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The Kantorovich  Theorem and Two-Point 
Boundary Value  Problems 

Two-point boundary value problems for nonlinear ordi- 
nary differential equations occur naturally and frequently 
in applied mathematics, physics and engineering. For 
example,  many problems in  flight  mechanics, optimiza- 
tion, and control theory, when attacked by the calculus 
of variations, lead to two-point boundary value  problems. 

An often cited method for the solution of two-point 
boundary value problems by the systematic variation of 
arbitrarily chosen initial conditions is  given  in the paper 
by Goodman and Lance.’  However,  such questions as 
convergence and the rate of convergence are not discussed 
in their paper. 

One of the purposes of this communication is to show 
how the Goodman-Lance method can be cast into a form 
to which Kantorovich’s theorem’ on Newton’s method3 
for the solution of nonlinear operator equations in  Banach 
space can be applied. Kantorovich’s theorem thus furnishes 
sufficient conditions for the convergence of the Goodman- 
Lance method and estimates of the rate of convergence. 

Kantorovich has also shown how the abstract Newton’s 
method can be applied to the solution of nonlinear dif- 
ferential equations to give a sequence of linear differential 
equations whose solutions converge, under appropriate 
conditions, to the desired solution. The idea has been 
exploited by B e h a n  and Kalaba4  as “quasilinearization” 
and by McGill and Kenneth5 as the “generalized Newton- 
Raphson method.” McGill and Kenneth also give an 
independent proof of convergence for a particular class of 
two-point boundary problems. Thus, the Goodman-Lance 
method and quasilinearization as applied to nonlinear, 
two-point boundary value problems are two concrete 
realizations of the abstract Newton’s method. 

Utilization of the Kantorovich theorem as a diagnostic 
tool for two-point boundary value problems which fail to 
converge is suggested. Our numerical experience has shown 

402 that whenever the two-point boundary value problems fail 

to converge, the conditions of the Kantorovich theorem 
are violated. 

Goodman-lance method 

A set of n nonlinear ordinary differential equations is given : 

~ i , ( t )  = g,(Y,, y 2 ,  . . . , Y,, t ) ,  i = 1 ,  2,  . . . 1 n (1)  

where the functions g i  are twice  differentiable  with  respect 
to all the yi. The initial conditions are specified at t = t o  

for r variables,  which by relabeling, if necessary,  can  be 
considered to be y l ,  . . , y,, while the terminal conditions 
are specified at t = tf for n - r variables y i _ ,  where 
rn = 1,2, . - , n - r .  The indexed subscripts i ,  on y i m  are 
n - r integers chosen from the set (1, 2, . . . , n). If, for 
example, we are given in a six dimensional problem, the 
initial conditions yl(0), y2(0),  y3(0) and the terminal condi- 
tions y3(t,), y4( t f ) ,  y6(t,), then il = 3 ,  iz = 4, i3 = 6. 

At the  kth stage of the Goodman-Lance method, esti- 
mates of the missing initial values y,‘,ki(tO), . . , y?’(t,,) are 
available,whichwiththegiveninitialvaluesyl(to),-~ .,y,(to), 
permit Eq. (1) to be integrated forward as an initial value 
problem. If the estimated initial conditions are close 
enough to  the  true initial conditions, the difference 

satisfies the system of variational equations 

i = 1 , 2 ,  , n ,  ( 3 )  

where the superscript ( k )  denotes evaluation at y:”(t), 
j = 1, . . .  , n. Between the solutions of Eq. ( 3 )  and the 
solutions of its adjoint equations 
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the relation 
* n 

X?' (t ,)  6yIk' (t ,)  = X : k )  ( t o )  6yjk' ( to)  
,-1 2 - 1  

holds. Let Eqs. (4) be integrated backwards from t, to to 
with conditions at t,: 

do this successively for m = 1, . , n - r,  and call the 
resulting solutions x , ' , ~ ( t , ) .  Then Eqs. ( 5 )  become 

the equation is written: 

1 = I  

note that 

~ y : ~ ' ( t ~ )  = . . . = 6yik'(to) = 0, since yi(to),  

i = 1 , , r are the specified initial conditions. 

This system of n - r linear algebraic equations can, in 
general,  be  solved for 6$' which, substituted into Eq. (2), 
give a new and hopefully better estimate of the missing 
initial conditions zlkf1) = y jz" ( to) ,  j = I, 2, - , n - r. 
The process is repeated until the values of w:' = y;k_'(t,), 
m = 1, 2, , n - r,  obtained on successive iterations 
differ  by  less than a preassigned quantity or until a pre- 
determined number of iterations has been  performed. 

