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The Quantum Mechanical Extension of the

Boltzmann Equation

Abstract: It is shown that the method of Kohn and Luttinger may be applied to obtain a generalized Boltzmann equation, for elec-
trons in a solid, when the driving field has nonzero wavevector as well as frequency. By means of this equation, the behavior of the
electrons in response to the field may be followed from the quasi-classical limit at small rates of change to the quantal limit at large

rates of change.

Introduction

Many transport phenomena of electrons in solids are
described by the quasi-classical Boltzmann equation®

df(p)/at + v(p)-(8f(p)/dr) + g(p)
= f daep'lie) W', p) — i(p) W(p, p')], (1)

where p = 4k and k is the wavevector of a Bloch state,
and v is its velocity; f(p, r, #) is the distribution function
of the system, whose disturbance due to the driving forces
is to be found by solving (1); g represents these driving
forces and is explicitly proportional to them; and g and f
on the left refer to a particular band and spin direction, or
spin-orbit combination of them. For an applied force F
acting on each electron,

g = F-(9/9p)]. 2

(In the linearized inhomogeneous equation with which we
shall be concerned, f is the perturbed part of the distribu-
tion function proportional to F in (1) and is the equilibrium
distribution function, independent of F, in (2).)

The validity of this quasi-classical Boltzmann equation,
and possible deviations from it, are important questions.
Kohn and Luttinger® and Greenwood® have derived the
linearized inhomogeneous equation from first principles
as a consequence of the equation of motion

i dp/0t = Hp — pH (3)

of the quantum density matrix of the electrons, p, in the
case where the driving force is a uniform electric field

(F in (2) equals the field strength times electron charge)
and the scattering effect represented by W(p, p’) is due
to randomly distributed defects or impurity atoms. Lut-
tinger and Kohn showed, for these conditions, that the
linearized equation is valid for localized scatterers of
arbitrary strength and small concentration, and investi-
gated the consequences of appreciable concentration. Kohn
and Luttinger’s and Greenwood’s theory has been ex-
tended to include electron scattering by absorption and
emission of lattice phonons, by Argyres;’ nonlinear de-
pendence of f on F (“hot electrons™), by Hasegawa and
Yamashita;® and presence of a static magnetic field, by
Thomas.”

A natural question is: what are the consequences of
appreciable rates of change of the driving forces? So long
as these are still small, we expect that (1) will hold and
they will be represented by the first two terms on its left-
hand side. For larger frequencies and space gradients,
however, the quasi-classical domain must be transcended
and quantal features will appear in the response of the
system. If the driving field has angular frequency w and
wavevector g, one expects this to happen when 4w or
Mguv, where v is an appropriate electron velocity, is no
longer small compared to characteristic energies: such
are kT and the energy scale of appreciable variation in the
relevant properties (scattering matrix elements, energy
density of states) of the Bloch states. For an ultrasonic
field, #qu ~ (v/s)Hw where s is the velocity of sound. Since
in practice one has v >>> s, the “spatial” quantum effects of
appreciable ¢ should predominate; and these should in
fact be experimentally accessible. At higher w and g the
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response of the driven system should reach the familiar
quantal domain (in which scattering effects may be neg-
lected entirely or described by ordinary perturbation
theory).

The purpose of the present communication is to show
that the Kohn and Luttinger procedure may be readily
extended to driving fields of nonvanishing g and w;® that
the result is still a Boltzmann equation of essentially the
form of the quasi-classical equation, with the role of the
distribution function performed by elements of the density
matrix connecting Bloch states whose wavevectors differ
by q; and that the passage between the classical and quan-
tal limits may be represented by the q and w dependence
of the solution of this equation. The analysis will be
limited to the linear inhomogeneous equation in the
absence of a magnetic field and to random elastic scat-
terers, as in Refs. 3 and 4; and in addition the calculation
will be mainly limited to the lowest significant order in
the scattering matrix elements, for each term of the equa-
tion. Thus no attempt is made here to carry out the equiv-
alent, for nonzero g and w, of Luttinger and Kohn’s treat-
ment of scatterers of arbitrary strength and effects of
interference between scattered Schrodinger waves, or
to approach the classic question of the permissible magni-
tude of the scattering frequency times Planck’s constant.

