J. C. Slonczewski

Theory of Domain-Wall Structure in

Multiple Magnetic Films

Abstract: This paper derives analytically a two-dimensional wall-structure applying to the case of two identical magnetic films sep-
arated by a non-magnetic film. It applies also to a variety of other multilayer problems. The calculation is based on the usual micro-
magnetic principle of energy minimization and all approximations are justified. The wall-structure is found to consist of two “flank™
regions, whose shape is governed by anisotropy and stray-field coupling between films, arranged symmetricaily about a central “kernel”
region whose shape is governed by anisotropy and exchange. In the widely applicable limit of negligible exchange the theory reduces
to one given earlier [J. Appl. Phys. 37, 1268 (1966)]. Also included in the discussion are effects of quasi-walls and film-to-film exchange
interactions. Existing experimental data on wall-shape confirm the shape of the kernel but are not of sufficient precision to test the shape
of the flanks. Existing data for permalloy suggest that perpendicular anisotropy may play a significant role in reducing multiple-film

wall energy and thickness.

1. Introduction

The term multiple magnetic film refers to configurations
of two or more ferromagnetic films separated by non-
magnetic films that are thick enough and uniform enough
for the exchange coupling between magnetic films to be
weak or negligible, but are thin enough for stray-field
interaction between films to be appreciable. Early work
on coercivity and other domain-wall effects in double
films demonstrated that appropriate circumstances could
lead to appreciable domain-wall interaction between the
two magnetic films."™ To explain the reduced coercivity
of multiple films, Clow proposed that in a multiple film
Néel walls lie one above the other in such a way that the
magnetization within each wall is antiparallel to the mag-
netization within the neighboring walls.’ The much re-
duced wall energy serves to account for the reduced
coercivity of a multiple film as compared to that of a
single film.

In later work, calculations showed that the stray-field
interaction between walls in separate films is strong enough
to alter by orders of magnitude the shape and energy of
these walls if the non-magnetic intermediate layer is suffi-
ciently thin."® In fact, that work showed that the inter-
action is capable of stabilizing a Néel-like structure (mag-
netization M parallel to film plane) in films whose thickness
is in the Bloch-wall (M perpendicular to wall normal)
range for single films. Moreover, Middelhoek showed
that the propensity for flux closure is so great that if there
is a true wall in only one film it may induce in the second
film a disturbance (called a quasi-wall) separating two
like-magnetized domains.® These circumstances were

found to give rise to domain structures not existing in
single films,”* ™" and to a reduction of coercive field when
the intermediate layer is SiO.***° Feldtkeller showed how
the additional influence of a film-to-film exchange-like
interaction, present when the intermediate layer is a metal,
gives rise to an increase in coercivity.” Patton and Hum-
phrey measured mobilities of double walls.'”

At this stage, theoretical models for double-film walls
assumed that M is everywhere exactly parallel to the film
plane.”~® The dependence of M on position was described
by an assumed function of one form or another containing
a wall-thickness parameter which was determined varia-
tionally. A less restrictive but still simple calculation
allowed a small component of M to exist normal to the film
plane, thus allowing a further reduction of stray-field
energy.” The dominant energy terms were still stray-field
and anisotropy; exchange was of secondary importance.
The shape of the wall was calculated rather than assumed,
and the component of M perpendicular to the wall plane
was found to vary exponentially with position.'® Reviews
of double-film physical properties have been given by
Middelhoek,'* who includes very simple and essentially
correct estimates of thickness and energy, and by Feldt-
keller."

The present paper presents a calculation of the wall
shape in a double film which we believe to be satisfactory
from the micromagnetic point of view. Although the
method of solution is improvised, rather than a head-on
solution of micromagnetic field equations,'® we offer
arguments to show that our approximation errors are
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really of higher order. An essential element in the cal-
culation is to allow M to vary in two dimensions rather
than one as in the usual wall calculations.

We show that in the absence of “perpendicular ani-
sotropy”’ (see the paragraph below) the normal component
of magnetic field H penetrates into the film a distance x
which is typically very small (about 40 A in permalloy).
Since the other components of H are of higher order, it
follows that the stray-field energy density (H”/8w) resides
predominantly in the non-magnetic layer between the
films. The wall thickness and energy are determined mainly
by a balance of in-plane uniaxial anisotropy K and stray-
field forces; the exchange 4 plays a secondary role under
the usual experimental conditions. (The same conclusion
was drawn from our earlier sketchy argument.’®) In any
case, however, as we show here, 4 and K are the predomi-
nant forces determining the wall shape in a narrow region
about the center of the wall.

The term “perpendicular anisotropy™ refers to a phe-
nomenological dependence of internal energy on the
component of M perpendicular to the film plane.'” Experi-
ments of Fujiwara et al.'® have shown that, depending on
conditions of preparation, the coefficient for this effect
may be quite large in Ni-Fe alloy films. Our calculations
here show that the experimental values are large enough
for perpendicular anisotropy to have a serious influence
on wall shape and energy.

The contents of the paper are organized as follows. In
Section 2 we formulate the variational problem in terms of
two-dimensional H and M distributions, and then express
H approximately in terms of M, reducing the problem to a
distribution of M in two dimensions. In Section 3 we re-
duce the two dimensions to one, expressing all the film-to-
film coupling by means of an effective anisotropic exchange
energy term proportional to a single coupling coefficient
. In Section 4 we calculate an exact solution of the Euler
equation for the reduced problem, thus giving formulas
for the shape and energy of the wall. In Section 5, we dis-
cuss the following points: wall shape, its relationship to
previous calculations, validity of our approximations, com-
parison with experiment, effects of perpendicular aniso-
tropy, quasi-walls, extensions to three or more magnetic
films, and the incorporation of exchange-like coupling be-
tween films.