The Kantorovich  theorem 

Kantorovich established sufficient conditions for the 
convergence of Newton's method in  the solution of non- 
linear operator equations in  Banach  space. In this section 
we  will state Kantorovich's theorem in the form applicable 
to systems of nonlinear algebraic equations, where the 
underlying Banach space is the familiar n-dimensional 
Cartesian space treated as a vector space over the real 
field, and the nonlinear operators are vector-valued, non- 
linear functions. In  the next section we show that the 
theorem in this form is also applicable to two-point bound- 
ary value problems for systems  of nonlinear ordinary dif- 
ferential equations. Consider the set of n nonlinear 
algebraic equations 

Newton's method for solving this set leads to the SUC- 

cessive approximations 

Y(k+l '  = Y'k' - r A'k'l-'Q'k' Y (8) 
where 

yCk'  = the kth approximation to the solution of Eq. (7), 
an n X 1 vector  with components yik' , y i k ) ,  . , y:' ; 

A'k' = A ( Y ' ~ ' )  = n X n matrix, whose component in 
the ith row, jth column is (acpi/ayi), evaluated at 
y (k' ; A (k' is  assumed nonsingular; 

E ~ ( y ' ~ ) )  = n X 1 vector  with components ~ ~ ( y ' ~ ' ) ,  
i = 1, 2, . , n from Eq. (7). 

The following norms are employed. For a vector v whose 
elements are ul ,  uq, , u,, define a norm 

For  an n X IZ matrix A with  elements ai i, define the  norm 

The Kantorovich theorem in  the version  given  by 
Henrici' has four hypotheses: 

a. For the initial approximation y"' to the solution of 
Eq. (7) 

A''' = A(y'") has an inverse r0 such that llroll 5 P o ;  
(1 1) 

b. y"' satisfies Eq. (7) approximately in the sense that 

llrodo) I I  I v0; (12) 

c. In the region  defined by inequality (15), the components 
of the vector ~ ( y )  are twice continuously differentiable 
with  respect to  the components of y and satisfy 

d. The constants Po, qo, K satisfy 

ho 3 P o l O K  I 3. (1 4) 

When  hypotheses (a)-(d) are satisfied, the Kantorovich 
theorem asserts that the system of equations, Eq. (7), 
has a solution Y which  is located in the cube 

IIY - Y ' O ' l l  I 1 - dl - 2h0 
h0 
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Moreover, the successive approximations Y ' ~ '  defined 
by Eq. (8) exist and converge to Y and the speed of con- 
vergence  may  be estimated by the inequality 
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Equivalence of Newton‘s  method and 
Goodman-lance method 

As usually thought of and employed, Newton’s method is 
applicable to  the solution of systems of nonlinear “alge- 
braic”  equations, when algebraic is taken to mean that 
the solution is a  point  in n-space, (yl, y2, . . . , yJ, rather 
than a function, say [yl(t) ,  y2(t) ,  . . . , yn(f)] .  However, 
Newton’s method and  the Kantorovich  theorem can be 
applied to  the solution of two-point  nonlinear boundary 
value problems, Eq. (l), if the problem is thought of as 
the search for those missing initial  conditions yv+l(to),  . . . , 
yn(to) which drive to zero the final “miss distances” 

If  we now equate  for the rnth integration of the adjoint 
equations,  Eq. (6)  with Eq. (21), we find that 

rn, j = 1 ,  2, . . .  , n - r .  (22) 

Equations (6)  may be written, using the  notation of this 
section, 8 ~ ‘ ~ )  = - A ‘ ~ ’ ~ z ( ~ )  , with solution 
8z‘k’ = - [ A ( k ) ] - l  8 W ( k ) .  (23) 

On comparing the definitions of the variation  in Eq. (2) 
and  the miss distance in Eq. (17), we note that 

where Y,* are  the n - r given final values and w, are  the 
final values of the solution of Eq. (1) with initial values 
yl(to),  . . . , y7(to), yl+l(to), . . . , yn(fo). Since the final values 
of the solution yl(t) ,  . . . , y,(t) of Eq. (1) are continuous 
functions of the  initial values, 9, may be considered to be 
functions of y(to) and solving Eq. (1) equivalent to finding 
the solution to  the system 

(Pm[y(to)l = 0 ,  = 1 ,  2,  . . . , n - r ,  ( 1  8) 
or 

dy( fn ) l  = 0- 
Assume that  the  kth approximation to  the vector of 

n - r missing initial  conditions z ( ~ )  (with components 
zjk’ = y,‘:l(to), j = 1, 2, . . . , n - r )  has been found. 
Newton’s method gives as  the ( k  + 1)st approximation 

where 9 ( k )  is the column vector with components 92’ = 
~ , [ y ( ~ ) ( t o ) ] ;  and A‘k’  is the (n - r)  X (n  - r)  matrix 
whose element A::. in the rnth row, jth column is 
( & p , / d ~ ~ ) ( ~ ) .  Note  that  the superscript ( k )  always indi- 
cates  evaluation of the quantity superscripted at ~ ( ~ ’ ( t ~ ) .  

