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The Quantum  Mechanical  Extension of the 
Boltzmann  Equation 

Abstract: It is  shown that the  method of Kohn and Luttinger  may  be  applied to  obtain a generalized  Boltzmann equation, for elec- 
trons  in a solid, when the  driving  field  has  nonzero  wavevector  as  well  as  frequency. By means of this  equation,  the  behavior of the 
electrons  in  response to the field may be followed from  the  quasi-classical  limit at small rates of change to the quantal  limit at large 
rates of  change. 

Introduction 

Many transport phenomena of electrons in solids are 
described by the quasi-classical Boltzmann equation’ 

af(P)/at + V(P) * (df(P)/W + d P )  

= j ”  d 3 p ’ ~ p ’ )  ~ p ’ ,  p) - j(p)  wP,  P’II, (1) 

where p = ktk and k is the wavevector of a Bloch state, 
and v is its velocity; f(p, r, t )  is the distribution  function 
of the system, whose disturbance due  to  the driving forces 
is to be found by solving (1); g represents these driving 
forces and is explicitly proportional to them;  and g and f 
on  the left refer to a particular band  and spin  direction, or 
spin-orbit  combination of them. For an applied force F 
acting on each  electron, 

g = F.(a/ap)f .  (2) 

(In the linearized inhomogeneous equation with which we 
shall be concerned, f is the perturbed part of the distribu- 
tion  function proportional to F in (1) and is the equilibrium 
distribution  function,  independent of F, in (2).) 

The validity of this quasi-classical Boltzmann  equation, 
and possible deviations from it, are  important questions. 
Kohn  and Luttinger3 and Greenwood4  have derived the 
linearized inhomogeneous equation from first principles 
as a consequence of the equation of motion 

ih a p / d t  = H p  - p H  (3) 

of the  quantum density matrix of the electrons, p ,  in the 
case where the driving force is a uniform electric field 

(F in (2) equals the field strength times electron charge) 
and  the scattering effect represented by W(p, p’) is due 
to randomly  distributed defects or impurity  atoms.  Lut- 
tinger and  Kohn showed, for these conditions, that  the 
linearized equation is valid for localized scatterers of 
arbitrary strength and small  concentration, and investi- 
gated the consequences of appreciable  concentration. Kohn 
and Luttinger’s and Greenwood‘s theory has been ex- 
tended to include electron scattering by absorption and 
emission of lattice  phonons, by Argyres?  nonlinear de- 
pendence of f on F (“hot electrons”), by Hasegawa and 
Yamashita: and presence of a static magnetic field, by 
tho ma^.^ 

A natural question is: what are  the consequences of 
appreciable  rates of change of the driving forces? So long 
as these are still small, we expect that (1) will hold  and 
they will be  represented by the first two terms on  its left- 
hand side. For larger frequencies and space gradients, 
however, the quasi-classical domain  must  be  transcended 
and  quantal features will appear  in  the response of the 
system. If the driving field has angular frequency w and 
wavevector q, one expects this to happen when krw or 
hqu, where u is an  appropriate electron velocity, is no 
longer small  compared to characteristic energies: such 
are KT and  the energy scale of appreciable  variation in the 
relevant  properties (scattering matrix elements, energy 
density of states) of the Bloch states. For  an ultrasonic 
field, ktqu - (u/s)hw where s is the velocity of sound. Since 
in practice one has u >> s, the “spatial“ quantum effects of 
appreciable q should  predominate; and these should  in 
fact be experimentally accessible. At higher w and q the 
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response of the driven  system should reach the familiar 
quantal domain  (in which scattering effects  may be neg- 
lected  entirely or described by ordinary perturbation 
theory). 

The purpose of the present  communication is to show 
that the Kohn and Luttinger procedure  may be readily 
extended to driving  fields  of  nonvanishing q and w :  that 
the result is still a Boltzmann equation of essentially the 
form of the quasi-classical equation, with the role of the 
distribution function  performed by elements of the density 
matrix  connecting Bloch states whose  wavevectors  differ 
by q; and that the passage  between the classical and quan- 
tal limits may  be  represented by the q and w dependence 
of the solution of this equation. The analysis  will  be 
limited to the linear  inhomogeneous equation in the 
absence  of a magnetic  field and to random elastic scat- 
terers, as in  Refs. 3 and 4; and in addition the calculation 
will  be  mainly  limited to the lowest  significant order in 
the scattering  matrix  elements, for each term of the equa- 
tion. Thus no attempt is  made  here to carry out the equiv- 
alent, for nonzero q and w ,  of Luttinger and Kohn's treat- 
ment  of scatterers of arbitrary strength and effects  of 
interference  between  scattered  Schrodinger  waves, or 
to approach the classic  question of the permissible  magni- 
tude of the scattering  frequency  times  Planck's constant. 