2. Elimination of H

In this section we formulate the two-dimensional micro-
magnetic field problem for a double wall in a pair of
identical magnetic films separated by a non-magnetic
layer. The problem is first stated in terms of the field
variables H and M in two dimensions. By making reason-
able approximations we will eliminate H, thus reducing
the problem to a determination of M in two dimensions.
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Figure 1 Coordinate system for a double film. The sche-
matic magnetic configuration is for a double true-wall of
the first kind. Arrows within magnetic layers of thickness
D indicate direction of magnetization (in perspective). Ar-
rows in non-magnetic gap indicate magnetic field.

Figure 1 shows a section of two plane-parallel magnetic
films with spontaneous magnetization [M| = M,, each
with thickness D, and separated by a non-magnetic layer
of thickness b. A boundary region centered about the y-z
plane is assumed to separate semi-infinite domains mag-
netized in the 4=z directions as indicated in the figure. The
x-z plane is assumed to lie on the lower surface of the
lower film.

The energy density £ of such a system may be written

£ = (H*/87) + (4/M3)
X (VM) + kM2 + k. M, (1)

The first term in Eg. (1) is the energy density due to the
magnetic field H which satisfies the equations

V X H =0, (2)
and
V:.(H + 47M) = 0. (3)

In addition, the normal component of H 4+ 4xM is con-
finuous at all surfaces of discontinuity and, since we assume
zero applied field, H — 0 as [x] — = or |y| = ». The
second term in Eq. (1) is the exchange energy in the con-
tinuum limit, with 4 the conventional exchange constant.
The third term represents an anisotropy which is equivalent
to the usual in-plane uniaxial anisotropy as long as M,=0.
Since we assume the z-axis to be the easy direction the
coefficient k is positive and is related to the conventional
K by the equation

k= K/M;. 4

The first three terms of Eq. (1) have all been considered in
previous theories of walls in multiple films.*"*"

Because it has an important effect on the wall structure,
we include here, in addition, the perpendicular anisotropy
term appearing last in Eq. (1). Its existence was first pro-




posed in order to account for “stripe domains™ in single
films of permalloy.'” Perpendicular anisotropy was later
measured directly by Fujiwara et al. in a torque balance.'®
Our coefficient k, is related to K; of Fujiwara et al. by

K, = —k,M; — 2z M. (5)

We should note here that the mathematical expression of
Fujiwara et al. for perpendicular anisotropy includes the
shape anisotropy due to the plane geometry. In our case
shape anisotropy is effectively included in (H*/8x) and
not in k, M-.

Our notation might be objected to on the grounds that
the in-plane uniaxial anisotropy is properly k(M? -+ M)
so that k, as defined includes in-plane as well as out-of-
plane anisotropy. However, in practice the ambiguity is
of little consequence because typically |k, | >> |k|.'® Since
the definitions here are more convenient for our purposes
we will adhere to them.

Formally speaking, the problem is to minimize the
integral of £ over all volume under the constraints of
Egs. (2) and (3) and

M-M = M2, for y within magnetic film;
= 0, for y not within magnetic film. 6)

We will minimize the energy subject to the six assumptions
listed below. The resulting wall structure will turn out to
be internally consistent with respect to these assumptions
{except for Assumption 4, below, which we do not test)
as long as the film parameters obey certain bounds derived
in Section 5.

Assumption 1. The solution M(x, y, z) has the highest
symmetry consistent with that of the boundary conditions
and qualitative energy considerations.

The symmetry about the planes x = Oandy = D+ b/2
is apparent in Fig. 1. To be explicit, M, is even, and M,
and M, are odd with respect to reflection in the y-z plane.
Also, M, is odd, and M, and M, are even with respect
to reflection in the plane y = D 4 b/2. In addition all
field quantities are independent of z. One can see from
the figure that the assumed symmetry for M, and M,
tends to facilitate flux closure.

Assumption 1 precludes structures (such as cross-tie
walls in single films)'® in which M varies in the z-dimension
as well. The possibility of such solutions with symmetry
lower than the symmetry of the boundary conditions
lurks because of the “non-linear” constraint of (6) but will
be neglected in our work. The assumed symmetry allows
us to confine explicit calculations to the region x > 0,
y < D + b/2, from which the remaining regions are
determined by reflection in the symmetry planes.

Assumption 2. M? is much less than M.
This condition is suggested by the fact that the shape
anisotropy of a magnetic film tends to suppress the normal

component of magnetization. In earlier work on multiple
films it was assumed to vanish altogether, as in a single-
film Néel wall.'® However, we find a decided decrease in
energy by allowing M, to be finite," By Assumption 2,
the constraint of (6) becomes

M? + M? = M;, for y within magnetic film;
M-M = 0, for y not within magnetic film, @)

and M, is an independent variable within the magnetic
film. We may define the in-plane angle ¢ by the equations

M, = M, cos ¢, M, = M,sin ¢. (8)

The angle ¢ serves as an independent variable in place of
M, and M,.

Assumption 3. All field quantities vary slowly with x on a
scale measured by D + &.

