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Theory of Domain-Wall Structure in 
Multiple  Magnetic  Films 

Abstract: This paper  derives  analytically a two-dimensional  wall-structure  applying  to the case of two identical  magnetic films sep- 
arated by a non-magnetic  film. It applies also to a variety  of other  multilayer  problems.  The  calculation  is based on the usual micro- 
magnetic  principle  of  energy  minimization and all approximations  are  justified.  The  wall-structure  is  found to consist of two  "flank" 
regions,  whose  shape  is  governed by anisotropy  and  stray-field  coupling  between  films,  arranged  symmetrically  about a central "kernel" 
region  whose  shape is governed by anisotropy  and exchange. In the widely  applicable  limit of negligible  exchange the  theory  reduces 
to one given  earlier [J .  Appl. Phys. 37, 1268 (1966)l. Also  included  in  the  discussion  are  effects of quasi-walls and film-to-film  exchange 
interactions.  Existing  experimental data on wall-shape  confirm  the  shape of the kernel but are not of sufficient  precision to test the shape 
of the flanks.  Existing data for permalloy  suggest that perpendicular  anisotropy may  play a significant  role  in  reducing  multiple-film 
wall  energy and thickness. 

1. Introduction 

The term multiple magnetic film refers to configurations 
of two  or more ferromagnetic films separated by non- 
magnetic films that  are thick enough and uniform  enough 
for the exchange coupling between magnetic films to be 
weak or negligible, but  are thin  enough  for stray-field 
interaction between films to be appreciable. Early work 
on coercivity and  other domain-wall effects in  double 
films demonstrated that  appropriate circumstances could 
lead to appreciable domain-wall interaction between the 
two magnetic films."4 To explain the reduced coercivity 
of multiple films, Clow proposed that in a multiple film 
NCel walls lie one above the  other in  such a way that  the 
magnetization within each wall is antiparallel to the mag- 
netization within the neighboring walls.' The much re- 
duced wall energy serves to account for  the reduced 
coercivity of a multiple film as compared to  that of a 
single film. 
In later  work, calculations showed that  the stray-field 

interaction between walls in separate films  is strong enough 
to alter by orders of magnitude the  shape  and energy of 
these walls if the non-magnetic  intermediate layer is suffi- 
ciently thin.'-' In fact, that work showed that  the inter- 
action is capable of stabilizing a Nkel-like structure (mag- 
netization M parallel to film plane) in films whose thickness 
is in the Bloch-wall (M perpendicular to wall normal) 
range  for single films. Moreover,  Middelhoek showed 
that  the propensity for flux closure is so great that if there 
is a true wall in only one film it may induce in the second 
film a disturbance (called a quasi-wall) separating  two 
like-magnetized  domain^.^ These circumstances were 

found  to give  rise to domain  structures not existing in 
single film~,'5'~-" and  to a reduction of coercive field when 
the intermediate layer is Si0.2n5s9 Feldtkeller showed  how 
the  additional influence of a film-to-film exchange-like 
interaction,  present when the intermediate layer is a metal, 
gives rise to an increase in coercivity.' Patton  and  Hum- 
phrey measured mobilities of double walls." 

At this stage, theoretical models for double-film walls 
assumed that M is everywhere exactly parallel to the film 

The dependence of M on position was described 
by an assumed function of one  form  or  another containing 
a wall-thickness parameter which was determined  varia- 
tionally. A less restrictive but still simple calculation 
allowed a small  component of M to exist normal  to  the film 
plane, thus allowing a further reduction of stray-field 
energy.I3 The  dominant energy terms were still stray-field 
and  anisotropy; exchange was of secondary  importance. 
The shape of the wall was calculated rather  than assumed, 
and  the component of M perpendicular to  the wall plane 
was found  to vary exponentially with p0siti0n.l~ Reviews 
of double-film physical properties have been given  by 
Middelh~ek, '~ who includes very simple and essentially 
correct estimates of thickness and energy, and by Feldt- 
keller.I5 

The present paper presents a calculation of the wall 
shape in a double film which we  believe to  be satisfactory 
from  the micromagnetic point of view. Although the 
method of solution is improvised, rather  than a head-on 
solution of micromagnetic field equations," we offer 
arguments to show that  our approximation errors  are 
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really of higher order. An essential  element in the  eal- 
culation  is to allow M to vary  in  two  dimensions rather 
than one as in the usual wall  calculations. 

We show that in the absence of “perpendicular ani- 
sotropy’’  (see the paragraph below) the normal component 
of magnetic  field H penetrates into the film a distance x 
which  is  typically  very  small (about 40 a in permalloy). 
Since the other components of H are of higher order, it 
follows that the stray-field  energy  density (H2/8?r) resides 
predominantly  in the non-magnetic  layer between the 
films. The wall  thickness and energy are determined  mainly 
by a balance of in-plane  uniaxial anisotropy K and stray- 
field forces; the exchange A plays a secondary role under 
the usual experimental  conditions. (The same  conclusion 
was drawn from our earlier  sketchy  argument.la) In any 
case,  however, as we show  here, A and K are the predomi- 
nant forces  determining the wall shape in a narrow region 
about the center of the wall. 

The term “perpendicular anisotropy” refers to a phe- 
nomenological  dependence of internal energy on the 
component of M perpendicular to the film  plane.”  Experi- 
ments of Fujiwara et al.” have  shown that, depending on 
conditions of preparation, the coefficient for this effect 
may be quite large in Ni-Fe alloy films. Our calculations 
here  show that the experimental  values are large  enough 
for perpendicular anisotropy to have a serious  influence 
on wall shape and energy. 

