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Abstract: This paper describes  some  difficulties  encountered  in  the  numerical  solution of nonlinear circuit  equations. A par- 
ticular transistor circuit is analyzed  to  illustrate the nature of the difficulties  and  how  they  may  be  resolved. In this  circuit it 
is  possible,  without  sacrificing  accuracy of the physical  model, to eliminate unimportant stray parameters whose presence  de- 
stroys the efficiency of most integration routines. A method based on a potential function is used for deriving the circuit equa- 
tions and it is  shown  how  these  equations  can  be  systematically  reduced  upon  removing the stray parameters.  Application of 
such  techniques to the  circuit  considered  reduced the calculation time (on an IBM 7094) from 30 minutes to 7 seconds. 

Introduction 

The purpose of this  paper is to describe some results and also, some slight extensions of the theory of nonlinear 
observations  obtained  during the investigation of the 
transient behavior of a transistor circuit. Although  only 
one particular circuit was analyzed, it is felt that under- 
standing  this example will illuminate many of the dif- 
ficulties encountered  in the general case. 

In  the circuit considered, a nonlinear  model is used for 
the transistor. The problem is to numerically integrate the 
nonlinear  ordinary differential equations  in a reasonable 
amount of time and with reasonable accuracy. If the 
problem is approached in a straightforward  manner, 
certain difficulties arise. One is that it takes too long to do 
the integration (about thirty  minutes on the IBM 7094); 
the second is that,  in some cases, the calculated response 
of the simulated  circuit would apparently reach an equi- 
librium point which was not substantiated by experimental 
evidence. 

A thorough understanding of the cause of these dif- 
ficulties and of methoe  for overcoming them allowed 
computation  time on  an  IBM 7094 to be reduced from 30 
minutes to 7 seconds, with an accuracy of about 1%. 

Thus, others involved in  circuit analysis are likely to 
find it useful to become aware of these kinds of computa- 
tional difficulties and their resolution. It will be seen that 
certain of the mathematical ideas used  in the study  repre- 
sent an application of previous theoretical work on  non- 
linear circuits (see, for example, Ref. 1). During this  study, 
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networks were obtained; these make  it possible (a) to 
derive the differential equations of transistor circuits from 
a potential  function and (b) to give a uniform method of 
reducing the circuit  equations when some resistors are 
set  equal  to zero. 

The  circuit and the  circuit  equations 

The specific circuit under investigation is shown  in Figure 
1, and a detailed description of the components and their 
numerical values is given in  Appendix 1. The equivalent 
circuit  model of the transistor is also shown in Fig. 1, 
enclosed in dashed lines. Now, although it is certainly 
possible to derive the circuit  equations using customary 
methods, we choose to use the potential  function approach 
in order to illustrate its utility. For this purpose we define 
a function P as follows: 

Pbl,  U 2 , 0 3 , U 4 , U 5 ,  0 6 )  

= $GL( vcc  - 0 3  - 04)' + 3GQ(03 + ~ 4 ) ~  

+ $Gs(03 f 04  - 01)~ $Go( vi, - 0 2  - ~ 4 ) ~  

f $ G d  + $GT$ + $ G c c ( u ~  + 04 - 0 5  - 0J2 

+ $ G B & ~  - u6)' + 1 Is(u) du 

+ I" IE(u)  du + IUO 3- I 1 U 5 r  

where the G's are  the reciprocals of the corresponding R's. 



The  circuit equations are given by* In the above, M T  denotes the transpose of the matrix M 
and 

B = GL 4- Gp + Gs + Gee, 

G d u J  = zs(uJu51, 

and where the superscript dot (as in C) represents dif- 
ferentiation with  respect to time.  Explicitly we  may put 
the circuit equations in the following form: 

CD = Gu 4- f ,  

where 

r 1 0 

At first, one would be tempted to numerically integrate 
the above equations. The problem is that some of the 
eigenvalues of the matrix C 1 G  are very large and negative 
(of the order of -500 nsec”)  while others are relatively 
small. In other words, some time constants in the circuit 
are very small compared to the most  significant ones. The 
source of these small time constants can be located in the 
three resistances Rs,  R,, and Rcc, which range in  value 
from 5 3  to 253, while the other resistances are 2503 or 
larger. 