We first  need to reduce  Eq. (3) to an appropriate form. 

Let 

H ( t )  = H'O' + ( H w e z w t  + H-"e- '" ' )eXt  (4) 

and 

p(t )  = p"' + ( p w e i w t  + p - " e - t " t ) e x t  + . . . , ( 5 )  

where x is  real and as  usual we shall eventually  let 

x + +o (6) 

(the positive  sign  corresponding to the thermodynamic 
"direction of  time"). The electrons of the unperturbed 
(steady state) crystal are represented by p"' and the 
Hamiltonian H'O'. The If* " represent the driving  force, 
and pi " the part of the system  response  which  is  linear 
in  these.  Then (3) gives 

~ ( f w  - i x )p*"  + ~ " ) p * "  - p""H(O) = C'" (7) 

where 
C"" _= P'O'H'" - H*"P'o' .  ( 8) 

Since H'O' and Hi ", and the dynamical  variables of 
interest, are taken to be  (sums,  over theelectrons, of) single- 
electron  functions, for the conditions of  Boltzmann 
statistics p may  be  taken  as the density  matrix of a single 
representative electron; and its  matrix  elements will  com- 
pletely  describe the system, apart from fluctuations. For 
the conditions of Fermi statistics, as Kohn and Luttinger 
s h ~ w e d , ~  an  exactly  equivalent  formalism  applies,  with the 

reinterpretation of the elements of p given  in  Eq. (1 1) be- 
low. In  this case the basis states have the form of Slater 
determinants and are specified  by sets { n 1 of occupation 
numbers, nz = 0 or 1, of one-electron  component states; 
and p is  specified  by its  matrix  elements  between  these 
basis  states. The basis  states  may  conveniently  be  manip- 
ulated by means of second-quantization annihilation and 
creation operators az, a:. Then H and other one-electron 
variables are given  by  expansions 

Q = CZ cm Ql,a:a,, (9) 

where the Qlrn are the one-electron  matrix  elements. If 
p a  stands for p or any  component of p (such as p"' ,  p'"), 
the corresponding  expectation of Q is 

= Tr P"Q = El  Em Q I m p z ~  (10) 

where 

pp, Tr a lp  a, 

and "Tr"  means the trace in ( n )  space. We similarly  define 

C;: E Tr af(p'"'Hi" - Hi"p'o')aL. (1 2) 

a t  
(1 1) 

The essential  theorem  isg : 

Tr af(p"Q - Qp%b = Cu(pYuQurn - Q~l~pUqn), (13) 

which  may  be proved by using the anticommutation  rules 
of the a's and at's to reduce the combinations of two a's 
and two at's, obtained on substituting (9), to zero or com- 
binations of one of each.  Then,  on  multiplying both 
sides of (7) by al on the left and a: on the right, and taking 
the trace, by Eq. (13) applied to p*'" we have 

A ( f w  - ix)P:," + z ( H ; : ' p : :  - P 2 H 3  

= e;:. (14) 

Thus, everything may  proceed as though there were only 
a single  electron, and the arrays defined by  (11) and (12) 
were matrix  elements;  accordingly we shall refer to them 
as  "matrix  elements"  hereafter.  One  need  only note that, 
in thermal equilibrium, the diagonal  elements  of p"' equal 
the Fermi  function of the eigenvalues of H'O'. 

Derivation of the generalized Boltzmann equation 

The main part of If''' is the crystal-lattice  electron 
Hamiltonian, diagonal  in the Bloch representation. The 
matrix  elements of If''' in  this  representation will  be 
written 

H P i f  ktwk 8k,kr  + H L k ,  (1 5 )  

where H', representing the scatters, will  be  taken as having 
zero  diagonal  matrix e1ements.l' The off-diagonal part 
of p"' will  similarly  be  denoted by p")',  and the diagonal 
elements by p p ' ,  in the Bloch representation. Since p"' 
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c i : q , k  = 4*w'iq (k f q 1 k) (p?:q - PC)), 
by (1 3), where 

(k I k') E (k (e  ' r I  k') 

= 1 uc(r)uk.(r) d'r, 

i ( k - k ' )  

uk(r) being the lattice-periodic part of the wave ,function of 
the Bloch state lk). (A punctuation comma  between 
matrix subscripts will be  used  where it is  useful as a reading 
aid, omitted otherwise.) 