The contents of the paper are organized as follows.  In 
Section 2 we formulate the variational problem  in  terms of 
two-dimensional H and M distributions, and then express 
H approximately in terms of M, reducing the problem to a 
distribution of M in two dimensions. In Section 3 we re- 
duce the two dimensions to one,  expressing all the film-to- 
film coupling by  means  of an effective anisotropic exchange 
energy term proportional to a single  coupling  coefficient 
p. In  Section 4 we calculate an exact solution of the Euler 
equation for the reduced  problem, thus giving formulas 
for the shape and energy of the wall. In  Section 5, we dis- 
cuss the following points: wall shape, its relationship to 
previous  calculations,  validity of our approximations, com- 
parison  with  experiment,  effects of perpendicular  aniso- 
tropy, quasi-walls,  extensions to three or more  magnetic 
films, and the incorporation of  exchange-like  coupling  be- 
tween  films. 

2. Elimination of H 

In  this  section we formulate the two-dimensional  micro- 
magnetic  field  problem for a double wall in a pair of 
identical  magnetic films separated by a non-magnetic 
layer. The problem  is  first stated in  terms of the field 
variables H and M in  two  dimensions. By making  reason- 
able approximations we  will eliminate H, thus reducing 
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Figure 1 Coordinate  system for a double  film.  The  sche- 
matic  magnetic  configuration  is for a double  true-wall of 
the  first kind. Arrows  within  magnetic  layers of thickness 
D indicate  direction of magnetization (in  perspective), Ar- 
rows in non-magnetic  gap  indicate  magnetic  field. 

Figure 1 shows a section of two  plane-parallel  magnetic 
films  with spontaneous magnetization IMi = M,, each 
with  thickness D, and separated by a non-magnetic  layer 
of thickness b. A boundary  region  centered about the y-z 
plane is assumed to separate semi-infinite  domains  mag- 
netized in the fz directions as indicated in the figure. The 
x-z plane  is  assumed to lie on the lower surface of the 
lower  film. 

The energy  density 6: of such a system  may  be  written 

d: = ( H 2 / 8 a )  f ( A /  Mi) 

X (VM)* f k @  f k l M : .  (1) 

The first  term  in Eq. (1) is the energy  density  due to the 
magnetic  field H which  satisfies the equations 

V X H = O ,  ( 2) 

and 

V.(H + 4aM) = 0. ( 3) 

In addition, the normal component of H f 4aM is con- 
tinuous at all surfaces of discontinuity and, since we assume 
zero  applied  field, H + 0 as 1x1 + 03 or [yI + 03. The 
second term in Q. (1) is the exchange  energy  in the con- 
tinuum limit,  with A the conventional  exchange constant. 
The third term represents an anisotropy which  is equivalent 
to the usual in-plane  uniaxial anisotropy as long as M,= 0. 
Since we assume the z-axis to be the easy  direction the 
coefficient k is  positive and is  related to the conventional 
K by the equation 

k = K / M i .  (4) 

The first three terms of Eq. (1) have all been considered in 
previous  theories  of walk in multiple 

Because it has an important effect on the wall structure, 
we include  here, in addition, the perpendicular anisotropy 
term  appearing  last  in Eq. (1). Its existence  was  first  pro- 



posed  in order to account for “stripe domains”  in  single 
films  of perma~oy.” Perpendicular anisotropy was later 
measured  directly by Fujiwara et al. in a torque balance.” 
Our coefficient kl is  related to KL of Fujiwara et al. by 

KL = - k l M i  - 2aME. ( 5 )  

We should note here that the mathematical  expression of 
Fujiwara et al. for perpendicular anisotropy includes the 
shape  anisotropy  due to the plane  geometry. In our case 
shape anisotropy is  effectively included  in (H2/87r) and 
not in k L e .  

Our notation might  be  objected to on the grounds that 
the in-plane  uniaxial anisotropy is  properly k(Mz + Mt)  
so that k ,  as defined  includes  in-plane as well as out-of- 
plane anisotropy. However,  in  practice the ambiguity  is 
of little consequence  because  typically Ikl I >> lkl.’’ Since 
the definitions  here are more  convenient for our purposes 
we will adhere to them. 

Formally  speaking, the problem is to minimize the 
integral of d: over all volume under the constraints of 
Eqs. (2) and (3) and 

M.M = M i ,  for y within  magnetic  film; 

= 0, for y not within  magnetic  film. (6)  

We  will minimize the energy  subject to the six assumptions 
listed  below. The resulting  wall structure will turn out to 
be internally  consistent  with  respect to these  assumptions 
(except for Assumption 4, below,  which  we do  not test) 
as long  as the film parameters obey certain bounds derived 
in  Section 5. 

Assumption I .  The solution M(x, y ,  z )  has the highest 
symmetry  consistent  with that of the boundary conditions 
and qualitative energy  considerations. 

The symmetry about the planes x = 0 and y = D + b/2 
is apparent in Fig. 1. To be  explicit, M, is  even, and M ,  
and M ,  are odd with  respect to reflection in the y-z plane. 
Also, M, is odd, and M ,  and M ,  are even  with  respect 
to reflection in the plane y = D + b/2. In addition all 
field quantities are independent of z .  One  can  see  from 
the figure that  the assumed  symmetry for M, and M, 
tends to facilitate flux closure. 

Assumption 1 precludes structures (such as cross-tie 
walls in single  films)lg in which M varies in the z-dimension 
as  well. The possibility of such solutions with  symmetry 
lower than the symmetry of the boundary conditions 
lurks because of the “non-linear” constraint of (6) but will 
be neglected  in our work. The assumed  symmetry  allows 
us to confine  explicit  calculations to  the region x 2 0, 
y 5 D + b/2, from which the remaining  regions are 
determined by reflection in the symmetry  planes. 