In Section 3 we discuss why it is important, for numeri- 
cal reasons, to eliminate the small time constants. For the 
present we simply do so by setting the three resistors Rs,  
R,, and Rcc equal to zero. Three capacitor loops are 
thereby introduced and  the number of differential equa- 
tions reduced from six to three. It is  possible, of course, to 
obtain  the reduced equations either from the circuit or 
from the original equations; however, the method for doing 
this is not always straightforward and systematic.  Using 
the potential function approach, there is a  natural way of 
obtaining this reduction, the basis of  which can be found 
in  Appendix 2. Here, we  merely state the results and apply 
them to the system under consideration. The reader not 
interested in the technique itself  can go on to Eq. (2.4) and 
make a check  of its correctness by using Kirchoffs laws; 
however, we suggest that the reader make use of both 
methods of deriving Eq. (2.4) in order to appreciate the 
simplicity of the potential function approach. If one first 
writes  down the six-dimensional equations, it is very  diffi- 
cult then to reduce those equations by letting R,,  R,, and 
R, ,  equal zero. On the other hand, once the potential 
function has been obtained for R,,  R,,  and R,, not zero, 
it can be  used to derive either the six-dimensional equations 
or the reduced ones. The potential function method will 
display  even greater advantage in the case of more com- 
plicated networks containing many capacitor loops and 
inductor cut-sets. 

a = b ( v ) ,  where a is some parameter  appearing  in P ( v ) .  
* The notation P,I, =),,,,, stands  for  the  gradient of P evaluated at 
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Figure 1 Diagram of the transistor circuit.  Components  and  values are as listed in Appendix 1. 

The reduction we seek comes about because the  un- 
known variables are  not independent; that is, there is a 
relation 

8 = A6 + b(t) ,  (2.1) 

where v = (:). The equations  in  terms of v have the form 

CB = - P,(v), where C is a diagonal  matrix which we write 
in block form 

c = io' 01. 
However, using Eq. (2.1), the results derived in Appendix 2 
give the reduced equations as 

c*t = "P8(L3) - ATC'd(t), 

where P(8) = P(v) I ; = a 6 + a ( r ,  and C* = d + AT&. 
To obtain this  reduction  in  this case, we write 

v = [I , 
I4 

where 

Since Rs = R, = Rcc = 0, we have 

where 

A =  

294 

B = A 6  + b( t ) ,  

i 0 1 1  

- 1  0 0 

-1 1 1 

1 
' 1  , and b(t) = 
I 

i 
* In general, P(u) can  be  written  as P(u) = - EX uhih - x, J I ; ~  i, du, where the sum on p is taken over  all  resistors 

(including sources) in the network, and the sum on h is taken 
over  all inductors. Since  there are no inductors  in  this  network, 
P = --x, J;;p i, du,. 
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Writing  Eq. (2.3) explicitly, we have the three-dimensional  system which has been investigated  numerically: 

For future reference we write the system of Eq. (2.4) in the 
matrix form: C* d = f + &Cy where  we  will  be interested 
in the eigenvalues  of the matrix C*"&, which  vary con- 
tinuously  with 0. 

In any  difference  scheme, it is  necessary to obtain 6 
explicitly. In order to obtain d from  Eq. (2.4), one would 
have to compute C*(0)"; for a 3 X 3 matrix,  this  is easy 
enough to  do analytically, but for larger  matrices it may 
be  necessary to compute C*(C)" at each  time  step. In 
either case, it is advantageous to have C* symmetric.  There- 
fore, an additional advantage of using the potential func- 
tion to derive the differential equations is that C* is auto- 
matically a symmetric  matrix. 

Numerical analysis 

If one  solves an initial value  problem for ordinary dif- 
ferential equations numerically, an error is introduced into 
the calculation at each integration step due to the in- 
accuracy of the formula. The magnitude of this  so-called 
local truncation error is a measure of the accuracy of the 
integration formula. The magnitude of the total error 
depends upon the magnitude of the local truncation errors 
and their propagation. Even  when the local error at each 
step is small, the  total error may  become  large  due to 
accumulation and amplification of these  local errors. This 
growth  phenomenon is called  numerical  instability. 

It is exactly this phenomenon which  makes it necessary 
to reduce the system of differential equations under  investi- 
gation. To understand this, consider the following  single 
first-order  linear  differential equation : 