Assumption 4. The angle ¢ depends on x but not on y
within a given film.

This assumption is suggested by the fact that the bound-
ary conditions are (partly according to Assumption 1)

¢ =0atx =0,and¢p = *r/2atx = F o, 9)

respectively, for all y within the lower film of Fig. 1. Per-
mitting ¢ to vary with y would contribute to exchange
energy. Given the fact of (9) that ¢ does not depend on y
at the boundaries, and given the thinness of the films
according to Assumption 3, it is difficult to see what
energy terms might be decreased in compensation for the
increase in exchange if ¢ were allowed to vary with y.
Nonetheless, since we do not actually calculate the condi-
tions under which Assumption 4 is satisfied we regard it
as the unproved premise on whose validity the correctness
of the calculation hinges.

However, we must not attempt to employ the same
argument to neglect the y-dependence of M,. The relevance
of the function dM,/dy to the magnetic field energy is
apparent from Eq. (3). In our previous simple calculation,”
we showed that the pole density contributed by dM,/dy
may be employed to effectively displace the pole density
arising from dM, /dx within the magnetic films to the inner
surfaces. The poles were thus placed as close as possible
to their partners of opposite sign across the gap so as to
minimize magnetic field energy. In the present paper we
calculate M, (x, y) in greater detail.

Assumption 5. The quantity (H>/8%) external to the film
sandwich is negligible, both with respect to energy and
continuity of H, 4 4w M, at the boundaries y = 0, 5+ 2D.

This assumption is suggested by Assumption 3 together
with the resemblance of the problem to that of a parallel-
plate capacitor. The analogy also suggests that the internal
component H, for points within the magnetic films and
the gap is negligible. This is easily proved as follows. The
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magnetic potential y satisfies the equation
H=—-Vy. (10)

We may take y = 0 on symmetry planes y = b/2+ D and
x = 0 by Assumption 1. Then ¥ may be evaluated by
means of the line integral

¥

Ylx, ) = — dy'H,(x, y') (11)
b/2+D

so that |¢| is of the order |H,| (D + b) within the sand-
wich. It follows that |H,| = |8¢/dx| is of the order
|H,|(D + b)/a where a is the width of the wall. By
Assumption 3, (D + b)/a is small and H> may be neglected
in comparison with H.

By extension of this reasoning |0H,/dx| < |0H,/dy|.
Therefore, by Assumption 4, Eq. (3) reduces to

Hﬂ.ll('x? y) + 47TM1!.!I<x’ y)

+ 4rM, .(x) =0 (0 <y < D), (12)

where we use the notation H, , = dH,/dy, etc. and where
we have defined M, (x) = M, (x, y)for 0 < y < D.

In order to find H with sufficient accuracy to calculate
energy for a given distribution of M we need only to inte-
grate Eq. (12). We have

H,(x, y) + 4v M ,(x, »)

+ 4y M, .(x) = fx),

where f(x) is a function to be determined. Both H, and M,
vanish for y < 0 (Assumption 5). Since the normal com-
ponent of H 4 47M must be continuous at any boundary,
H, - 4rM, must vanish as y approaches zero from the
positive side. This condition substituted in Eq. (13) shows
that

f(x) = 0. (14)

In particular we find that on the upper surface of the lower
magnetic film

0O<y<D), (13

H,(x, D) + 4rM,(x, D) = —4rDM, (x), (15)
so that the field in the gap is simply
Hx,y) = —4xDM, .(x), (D <y < D+ b). (16)

Assumption 6. (A/MYM? _ in Eq. (1) can be neglected
when calculating the volume integral of £.

Equation (1) for the energy density may now be reduced
to a simpler form. Within the lower film it becomes,
according to our assumptions and Eqs. (13) and (14),
£ = 2n[M,(x, y) + y M. .(x)]’

+ (A4/M)[M: .(x) + M: .(x) + M (x, »)]

+ kMI(x) + k. My(x,y) (0 <y < D). (17)
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Within the gap, Eq. (1) becomes, according to Eq. (16),

& =2rD’M;.(x) (D<y< D+ b). (18)

In these equations H has been effectively eliminated as a
field variable. The remaining independent variables are
M, (x, y) and ¢(x), the latter by virtue of Eq. (8).

3. Reduction to one dimension

Here we proceed to reduce the two-dimensional energy
density given by Eqgs. (17), (18), and (8) to one dimension
by integrating over y. The resulting problem will resemble
the elementary Bloch-wall problem.

We may write the Euler equation for M,

ax_i<a£>_i<a£>_
oM, 0x \oM, . dy \oM, ) 0. (19)

After substitution of Eq. (17), this becomes

(24/Mo)M, ,,(x, ) — (47 + 2k )M,(x, )

= dmyM..(x) (0<y< D). (20

For the present, we consider x to be a parameter and
M _(x) to be a given function. Then Eq. (20) is an ordinary
linear differential equation for M, with the independent
variable y. The general solution is

(4r + 2k )M, = A + T(x)e™* — dxyM, ,(x),
(21)

where the functions A(x) and I'(x) are to be determined,

and where

N o= A{(2r + koMl (22)

A boundary condition following from the variational
principle is that the normal gradient of M vanishes at a
magnetic-nonmagnetic interface if surface anisotropy is
neglected. In the present instance this condition becomes

M, (x,0) = M, (x, D) =0, (23)
Application of this condition to Eq. (21) determines the
functions A and T so that finally
@r + k)M, = 2rM. . [—y + N1 + )7

X[ =™ (0<y< D). (24

We note in passing the magnetic field within the magnetic
layers, obtained by substituting this equation into Eq. (13):

__ _(D=wI/A
1+;m ]}- (25)

The field within the gap has already been given by Eq. (16).