Assumption 2. MZ is much less than M i .  
This  condition  is  suggested by the fact that the shape 

anisotropy of a magnetic  film  tends to suppress the normal 

component of magnetization.  In  earlier work on multiple 
films it was  assumed to vanish altogether, as  in a single- 
film  NCel  wall.” However, we find a decided  decrease  in 
energy  by  allowing M ,  to be  finite.13 By Assumption 2, 
the constraint of (6) becomes 

M: + M: = Mi,  for y within  magnetic  film; 

M.M = 0, for y not within  magnetic  film, (7) 

and M ,  is an independent  variable  within the magnetic 
film.  We  may  define the in-plane  angle + by the equations 

M. = Mo cos4, M ,  = Mo sin+.  ( 8) 

The angle 4 serves as an  independent  variable in  place of 
M ,  and M,.  

Assumption 3. All  field  quantities  vary  slowly  with x on a 
scale  measured by D 4- b. 

Assumption 4. The angle + depends  on x but not on y 
within a given  film. 

This  assumption  is  suggested by the fact that the bound- 
ary conditions are (partly according to Assumption 1) 

4 = 0 at x = 0 ,  and + = fr/2 at x = =t m , (9) 

respectively, for all y within the lower  film of Fig. 1. Per- 
mitting 4 to vary  with y would contribute to exchange 
energy.  Given the fact of (9) that + does not depend on y 
at the boundaries, and given the thinness of the films 
according to Assumption 3, it is difficult to see  what 
energy  terms  might  be  decreased  in  compensation for the 
increase in exchange if 4 were  allowed to vary  with y .  
Nonetheless,  since we do not actually  calculate the condi- 
tions under which Assumption 4 is  satisfied we regard it 
as the unproved  premise on whose  validity the correctness 
of the calculation  hinges. 

However, we must not attempt to employ the same 
argument to neglect the y-dependence of M,. The relevance 
of the function aMv/ay  to the magnetic  field  energy  is 
apparent from Eq. (3). In our previous  simple calc~lation,~~ 
we showed that the pole  density contributed by aM,/dy 
may  be  employed to effectively  displace the pole  density 
arising  from dM,/dx within the magnetic  films to the inner 
surfaces. The poles  were thus placed as close as possible 
to their partners of opposite sign across the gap so as to 
minimize  magnetic  field  energy. In the  present  paper we 
calculate M,(x, y )  in  greater  detail. 

Assumption 5. The quantity (H2/8?r) external to the film 
sandwich is negligible, both with  respect to energy and 
continuity of H ,  + 4rM,  at the boundaries y = 0, b + 20. 

This  assumption  is  suggested by  Assumption 3 together 
with the resemblance of the problem to that of a parallel- 
plate capacitor. The analogy  also  suggests that the internal 
component H, for points  within  the  magnetic films and 
the gap is  negligible.  This  is  easily  proved as follows. The 379 
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magnetic potential J ,  satisfies the  equation 

H = -VJ,. (10) 

We may take J ,  = 0 on symmetry planes y = b/2 + D and 
x = 0 by Assumption 1. Then J ,  may be evaluated by 
means of the line integral 

$ ( x ,  Y )  = - / I ’  d y ’H, (x ,  .v’) ( 1 1 )  
b/?+D 

so that 1 1 1 . 1  is  of the  order IH,I (D + 6) within the  sand- 
wich. It follows that IH,I = lalC./axl is of the  order 
IH,I(D + b)/u where a is the width of the wall. By 
Assumption 3, (D + b)/u is small and H: may be neglected 
in  comparison  with H,’. 

By extension of this  reasoning [aH, /dx(  << laH,/ayI. 
Therefore, by Assumption 4, Eq. (3) reduces to 

H,, , (x ,  Y )  + 4 a M v . , ( x 3  Y )  

where we use the  notation H , , ,  = aH,/ay, etc. and where 
we have defined M,(x) E Mz(x, y )  for 0 5 y 5 D. 

In  order to find H with sufficient accuracy to calculate 
energy for a given distribution of M we need only to inte- 
grate  Eq. (12). We have 

where f(x) is a function to be determined. Both H ,  and Mu 
vanish for y < 0 (Assumption 5). Since the  normal com- 
ponent of H + 4?rM must be continuous at  any boundary, 
H ,  + 4aM,  must vanish as y approaches  zero from  the 
positive side. This condition  substituted in Eq. (13) shows 
that 

j ( x )  = 0 .  (14)  

In particular we find that  on  the upper surface of the lower 
magnetic film 

H , ( x ,  0) + 47rM,(x, D )  = - 4 a D M , , , ( x ) ,  (1 5 )  

so that  the field in the  gap is simply 

Assumption 6. (A/M,”)MZ,z in  Eq. (1) can be neglected 
when calculating the volume integral of C. 

Equation (1) for  the energy density may now be reduced 
to a simpler form. Within the lower film it becomes, 
according to  our assumptions and Eqs. (13) and (14), 

Within the gap,  Eq. (1) becomes, according to Eq. (16), 

C = 27rD2M~, , (x)  ( D  I y 5 D + b).  (1 8) 

In these equations H has been effectively eliminated  as a 
field variable. The remaining independent variables are 
M J x ,  y )  and c$(x), the  latter by virtue of Eq. (S). 

3. Reduction to  one  dimension 

Here we proceed to reduce the two-dimensional energy 
density given by Eqs. (17), (lS), and (8) to  one dimension 
by integrating over y. The resulting problem will resemble 
the elementary Bloch-wall problem. 