We first need to reduce Eq. (3) to an appropriate form.

Let
H() = H” + (H'' + H “e” ")’ (4)
and
o) = p¥ + (pe’t + pT¥e N 4 oo, (5)

where x is real and as usual we shall eventually let
x — 40 (6)

(the positive sign corresponding to the thermodynamic
“direction of time’”). The electrons of the unperturbed
(steady state) crystal are represented by p® and the
Hamiltonian H®. The H*“ represent the driving force,
and p*“ the part of the system response which is linear
in these. Then (3) gives

h(:l:w _ ix)p:tw + H(O)piw _ pwa(O) — C:m (7)
where
th = p(O)Htw . Htwp(l))' (8)

Since H'” and H*®, and the dynamical variables of
interest, are taken to be (sums, over the electrons, of) single-
electron functions, for the conditions of Boltzmann
statistics p may be taken as the density matrix of a single
representative electron; and its matrix elements will com-
pletely describe the system, apart from fluctuations. For
the conditions of Fermi statistics, as Kohn and Luttinger
showed,? an exactly equivalent formalism applies, with the

reinterpretation of the elements of p given in Eq. (11) be-
low. In this case the basis states have the form of Slater
determinants and are specified by sets {n} of occupation
numbers, n; = 0 or 1, of one-electron component states;
and p is specified by its matrix elements between these
basis states. The basis states may conveniently be manip-
ulated by means of second-quantization annihilation and
creation operators a;, a{. Then H and other one-electron
variables are given by expansions

Q = Zl Zm lea;am! (9)

where the Q;,. are the one-electron matrix elements. If
p“ stands for p or any component of p (such as 2, 0 ),
the corresponding expectation of Q is

Q) = Trp"0 = 220 Oimpms (10)

where

pim = Tr aip”a, (11)

and “Tr” means the trace in {n} space. We similarly define

Cit = Tr a(p " H** — H**pV)a,,. (12)
The essential theorem is®:

Tr a(p"Q — 0p™ap = 2oulpiQun — Quupin),  (13)

which may be proved by using the anticommutation rules
of the a’s and a'’s to reduce the combinations of two a’s
and two a'’s, obtained on substituting (9), to zero or com-
binations of one of each. Then, on multiplying both
sides of (7) by a; on the left and a,,T, on the right, and taking
the trace, by Eq. (13) applied to p*“ we have

H(ko — ix)pie + DoJ(HiY pi — pilHWY)

= Ci.. (14)
Thus, everything may proceed as though there were only
a single electron, and the arrays defined by (11) and (12)
were matrix elements; accordingly we shall refer to them
as “matrix elements” hereafter. One need only note that,
in thermal equilibrinm, the diagonal elements of p‘” equal
the Fermi function of the eigenvalues of H”.

Derivation of the generalized Boltzmann equation

The main part of H® is the crystal-lattice electron
Hamiltonian, diagonal in the Bloch representation. The
matrix elements of H'” in this representation will be
written

H;O]i’ = Moy Ok xr T Hix. (15)

where H’, representing the scatters, will be taken as having
zero diagonal matrix elements.'” The off-diagonal part
of p” will similarly be denoted by p‘*/, and the diagonal

elements by p.”, in the Bloch representation. Since p‘*




represents a steady state it commutes with H®'; then
p(m’ is small because H’ is small. The driving terms of (4)
will be taken as

Htw —_ ¢iw.q efQ'f + ¢tw.—-q e—iQ'r (16)

for a single electron, where the ¢'s are constants, The
main part of C*“ then has nonzero matrix elements be-
tween the pairs of Bloch states with wavevectors differing

by q:

Citox = ™ (k£ q | B) (0lla — o), (17)
by (13), where

& ®) = (ke ")

= f uf(r)ug- () d’r, (18)

uy(r) being the lattice-periodic part of the wavefunction of
the Bloch state |k). (A punctuation comma between
matrix subscripts will be used where it is useful as a reading
aid, omitted otherwise.)