The dependence of M, on y given by Eq. (24) is plotted
in Fig. 2a. If D > )\, this function is linear within the
film except at points within boundary layers of thickness
of the order \ adjoining all surfaces.
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Figure 2 Schematic plots of (a) M, and (b) H, versus ¥
for constant x and vanishing perpendicular anisotropy. The
meaning of the shielding length A is indicated in (b) as the
depth to which H, penetrates the magnetic film.

In the special case k, = 0, one finds that the pole den-
sity —V +M vanishes in the linear region and is non-
vanishing within the boundary layers. On the outer mag-
netic surfaces at y = 0 and y = b+ 2D, there are surface
distributions of poles, each of which is equal and opposite
to the integrated volume pole distribution within the
adjoining boundary layer. Thus the field distribution due
to the poles on outer boundary layers is completely in-
ternal to the respective layers, as shown in Fig. 2b sketched
from Egs. (16) and (25).

The pole distributions residing on the inner magnetic
surfaces at y = D and y = b -+ D have the same signs as
the respective adjoining boundary-layer distributions.
These provide sources for the field H within the gap as well
as the boundary layers themselves. The result is that in the
special case k, = 0 the magnetic energy density (H?/8x)
resides within the gap and boundary layers, and contribu-
tions from the bulk of the magnetic material are negligible
for sufficiently great thickness.

The quantity X is seen to represent a shielding depth
within which the normal component of H is permitted to
penetrate by virtue of exchange. A volume distribution of

poles on a scale greater than A cannot exist within the
magnetic film because of the shielding effect due to the
infinite y-component of suscepfibility implied by k, = 0.
For typical permalloy parameters (4 = 107° erg/cm and
M, = 800 emu) we find that \ is about 40 A. We must
remark that this concept has a limited significance because
if k; does not vanish some field penetrates beyond the
boundary layer, as is evident from Eq. (25).

We resume consideration of a general value of k. In
order to reduce the problem to one dimension we write
the energy density g averaged over the thickness of the
magnetic layers:

g(x) = D*‘fo - £(x, ¥) dy. (26)

The integrand of this equation is evaluated within the
region 0 < y < D by substitution of Egs. (8) and (24) into
Eq. (17). Within the region D < y < D+ }b the integrand
is given by Eq. (18). The integral reduces to a combination
of elementary exponential integrals. Upon carrying
through the integration and simplifying we find the result:

g = K cos’¢ + A(dp/dx)’ + u(d cos ¢/dx)’
K cos’ ¢ + (dp/dx)’(A + psin’ ), (27)

where the coupling coefficient u is given by

i

w = xbDM, + [2n/(2r + k)]°
X A[1 — (2\/ D) tanh (D/2)\)]
+ 2k, DIM5/[3(2n + ko), (28)

in which X is the skin depth defined by Eq. (22). Thus we
see that the energy density contains the usual anisotropy
and exchange terms appearing in the Bloch wall problem
for bulk material, plus an additional coupling term
u(d cos ¢/ dx)® which takes into account all stray-field and
other effects arising from the double-film geometry.

Let us recapitulate the significance of the coefficient w.
The first term in Eq. (28) is due to the stray-field energy in
the gap. The second and third may be considered to arise
predominantly from exchange and perpendicular aniso-
tropy, respectively, contributed by tilting M out of the
film plane. However both terms involve the effect of
demagnetization and the second is influenced by per-
pendicular anisotropy, too. The fanh expression appearing
within the second term brings into account the energy
improvement which comes about when H is permitted to
penetrate into the skin of thickness .

We note that unless &, is sufficiently large and negative,
w is positive. The coupling term in the energy represents an
effective anisotropic exchange energy contributed by M,
but not by M,. Hence, we see that the qualitative effecs of
the coupling energy must be to reinforce the exchange
effect (if » > 0) and thus to increase wall thickness and
energy beyond the bulk values of these quantities.
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4. Solution of the reduced problem

In the previous sections we have expressed the average
energy density g, given in Eq. (27), in terms of a single
space variable x. The energy per unit wall area is

w= [ 5@ ¢ ax, (29)

where ¢’ = d¢/dx. This expression must be minimized
with respect to the wall shape ¢(x) to obtain the stable
wall configuration. A first integral of the Euler equation
obtained by variation of W may be derived by following
the same procedure used in deriving the law of conserva-
tion of energy from Lagrange’s equation’ because, accord-
ing to Eq. (27), g does not depend explicitly on x. The
result is

og

—5 = 0.