We may write the Euler  equation for M,, 

After substitution of Eq. (17), this becomes 

(2A,”3Mv, , , (x ,  Y )  - ( 4 ~  + 2 k d M u ( x ,  Y )  

= 4ayMz, , (x)  (0 5 y 5 0). (20) 

For  the present, we consider x to be a parameter and 
M,(x) to be a given function.  Then Eq. (20) is an ordinary 
linear differential equation  for M ,  with the independent 
variable y .  The general solution is 

(4T + 2k, )M,  = A(x)e”/A + I’(X)e-Y’A - 4ayM,,,(~),  

(21) 

where the functions h ( x )  and r ( x )  are  to be determined, 
and where 

x* = A[(27r + k L ) M ; ] - l .  (22) 

A boundary  condition following from  the variational 
principle is that  the  normal gradient of M vanishes at a 
magnetic-nonmagnetic interface if surface  anisotropy is 
neglected. In  the present instance  this  condition becomes 

M , . , ( x ,  0) = Mu,&, D )  = 0 .  (23)  

Application of this  condition to  Eq. (21) determines the 
functions A and r so that finally 

(2a k l ) M ,  = 2 a M z , , ( - - y  -f X(l + eD/’>-l 

x [ e v / ~  - e ( r j - v ) / ~  1 I (0 I Y I a .  (24)  

We note in passing the magnetic field within the magnetic 
layers, obtained by  substituting  this equation  into EQ. (13): 

The field within the gap  has  already been given by Eq. (16). 
The dependence of M ,  on y given by Eq. (24) is plotted 

in Fig. 2a. If D >> X, this  function is linear within the 
film except at points within boundary layers of thickness 
of the order X adjoining all surfaces. 
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Figure 2 Schematic  plots of (a) M ,  and (b) H ,  versus y 
for constant x and  vanishing  perpendicular  anisotropy.  The 
meaning of the  shielding  length X is  indicated  in (b) as the 
depth to which H ,  penetrates the magnetic film. 

In the special case kl  = 0, one finds that the pole den- 
sity -V.M vanishes  in the linear region and is non- 
vanishing  within the boundary layers.  On the outer mag- 
netic  surfaces at y = 0 and y = 6 + 2 0 ,  there are surface 
distributions of poles, each of  which  is equal and opposite 
to  the integrated volume pole distribution within the 
adjoining boundary layer. Thus the field distribution due 
to the poles on  outer boundary layers  is  completely in- 
ternal to the respective  layers, as shown in  Fig.  2b sketched 
from Eqs. (16) and (25). 

The pole distributions residing on the inner magnetic 
surfaces at y = D and y = 6 + D have the same signs as 
the respective adjoining boundary-layer distributions. 
These provide sources for the field H within the gap  as well 
as the boundary layers  themselves. The result is that in the 
special  case kL = 0 the magnetic  energy  density (H2/8n)  
resides within the gap and boundary layers, and contribu- 
tions from the bulk of the magnetic material are negligible 
for sufficiently great thickness. 

The quantity X is  seen to represent a shielding depth 
within  which the normal component of H is permitted to 
penetrate by virtue of exchange. A volume distribution of 

poles on a scale greater than X cannot exist  within the 
magnetic  film  because of the shielding  effect due to the 
infinite y-component of susceptibility implied  by k ,  = 0. 
For typical permalloy parameters ( A  = lo-' erg/cm and 
M,, = 800 emu) we find that X is about 40 A. We must 
remark that this concept has a limited  significance  because 
if kl does not vanish some field penetrates beyond the 
boundary layer, as is evident from Eq. (25). 

We resume consideration of a general value of kl.  In 
order to reduce the problem to one dimension we write 
the energy  density g averaged over the thickness of the 
magnetic  layers : 

g(x) = D" s, S(X,  y )  du. 
D + i b  

(26) 

The integrand of this equation is evaluated within the 
region 0 < y < D by substitution of Eqs. (8) and (24) into 
Eq. (17). Within the region D < y < D + the integrand 
is  given  by  Eq. (18). The integral reduces to a combination 
of elementary exponential integrals. Upon carrying 
through the integration and simplifying we find the result: 

g = K cos2 q5 + A(dc#~/dx)~ + p(d cos q5/dx)' 

= K COS' q5 + ( d q 5 / d ~ ) ~ (  A + p sin2 d), (27) 

where the coupling coefficient p is  given  by 

p = 7rhDM;: + [27r,'(27r + k,)]? 

X A[1 - ( 2 X / D )  tanh ( D / 2 X ) ]  

+ 2akl D:il.r;/[3(271. + h)], (28) 

in  which X is the skin depth defined by Eq. (22). Thus we 
see that the energy  density contains the usual anisotropy 
and exchange  terms appearing in the Bloch  wall problem 
for bulk material, plus an additional coupling term 
p(d cos (b/dx)2 which takes into account all stray-field and 
other effects arising from the double-film  geometry. 

Let us recapitulate the significance of the coefficient p. 

The first term in  Eq. (28) is due to the stray-field  energy  in 
the gap. The second and third may  be considered to arise 
predominantly from exchange and perpendicular aniso- 
tropy, respectively, contributed by tilting M out of the 
film plane.  However both terms involve the effect of 
demagnetization and the second is  influenced  by  per- 
pendicular anisotropy, too. The tanh expression appearing 
within the second term brings into account the energy 
improvement which  comes about when H is permitted to 
penetrate into  the skin of thickness X. 

We note that unless kl is  sufficiently  large and negative, 
p is  positive. The coupling term in the energy represents an 
effective anisotropic exchange  energy contributed by M, 
but  not by M,. Hence, we see that the qualitative effecs  of 
the coupling energy  must  be to reinforce the exchange 
effect  (if p > 0) and thus to increase wall thickness and 
energy  beyond the bulk  values of these quantities. 38 1 
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4. Solution of the  reduced problem 

In the previous  sections we have  expressed the average 
energy  density g, given in Eq. (27), in terms of a single 
space  variable x. The energy  per unit wall area is 

where +‘ E d+/dx. This  expression  must  be  minimized 
with  respect to the wall  shape +(x) to obtain the stable 
wall  configuration. A first integral of the Euler equation 
obtained by variation of W may  be  derived by following 
the same  procedure  used in deriving the law of conserva- 
tion of energy  from  Lagrange’s equationt because,  accord- 
ing to Eq. (27), g does not depend  explicitly  on x .  The 
result is 

g - 4’- - 0. dg 
a+‘ - 

This equation may be  used to express 4’ in  terms of 4. 
Substituting Eq. (27) into Eq. (30) and solving, we find 