For the case ¢ = 0, H'® and C*“ are simultaneously
almost diagonal—in the Bloch representation—and the
perturbation p*“ is almost diagonal in the same repre-
sentation. The off-diagonal elements piy, are of one
higher order in H’ than the diagonal elements; and Kohn
and Luttinger’s procedure is based on this fact. When ¢
is nonzero, H'” and C** are no longer simultaneously
almost diagonal. Since the physical disturbance has the
space variation of exp (Zig-r), we would expect the
“strong” matrix elements of p*“ to be now between states
with wavevectors differing by g—i.e., the same pairs of
states as those for which the main part of C** has nonzero
matrix elements. This is indeed the case; by making this
division of p*“ into “strong” and “weak™ parts, one can
obtain a solution for the “strong part” by the same pro-
cedure, in terms of powers of H’, as for ¢ = 0. We will
use the notation™

Q‘:{ = Quura/2.k-a/2s = Ok—qs2.k-as? (19)
and
Ok = Oki (1 — 5k,k'+q)(1 — bk x'-a) (2())

for the matrix elements of the strong and weak parts of
¢ and of C*“ (but of course H’ will still have the mean-
ing given by Eq. (15)); and similarly

w;q = wkxq/2,k¥q/2 (21)
where
Wkk’ = W — Wi (22)

Hereafter we deal with Eq. (14) for 4w, in the Bloch
representation, suppressing the superscript +w and writing
the strong elements of p** and C** as pi% Ci® and the

weak parts as p’, C’ with matrix elements pf -, Cix -
With the foregoing notation, Eq. (14) gives

'h(O-‘ + w?{ - iX)Ptll: = C‘il: + Hl’(+3q/2,kf—q/2 P;(iq

4 —q ’ 7
— Hiiqr2.x-30/2 Pr-a + Z (pk+q/2.k’ Hy x-an
T

- H{Hq/i’.k’ P;r',k—q/z) (23)
and
Il(o) + oxxr — iX)P{nc'

+ Z (Hix: plrer — i Hicr i)
raxt

— ’ ’ q i Q
= Cix + Hi_qx' Pr-qr2 — Hi ' ca Prrsas

Hl,{.k'~q P;?—q/% (24)

The p~* terms of (23) and (24), separate from the summa-
tions, represent the system response proportional to ¢

Now, the matrix elements of H' are sums over the con-
tributions of the individual scattering defects or impurities:

Hi = 2 Hiw exp (i(k’ — k)'Ry) (25)
I

’4 -q
+ Hiiqxr Priasz —

where the R, give the positions of the scatterers. If the
Jatter are randomly distributed, as is assumed here, then
the p~* terms of (23) may be dropped because of the cancel-
lation of the randomly phased exponentials exp (— 2iq- R,).
In (24) we neglect the C’ term, which is of order H’; it
will be considered later as a correction. The remaining
equation may be solved for pf,, in terms of the pi%., as a
“perturbation” power series in the matrix elements of H.
We require only the lowest order in H’, of this formal
solution, given by dropping the summation term on the
left of (24) and just dividing both sides of the remaining
equation by the coefficient of p}, . on the left. The general-
ized Boltzmann equation is obtained by substituting
in (23) this lowest-order solution of (24) for the matrix
elements of p’. The resulting p~® terms coming from the
separate p~ terms of (24) have coefficients with products
of pairs of matrix elements of H’. These products are
such that the (I, I) contributions from a single scatterer
are again proportional to exp (—2iq-R;); and these p !
terms may also be dropped because of random-phase
cancellation. (The (I, J) contributions from pairs of scat-
terers essentially cancel regardless of the particular com-
bination of k’s.)"?
The remaining equation may be written

liw 4 x + iwk + Q%] — (i/M)Ck
= kz: A?{k’("") Slll(k'(Pg:' - P?() (26)

where

(&‘xk‘ = (27r,/’h)H;(+q/2,k’+q/2H),:’7q/2.qu/2w (27)
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. _ 1 <
(o) = 50

