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The Kantorovich Theorem and Two-Point

Boundary Value Problems

Two-point boundary value problems for nonlinear ordi-
nary differential equations occur naturally and frequently
in applied mathematics, physics and engineering. For
example, many problems in flight mechanics, optimiza-
tion, and control theory, when attacked by the calculus
of variations, lead to two-point boundary value problems.

An often cited method for the solution of two-point
boundary value problems by the systematic variation of
arbitrarily chosen initial conditions is given in the paper
by Goodman and Lance." However, such questions as
convergence and the rate of convergence are not discussed
in their paper.

One of the purposes of this communication is to show
how the Goodman-Lance method can be cast into a form
to which Kantorovich’s theorem® on Newton’s method®
for the solution of nonlinear operator equations in Banach
space can be applied. Kantorovich’s theorem thus furnishes
sufficient conditions for the convergence of the Goodman-
Lance method and estimates of the rate of convergence.

Kantorovich has also shown how the abstract Newton’s
method can be applied to the solution of nonlinear dif-
ferential equations to give a sequence of linear differential
equations whose solutions converge, under appropriate
conditions, to the desired solution. The idea has been
exploited by Bellman and Kalaba® as “quasilinearization”
and by McGill and Kenneth® as the “generalized Newton-
Raphson method.” McGill and Kenneth also give an
independent proof of convergence for a particular class of
two-point boundary problems. Thus, the Goodman-Lance
method and quasilinearization as applied to nonlinear,
two-point boundary value problems are two concrete
realizations of the abstract Newton’s method.

Utilization of the Kantorovich theorem as a diagnostic
tool for two-point boundary value problems which fail to
converge is suggested. Our numerical experience has shown
that whenever the two-point boundary value problems fail
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to converge, the conditions of the Kantorovich theorem
are violated.

Goodman-Lance method

A set of nnonlinear ordinary differential equations is given:

J‘)i(t) = gi(.Vl,.Vz, Tty Vas t)s i=1,2,---,n (1)

where the functions g, are twice differentiable with respect
to all the y;. The initial conditions are specified at t = ¢,
for r variables, which by relabeling, if necessary, can be
considered to be yy, - - - , y,, while the terminal conditions
are specified at ¢+ = ¢ for n — r variables y,, where
m=1,2, -+ ,n— r. The indexed subscripts i,, on y; , are
n — r integers chosen from the set (1, 2, --- , »). If, for
example, we are given in a six dimensional problem, the
initial conditions y,(0), y,(0), ys(0) and the terminal condi-
tions yi(2)), ya(t7), ye(ty), then iy = 3, i, = 4, iy = 6.

At the kth stage of the Goodman-Lance method, esti-
mates of the missing initial values y ‘" (t,), - -+ , ¥$"(¢,) are
available, which with the given initial values y, (o), + +, ¥.(fo),
permit Eq. (1) to be integrated forward as an initial value
problem. If the estimated initial conditions are close
enough to the true initial conditions, the difference

dyP () = yi(e) — (),

satisfies the system of variational equations

k) — (98 ® %
() = 25 (——) 5y (0,

i1 \9y;

i=1,2,-,n, (2

i=1,2, - ,n, (3)

where the superscript (k) denotes evaluation at yi* (1),
, h. Between the solutions of Eq. (3) and the
solutions of its adjoint equations

n ag (k)
%P = —Z(——’) P i=1,2,- ,n, (4)

i=1 \3y;

j=1, -




the relation
-21 X () oy (t) = 21 x{ (10) 835® (86) (5)

holds. Let Eqgs. (4) be integrated backwards from ¢, to ¢,
with conditions at ¢,:

xi.k)(t/) _ {0 if i #= Iy
1 if i=i,;

do this successively for m = 1, , n — r, and call the
resulting solutions x%)(,). Then Eqs (5) become

Syt = i

i=r+l

9.(t0) 3v37 (1),
m=1,2,-+,n—r, (6)

or, setting

wa = v (1),

the equation is written:

(k) - Z xr+1 o) 6z(k)’

note that

oy (te) = - -+

i=1, ---,rare the specified initial conditions.

= §yP(10) = 0, since y (20),

This system of n — r linear algebraic equations can, in
general, be solved for 8z{* which, substituted into Eq. (2),
give a new and hopefully better estimate of the missing
initial conditions z\**" = y**V(1o), j=1,2, -+ ,n—r.
The process is repeated until the values of w(") =y P (1),
m= 1,2, --- , n— r, obtained on successive iterations
differ by less than a preassigned quantity or until a pre-
determined number of iterations has been performed.