+” = K cos2 +/( A + p sin2 4). (30 

The  wall  energy yD may  be  calculated  without  solving for 
&x) since 

r / 2  

Y D  = WITlin = j - / ?  g4’-I cl+. (32)  

Substituting Eqs. (27) and (31) into Eq. (32) we find 
* / 2  

Y D  2 K t  I-,,, ( A  + p sin2 +)’ cos 4 d+ 

= 4 K f  l’ ( A  + pu’)* du, (33)  

where u = sin 4. In integral tables  one  finds the result: 

y p  = 2 K’(p + A)’ + 2A(   K /p ) ’  

80 - 

ID~STANCE (K/A)’/z x 

Figure 3 Wall  shapes  in a double film. The  angle @ be- 
tween M and  the z axis is plotted  as a function of the 
dimensionless  position (K/A)’”x,  for various  values  of 
the parameter  ratio &/A.  The  broken  curves  represent ex- 
perimental  data  taken from Ref. 21. 

under the condition p + A > 0, as may be verified  by 
differentiation. 

5. Discussion 

Wall shape 

The main  results of this paper are embodied in Eqs. (8), 
(24), and (37) for the shape of the wall and in Eq. (34) for 
the energy of the wall,  with the necessary  definitions of 
X and EL being  given  in Eqs. (22) and (28). In Fig. 3 we plot 
the angle + as a function of the reduced coordinate K’x/A’ 
for several  values of the reduced  coupling coefficient 
PIA.  For p / A  = 0 the shape reduces to that of a Bloch 
wall in bulk, given  by 

sin + = tanh [( K /  A)’,], (3 8) 

except,  of  course, that the wall  is  N6el-like rather than 

X In [(ELI A ) $  + (1 + P/ A ) * ] .  (34)  Bloch-like  with  respect to  the plane containing M. For 

To calculate the wall  shape, we write,  from  Eq. (31), 
larger  values of p / A ,  the shape follows  closely the bulk 
solution for small x but “breaks away” at larger x to give a 

Ktdx = & ( A  + p sin’  +)’/cos 4.  (35)  greater total wall  width. The bulk-like  behavior for small x 
follows from the fact that in this  region  (called the “kernel”) 

Making the change Of = 4, this becomes M, is nearly equal to Mo SO that first-order rotation of M 

Kidx = du( A .+ pu2)’/(  1 - u2),  (36)  changes M, only in second order. Since the surface  pole 
density (proportional to M, ,,) is  small, the demagnetizing 

in  which the integral of the right hand side  is  given  directly energy is likewise, and so the behavior reduces to bulk-&e. 
by tables. The result is The case p >> A is  often of experimental  interest.  In 

f See, for example, H. Goldstein,  Classical  Mechanics, Addison- 
382 Wesley, 1953, Section 2-6. cos + = exp [- ( ~ / p ) ’ x ] .  
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On the other  hand,  the kernel region satisfies the inequality 

p sin' + << A ,  (41) 

leading to Eq. (38). The width of the flank is of the  order 
(p/Z@ whereas that of the kernel is of the order 
(A/p)*(A/K)' .  The  ratio of flank-to-kernel is then p / A .  
Also the energy in Eq. (34) reduces, when p >> A ,  to 

Y P  = 2(KP)+. (42) 

Relationship to previous calculations 

It was the limit p >> A to which our previous results were 
~onfined. '~  In that case, if kl is neglected, Eq. (28) reduces 
to 

p = nbDMi, (43) 

which, when substituted in Eqs. (40) and (42), recovers our 
previous re~u1ts.l~ Middelhoek has given a simple estimate 
of y p  which is a factor d? larger than that given by 
Eqs. (42) and (43).14 

Our still earlier joint work' neglected Mu. Within the 
limitations of the x-dependence assumed therein the results 
were for  this reason correct only in the limit D/b << 1. 
Calculations by Feldtkeller' and Friedlaender and Silva' 
of double-wall energy also neglect Mu and assume arbi- 
trary wall shapes. A summary of all previous results and 
their genesis is given  by Middelh~ek.'~ 

In retrospect we can see that  the trial-function method 
based on a one-parameter trial function cannot represent 
the double-film wall generally, because here we find two 
kinds of region, kernel and flanks, which require two 
parameters to characterize. However, the results of all of 
References 6-8 mentioned above are approximately cor- 
rect in the limit b >> D, A << p, kl = 0. In this limit they 
do  not have the correct detailed wall shape  but  they give, 
within a factor of the  order of unity, the correct energy 
and wall width as represented by Eqs. (40), (42), and (43) 
(which, however, are not limited to  the case b >> D). Each 
of those references contains a factor (b  + in the 
energy which is more properly b', according to  our present 
results. 

Validity oj approximalions 

In Section 2 a series of assumptions was made with partial 
justification. In  the present section we test the calculated 
wall structure  for consistency with these assumptions. 
We will argue that the condition of large wall thickness, 
namely, 

(p /K) '  + ( A /  K)' >> b + D, (44) 

is  sufficient to guarantee  internal consistency and we  will 
establish the range of  film parameters that satisfy it. 

Assumption I. The assumed symmetry is  seen to be satisfied 
by the M generated from our solution given in the half- 
plane y < D + b/2, by reflecting it about this boundary. 
All field variables have the required continuity properties 
except in the limit A "+ 0 when discontinuities appear  on 
the plane x = 0, but these we  will find to be energetically 
negligible in connection with other assumptions to be 
discussed below. 

Assumption 2. An upper bound on [M, [  is obtained  from 
the calculated structure by noting that, according to Eq. 
(24)) 

I(2n + kl)M,I < 2n 1MZ,.1 D = 2 a M o D  [+'sin 41. 