1

o+ Wxtas2,% ~qr2 — X

1§
: ).
w + Wi vq/2,k-as2 — IX

(28)

and
i) = 3

__lh "(Hth/i"k'-—q/? -

’ 14
Hk+q/2.k'+q/2)Hk’~q/2,k—q/£'

2 .
+ o 4 Owxrgeki-g2 — X
14 I4 4
+ (Hk'+q/2.k+q/‘l - Hk'—q/z.k—q/2)Hk+q/2.k’+q/2j].
® A+ kg2 k-q2 — X

(29)
By (25), we may substitute in (26)

Sll!xk’ - (2‘”/}7) IZ H{x+q/2.k’+q/2Hi'—q/2.k—q/2s (30)

again because of random-phase cancellation of the con-
tributions of pairs of scatterers."”

Because of (6), in summations over k in which the sum-
mand has a factor (¢ — ix)”', where £ is a real function
of k, when the summation includes a simple zero of ¢ the
substitution

E_’ ix—>(P£l+i7r 5(¢) 31

(where @ means ‘“take the principal part™) gives the value
of the sum. With this substitution in A on the right-hand
side, Eq. (26) is our generalized Boltzmann eqguation.

Discussion

The Q term of (26) may be disregarded here; it will be
considered later. The remaining terms correspond one
by one to those of Eq. (1), when we make the identification

Py — 1Y Hk) (32)

with the g, » Fourier component of {(p, 1, #). (Adjustment
of the normalization in going from Zk to [ 4°p may
be taken for granted.) We should also set

o = fo(4k) (33)

where fo(p) is the unperturbed distribution function. Then
by (17)

Ci = ¢"%(k + 3q |k — 3q) [fo(n(k + 1q)
= folh(& — 39)]. (34)
We first examine the limit of (26) when ¢ becomes zero’
Since in this limit
wk = @ (Jwe/0k) = q-v, (35)

the corresponding term on the left of (26) becomes

v(kk)-(9f/9r)* in agreement with the second term on the
left of (1). With g = 0 from the beginning, this diffusion
term of (1) would not have been obtained. Also, by (34),

—(i/)Ck — (—igq¢""*)-(3/9 HB)fo (36)

-in obvious agreement with (2) for the linear-inhomo-
geneous case. The right-hand sides of (1) and (26)—the
collision terms—do nor agree when w # 0. By (31), for
g = 0 the right-hand side of (26) is equal to

; S?{k»{%[é(ekk» + /h(ﬂ) + B(ekk' - le)]

e o |

— *(hK)), (37)
where
e = Ay,  exy = Hogp = € — €. (38)

For w = 0, the factor { } reduces to 8(exy-); and (37) be-
comes equivalent to the right-hand side of (1), with the
scattering probabilities reckoned in the Born approxima-
tion.

The quantum effect due to nonzero w is given by the
supplanting of 6(exy-) by the first term of { } in (37) and
the addition of a “principal part” contribution given by
the second term of { }. Since the latter is imaginary, it
represents a non-dissipative effect.'® Ordinarily, when fw
is large enough for these effects to become significant the
first term on the left of (1) will be already large compared
with the rate of change of f due to collisions (unless we
are in the *“strong scattering” domain where, in the nota-
tion of Ref. 4 (§3) and other papers on that situation,
#/7q is not small), so that the latter has only a small
effect on the response to the driving forces. If, accordingly,
one expresses the solution of the Boltzmann equation
as a power series in 1/w, the second term (~1/ w?), pro-
portional to the collision rate, is just what would be ob-
tained by second-order perturbation theory.'* For high
enough symmetries in the summand of (37), just as for
w = 0, the solution of the Boltzmann equation is given
by a relaxation time.'> However, the relaxation time is
now a function of «,'® and is complex. We may, of course,
rewrite (37) in terms of time by recombining the Fourier
components f“: Then

af/ar + F(1)-(8f/dhk)
£
= X st [ 2 eos fowle = OiSCAK, 1)
k-’ ¢ -
— {(hk, )] dt’ /h (39)
so long as the time dependence of F, and hence of f, in-

cludes a factor like exp (x#) ensuring convergence of the
integral.