9 (30)
This equation may be used to express ¢’ in terms of ¢.
Substituting Eq. (27) into Eq. (30) and solving, we find
¢> = K cos’ ¢/(A + psin® ¢). (31)
The wall energy v, may be calculated without solving for
@(x) since

g—¢

®/2
Yo = Wiin = f 2o’ dp. (32)

%/2

Substituting Eqgs. (27) and (31) into Eq. (32) we find

N /2
v, = ZK’f (4 + psin® ¢)! cos ¢ do

/2
1 ! 1
= 4K’f (A + pu®)? du, (33)
)
where u = sin ¢. In integral tables one finds the result:
Y, = 2K} u + A} + 24(K/u)

X In [(u/ 4} + (L + /. (39)

To calculate the wall shape, we write, from Eq. (31),

Kidx = dp(A + usin® ¢)?/cos 6. (35)
Making the change of variable u = sin ¢, this becomes
Kiax = du(A + wdY (1 — ud), (36)

in which the integral of the right hand side is given directly
by tables. The result is

mf+Aﬁ+m+Ah}

b1 3
Kx =3+ 4'In {(nu2 + A — (u+ At

—utn {A'%[iﬁu + (ui® + A)*]}, u = sin¢, (37)

+ See, for example, H. Goldstein, Classical Mechanics, Addison-
Wesley, 1953, Section 2-6.
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Figure 3 Wall shapes in a double film. The angle ¢ be-
tween M and the z axis is plotted as a function of the
dimensionless position (K/A)Y?x, for various values of
the parameter ratio u/A. The broken curves represent ex-
perimental data taken from Ref. 21.

under the condition u + A4 > 0, as may be verified by
differentiation.

5. Discussion

o Wall shape

The main results of this paper are embodied in Egs. (8),
(24), and (37) for the shape of the wall and in Eq. (34) for
the energy of the wall, with the necessary definitions of
X and p being given in Egs. (22) and (28). In Fig. 3 we plot
the angle ¢ as a function of the reduced coordinate K*x/ At
for several values of the reduced coupling coefficient
u/A. For u/A = 0 the shape reduces to that of a Bloch
wall in bulk, given by

sin ¢ = tanh [(K/ 4)}x], (38)

except, of course, that the wall is Néel-like rather than
Bloch-like with respect to the plane containing M. For
larger values of u/A, the shape follows closely the bulk
solution for small x but “breaks away” at larger x to give a
greater total wall width. The bulk-like behavior for small x
follows from the fact that in this region (called the ‘’kernel’’)
M, is nearly equal to M, so that first-order rotation of M
changes M, only in second order. Since the surface pole
density (proportional to M, .) is small, the demagnetizing
energy is likewise, and so the behavior reduces to bulk-like.

The case u >> A4 is often of experimental interest. In
this case wide “flanks” become distinguished from the
narrow bulk-like kernel. The flank regions satisfy the
inequality

psin’ ¢ > 4, (39)
in which case Eq. (37) reduces to

cos ¢ = exp [—(K/u)ix]. (40)




On the other hand, the kernel region satisfies the inequality

psin® ¢ K 4, (41)

leading to Eq. (38). The width of the flank is of the order
(u/ K)! whereas that of the kernel is of the order
(A4/w}(4/K)L. The ratio of flank-to-kernel is then u/A.
Also the energy in Eq. (34) reduces, when u>> A4, to

s = 2(Ku)}. (42)

o Relationship to previous calculations

It was the limit x >> A4 to which our previous results were
confined.’® In that case, if &, is neglected, Eq. (28) reduces
to

u = wbDM;, 43)

which, when substituted in Egs. (40) and (42), recovers our
previous results.”> Middelhoek has given a simple estimate
of 7, which is a factor /2 larger than that given by
Eqgs. (42) and (43)."

Our still earlier joint work® neglected M,. Within the
limitations of the x-dependence assumed therein the results
were for this reason correct only in the limit D/b <« 1.
Calculations by Feldtkeller’ and Friedlaender and Silva®
of double-wall energy also neglect M, and assume arbi-
trary wall shapes. A summary of all previous results and
their genesis is given by Middelhoek.™

In retrospect we can see that the trial-function method
based on a one-parameter trial function cannot represent
the double-film wall generally, because here we find two
kinds of region, kernel and flanks, which require two
parameters to characterize. However, the results of all of
References 6-8 mentioned above are approximately cor-
rect in the limit 562> D, 4 < y, k; = 0. In this limit they
do not have the correct detailed wall shape but they give,
within a factor of the order of unity, the correct energy
and wall width as represented by Egs. (40), (42), and (43)
(which, however, are not limited to the case 5>> D). Each
of those references contains a factor (b 4+ %D)’ in the
energy which is more properly b*, according to our present
results.

o Validity of approximations

In Section 2 a series of assumptions was made with partial
justification. In the present section we test the calculated
wall structure for consistency with these assumptions.
We will argue that the condition of large wall thickness,
namely,

(w/ K} + (4/K} > b+ D, (44)

is sufficient to guarantee internal consistency and we will
establish the range of film parameters that satisfy it.

Assumption 1. The assumed symmetry is seen to be satisfied
by the M generated from our solution given in the half-
plane y < D + b/2, by reflecting it about this boundary.
All field variables have the required continuity properties
except in the limit 4 — 0 when discontinuities appear on
the plane x = 0, but these we will find to be energetically
negligible in connection with other assumptions to be
discussed below.

Assumption 2. An upper bound on |M,| is obtained from
the calculated structure by noting that, according to Eq.
24,

|@r + k)M,| < 27 |M,.| D = 2rMyD |¢ sin ¢|.

From Eq. (31) the calculated structure also satisfies the
inequalities

¢’ sin ¢| < (K/w)? and |¢’ sin ¢| < (K/ A)%,
for u > 0. Combining these two inequalities we have
[2r + k)M, /2rM,| < D(K/u)?, and

|(2r + k)M, /2rM,| < D(K/ A)}.