For the case q = 0, H'O' and C*w are simultaneously 
almost diagonal-in the Bloch  representation-and the 
perturbation p'" is almost diagonal in the same repre- 
sentation. The off-diagonal elements p i g ,  are of one 
higher order in H' than the diagonal elements; and Kohn 
and Luttinger's procedure is based on this fact. When q 
is nonzero, H'O' and C*" are no longer simultaneously 
almost diagonal. Since the physical disturbance has the 
space variation of exp (=ttiq-r), we would expect the 
"strong" matrix elements  of p** to be  now  between states 
with wavevectors  differing by  q-Le., the same pairs of 
states as those for which the main part of C'" has nonzero 
matrix elements. This is  indeed the case; by making this 
division of p'" into "strong" and "weak" parts, one can 
obtain a solution for  the "strong part" by the same pro- 
cedure, in terms of powers of H', as for q = 0. We  will 
use the notation1* 

E Q k + q , ? . k - q / z ,  QLq Q k - q / ? . k - q / ?  (19) 

and 

e k k '   e k k ' ( 1  - 6 k , k ' + q ) ( 1  - & k , k ' - q )  (20) 

for the matrix elements of the  strong  and weak parts of 
p* " and of C* " (but of course H' will still have the mean- 
ing  given  by Eq. (15)); and similarly 

w k  = Wk*q/Z.kTq/Z 
* 9  - (21) 

Hereafter we deal with Eq. (14) for +a, in  the Bloch 
representation, suppressing the superscript +w and writing 
the strong elements  of p+" and C'" as p i q ,  Cia and the 

weak parts as p', C' with matrix elements pLk., Ckk I. 
With the foregoing notation, Eq. (14) gives 

A ( @  + a9k - iX)p9k = c", + H h + j q / z . k - q / z   p k + q  
-q  

- H k + q / 2 , k - 3 q / 2   P k - q  + ( P L + q / z . k ,   H k , . k - q / z  
-q 

k '  

- H k + q / ? . k ,   P k ' . k - q / d  

7 

(23) 

and 

h(0 + w k k '  - k ) P k k '  

+ ( f f k k " P h ' . k .  - P : k , . H L , , k . )  
k "  

= c k k t  + H L q , k '  P9k-q/? - H $ , k ' L q   P i ' + q / ?  

+ H : + q . k '   P k + p / 2  - H k . k , - q   P k ' - q / 2 *  
-9 -q (24) 

The p-q terms of (23) and (24), separate from the summa- 
tions, represent the system response proportional to 4-a. 

Now, the matrix elements of H' are sums over the con- 
tributions of  the individual scattering defects or impurities : 

H h k ,  = & k '  exp (i(k' - k).R,) ( 2 5 )  

where the RI give the positions of the scatterers. If the 
latter are randomly distributed, as is  assumed here, then 
the pd9 terms of (23)  may  be dropped because of the cancel- 
lation of the randomly phased exponentials exp (- 2iq. %). 
In (24)  we  neglect the C' term, which  is  of order H'; it 
will  be considered later as a correction. The remaining 
equation may be  solved for p L k , ,  in  terms of the p i ? , ,  as a 
''perturbation'' power  series  in the matrix elements of H'. 
We require only the lowest order in H', of this formal 
solution, given by dropping the summation term on the 
left of  (24) and just dividing both sides of the remaining 
equation by the coefficient of p i  on the left. The general- 
ized Boltzmann equation is obtained by substituting 
in  (23) this lowest-order solution of  (24) for the matrix 
elements of p'. The resulting p-q terms coming from the 
separate p-q terms of (24) have coefficients with products 
of pairs of matrix elements of H'. These products are 
such that  the ( I ,  I) contributions from a single scatterer 
are again proportional to exp (-2iq. RI); and these p-' 
terms may also be dropped because of random-phase 
cancellation. (The ( I ,  J) contributions from pairs of scat- 
terers essentially cancel regardless of the particular com- 
bination of k's.)'' 