From Eq. (31) the calculated structure  also satisfies the 
inequalities 

14' sin +[ < ( K / p ) '  and 14' sin 41 < ( K /  A ) * ,  

for p > 0. Combining these two inequalities we have 

I(27r + kJM,/27rMo[ < D(K/P)+,  and 

I(27r + kJM,/27rMoI < D ( K / A ) + .  

Therefore, if k L  is not close to -2r, p > 0, and condition 
(44) is satisfied, then the calculated structure is consistent 
with Assumption 2. 

Nonetheless, Assumption 2 merits further discussion 
because we shall see that the calculated structure in the 
limit A + 0 has discontinuities on  the plane x = 0, if we 
require the exact constraint (6) to be satisfied. To this end 
we write the  equations 

M ,  = ( M i  - M y  cos 4, (45) 

and 

M ,  = - sin +, (46) 

which satisfy the exact constraint (7), in place of Eq. (8). 
Now we assume X = 0 and kl = 0 for simplicity and 
substitute our calculated structure +(x),  My(x, y), as given 
by Eqs. (24) and (37), into Eqs. (45) and (46) to find the 
limiting values on  the plane x = 0 given in Table 1. We 
see that  both M ,  and M ,  are discontinuous at x = 0 in 
the limit A -+ 0. 

Table 1. Values  of M in  the  limit A += 0, displaying  dis- 
continuities at the  plane x = 0, for y in the  range 0 5 y _< 
D, shown for  the  special  case X = 0, k,  = 0. 

I x = o -  x = o  x = o+ 
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In  order to show that these discontinuities are ener- 
getically  negligible we estimate the corresponding energy 
corrections before taking  the limit A + 0. First, we con- 
sider exchange energy. Since the discontinuity in M ,  is 
second order in that of M,,, the  dominant exchange cor- 
rection comes from  the term AMz, , /Mi .  This  term was 
neglected altogether in Assumption 6, and will be evaluated 
below in connection with the review  of that assumption. 
The singular corrections to anisotropy are easily seen to 
vanish because M ,  and M, are bounded; only their deriva- 
tives are not. 

We are then left with the need to consider a correction 
to stray-field energy. Let M, be the correction to M. Then, 
expanding the radical in Eq. (49, we have 

V . M c  = -(MvMv,z/Mo)  cos4 - (M:/2Mo)4’sin4. 
(47) 

The  contribution of the second term is  seen to be negligible 
by noting that  it gives only a small correction to  the cal- 
culation of H,, from Eq. (12). Neglecting AID, we have 
from Eq. (24), 

M, = yMo4’sin 4, (4 8) 

so that Eq. (47) reduces to 

V .Me = y2Mo+’(4’’ sin 4 + 4” cos 4) 

X sin 4 cos 4. (49) 

We must now digress a moment to recall Thompson’s 
theorem which states that the  integral (8~)-’ ssI H2 dx dy dz 
is an  upper  bound  on  the stray-field energy even if Eq. (2)  
is not satisfied, as long as  Eq. (3) is satisfied.“ To obtain  an 
upper bound on the correction in energy, we take the 
correction to H to have only an x-component, H z ;  this 
will not mix with the zero-order approximation of Eq. (25) 
which has only a y-component. 

By following this procedure and substituting Eq. (31) 
into Eq. (49) in the small-angle approximation,  one finds for 
(8rD)-’ J?’- dx I: dy HZ dx dy an  upper  bound expressible 
in the  form 

X /m d V ( l  f V2)-3’2,  V 2  = & ‘ / A ,  

which is seen to be small compared to Eq. (42), if  we note 
Eq. (43), under  usual circumstances, and is seen to vanish 
with A .  

Assumption 3. This assumption is found to be valid as long 
as b + D is small compared to (A/K)’ (see, for example, 
Eq. (31)). However, if only the weaker condition (44) is 
satisfied, rapid variations near the plane x = 0 ensue when 
A + 0. The consequences are assessed  in connection with 

0 

384 Assumptions 2, 5, and 6.  

Assumption 4. We have no estimate of the error in energy 
introduced by this assumption. It could be investigated 
only with a great deal of additional effort because the 
variation of small corrections to  our calculated +(x) and 
MJx,  y) gives rise to partial differential equations in two 
dimensions with variable coefficients. 

Assumption 5. A lengthy analysis suggests that the correc- 
tion to the stray-field energy calculated in the “capacitor” 
approximation of Section 2 is smaller by  a factor  on  the 
order b[(K/A)’ + ( K / P ) ’ ] - ~ .  Since this conclusion is 
plausible, the argument will not  be reproduced. Also, 
we may again invoke Thompson’s theorem” to argue 
that  our result constitutes an exact upper bound of the 
stray-field energy for the given M distribution because H 
satisfies Eq. (3) and continuity requirements exactly. Thus, 
since a lower bound on  the density (Hz /%)  is zero, we 
know that  the discontinuity in M,,% at x = 0 which ap- 
pears in the limit A +  0 does not contribute a non-physical 
infinity to  the energy. The only effect of the discontinuity 
can be to reduce the stray-field energy in a region near 
x = 0, and  it is difficult to see how this region could extend 
much beyond 1x1 = b to give a correction greater than 
b[(WA)’ + (K/P)’I-’. 

Assumption 6. To test  this assumption we calculate the 
dominant  contribution 

to  the energy per unit  area mentioned above in the dis- 
cussion of Assumption 2. Using again Eqs. (48) and (31) 
in the small 4 approximation as in discussing Assump- 
tion 2, we find that 

Q=- 2KD2 (Kp) ’  /w  d V ( 1  + V’)”’’, 
3P 

which is a negligible correction to Eq. (42) under condition 
(44). 

Having shown that  our series of assumptions is in- 
ternally consistent under  the  condition (44), we now con- 
sider the conditions on film parameters implied by 
condition (44). To keep things simple we consider only 
the case kl = 0. 

