
The need for image-forming systems simulation programs 
is apparent;  and the next section describes the one we 
have developed. 

* W e  consider  here  an  incoherent  system, i.e., a system  which  is 
linear  in  the  light  intensities, I n  contrast, a coherent  system  is  linear 
in  the  complex  amplitudes. 408 
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Figure 1 Impulse response and line-spread function: re- 
sponses of a linear block to the unit impulse (&function) 
for a continuous  dynamic and a spatial system. 

Image-forming systems simulation program 

In  optical systems analysis, it is generally accepted practice 
to test the performance of the system for  two  separate 
one-dimensional objects, both varying in perpendicular 
directions. For example, in the image plane of a lens, 
structures which vary radially are often better reproduced 
than those varying tangentially. Therefore, it suffices  if 
the simulation program  treats image formation  for objects 
that vary in one dimension only. 

A digital computer program, the Image Forming 
Systems Simulator IMSIM/I, has been developed and coded 
in FORTRAN IV. This  program accepts as input a description 
of an image-forming system, written in a simple problem- 
oriented language. Programs written in this language 
consist of a sequence of statements. The first statement 
describes the desired object, that is, the one-dimensional 
distribution of the object intensity, photographic density, 
or transmittance. Standard objects provided are sine, 
cosine, crenelate (square wave), line source (Dirac 6- 
function), slit, Gaussian  function, and  Dirac comb. It is 
also possible to describe the object by a  tabulated function.*) 

After the object statement, there follow statements 
containing descriptions of the  spatial blocks together 
with associated parameter values. Examples of available 
blocks are: perfect lens (that is, diffraction-limited lens 
with defocusing and longitudinal vibration) ; photo- 

scribed  in  detail  in  the  documentation  accompanying  the  program 
* The  use of the  program  and  the  preparation of the  data  are  de- 

package. 



graphic  emulsion;  linear and  random image motion ; 
and transverse vibration. If the user wants to provide the 
block characteristic  in  tabulated form  (for example, 
a line-spread function, a transfer  function, or  an H & D 
curve), means  are available to  do so. The sequence of the 
I M S I M / ~  statements  must  correspond to the sequence of 
the  spatial systems blocks in the  order in which the light 
passes through them on its way from  the object to  the 
image. The execution of an I M S I M / ~  program will result 
in calculating the image produced by the specified one- 
dimensional object. 

In any sequence of linear  spatial blocks, we can make 
use of the convolution  theorem. According to this, the 
input-output relation  can  be written as B(R) = G(R)A(R), 
where "-" denotes Fourier  transform and R is the  spatial 
frequency measured in cycles per unit length. The  Fourier 
transform of the line-spread function, A(R), is the transfer 
function of the block. Repeated  application of this multi- 
plicative relation means that for a sequence of linear 
blocks the transfer  functions can be multiplied together. 
Thus we replace the multiple convolutions  by much 
simpler multiplications. This concept has been used in 
the simulation  program.  If,  then,  a  nonlinear block is 
encountered, the program automatically performs the 
necessary Fourier  transformation from  the frequency 
domain to  the space domain. Also, if there is a  linear 
block following a nonlinear  one, the necessary Fourier 
transformation is automatically executed. 

The available nonlinear blocks provide  application of 
a point-to-point  nonlinearity of the  form u = F(u). The 
nonlinear  function F may be supplied  by the user in 
tabular form. 

In  order  to allow the user to study the influence of 
particular blocks on the performance of the system, 
IMSIM/~  provides means for supplying to  the program 
several sets of parameters for each block instead of one 
set only. An important application of this  feature is the 
study of the performance of a lens system across its image 
field. Tolerances for depth of focus are determined easily 
by the use of different amounts of defocusing. The resolu- 
tion of an image-forming system can be  obtained by using 
periodic object functions with various spatial frequencies. 

IMSIM,/I allows the user to request printing or plotting 
of intermediate images produced by any one of the blocks 
and  thus enables him to find the weakest link in the chain 
of system components. He may request as output  the 
space  domain or the frequency domain, and  the program 
automatically performs any necessary Fourier  transforma- 
tions. 

Figure 2 shows an example of an I M S I M / ~  program. 
Each  statement is punched on one  card, whereby blanks 
may be inserted freely. Parameter values may be  written 
as signed or unsigned decimal numbers, with or without 
decimal point. The statements of Fig. 2 describe the 

JOB 1 2 3 4 5  CAMERA EXAMPLE I R E S C L U T I C N  OF  3-BAR-TARGET) 

END 

Figure 2 IMSIM/~  program for the  simulation of a camera. 

simulation of a simple camera with a three-bar  target 
as object. The target is imaged by a diffraction limited 
lens (PERFECT LENS) with a reduction  in size of 10:l.  The 
target is described to  the program  in  terms of its  photo- 
graphic density distribution by the APERIODIC TABLE state- 
ment in connection with TABLE 1. The three  groups of 
parameter values, each enclosed in parentheses, signify 
that there are three  runs to be executed. The target sizes 
differ  by a factor of one-half between consecutive runs. 
Two output statements (PLOT SPACE) provide  graphs of 
the object and image for each of the three  runs. 

The graphs  produced  by the example program are 
shown in Fig. 3. The first graph of each run shows the 
target: three lines with a photographic density of 0.1 on 
a dark background of density 1. The second  graphs show 
the images, which are negatives of the object. The sequence 
of three runs demonstrates the deterioration of the image 
with decreasing size of the target  (note the different 
abscissa scales between second and  third run). 

Execution time on  an  IBM 7094 Data Processing 
System was 27 seconds. This includes time  required for 
creation of the plotting tape,  but  not for execution of the 
off-line plotting. 

Summary 

In this  communication we discussed briefly the difference 
between spatial  and dynamic systems. Because the impulse 
response of a dynamic block and  the impulse response 
(spread function) of a spatial block differ in  a  fundamental 
way, spatial systems cannot be  simulated  by applying 
the techniques developed for dynamic systems simulation. 
Therefore,  there is a need for  spatial systems simulation 
programs. 

We then described the Image  Forming Systems Simulator 
I M S I M / ~ ,  a computer  program developed for  the simulation 
of incoherent  photo-optical systems. Such a program 
provides a convenient tool  for  the photo-optical design 
engineer to study the performance of photo-optical systems 
before they actually are built. 409 
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T 
PLOT NUMBER 12 

-5. x10 -1  L.U. 0 5. .io-1 L.U. -5. x10 -2  L.U. 0 5. x10-2 L.U. 

T 
PLOT NUMBER 22 

t i I 

-5. x10-1  L.U. 0 5. 40-' L.U. 

I I I 

-2.5 x 1 0 - l  L.U. 0 2.5 ~ 1 0 - 1  L . U .  

T 
PLOT NUMBER 32 

-2.5 ~ 1 0 ' ~  L.U. 0 2.5  L.U. 

41 0 
Figure 3 Graphs  produced  by  the  camera  example of Figure 2. The  plot Nos. 1, 2, and 3 represent  the  objects,  while NOS. 12, 
22, and  32  represent  the  images on the  photographic  material.  (Ordinates  are  photographic densities.) 
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