The Kantorovich  theorem is thus applicable to  the two- 
point boundary value problem. 

We now proceed to show that  the Goodman-Lance 
method is equivalent to Newton’s method  as applied to  the 
two-point  nonlinear ordinary differential  equation bound- 
ary value problem. 

Since w, is a function of yl(to), y2(to),  . . , y,(to), the 
total variation  can  be expressed as 

m = 1 , 2 ,  . . .  , n - r .  (20) 

Forming the  partial derivatives of Eq. (17) and substituting 
into Eq. (20): 

Substituting  Eq. (24) into (23) yields 

8Z(k) = - [ A  ] CQ 
(kl -1 ( k )  

( 2 5 )  

as the correction vector in the Goodman-Lance  method. 
Referring to  Eq. (20) we see that this is the same correction 
vector obtained by applying Newton’s method to solving 

The Kantorovich sufficiency theorem  can, therefore, be 
applied to  the Goodman-Lance  method,  furnishing  a 
theoretical basis for  the convergence of the process and  an 
estimate of the  rate of convergence. In practice, assuming 
an initial  estimate of the missing initial values y,‘!:(to),. . , 
y:’(to) is available, the matrix r0 = [A‘o’]” can be cal- 
culated  after one integration of the system, Eq. (l), and 
n - r integrations of the  adjoint system, Eq. (4), and then 
the norm, I I = P o ,  determined. Since poi(y‘o’) is also 
known at this stage, the vector I’oq(y(o)) can be  formed 
and  from it the  norm, III’oq(y(o))II = vo. However, there 
are practical problems in computing K defined in Eq. (13), 
as the next section indicates. 

Numerical results 

A  double precision FORTRAN program for  the  IBM 7094 
was written for  the Goodman-Lance  method. The  method 
was applied to a variety of two-point  boundary values for 
the two-body  equations of motion. In  addition,  the 
Kantorovich  theorem norms were evaluated for each 
iteration of the Goodman-Lance method. 

Since the Kantorovich  theorem is a sufficiency theorem, 
it only tells us that  the problem will converge if certain 
conditions, Eqs. (11)-(14), are satisfied. If thesec onditions 
are  not satisfied, the theorem makes no pronouncements 
either for  or against convergence. The calculation of the 
Kantorovich norms is not without difficulties. The  norms 
qo, Po are “point norms,” that is, norms  evaluated at the 
trial vector y“), which is a point in the n-dimensional 
vector space of the y. K ,  however, is an upper bound  for a 
certain  set of expressions over the interval given by in- 
equality (15). This  interval itself depends on ho which 
depends on K through Eq. (14). Note  further  from Eqs. 

d Y ( f 0 ) l  = 0. 
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Table 1 Kantorovich  norms  and  calculated initial velocity  vector and final position  vector for two-point, two-body  boundary 
value  problem. 

Goodman-Lance Kantorovich norms 
method 

iteration number hi Pi v i  Ki 

0 6 .763579(102) 3.659561 1.069325 1 .728374(102) 
1 6.536509(10') 3.444090 1.663449 1 .140937(10') 
2 5.233003(10") 7 .149846(10") 2.365853(10-') 3.093615 
3 8.472580(10") 1.124802 3 .827557(10-') 1 .967965(101) 
4 3 .273678(10-') 1.017268 2 .250358(10-3) 1 .430042(10') 
5 4 .037952(10-5) 1.013542 2 .822407(10-6) 1 .411560(10') 
6 4 ~537566(10-~) 1 .013534 3 .171723(10-y) 1 .411526(10') 

Culculated missing initiul conditions 

4 0 )  Y O  m 
- 5.379999(10") 2.879999(10") 4.988299(10") 
- 1.376313 5.242722(10") 9.080641(10") 

3 .236898(10") 5.779965(10") 1.001111 
8.720452(10-') 4.489073(10") 7.775289(10-l) 
1.017630(10") 4.709831(10-l) 8.157667(10") 
1 .016559(10") 4.722822(10") 8 .180167(10-1) 
1.016588(10") 4.722833(10") 8 .180185(10") 

Calculated terminal conditions 

x(2) Y(2)  Z(2) 

0 6.086336(10") - 3  .733722(10") -6.466988(10-') 
1 - 2.21 8209 - 1 .837729(10") -3 .183034(10-') 
2 7.165604(10") 9.196269(10") 1.592828 
3 -8 .591061(10-2) 5.013211(10") 8.683122(10") 
4 -2 .289911(10-3) 5 .726597(10-l) 9.918756(10") 
5 - 9 .427341(10-6) 5.759951(10") 9.976526(10") 
6 -7 .212622(1OP0) 5 .759999(10") 9.976609(10") 