According to Eqs. (28) and (22), we have the condition 
p >> A as long as 

( b  D)’ >> X -40 A(permal1oy). (52) 

Since condition (52) is satisfied in most permalloy experi- 
ments we may use Eq. (43) to reduce condition (44) to 

Mo(bD/K)* >> b + D. ( 5  3) 

This can be re-expressed in the  form 
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Thus we see that our approximation from 13, which 
finally neglects exchange altogether and whose results 
are represented be Eqs. (40), (42), and (43), is adequate 
over a broad range of circumstances. The  additional 
details of the present paper are relevant to investigation 
of the wall-shape in the kernel region and also in situations 
in which kl  and/or A l p  are appreciable. 

Comprrrison with experiment 

The shape of a double-film wall in permalloy with an 
S i 0  intermediate layer has been measured by Feldtkeller 
et a/." by means of an electron-microscope technique. In 
comparing the results with  theory, it is convenient to begin 
by considering the slope of the wall at  the center, the reason 
being that this  quantity  does not involve the coupling p. 

We set 4 = 0 in Eq. (31) to find 

4'' = K / A  (4 = 0). (55) 

The experimental  slope  taken  from Abb. 7 of FeldtkeUer 
et al?' appears to be about 

4' = 4.3  x 1 6  radian/A, (4 = 0), ( 5 6 )  

and  the anisotropy is reported  to be K = 1.2 X lo3 erg/cc. 
Substituting these values into Eq. (55) we find that 

A = 0.65 X erg/cm. ( 5  7) 

This value of exchange is consistent with values of 
0.55 x and 1.0 X erg/cm determined by the 
resonance method  in films of permalloy composition 
(80 Ni, 20 Fe  and 81 Ni, 19 Fe)." 

Using these values of A and K we plot,  in Fig. 3, the 
experimental data of Feldtkeller et rrl. (dashed curves). 
We see that,  just as Feldtkeller et  al. remarked, the wall- 
shape for a double film has nearly the bulk Bloch form 
( p / A  = 0, in Fig. 3), and shows experimentally undetect- 
able evidence of distortion by stray fields. For  the  sake of 
comparison, an experimental NCel wall shape  for a single 
film of the  same thickness is also shown  in Fig. 3. 

Other  experimental values reported by Feldtkeller 
et al. are D = 350 A, and b = 100 to 200 A. Assuming 
M o  = 800 gauss and neglecting k,, we find from Eqs. 
(28) and (29) that p / A  lies between 12 and 22, depending 
on  the value of b. But we see that  the theoretical curve 
p / A  = 10 in Fig. 3 is already somewhat different in the 
flank region from  the experimental curve. However, Dr. 
Feldtkeller has  stated privately that  the experimental error 
is too great to distinguish the case p / A  = 0 from p/A=  10. 
Thus, the experiment is consistent with theory but its 
accuracy is insufficient to confirm the predicted effect  of 
the coupling. 

It may be useful to indicate  in the context of these ex- 
perimental values the  potential  importance of perpen- 
dicular anisotropy. In order  to reduce p to  the vicinity 
of zero, a value in the neighborhood of k ,  = 10b/D= - 3 

TRUE WALL 
DOUBLE 

TRUE WALL 
PLUS 

QUASI-WALL 

z 

i. 

Figure 4 Schematic  illustration of distinction between a 
true wall  and a quasi-wall.  The  solid arrows represent the 
projection on the film plane of the magnetic  configuration in 
a true wall  within  one  magnetic film. The  dashed  arrows 
indicate the configuration,  in a second film, for a true wall 
(above) and a quasi-wall (below). 

to - 6 would be required. Experiments of Fujiwara et al." 
reveal values of k L  ranging between 0 and - 4  for Ni 80, 
Fe 20, depending on  substrate temperature and pressure 
in the vacuum chamber  during deposition. Since some of 
these values fall within the required range, we see that 
perpendicular anisotropy may play a crucial role  in deter- 
mining the wall structure. In fact, if - k ,  is great  enough, 
p + A becomes negative and  the  state of uniform magneti- 
zation (4 = f x / 2 )  is unstable (See Eq. (27)). One expects 
in this case spatially periodic distributions of magnetization 
analogous to stripe-domains in single films." This  prob- 
lem, however, is beyond the scope of the present paper. 

It appears that further experiments are needed, along 
with independent  determinations of k, ,  to adequately 
test the theoretical wall shape. 

Quasi-walls 

Most of Middelhoek's observations5"0'14 pertain not  to 
double walls in the  strict sense of Fig. 1 but  to a configura- 
tion consisting of a true wall in  one film coupled to a 
"quasi-wall" in the second film. In  the quasi-wall the 
magnetization rotates from 0 to 90 O (or nearly 90 ") on  one 
side of the center and then  back to 0", rather  than to 
180", on  the  other side. This distinction is illustrated 
schematically in Fig. 4. The stability of a quasi-wall oppo- 
site a true NCel wall arises from  the fact that  it closes the 
pattern of  flux coursing through the NCel wall. Under 
appropriate circumstances, the attendant decrease in 
magnetostatic energy more  than compensates for the 
anisotropy and exchange in the quasi-wall. 

We can argue that in the limit A / p  + 0 the energy of 
a  double true-wall is equal to that of a true-wall-quasi-wall 
configuration. To show this, we construct  a trial function 



for  the latter configuration from  our solution to  the former 
one by reversing the sense of rotation of M in one-half 
of the wall in one of the  two magnetic films. That is to 
say, we let 

-+ -4 for + > 90°. (58 )  

This is equivalent to replacing M ,  -+ - M ,  for x > 0. 
This change, one finds, alters none of the energy terms. 
However, the symmetry of Assumption 1 is now broken 
with respect to exchange considerations because the 
discontinuity in 4' at 4 = 0 within the quasi-wall may be 
smoothed over to reduce A 4'' dx. But we have assumed 
already that exchange energy is negligible so this  potential- 
ity for energy gain must  also  be negligible because A ,f +" dx 
is positive definite. 