The Kantorovich theorem

Kantorovich established sufficient conditions for the
convergence of Newton’s method in the solution of non-
linear operator equations in Banach space. In this section
we will state Kantorovich’s theorem in the form applicable
to systems of nonlinear algebraic equations, where the
underlying Banach space is the familiar r-dimensional
Cartesian space treated as a vector space over the real
field, and the nonlinear operators are vector-valued, non-
linear functions. In the next section we show that the
theorem in this form is also applicable to two-point bound-
ary value problems for systems of nonlinear ordinary dif-
ferential equations. Consider the set of » nonlinear
algebraic equations

Qoi(yl:y2y°"9yn)zoy i=1;2,"',n. (7)

Newton’s method for solving this set leads to the suc-
cessive approximations

y(Ic+1) — y(k) _ [A(k)]_l(g(k), (8)

where

the kth approximation to the solution of Eq. (7),

ann X 1 vector withcomponents y®, & ...y

A% = AF3™) = n X n matrix, whose component in
the ith row, jth column is (d¢;/dy;), evaluated at
y*; 4% is assumed nonsingular;

©® = o(y*) = n X 1 vector with components ¢,(y*’),
i=1,2 ---,nfromEq. (7).

The following norms are employed. For a vector v whose
elements are vy, vy, =+ , Uy, define a norm

[[v]] = Max [v,]. 9)
1<i<n
For an n X n matrix 4 with elements a,;, define the norm

[|4]] = Max Z |ais]. (10)
1<i<n j=
The Kantorovich theorem in the version given by
Henrici® has four hypotheses:

(0)

a. For the initial approximation y"° to the solution of

Eq. (7)

A = A(y'”) has an inverse T'y such that ||T'|| < Bo;
an

b. v satisfies Eq. (7) approximately in the sense that
o0 || < o3 (12)

c. In the region defined by inequality (15), the components
of the vector ¢(y) are twice continuously differentiable
with respect to the components of y and satisfy

n

2
CR'2

< .
By, avi| = K for each i. (13)

i,a=1
d. The constants §,, 1o, K satisfy
ho = Bono K < %- (14)

When hypotheses (a)-(d) are satisfied, the Kantorovich
theorem asserts that the system of equations, Eq. (7),
has a solution Y which is located in the cube

o) L=V = 2 1s)

lly -y I Tow

Moreover, the successive approximations y*’ defined
by Eq. (8) exist and converge to Y and the speed of con-
vergence may be estimated by the inequality

Iy = YII < 3o @h)™ . (16
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Equivalence of Newton’s method and
Goodman-Lance method

As usually thought of and employed, Newton’s method is
applicable to the solution of systems of nonlinear “alge-
braic” equations, when algebraic is taken to mean that
the solution is a point in n-space, (¥, ¥, '+ , ¥.), rather
than a function, say [y,(9), y.(¥), -+ , y.()l. However,
Newton’s method and the Kantorovich theorem can be
applied to the solution of two-point nonlinear boundary
value problems, Eq. (1), if the problem is thought of as
the search for those missing initial conditions y, (%), -+ ,
¥.(to) which drive to zero the final “miss distances”

m=1,2,---,n—r, (17)
where Y,, are the n — r given final values and w,, are the
final values of the solution of Eq. (1) with initial values
i(to), -+, ¥.(t0), ¥ri1(to), + =+, ¥u{to). Since the final values
of the solution y,(¢), - -+ , ¥.(f) of Eq. (1) are continuous
functions of the initial values, ¢,, may be considered to be

functions of y(#,) and solving Eq. (1) equivalent to finding
the solution to the system

enly(to)] = 0, m=1,2,--,n—r, (18)

or

oly(t)] = 0.

Assume that the kth approximation to the vector of
n — r missing initial conditions z*’ (with components
z¥ = y'P), j= 1,2, --+ , n — r) has been found.
Newton’s method gives as the (kK 4+ 1)st approximation
Z(k+1) — Z(k) __ [A(k)]‘-l(e(k)’ (19)
)

<pm = Ym - wm’

where @ *’ is the column vector with components ¢ ¥ =
gam[y(k)(to)]; and 4% is the (n — ry X (n — r) matrix
whose element 4'*) in the mth row, jth column is
¢,/ az,.)<“. Note that the superscript (k) always indi-
cates evaluation of the quantity superscripted at y*’(#).

The Kantorovich theorem is thus applicable to the two-
point boundary value problem.

We now proceed to show that the Goodman-Lance
method is equivalent to Newton’s method as applied to the
two-point nonlinear ordinary differential equation bound-
ary value problem.