Therefore, if k, is not close to — 27, u > 0, and condition
(44) is satisfied, then the calculated structure is consistent
with Assumption 2.

Nonetheless, Assumption 2 merits further discussion
because we shall see that the calculated structure in the
limit 4 — 0 has discontinuities on the plane x = 0, if we
require the exact constraint (6) to be satisfied. To this end
we write the equations

M, = (M} — M2} cos ¢, (45)
and
M, = (M; — M>)!sin ¢, (46)

which satisfy the exact constraint (7), in place of Eq. (8).
Now we assume A = 0 and k, = 0 for simplicity and
substitute our calculated structure ¢(x), M (x, »), as given
by Egs. (24) and (37), into Egs. (45) and (46) to find the
limiting values on the plane x = 0 given in Table 1. We
see that both M, and M, are discontinuous at x = 0 in
the limit 4 — 0.

Table 1. Values of M in the limit 4 — 0, displaying dis-
continuities at the plane x — 0, for ¥ in the range 0 < y <
D, shown for the special case A = 0, k, = 0.

x =0 x =0 x =0
M, |(M; — M M, (M; — M)}
M, |2 Mo(K/u)y 0 —2r My(K/p)y
M, 0 0 0
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In order to show that these discontinuities are ener-
getically negligible we estimate the corresponding energy
corrections before taking the limit 4 — 0. First, we con-
sider exchange energy. Since the discontinuity in M, is
second order in that of M, the dominant exchange cor-
rection comes from the term AM? ,/M;. This term was
neglected altogether in Assumption 6, and will be evaluated
below in connection with the review of that assumption.
The singular corrections to anisotropy are easily seen to
vanish because M, and M, are bounded; only their deriva-
tives are not.

We are then left with the need to consider a correction
to stray-field energy. Let M, be the correction to M. Then,
expanding the radical in Eq. (45), we have

V-M, = —(M,M, /M) cos¢ — (M>/2Ms)¢’ sin ¢.
47

The contribution of the second term is seen to be negligible
by noting that it gives only a small correction to the cal-
culation of H, from Eq. (12). Neglecting \/D, we have
from Eq. (24),

M, = yM' sin ¢, (48)
so that Eq. (47) reduces to
VM, = y’Myp' (@'’ sing + ¢'* cos ¢)

X sin ¢ cos ¢. (49)

We must now digress a moment to recall Thompson’s
theorem which states that the integral (87) " [ f [ H® dx dy dz
is an upper bound on the stray-field energy even if Eq. (2)
is not satisfied, as long as Eq. (3) is satisfied.*° To obtain an
upper bound on the correction in energy, we take the
correction to H to have only an x-component, H,; this
will not mix with the zero-order approximation of Eq. (25)
which has only a y-component.

By following this procedure and substituting Eq. (31)
into Eq. (49) in the small-angle approximation, one finds for
(8xD)™" [*, dx [2 dy H? dx dy an upper bound expressible
in the form

e o L,

X f dv(L + V)77, V' = e’/ A,
0

which is seen to be small compared to Eq. (42), if we note

Eq. (43), under usual circumstances, and is seen to vanish

with 4.

Assumption 3. This assumption is found to be valid as long
as b+ D is small compared to (4/K)? (see, for example,
Eq. (31)). However, if only the weaker condition (44) is
satisfied, rapid variations near the plane x = 0 ensue when
A — 0. The consequences are assessed in connection with
Assumptions 2, 5, and 6.
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Assumption 4. We have no estimate of the error in energy
introduced by this assumption. It could be investigated
only with a great deal of additional effort because the
variation of small corrections to our calculated ¢(x) and
M (x, y) gives rise to partial differential equations in two
dimensions with variable coefficients.

Assumption 5. A lengthy analysis suggests that the correc-
tion to the stray-field energy calculated in the “capacitor”
approximation of Section 2 is smaller by a factor on the
order b{(K/4)} + (K/w!™. Since this conclusion is
plausible, the argument will not be reproduced. Also,
we may again invoke Thompson’s theorem®® to argue
that our result constitutes an exact upper bound of the
stray-field energy for the given M distribution because H
satisfies Eq. (3) and continuity requirements exactly. Thus,
since a lower bound on the density (H®/8x) is zero, we
know that the discontinuity in M, . at x = 0 which ap-
pears in the limit 4— 0 does not contribute a non-physical
infinity to the energy. The only effect of the discontinuity
can be to reduce the stray-field energy in a region near
x = 0, and it is difficult to see how this region could extend
much beyond |x| = b to give a correction greater than

BI(K/A) + (K/wh .

Assumption 6. To test this assumption we calculate the
dominant contribution

-3 D
0 = 2}1D“f0 dx/; dyM; (50)

to the energy per unit area mentioned above in the dis-
cussion of Assumption 2. Using again Egs. (48) and (31)
in the small ¢ approximation as in discussing Assump-
tion 2, we find that

_ 2KD?

0 3

(K [ av(t+ vy, (s1)
0

which is a negligible correction to Eq. (42) under condition

44).

Having shown that our series of assumptions is in-
ternally consistent under the condition (44), we now con-
sider the conditions on film parameters implied by
condition (44). To keep things simple we consider only
the case k, = 0.