I 

The remaining equation may  be written 

[iw + X + i~9k + in;(w)]p9k - (i/h)Ck 

= A : k , ( w )   s i k , ( p : '  - p9k) (26) 
k '  

where 

S : k 6  (2~TT/.h)Hh+q,".k,+q/?H:'-q,2.k-q/2,  (27) 397 
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1 
w + Ok+q/2,k'"q/z - ix 

+ 1 
w + Wk'+q/Z.k--q/Z - iX > .  

and 

Qt((w) = 
k '  

-- r 1 (HL-q/2,k,-q/2 - H L t q / 2 , k ~ + q , z ) H ~ , - q , z , k - q / ?  

h2 " w + Uk+q/Z.k'-q/Z - iX 

+ 
( H L ' + q / z , k t q / 2  - H ~ ' - q / 2 , k - q / ? ) H ~ + q / z . k ' + q / 2  . 

w + Wk'+q/Z.k-q/2 - i X  I 
(29) 

By (25), we  may substitute in (26) 

s",, "j (27f/h) H I k + q / z , k , + q / z H ~ ' - q / 2 . k - q / 2 r  (30) 

again  because of random-phase cancellation of the con- 
tributions of pairs of scatterers.12 

Because  of (6), in summations over k in  which the sum- 
mand has a factor (( - ix)-', where ( is a real function 
of k, when the summation includes a simple  zero of { the 
substitution 

-+ 6 - + ia 
1 

4 - ix t (31) 

(where 6 means "take the principal part") gives the value 
of the sum. With this substitution in A on the right-hand 
side, Eq. (26) is our generalized Boltzmann equation. 

Discussion 

The D term of (26) may  be disregarded here; it will be 
considered later. The remaining terms correspond one 
by one to those of IZq. (l), when  we make the identification 

pz -+ f""(ktk) (32) 

with the q, w Fourier component of f(p, r, t). (Adjustment 
of the normahzation in  going from x k  to J d3p may 
be taken for granted.) We should also set 

p p  = f O ( W  (33) 

where fo(p) is the unperturbed distribution function. Then 
by (17) 

c", = +""@ + $4 I k - 4q) [fo(h(k + 3s)) 
- J O ( @  - aq>,1. ( 34) 

We first  examine the limit of (26) when q becomes zero' 
Since in this limit 

UE "-f q . ( d W k / d k )  = q . V ,  (35) 

398 the corresponding term on the left  of (26) becomes 
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v(hk).(df/dr)' in  agreement  with the second term on the 
left of (1). With q = 0 from the beginning, this diffusion 
term of (1) would not have been obtained. Also, by (34), 

- ( i / h ) c k  -+ (- iq4" ' q ) .  (d/d ktk)J, (36) 

-in obvious  agreement  with (2) for the linear-inhomo- 
geneous  case. The right-hand sides of (1) and (26)-the 
collision terms-do not agree  when w # 0. By (31), for 
q = 0 the right-hand side of (26) is equal to 

s E k ' { i [ 6 ( e k k '  +Aw)  + 8(ekk'  - h')] 
k '  

1 1 -  1 + 7 61 -__- - 
2n1 [ _ f k k '  +hhw E k k '  - k t W J  j)(l"(hk'! 

- f " ( h k ) ) ,  (37) 

where 

6k E h w k ,   6 k k '   h k k '  = ck - c k r .  (38) 

For w = 0, the factor { 1 reduces to a(&k'); and (37) be- 
comes equivalent to the right-hand side of (l), with the 
scattering probabilities reckoned in the Born approxima- 
tion. 

The quantum effect due to nonzero w is  given  by the 
supplanting of d(ekkj)  by the first term of { 1 in (37) and 
the addition of a "principal part" contribution given  by 
the second term of { }. Since the latter is imaginary, it 
represents a non-dissipative effect.13 Ordinarily, when h w  
is large  enough for these effects to become  significant the 
first term on the left of (1) will  be already large compared 
with the  rate of change of f due to collisions  (unless we 
are in the "strong scattering" domain where, in the nota- 
tion of Ref. 4 (53) and other papers on that situation, 
h / ~ q  is not small), so that the latter has only a small 
effect on the response to the driving  forces. If, accordingly, 
one expresses the solution of the Boltzmann equation 
as a power series  in l /w,  the second term (-l/u2), pro- 
portional to the collision rate, is just what would  be ob- 
tained by second-order perturbation theory.14 For high 
enough symmetries in  the summand of (37), just as for 
w = 0, the solution of the Boltzmann equation is  given 
by a relaxation time.15 However, the relaxation time is 
now a function of a," and is  complex. We may, of course, 
rewrite (37) in terms of time by recombining the Fourier 
components f" : Then 

df/at + F(t). (a f /ahk)  