Since w,, is a function of y,(#,), yo(fy), - -+ , ¥.(to), the
total variation can be expressed as

n~r aW (k)
swid = (——"‘) ozs”.
m=1,2,---,n—r. (20)
Forming the partial derivatives of Eq. (17) and substituting
into Eq. (20):

n—r 6(,0 (k) .
dwil = — 3 <gzﬂ) oz;r) , or
i=1 i

w'? = — 4" 820, (21)
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If we now equate for the mth integration of the adjoint
equations, Eq. (6) with Eq. (21), we find that

£ (k) X
(k) m )
X0 om(t) = — = —A4,;,

sz
m,j=1,2,-- ,n—r. (22)
Equations (6) may be written, using the notation of this
section, 6w = — 4% §z®, with solution
8z = —[4™]! sw™. (23)

On comparing the definitions of the variation in Eq. (2)
and the miss distance in Eq. (17), we note that

(€3] (k)

6wm = O = (Pm[y(k)(to)] . (24)
Substituting Eq. (24) into (23) yields

5Z(k) — "‘[A(k)]_l(g(k) (25)

as the correction vector in the Goodman-Lance method.
Referring to Eq. (20) we see that this is the same correction
vector obtained by applying Newton’s method to solving
oly(i)] = 0.

The Kantorovich sufficiency theorem can, therefore, be
applied to the Goodman-Lance method, furnishing a
theoretical basis for the convergence of the process and an
estimate of the rate of convergence. In practice, assuming
an initial estimate of the missing initial values y ‘3 (%), - -,
y{¥(t,) is available, the matrix Ty = [4“’]" can be cal-
culated after one integration of the system, Eq. (1), and
n — r integrations of the adjoint system, Eq. (4), and then
the norm, ||T|| = Bo, determined. Since ¢(y*’) is also
known at this stage, the vector I‘0<g(y(°) ) can be formed
and from it the norm, ||To@(y“’)|| = no. However, there
are practical problems in computing K defined in Eq. (13),
as the next section indicates.

Numerical results

A double precision FORTRAN program for the IBM 7094
was written for the Goodman-Lance method. The method
was applied to a variety of two-point boundary values for
the two-body equations of motion. In addition, the
Kantorovich theorem norms were evaluated for each
iteration of the Goodman-Lance method.

Since the Kantorovich theorem is a sufficiency theorem,
it only tells us that the problem will converge if certain
conditions, Eqs. (11)-(14), are satisfied. If thesec onditions
are not satisfied, the theorem makes no pronouncements
either for or against convergence. The calculation of the
Kantorovich norms is not without difficulties. The norms
70, Bo are “point norms,” that is, norms evaluated at the
trial vector y(O), which is a point in the n-dimensional
vector space of the y. K, however, is an upper bound for a
certain set of expressions over the interval given by in-
equality (15). This interval itself depends on 4, which
depends on K through Eq. (14). Note further from Egs.




Table 1 Kantorovich norms and calculated initial velocity vector and final position vector for two-point, two-body boundary
value problem.

Goodman-Lance Kantorovich norms

method
iteration number h, Bi L K;

0 6.763579(10%) 3 .659561 1.069325 1.728374(10%)
1 6.536509(10") 3 .444090 1.663449 1.140937(10")
2 5.233003(1071) 7 .149846(1071) 2.365853(107H) 3.093615
3 8.472580(107") 1.124802 3.827557(107%) 1.967965(10")
4 3.273678(107%) 1.017268 2.250358(107%) 1.430042(10")

. 5 4.037952(107°) 1.013542 2.822407(107%) 1.411560(10")
6 4.537566(10™%) 1.013534 3.171723(107%) 1.411526(10Y)

Calculated missing initial conditions
x(0) ¥0) #0)
0 —5.379999(10™ ") 2.879999(10° ") 4.988299(107")
1 —1.376313 5.242722(107H) 9.080641(107 ")
2 3.236898(107") 5.779965(10™ 1) 1.001111
3 8.720452(107%) 4 .489073(1071) 7.775289(1071)
4 1.017630(1071) 4 .709831(107") 8.157667(10™")
5 1.016559(10Y) 4.722822(10°Y) 8.180167(107Y)
6 1.016588(107") 4.722833(107") 8.180185(10° ")
Calculated terminal conditions
x(2) »(2) 2(2)

0 6.086336(107") —3.733722(107Y) —6.466988(107")
1 —2.218209 —1.837729(10°Y) —3.183034(10° 1)
2 7.165604(107") 9.196269(10™ ") 1.592828
3 —8.591061(107%) 5.013211(107") 8.683122(1071)
4 —2.289911(107%) 5.726597(107") 9.918756(10™ ")
5 —9.427341(107%) 5.759951(10° %) 9.976526(107")
6 —7.212622(107 ") 5.759999(107 Y 9.976609(10™")