We return now to nonzero g. The electron variable
whose expectation, for the driven system, one is most likely
to require is a Fourier component of the velocity:

vi= L(ve'"T 4 e Ty). (40)
Then

N (v = Xk: palk — 3q |k + @) (Va0

+ vk»qﬂ) (41)

where N is the number of electrons in the normalization
volume and vy is the diagonal element of v, equal to
dwi/dk. With the interpretation (32) for the first factor
of the summand, this becomes the conventional expression
if g is small enough for the other two factors to reduce to
vi. For the final factor, the fractional deviation from vy
is of order (,h2q2/m*)/ er, where ¢ is the Fermi energy
measured to the band edge (replaced by «T in the non-
degenerate case). The deviation of the middle factor from
one may be estimated by “k- p theory”:

(k — 3q |k + 30 — | ~ (Hq"/m*)/e, (42)
where ¢,(k) is the “vertical” energy interval to the band
with the most influence on the inverse effective mass 1,/m*.

As g increases from zero the first term in (26) to deviate
appreciably from its quasi-classical limit is evidently C,
when #gv/kT becomes appreciable. When the latter is
still fairly small, the factor q-(df,/0k) on the right of (36)
may be replaced by the first two terms of the expansion

Tolp + 349) — fo(p — 3-4q)

d a\’
= I:JHI'B; + 51:1 (llqa—p> + “']fo- (43)

The resulting fractional correction to the current cal-
culated from the Boltzmann equation is found to be only
~(#q°/m*)/ep, for the degenerate case, rather than
~(#Hq° /m*)/«T. When Hqv becomes large compared to
xT, the final factor of (34) takes on a different character:
There is a region around the Fermi surface within which
fo(p + 349 — fo(p — 349) equals 41, and an opposite
region within which it equals —1. However, one can
show that so long as g is still small compared to the di-
mensions of the Fermi surface, and provided that the
other quantities involved in (26) do not vary significantly
over distances ~¢g from the Fermi surface, the deviation of
the current, and similar quantities, from their values at the
quasi-classical limit remains small. Thus «7 is not the
scale measure for such deviations.

When g and w are large enough for the scattering term
of (26) to be small compared to the other p* terms, one
again has an expansion in ascending powers of H':

@G
P e + ol — ix)+

The first term of (44) gives the familiar quantal limit; the

(44)

second term is obtained by substituting the first term into
the scattering function (including Q) of (26)."" When ¢
becomes comparable to the dimensions of the Fermi
surface,”® it may be necessary to take account of inter-
band elements of C and of H’. The Boltzmann equation
then generalizes to coupled equations for the intraband
and interband p,! elements.’® These equations may be ob-
tained by the obvious extension of the derivation of (26)
from (14).

Because of the lower symmetry of the terms of (26)
when g is appreciable, one does not have a relaxation-time
solution with €, and H}, . functions such that one would
have this when ¢ = 0. However, if the matrix elements
of H’ are insensitive to k, and therefore to q, and if ¢ is
small enough for its effect on the denominators in (28) to
be reckoned to first order only, then

Abg () Sk ™~ A(I)(k’(w + 3V + vi)- Q) S(l){k’- (45)

To this approximation (39) is generalized, in terms of
{(#k, r, £), by making the substitution