= s",, I^' 2 COS [Wkk'(t - t ' )] l f (Rk' ,  t f )  
k '  I -.* 

- f(.Jfk, t')] dt ' /h  (39) 

so long as  the time dependence of F, and hence of f ,  in- 
cludes a factor like  exp (xt) ensuring convergence of the 
integral. 



We return now to nonzero q. The electron variable 
whose expectation, for  the driven system, one is most likely 
to require is a  Fourier  component of the velocity: 
vq e $(ve’q‘r + evq . ‘v ) .  (40) 

Then 

J’V (f“) = p i @  - t q  I k + h ) 3 ( V k + w 2  
k 

+ vk-q /2 )  (41) 

where N is the number of electrons in the normalization 
volume and v k  is the diagonal element of v, equal  to 
dwk/dk. With the interpretation (32) for  the first factor 
of the summand, this becomes the conventional expression 
if q is small  enough for  the other two factors to reduce to 
v k .  For  the final factor, the fractional deviation from v k  

is of order (kt2q2/m*)/ tF,  where tp is the Fermi energy 
measured to the  band edge (replaced by KT in the  non- 
degenerate case). The deviation of the middle factor  from 
one may be estimated by “k- p theory”: 

(k - I k + 3s) - 1 - (h2q2/nl*)/t,, (42) 

where t,(k) is the “vertical” energy interval to  the  band 
with the most influence on  the inverse effective mass l/m*. 

As q increases from  zero the first term in (26) to deviate 
appreciably from  its quasi-classical limit is evidently C, 
when ktqu/KT becomes appreciable. When the  latter is 
still fairly small, the factor q.(dfo/dk) on  the right of (36) 
may be replaced by the first two  terms of the expansion 

jo(P + - f d p  - 

= [hq .- a”p + 2- 24 (kq.i))” dp + . . .If0. (43) 

The resulting fractional correction to  the current cal- 
culated from  the Boltzmann equation is found  to be only 
-(h2q2/rn*)/e,, for the degenerate case, rather  than 
-(h2$/rn*)/KT. When ktqv becomes large compared to 
KT, the final factor of (34) takes on a different character: 
There is a region around  the Fermi surface within which 
fo(p + ihq) - f,(p - ihq) equals + 1, and  an opposite 
region within which it equals - 1. However, one can 
show that so long as q is still small compared to the di- 
mensions of the Fermi surface, and provided that  the 
other quantities involved in (26) do  not vary significantly 
over distances -q from  the Fermi surface, the deviation of 
the current, and similar quantities, from their values at  the 
quasi-classical limit remains small. Thus KT is not  the 
scale measure for such deviations. 

When q and w are large enough for  the scattering  term 
of (26) to be small compared to  the  other pq terms,  one 
again has  an expansion in ascending powers of H’: 

(44) 

The first term of (44) gives the familiar quantal limit; the 

second  term is obtained by substituting the first term into 
the scattering  function (including a) of (26).” When q 
becomes comparable to the dimensions of the  Fermi 
surface,” it may be necessary to take account of inter- 
band elements of C and of H’. The Boltzmann equation 
then generalizes to coupled equations for  the  intraband 
and  interband p:  elements.lg These equations may be ob- 
tained by the obvious extension of the derivation of (26) 
from (14). 