According to Egs. (28) and (22), we have the condition
u>> A as long as

(D) 3> \ ~40 A(permalloy). (52)

Since condition (52) is satisfied in most permalloy experi-
ments we may use Eq. (43) to reduce condition (44) to

MybD/K} > b 4+ D. (53)
This can be re-expressed in the form

K b M

A Ky K ~10 (permalloy). (54)




Thus we see that our approximation from 13, which
finally neglects exchange altogether and whose results
are represented be Eqgs. (40), (42), and (43), is adequate
over a broad range of circumstances. The additional
details of the present paper are relevant to investigation
of the wall-shape in the kernel region and also in situations
in which &, and/or 4/u are appreciable.

o Comparison with experiment

The shape of a double-film wall in permalloy with an
SiO intermediate layer has been measured by Feldtkeller
et al” by means of an electron-microscope technique. In
comparing the results with theory, it is convenient to begin
by considering the slope of the wall at the center, the reason
being that this quantity does not involve the coupling p.
We set ¢ = 0 in Eq. (31) to find

¢ = K/4 (¢ = 0). (55)

The experimental slope taken from Abb. 7 of Feldtkeller
et al** appears to be about

@ =0), (56)

and the anisotropy is reported to be K = 1.2 X 10% erg/cc.
Substituting these values into Eq. (55) we find that

¢ = 43X 107 radian/ A,

A= 065X 107" erg/cm. (57)

This value of exchange is consistent with values of
0.55 X 107 and 1.0 X 107° erg/cm determined by the
resonance method in films of permalloy composition
(80 Ni, 20 Fe and 81 Ni, 19 Fe)."’

Using these values of 4 and K we plot, in Fig. 3, the
experimental data of Feldtkeller et al. (dashed curves).
We see that, just as Feldtkeller et al. remarked, the wall-
shape for a double film has nearly the bulk Bloch form
(u/4 = 0, in Fig. 3), and shows experimentally undetect-
able evidence of distortion by stray fields. For the sake of
comparison, an experimental Néel wall shape for a single
film of the same thickness is also shown in Fig. 3.

Other experimental values reported by Feldtkeller
et al. are D = 350 A, and & = 100 to 200 A. Assuming
M, = 800 gauss and neglecting k,, we find from Eqgs.
(28) and (29) that u/A lies between 12 and 22, depending
on the value of b. But we see that the theoretical curve
/A4 = 10 in Fig. 3 is already somewhat different in the
flank region from the experimental curve. However, Dr.
Feldikeller has stated privately that the experimental error
is too great to distinguish the case u/4 = 0 from p/A4=10.
Thus, the experiment is consistent with theory but its
accuracy is insufficient to confirm the predicted effect of
the coupling.

It may be useful to indicate in the context of these ex-
perimental values the potential importance of perpen-
dicular anisotropy. In order to reduce p to the vicinity
of zero, a value in the neighborhood of k, =106/D=—3

A i
i AN . )
DOUBLE i N w————— Ve !
TRUE WALL ! \ _— / i
1 N e )
| \J
z
\——x
' , H
| Ve S :
TRUE WALL H Ve -—————— % ]
PLUS i / P 1
QUASI-WALL ! » _— S !
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Figure 4 Schematic illustration of distinction between a
true wall and a quasi-wall. The solid arrows represent the
projection on the film plane of the magnetic configuration in
a true wall within one magnetic film. The dashed arrows
indicate the configuration, in a second film, for a true wall
(above) and a quasi-wall (below).

to —6 would be required. Experiments of Fujiwara et al.*®
reveal values of k, ranging between 0 and —4 for Ni 80,
Fe 20, depending on substrate temperature and pressure
in the vacuum chamber during deposition, Since some of
these values fall within the required range, we see that
perpendicular anisotropy may play a crucial role in deter-
mining the wall structure. In fact, if —&, is great enough,
u + A becomes negative and the state of uniform magneti-
zation (¢ = ==7/2) is unstable (See Eq. (27)). One expects
in this case spatially periodic distributions of magnetization
analogous to stripe-domains in single films."” This prob-
lem, however, is beyond the scope of the present paper.

It appears that further experiments are needed, along
with independent determinations of k., to adequately
test the theoretical wall shape.

o Quasi-walls

Most of Middelhoek’s observations®°'™ pertain not to
double walls in the strict sense of Fig. 1 but to a configura-
tion consisting of a true wall in one film coupled to a
“quasi-wall” in the second film. In the quasi-walil the
magnetization rotates from 0 to 90 ° (or nearly 90 °) on one
side of the center and then back to 0°, rather than to
180°, on the other side. This distinction is illusirated
schematically in Fig. 4. The stability of a quasi-wall oppo-
site a true Néel wall arises from the fact that it closes the
pattern of flux coursing through the Néel wall. Under
appropriate circumstances, the attendant decrease in
magnetostatic energy more than compensates for the
anisotropy and exchange in the quasi-wall.

We can argue that in the limit 4/ — 0 the energy of
a double true-wall is equal to that of a true-wall-quasi-wall
configuration. To show this, we construct a trial function
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for the latter configuration from our solution to the former
one by reversing the sense of rotation of M in one-half
of the wall in one of the two magnetic films. That is to
say, we let

¢ — —¢ for ¢ > 90°. (58)

This is equivalent to replacing M, — — M, for x > 0.
This change, one finds, alters none of the energy terms.
However, the symmetry of Assumption 1 is now broken
with respect to exchange considerations because the
discontinuity in ¢’ at ¢ = 0 within the quasi-wall may be
smoothed over to reduce 4 | ¢’ dx. But we have assumed
already that exchange energy is negligible so this potential-
ity for energy gain must also be negligible because 4 [ ¢ dx
is positive definite.