- = - x y ,  x > 0.  d r  
dt (3 

With y(0) = c, the solution of this equation is y( t )=ce-xt .  
Suppose,  however, we try to solve this equation by some 
one-step  numerical integration method with  fixed step 
size h. In any  numerical  scheme an error is introduced in 
the calculation of the solution at each  time  step.  Specif- 

ically,  let y ,  = yk(exact )  + ek at time tk = kh, ek being the 
total truncation error. Let r be the polynomial  approxima- 
tion to e-Ah (for  small Ah) due to replacing the differential 
equation by a difference equation. Then the computed 
result of one  time step is 

yk+l = ryk, 
while the correct solution is 

-Xh 
Y k + l ( e n e c t )  = e ~ k ( ~ ~ ~ ~ ~ )  = e ( Y ,  - 4 .  -Xh 

Subtracting, we obtain, 
-Ah 

€ k t 1  = (r - e )yk(exact) + rek. 
Clearly, the error ek will  be  amplified  if r > 1, which  is 
possible for sufficiently large Ah; at time t = (n + k)h, it 
will  have  grown  by the factor r". Thus, meaningful  results 
can  be obtained only for r < 1. In this case, errors com- 
mitted in the past  die out exponentially, and the total 
truncation error will  be  of the order of the local truncation 
error, (r - e-Ah)yk(exaot). The local truncation error can  be 
interpreted as the error committed by applying the integra- 
tion formula to the exact solution at the previous  point. 
In the Runge-Kutta method,  this error is of order h'. More 
precisely, the Runge-Kutta method  approximates e-Ah by 

r = 1 + (-M) + + ( - ~ h ) '  + Q ( - x ~ ) ~  + & ( - ~ h ) ~ .  

One finds that r < 1 only  when -2.78 < -Ah < 0. 
We note, also, that as --Xh decreases to -2.78, r ap- 

proaches 1 while e-Ah approaches 0.062. This  means that, 
while the Runge-Kutta method is actually stable as -Xh 
approaches -2.78, propagation errors die out more 
slowly and different  asymptotic  behavior is obtained for 
the computed  solution in the neighborhood of --Xh = 
-2.78. Hence, for reasons of  accuracy,  one should really 
have Xh < 1 , say. 

Finally, we observe that the above  remarks are valid 
for linear  multi-step  methods  also. For these  methods the 
situation is  more  complex  due to the introduction of so- 
called  parasitic  solutions to the difference  equation. 295 
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In summary, we emphasize that in  numerical  integra- 
tion, the total truncation error is a superposition of local 
errors introduced in the various  integration  steps.  The 
magnitude of total truncation error thus depends on the 
magnitude of the local errors and on whether the latter 
are amplified or damped  through propagation. 

Results 

In describing the results we shall first  discuss the three- 
dimensional  system which  is a limiting  case of the original 
six-dimensional  system.  Then, we shall discuss the six- 
dimensional  system, briefly indicating why so much  com- 
puting  time  must be  allowed and why the results may not 
always  be  reliable. 

A number of  fixed step integrating  routines were  used 
on the three-dimensional  system. The Runge-Kutta method 
was  used  with step sizes  of  0.25, 0.50, and 1.0  nsec.  Also, 
several  Adams  predictor-corrector  formulas and a formula 
due to Hamming'  were tried with step sizes  of  0.25 and 
0.50. Stable  results were obtained for all three step sizes 
with the Runge-Kutta method. For h = 0.25 and 0.50 the 
results were  in  good  agreement  with  experimental  evidence 
whereas  with h = 1.0 the computed  response  seemed to 
level off to a different  equilibrium  value. For h = 0.50 both 
the Adams and Hamming  methods were unstable.  How- 
ever, for h = 0.25  excellent  results  were obtained with both 
methods. 

During  one of the Runge-Kutta runs, the eigenvalues 
of the variable  matrix C*"G of the three-dimensional 
system  were  calculated at each  integration  step. The eigen- 
values  were  always  negative, and the largest  negative  value, 
-3.1  nsec", occurred at the initial equilibrium  point. By 
analogy  with the analysis of Eq.  (3.1),  one should choose, 
for stability  with the Runge-Kutta method, h IXI,,,< 2.78. 
This  condition  is  satisfied for h = 0.25 and 0.50, but not 
for 1.0. In fact, the case h = 1.0  is on the borderline of 
numerical  stability, and one can  expect either an unstable 
result or a different  asymptotic  behavior of the numerical 
solution. The latter was  observed. For both the Adams and 
Hamming  formulas it is  necessary to choose h lXlmax < C 
for numerical  stability. The value  of the constant C depends 
on the formula used and is  less than 1.5.  Again, for the 
more  general  nonlinear  problem, the modified criteria 
using h lX[max gave  excellent  results. 

It was  observed that the largest  negative  eigenvalue of 
C*"G increased from -3.1 to -0.55 when the circuit 
was forced by Vin(t). Thus,  in the transient region, the 
various  methods  would  have been stable with  larger step 
sizes.  However,  during  periods of fast variation, the local 
error increases and the step size  must  be  controlled  ac- 
cordingly.  Since the methods  used are all quite accurate, it 
was found that the fixed step size,  chosen on the basis of 
the numerical  stability  requirements, was small  enough to 
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interesting that it was more  difficult,  in  terms of step size, 
to calculate the solution near the equilibrium  value than 
in the transient region. 