Sk, 1, ') = f(Fk, r + (v + v ) — 1), t)), (46)

and similarly for f(4k’, r, '), in the integral on its right-
hand side. In so far as the ¢t — ¢ values <1/w, contribute
significantly to this integral®'*° then the term added to r
amounts to displacements of the order of magnitude of
the electron de Broglie wavelengths in the Bloch scheme,
and so is associated with the “wavepacket” uncertainty
in the electron positions.”®

Correction terms

The retention of the contribution from C’ in (24) leads to
additional terms in (26). When the matrix elements of C’
are estimated from the formulas

(p(O)eiq'f — L’iq-rp(o))kk,

= 4+ q|K) oo — &k = @) plan  (47)
and
- p(}‘())‘)Hl/(k’/hwkk'a (48)

these additional terms are equal to ¢® times a sum over
¥ and the p%Y). For simplicity, only the result for the
limit ¢ — 0O is given here. In this limit the addition is just
equivalent to a changed value of C}, as follows:

0y (0
pri =2 (px

1
@ + Wy — ix

1
Ci — Ck — PE Z Hiy {(k(
W e

[ )(c;i — Ck)

@+ wxr — ix ' (49)

+

Wik’

Then the imaginary part of §C/C is of order (#/¢,) times
the scattering frequency. The real part is similarly small,
and vanishes when o — 0.

We have also overlooked €, in Eq. (26), so far. By
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inspection of (29) it is evident that Q is zero if the matrix
elements H},. do not vary with k, k/, and otherwise is
zero when q = 0 and proportional to g when the latter is
small compared to the dimensions of the Fermi surface;
and that the components of @ which cancel when ¢ = 0
have imaginary parts like the scattering frequency and real
parts like its principal-part companion in (26). Thus the
real part of Q] is like a correction to w, from the k de-
pendence of the perturbation of the Bloch state energy
to second order in H’, with its imaginary part representing
the inverse lifetimes of the states to the same order.”

Note added in proof

Two current publications contain treatments of the Boltz-
mann equation for nonzero g and w: S. Fujita, Introduction
to Non-Equilibrium Quantum Statistical Mechanics, W. B.
Saunders Co., Philadelphia, 1966 (see especially Section
7.5); the chapter by P. N. Argyres in Lectures in Theoretical
Physics, Vol. 8a, University of Colorado Press, 1966, in
press (see especially Section 6C). K. Yamada, Prog. Theor.
Phys. 28, 299 (1962) gives a comparable analysis in terms
of the two-electron correlation function.

Footnotes and references

1. Effects of a static or slowly varying magnetic field and of
a weak space gradient of crystal lattice parameters are
given by terms in the Boltzmann equation which have been
omitted from (1).

2. In the general equation, p and p’ wherever they occur in (1)
are accompanied by band and spin indexes, and the integra-
tion on the right is accompanied by the corresponding sum-
mation. These are omitted here for simplicity, and may be
restored to the analysis and results in the obvious way. The
quantum generalization can involve other interband effects,
as will be indicated.

3. W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957);

J. M. Luttinger and W, Kohn, Phys. Rev. 109, 1892 (1958).

. D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958).

. P. N. Argyres, J. Phys. Chem. Solids 19, 66 (1961).

. A. Hasegawa and J. Yamashita, J. Phys. Chem. Solids 23,

875 (1962).

7. R. B. Thomas, Jr., scheduled for publication in Phys. Rev.
151 (1966).

8. Time dependence is discussed in Appendix D of the first of
Refs. 3. Equation (ID6) is essentially Eq. (39) here. The
final term of D(17) corresponds to, but does not agree with,
Eq. (37) here.

9. See Appendix F of the first of Refs. 3.

10. We are omitting interband matrix elements of H.

11. This particular form is of course used because it corresponds
to the formalism introduced by E. Wigner, Phys. Rev. 40,
749 (1932), for the distribution in position and momentum.
In the present connection see, for example, §4 of Ref, 20.
The subscripts are to be read as k & %q.