Because of the lower symmetry of the terms of (26) 
when q is appreciable, one does not have a relaxation-time 
solution with Ek and HL I functions such that  one would 
have this when q = 0. However, if the  matrix elements 
of H’ are insensitive to k, and therefore to q, and if q is 
small enough for  its effect on  the denominators  in (28) to 
be reckoned to first order only, then 

A i k , ( O )  s”,, 1! A:k’(W + + ( v k  + v k , ) ’ q )   s t k , .  (45) 

To this  approximation (39) is generalized, in  terms of 
f(ktk, r, t ) ,  by making the substitution 

f(%k, r, t’) --tf(fik,  r + 3 ( V k  + V k , ) ( t ’  - t ) ,  t ’ ) ,  (46) 

and similarly for f(kk’, r, t’), in the integral on  its right- 
hand side. In so far as  the t - t’ values 5 1/Wk contribute 
significantly to this  then the  term  added to r 
amounts  to displacements of the  order of magnitude of 
the electron de Broglie wavelengths in the Bloch scheme, 
and so is associated with the “wavepacket” uncertainty 
in the electron positions.2o 

Correction terms 

The retention of the contribution from C’ in (24) leads to 
additional terms  in (26). When the matrix elements of C‘ 
are estimated from  the formulas 
( p ( n ) e i q ‘ r  - e i q . r p ( n ) ) k k ,  

(k’ + q I k’) pkq)k! -q  - (k 1 k - q) p P 2 q . k .  (47) 

and 

p r ; :  ‘v ( p p ’  - P t ! ) H k k ! / k f W k k ’ ,  (48) 

these additional terms are  equal to 4“ times a sum over 
p p )  and  the p‘,”!. For simplicity, only the result for  the 
limit q -+ 0 is given here. In this limit the addition is just 
equivalent to a  changed value of C:, as  follows: 

Then the imaginary part of 6C/C is of order (kt/t,) times 
the scattering frequency. The  real  part is similarly small, 
and vanishes when w -+ 0. 

We have also  overlooked D, in  Eq. (26), so far. By 399 
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inspection  of (29) it is evident  that Q is zero if the  matrix term of the  sum, and hence if it were summed without the 
elements Hkk, d o  not vary  with k, k’, and otherwise  is exponential factors  the result would be  of order NI/Ve, 

zero when q = 0 and proportional to q when the latter is and therefore of order N,/V after the accompanying sum- 
mation over wavevector k’. Then  this  contribution also 

small  compared to the  dimensions of the  Fermi  surface: effectively vanishes on account of random-ohase cancella- 
~ ~~~ ~ ~~ ~~~ ~ 

and  that  the  components  of il which cancel when q = 0 tion of the exponential factors. 
have  imaginary  parts like the  scattering  frequency and real 

The  situation  for  the ( I ,  J )  contribution from products of 
two matrix elements of H’. such as (27). is somewhat dif- 

parts like its principal-part  companion in (26). Thus the ferent. (See page 594 of  Ref. 3, Append;x B of Ref. 4.) The 
” 

real part of Q2,9 is like a correction to w2,9 from  the k de- sum of the ( I ,  3 terms of the product of H‘ elements is of 

pendence  of  the  perturbation of the  Bloch  state  energy 
order NI/Vz; and  the sum of the ( I ,  J) terms, discarded in 
(30), has a variance of order (Nr /Vz )2 .  Thus, this product 

, ,  

to second order  in H’, with its imaginary  part  representing oscillates violently when the scatterers are, conceptually, 
the  inverse lifetimes of the states to the  same  order.” 

Note added in proof 

moved around. However, the quantity which enters into 
(26) is a  sum, over k’, of this matrix-element product times 
a slowly varying function of kt. For this sum, while the 
(1, n contribution is of order NTIV. the ( I .  A contribution 

Two  current  publications  contain  treatments of the Boltz- h& a variance only of order NijV2. (One’may realize this 

mann  equation  for  nonzero q and w :  S. Fujita, Introduction 
reduction by a factor of l/Nx in  a simple way  by averaging 
the  summand over a sohere k‘ = const.. with factors  other 

to Non-Equilibrium Quantum Statistical Mechanics, W. B. than the exponentials assumed constant on  the sphere. Then 

Saunders Co., Philadelphia, 1966 (see especially Section exp[i(k-k’).RI~]becomesexp(ik~RxJ)[sin(k’.RxJ)/k~RI,] 
so only pairs of scatterers with RIJ 5 l/k‘ contribute 

7.5); the  chapter  by P. N. Argyres  in Lectures in Theoretical substantially.) 

. .  

Physics, Vol. 8a, University  of  Colorado  Press, 1966, in If the (Z,-J) contribution were included in (26), the solu- 
press (see  especially Section 6C). K. Yamada, Prog.  Theor. tion would depend slightly on  the configuration of scatterer 

Phys. 28, 299 (1962) gives a comparable  analysis in terms 
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P. J. PRICE 
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