(l l) ,  (12), (14) and (15) that  both  the center point  and 
length of the interval  depend on y"'. For a poor choice of 
y"', it may not be possible to satisfy Kantorovich's  condi- 
tions and  the process described may diverge. Since it is not 
practical to seek K over an interval, we evaluated  instead 
the  point norm, K i ,  that is, we computed the expression 
in Eq. (13) for  the value Y'~). In  other words, pi, v i ,  
K = K, ,  hi are all  evaluated at each  iteration at vector 
~ ( ~ ' ( t ~ ) .  While in  all  probability KO will not be the  upper 
bound needed for applying the theorem, the computations 
of K ,  are useful. For a process where the sequence { Y ' ~ )  ] 
converges, the sequence { Ki ] will usually decrease mono- 
tonically, which indicates that KO is close to  the required K. 
If the { y( " } does not converge, we may find one or more 
K i  much larger than KO. In general, both of these pos- 
sibilities are  found in practice. 

The Goodman-Lance  method will generate, usually, a 
succession of trial initial vectors which do  not satisfy the 
Kantorovich  theorem. If the { y "' } converges, perhaps the 
4th  iterate of the Goodman-Lance  method will produce 
the  0th iterate for  the application of the Kantorovich 
theorem;  an example of this is found  in  Table 1. The use 
of Ki in place of K may give rise to erratic  behavior  in the 
numerical  evaluation of hi. For example, hi may oscillate 
between numbers larger than  and less than 1/2. In all 
cases we have examined this behavior in hi can be  traced 
directly to the fact that KO is not  equal  to  the upper bound 
K.  

To illustrate a more  or less typical  numerical experience, 
we list in  Table 1 the Kantorovich  norms, the initial 
velocity vector, and  the final position for  the two-body 
version of the  problem of McGill and Kenneth. 405 
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The two-body equations of motion are 

where 

r = [xz((t) + yz ( t )  + ~ ~ ( t ) ] ~ ’ ~ ;  

k = 1.0, for canonical units. 

The boundary conditions, for to = 0 and t ,  = 2, are: 

x(0)  = 1.076000 x(2 )  = 0.000000 

y(0) = 0.000000 y(2)  = 0.576000 

z(0) = 0.000000 4 2 )  = 0.997661. 

The trial initial velocity  vector  is taken as the average 
velocity  vector based on the difference  between the final 
and initial position vectors  divided by the time interval; 
that is, the initial conditions correspond to McGill and 
Kenneth’s starting function. The values are: 

X(0) = -0.538000 

$(O) = 0.288000 

z(0) = 0.498830. 

In Table 1 the calculations were made for 20 integration 
steps over the interval (0, 2) and the hi were computed 
using pi, qi, K 4  in Eq. (14). Fifty integration steps yielded 
essentially the same results. The hi are monotone, except 
for  the  third iteration of the Goodman-Lance method. 
As stated above, this behavior can  be traced directly to 
the evaluation of Ki. The 4th iteration of the Goodman- 
Lance provides the 0th iteration for the application of the 
Kantorovich theorem. From  the 4th iteration on,  the hi 
are less than 1/2, and the hi and vi are monotonic de- 
creasing. We infer that the conditions of the Kantorovich 
theorem are satisfied, and expect  convergence. A check 
on  the computed terminal position vector confirms that 
the problem indeed converges. 

As a matter of interest, we list in Table 2 the computed 
rate of convergence, the left-hand side of inequality (16) 
and the estimated rate of convergence, the right-hand 
side of (16). The calculations are based on using the 4th 
iteration of the Goodman-Lance method as the 0th itera- 
tion for  the evaluation of the Kantorovich norms. The 
6th iteration of the Goodman-Lance method is assumed 
to yield the “true” solution. We observe that the estimated 
rates of  convergence are realistic. 

406 Our computational experience  suggests the following 
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Table 2 Comparison of computed  and  estimated  rates of 
convergence for problem  presented  in  Table  1. 

Goodman-Lance 
method 

iteration number (LHS of Eq. (16)) (RHS of Eq. (16)) 

Rates of convergence 
Computed Estimated 

4 2.2518 4.500716 
5 2.8 1.473389 (10-5) 
6 0.0 3.158037 (IO-’) 

rules of thumb for similar problems. First, if the problem 
is  going to converge, it will do so, in general, within 5 to 
10 iterations of the Goodman-Lance method. Second, it is 
better to calculate with smaller time steps per iteration of 
the Goodman-Lance method and employ  fewer iterations, 
than  to calculate with larger time steps per iteration and 
employ more iterations. Another interesting computational 
observation is that if the computed h i  remains less than 1/2 
for two or three consecutive iterations, then the process 
will probably converge. 
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