With respect to the remaining magnetostatic and aniso-
tropy terms, the transformation (58) presents no new
opportunity for reducing the energy since neither of these
terms depends on M,. Since M, and M, are independent
field variables and M, is absent altogether, M must be
in equilibrium again, given the boundary condition |M,| =
M, at x = 0. Of course, this condition does not hold within
the quasi-wall in an exact description. Nonetheless our
limit of +>> b 4+ D requires |M,] to be the same in both
films in order to optimize flux closure, thereby guaranteeing
this condition within both films. Thus our simplified re-
sults for the limit 4/ — 0, represented by the Egs. (40)
and (42), with p given by Eq. (28) (and 4 = 0), apply to a
real-wall-quasi-wall configuration under the same condi-
tions of validity described above. Similar ideas form the
basis of Middelhoek’s discussion of quasi-wall effects in
film pairs with unequal as well as equal film thickness.'*

We may add that all of our calculated results (for finite
A as well as vanishing A4) and preceding considerations
hold equally well for a domain wall in a film of thickness
D separated by a distance 4/2 from an infinitely thick
slab composed of material with infinite magnetic suscepti-
bility. This fact is seen by considering the lower surface
of the slab to lie on the plane y = D 4 b/2 in Fig. 1. Our
field distribution calculated for y < D + 5/2 (as well as
the exact distribution) satisfies the required condition that
the tangential components of H vanish at the surface of a
perfect magnet. All else follows as before.

& Extensions to three or more magnetic films

We can argue that our solution applies to a certain class
of wall problems involving three or more magnetic films.
Figure S shows a multiple-layer structure constructed by
piling any number of double films one upon another.
This construction produces a structure in which the outer-
most magnetic films have thickness D and the interior
magnetic films have thickness 2D. All of the non-magnetic
layers have the same thickness 4. The complex wall con-
sists entirely of true walls, each of which shares its flux
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equally with its nearest neighbors. The x and y components
of H and M are indicated schematically in Figure 5.

From symmetry considerations it follows that the
quantities 0H,/dy, H,, dM,/dy, and M, must all vanish
at the planes indicated by dashed lines in Fig. 5, where
one double film touches another. But these conditions
are already satisfied within the approximations of our
general solution of the double-film problem. It follows
that the Eqgs. (8), (24), (34) and (37) for energy and wall-
shape apply to this problem as well. In fact the results
are even more accurate for this multiple-film problem be-
cause less external field energy is neglected. The energy
given by Ref. 8 for this problem is a factor of the order
a/(b + D) greater than ours because the flux is allowed
to close only at the edges of the walls rather than through-
out their thickness.

A stable wall structure involving quasi-walls may be
constructed from the multiple true-wall structure by re-
placing some of the true walls by quasi-walls. Our double-
wall conclusions for the limiting case 4/u — 0 apply
equally well to this case. One can easily convince himself,
however, that such a structure cannot be stable if two
quasi-walls are adjacent because the energy can be de-
creased monotonically by a continuous deformation,
independent of z, which eliminates them.

We might also say something about the case in which
only one of the several magnetic layers has a true domain
wall, the others having only the quasi-walls required by
flux closure. It is evident that only the nearest-neighbor
layers are needed to close the flux. Although the structure

Figure 5 Schematic representation of a wall configuration
in a multiple film generated by piling several double films
upon each other. Only x and y components of H and M
are indicated by the arrows. The sense of M. depends on
whether true walls or quasi-walls are involved.
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Figure 6 Schematic configuration of a hypothetical double
true-wall of a second kind, as distinguished from the first
kind shown in Fig. 1.

is now not given correctly by our general theory, the
limit A/ — 0 k, — 0 is still applicable.

& Exchange-like coupling

Experiments of Bruyere et al” have disclosed that a
double magnetic film utilizing a very thin metallic non-
magnetic intermediate layer shows evidence of an exchange-
like interaction between the two magnetic films. Within
the limits of our approximations, |M,| << M, and ¢ = ¢(x),
the additional energy £, may be written in the form

L = —C cos (¢ — ¢2), (59)

where ¢, = ¢ is the orientation of M in film 1 and ¢, is
the orientation of M in film 2. We make no assumption
about how the coefficient C depends on film thicknesses
or other parameters. However, we note in passing that
the experimental values of C are positive (“‘ferromagnetic’
coupling).

In the case of the true-wall structure of Fig. 1 with
domains in both films similarly magnetized, we have the
condition

¢1+¢2+7l'=0, (60)
and Eq. (59) becomes

£, = Ccos 2 = —C + 2CM2/ M;,. (61)

When this term is included in Eq. (1), we see that nothing
is changed in the theory except that K is replaced by
K+ 2C. (Feldtkeller drew the same conclusion with respect
to his theory®).

We can also hypothesize the true-wall structure of a
second kind, one represented by Fig. 6. Its existence has
not, to the author’s knowledge, been positively established
by experiment. Here we have

o = ¢ + (62)
and therefore
& =C, (63)

and the wall structure is not changed. However, if C > 0,
then the energy is at most a relative minimum because the
operation ¢, — —¢, will decrease the domain energy
density by an amount 2C.

Finally, a real-wall-quasi-wall structure cannot find
an equilibrium in the presence of exchange coupling
since it gains an energy of 2C per unit volume of magnetic
material swept out if the wall is displaced.
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