(11, (12), (14) and (15) that both the center point and
length of the interval depend on y*®. For a poor choice of
v, it may not be possible to satisfy Kantorovich’s condi-
tions and the process described may diverge. Since it is not
practical to seek K over an interval, we evaluated instead
the point norm, K;, that is, we computed the expression
in Eq. (13) for the value y*'*. In other words, 8, 7.,
K = K, h; are all evaluated at each iteration at vector
y*’(t,). While in all probability K, will not be the upper
bound needed for applying the theorem, the computations
of K, are useful. For a process where the sequence {y'*’}
converges, the sequence {K;} will usually decrease mono-
tonically, which indicates that K is close to the required K.
If the {y*} does not converge, we may find one or more
K; much larger than K,. In general, both of these pos-
sibilities are found in practice.

The Goodman-Lance method will generate, usually, a
succession of trial initial vectors which do not satisfy the
Kantorovich theorem. If the {y‘*’ } converges, perhaps the
4th iterate of the Goodman-Lance method will produce
the Oth iterate for the application of the Kantorovich
theorem; an example of this is found in Table 1. The use
of K; in place of K may give rise to erratic behavior in the
numerical evaluation of %;. For example, 4; may oscillate
between numbers larger than and less than 1/2. In all
cases we have examined this behavior in 4; can be traced
directly to the fact that K, is not equal to the upper bound
K.

To illustrate a more or less typical numerical experience,
we list in Table 1 the Kantorovich norms, the initial
velocity vector, and the final position for the two-body
version of the problem of McGill and Kenneth,
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The two-body equations of motion are

#() = =0

k()
#) = 20,

1%

¥(2)

where

[X*() + »(0) + 217"

1.0, for canonical units.

If

r

k

i

The boundary conditions, for t, = 0 and ¢, = 2, are:
x(0) = 1.076000
»(0) = 0.000000
z(0) = 0.000000

x(2) = 0.000000
¥(2) = 0.576000
2(2) = 0.997661.

The trial initial velocity vector is taken as the average
velocity vector based on the difference between the final
and initial position vectors divided by the time interval;
that is, the initial conditions correspond to McGill and
Kenneth’s starting function. The values are:

#(0) = —0.538000
»(0)

#(0) = 0.498830.

I

0.288000

In Table 1 the calculations were made for 20 integration
steps over the interval (0, 2) and the k; were computed
using B;, 1:, K; in Eq. (14). Fifty integration steps yielded
essentially the same results. The #; are monotone, except
for the third iteration of the Goodman-Lance method.
As stated above, this behavior can be traced directly to
the evaluation of K;. The 4th iteration of the Goodman-
Lance provides the Oth iteration for the application of the
Kantorovich theorem. From the 4th iteration on, the A;
are less than 1/2, and the k; and %, are monotonic de-
creasing. We infer that the conditions of the Kantorovich
theorem are satisfied, and expect convergence. A check
on the computed terminal position vector confirms that
the problem indeed converges.

As a matter of interest, we list in Table 2 the computed
rate of convergence, the left-hand side of inequality (16)
and the estimated rate of convergence, the right-hand
side of (16). The calculations are based on using the 4th
iteration of the Goodman-Lance method as the Oth itera-
tion for the evaluation of the Kantorovich norms. The
6th iteration of the Goodman-Lance method is assumed
to yield the “true” solution. We observe that the estimated

.rates of convergence are realistic.

Our computational experience suggests the following

S. M, ROBERTS AND J. S. SHIPMAN

Table 2 Comparison of computed and estimated rates of
convergence for problem presented in Table 1.

Goodman-Lance
method
iteration number

Rates of convergence

Computed
(LHS of Eq. (16))

Estimated
(RHS of Egq. (16))

4.500716 (10—3)
1.473389 (107%)
3.158037 (10—7)

2.2518 (10-9)
2.8 (1079
0.0

[« RO RSN

rules of thumb for similar problems. First, if the problem
is going to converge, it will do so, in general, within 5 to
10 iterations of the Goodman-Lance method. Second, it is
better to calculate with smaller time steps per iteration of
the Goodman-Lance method and employ fewer iterations,
than to calculate with larger time steps per iteration and
employ more iterations. Another interesting computational
observation is that if the computed 4, remains less than 1/2
for two or three consecutive iterations, then the process
will probably converge.
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