12, The HT matrix elements in ZH? exp (—2iq-R;) are of order
1/V, and so their sum (without the exponential factors)
is of order N;/V, where V is the normalization volume
and Ny is the number of scatterers. With the exponential
factors included, the variance of the sum (that is, the squared
modulus, averaged over a random distribution of scatterer
positions) is only of order N;/V?-in effect, is zero: This
fact provides assurance that we may drop the p—a terms of
(23). The corresponding coefficient of the p—e term coming
from (24) has a product of two H! elements in the I’th

[o NV I SN

term of the sum, and hence if it were summed without the
exponential factors the result would be of order N;/V?,
and therefore of order N;/V after the accompanying sum-
mation over wavevector k’. Then this contribution also
effectively vanishes on account of random-phase cancella-
tion of the exponential factors.

The situation for the (Z, J) contribution from products of
two matrix elements of H’, such as (27), is somewhat dif-
ferent. (See page 594 of Ref. 3, Appendix B of Ref. 4.) The
sum of the (I, I) terms of the product of H’ elements is of
order N;/V?; and the sum of the (I, J) terms, discarded in
(30), has a variance of order (N;/V?)2 Thus, this product
oscillates violently when the scatterers are, conceptually,
moved around. However, the quantity which enters into
(26) is a sum, over k’, of this matrix-element product times
a slowly varying function of k’. For this sum, while the
(1, I) contribution is of order N;/V, the (I, J) contribution
has a variance only of order N;/V2 (One may realize this
reduction by a factor of 1/N; in a simple way by averaging
the summand over a sphere &’ = const., with factors other
than the exponentials assumed constant on the sphere. Then
exp[i(k—k’)-R;;]becomesexp (ik-Ry /) [sin(k’- R; ;) /k'R; ]
so only pairs of scatterers with R,; < 1/k’ contribute
substantially.)

If the (I, J) contribution were included in (26), the solu-
tion would depend slightly on the configuration of scatterer
positions, The scatterer-pair addition to (26), in turn operat-
ing on this configuration-dependent part of p9, would give
a result having a nonzero average over configurations. The
requirement that this average be a negligible addition to
(26)—a reasonable basis for discarding the (I, J) terms—is,
obviously, essentially the same as the preceding variance
criterion,

13. The analogs of these two contributions appear in the theory
of the conductance of a tunnel junction at nonzero fre-
quency; the principal-part term contributes to the capaci-
tance.

14. This gives the general result for “free carrier” optical
absorption ~\2 See H. J. G. Meyer, Phys. Rev. 112, 298
(1958); W. P. Dumke, Phys. Rev. 124, 1813 (1961).

15. When the “diffusion” term of (1) is appreciable, then for
the quasi-classical limit %« — O there is a solution in terms
of the scattering time when the scattering matrix element
depends on the energy only (though it is not of as simple a
form as for g = 0). For appreciable % a more complicated
integral equation (with the energy as variable) is involved.

16. In this connection see A. Ron, Phys. Rev. 131, 2041 (1963).

17. Compare the context of Footnote 14, For an ultrasonic wave
the first term of Eq. (44) already gives a dissipative com-
ponent of the current, contributed by its poles to the sum
(41) through the second term of (31). This dissipation which
exists for vanishing scattering frequency is the Landau
damping. At appreciable scattering frequencies, the poles of
p9 are displaced from those of the first term of (44) (the
expansion (44) is of course not valid in the neighborhood
of the poles). The magnitude of the dissipation is changed
by the scattering, in particular when g times the mean free
path is not >>1.

18. This might be attained with an ultrasonic wave in bismuth
or graphite, for example. In semimetals such as bismuth
one set of intraband Cqa’s (for the completely full or com-
pletely empty band) will be zero.

19. For an optical driving field also, one may describe the
response by such equations. The interband elements are
“vertical’ (q is virtually zero); and they will become domi-
nant as the absorption-edge frequency is approached.
Another application possibly is to magneto-conductivity
in the Landau sub-bands.

20. G. V. Chester, Proc. Phys. Soc. 81, 938 (1963).

21. Compare the discussion of Eq. (98) in the first of Refs. 3.
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