With respect to  the remaining  magnetostatic and aniso- 
tropy terms, the transformation (58) presents no new 
opportunity for reducing the energy since neither of these 
terms depends on M,.  Since M% and M ,  are independent 
field variables and M ,  is absent  altogether, M must be 
in equilibrium again, given the  boundary condition I M, [ = 
M o  at x = 0. Of course, this  condition  does not  hold within 
the quasi-wall in an exact description. Nonetheless our 
limit of t >> b + D requires JMzl to be the same in both 
films in order to optimize flux closure, thereby  guaranteeing 
this  condition within both films. Thus  our simplified re- 
sults for  the limit A / p  -+ 0, represented  by the Eqs. (40) 
and (42), with p given by Eq. (28) (and A = 0), apply to a 
real-wall-quasi-wall configuration under  the same condi- 
tions of validity described above. Similar ideas form  the 
basis of Middelhoek's discussion of quasi-wall effects in 
film pairs with unequal as well as equal film thi~kness. '~ 

We may add  that all of our calculated results (for finite 
A as well as vanishing A )  and preceding considerations 
hold equally well for a domain wall in a film of thickness 
D separated  by a distance b/2 from  an infinitely thick 
slab  composed of material with infinite magnetic suscepti- 
bility. This  fact is seen by  considering the lower surface 
of the  slab to lie on  the plane y = D + b/2 in Fig. 1. Our 
field distribution calculated for y 5 D + b/2 (as well as 
the exact distribution) satisfies the required condition that 
the tangential  components of H vanish at  the surface of a 
perfect magnet. All else follows as before. 

Extensions to three or  more magnetic films 

We can argue that  our solution applies to a certain class 
of wall problems involving three or more magnetic films. 
Figure 5 shows a multiple-layer structure  constructed  by 
piling any  number of double films one  upon another. 
This  construction  produces a structure in which the outer- 
most magnetic films have thickness D and  the interior 
magnetic films have thickness 2 0 .  All of the non-magnetic 
layers have the same thickness 6. The complex wall  con- 
sists entirely of true walls, each of which shares its flux 
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equally with its nearest neighbors. The x and y components 
of H and M are indicated schematically in Figure 5. 

From symmetry considerations it follows that  the 
quantities aH,/ay, H,, aM,/dy, and M, must all vanish 
at  the planes indicated by dashed lines in Fig. 5,  where 
one double film touches another.  But these conditions 
are already satisfied within the approximations of our 
general solution of the double-film problem. It follows 
that  the Eqs. (S), (24), (34) and (37) for energy and wall- 
shape apply to this  problem as well. In  fact  the results 
are even more accurate for this multiple-film problem be- 
cause less external field energy is neglected. The energy 
given by  Ref. 8 for this  problem is a factor of the  order 
a / (b  + D) greater than  ours because the flux is allowed 
to close only at the edges of the walls rather  than through- 
out their thickness. 

A stable wall structure involving quasi-walls may be 
constructed from  the multiple true-wall structure by re- 
placing some of the  true walls by quasi-walls. Our double- 
wall conclusions for the limiting case A / p  "+ 0 apply 
equally well to this case. One can easily convince himself, 
however, that such a structure  cannot be  stable if two 
quasi-walls are adjacent because the energy can  be de- 
creased monotonically by a continuous  deformation, 
independent of z ,  which eliminates them. 

We might also say something about  the case in which 
only  one of the several magnetic layers has a true domain 
wall, the others having only the quasi-walls required by 
flux closure. It is evident that only  the nearest-neighbor 
layers are needed to close the flux. Although the structure 

Figure 5 Schematic  representation of a wall configuration 
in a multiple film generated by piling  several  double  films 
upon  each other. Only x and y components of H and M 
are indicated by the  arrows. The sense of M, depends on 
whether true walls  or  quasi-walls  are  involved. 
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and the wall structure is not changed. However, if C > 0, 
then the energy is at most  a relative minimum because the 
operation I #J~  -+ - I $ ~  will decrease the domain energy 
density by an  amount 2C. 

Finally, a real-wall-quasi-wall structure cannot find 
an equilibrium  in the presence of exchange coupling 
since it gains an energy of 2C per unit volume of magnetic 
material swept out if the wall is displaced. 

Figure 6 Schematic  configuration of a hypothetical  double 
true-wall of a second kind, as distinguished from the  first 
kind shown in Fig. 1 .  

is now not given correctly by our general theory, the 
limit A / p  .+ 0 k ,  -+ 0 is still applicable. 

Exchange-like  coupling 

Experiments of Bruykre et a1." have disclosed that a 
double magnetic film utilizing a very thin metallic non- 
magnetic intermediate layer shows evidence of an exchange- 
like interaction between the two magnetic films. Within 
the limits of our approximations, IM, I << Mo and r$ = &x), 
the  additional energy C ,  may be written  in the  form 

where r # ~ ~  = 4 is the orientation of M in film 1 and c j 2  is 
the orientation of M in film 2.  We make no assumption 
about how the coefficient C depends on film thicknesses 
or  other parameters. However, we note in passing that 
the experimental values of C are positive ("ferromagnetic" 
coupling). 

In  the case of the true-wall structure of Fig. 1 with 
domains  in both films similarly magnetized, we have the 
condition 

41 + 42 + 7r = 0, (60) 

and Eq. (59) becomes 

Se = C COS & = - C  + 2CMZ/Mi. 

When this term is included  in  Eq. (l), we see that nothing 
is changed  in  the  theory except that K is replaced by 
K + 2C. (Feldtkeller drew the same conclusion with respect 
to his theory7). 

We can  also hypothesize the true-wall structure of a 
second kind,  one represented by Fig. 6. Its existence has 
not, to the author's knowledge, been positively established 
by experiment. Here we have 

42 = 41 + T 3  

and therefore 

C. = c,  
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