For the six-dimensional  system,  only the Runge-Kutta 
method was  used. For step sizes  of h = 0.5 and 0.01 the 
calculation was unstable. For h = 0.0025, results  were 
obtained that were  within 1% of those for the three- 
dimensional  system. A preliminary  analysis  indicated that 
the largest  negative  eigenvalue of the six-dimensional 
system  was  approximately - 500 nsec-l.  Again, the simple 
criterion h < 2.78  yielded a good  estimate for the 
step size. It seems  clear that  it is the aspect of numerical 
stability that is important for this particular problem. 

A variable step integration routine has been  used on 
this same  circuit by 0the1-s.~ In that routine, an error 
criterion  based on the local truncation error was  used in 
choosing the step size.  Essentially,  this  criterion  reduced 
the step size  in  rapidly  varying  regions and increased it in 
slowly  varying  ones.  Our  results  indicate that since sta- 
bility, and not local error, is the limiting factor in  this 
problem, and since lhlmax decreased in the rapidly  varying 
region, it would  have  been  possible,  in fact, to increase 
step size  in  this  region. 

To indicate why the three-dimensional  system  is a good 
approximation to the six-dimensional  system,  consider 
an analogy  with  linear  systems. In passing to the three- 
dimensional  system, we deleted three independent  solu- 
tions associated  with  eigenvalues less than -100. The 
remaining three eigenvalues  were  negative but greater 
than - 3.1.  Since the general solution to a six-dimensional 
linear  system  has the form C,ex", where the Xi are 
the eigenvalues, the terms  associated  with  large  negative 
eigenvalues  die out quickly and, therefore,  can  be  ignored. 
Hence, the difference  between  solutions  of the three- 
dimensional and six-dimensional  systems should be  negligi- 
ble. It should be  pointed out that there is a difference  in 
the equilibrium  solution between the three- and six-  dimen- 
sional models.  However, this error is  roughly  of the order 
of the ratio between the resistors  neglected and those  re- 
tained. In any specific problem it would  be  necessary to 
determine if this error is  acceptable. 

The computing  time for the three-dimensional  system 
was about 7 seconds  while that for the six-dimensional 
system  was about 30 minutes.  This  reduction  is  largely 
accounted for by the 200-fold  (0.5/0.0025)  increase in 
step size. Thus, by  passing to the three-dimensional sys- 
tem, one can obtain equally  good  results and compute 
approximately 250 times  faster. 

Figures 2 and 3 are graphs of the voltages u5 and 06. 

Superimposed on Fig. 2 is the input voltage Vin(f). In 
each of these  figures we have plotted the (graphically 
identical) output of both the reduced and the full matrix 
system. The full system  was  computed  only for 80 nsec 
because the integration time took 11 minutes. 
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Figure 2 Voltages v; and V I "  versus  time. 

Figure 3 Voltage ve versus time. 
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Conclusions 

The difficulties encountered  in any attempt to numerically 
solve electrical circuit equations can stem from two sources : 
the electrical circuit itself, and  the numerical  integration 
routine. Hence, to overcome these difficulties it will not 
always be sufficient to be guided purely by physical con- 
siderations. For example, numerical  computations  may  be 
made inefficient by the existence of certain parameters 
that  are  unimportant to the functioning of the circuit. 
Thus, in the circuit analyzed, here, some  small resistors 
were included; some, in fact, were included purposely 
(apparently to eliminate capacitor  loops in  the circuit). 
Their presence forced the choice of a very small  time  step 
in  the integration  procedure and hence a large amount of 
computation  time was needed. By eliminating these small 

resistors, the computation  time was reduced from 30 
minutes to 7 seconds with the results agreeing to within 
1%. Thus, we conclude that,  for numerical  reasons:  (a) 
It is bad practice to insert  small resistors in order  to elim- 
inate capacitor loops; (b) unimportant  stray parameters 
should not be included in the circuit because they may 
introduce a large increase in the computation  time; (c) in 
many cases, it is possible, by first making an elementary 
analysis of the circuit equations, to decide which are  the 
unimportant parameters. 

Appendix 1 

This section presents a detailed description of the circuit 
elements in Fig. 1.  The units are as follows: resistances are 
given in kilohms (kB); capacitances in picofarads (pF); 
voltages in volts (V); currents in milliamperes (mA); and 
times in nanoseconds (nsec). 

The parameters are as listed below : 

R~ = 10.1 R ,  = lo4 

R s  = .01 R ,  = .025 

RB = 5 R~ = lo4 

Rcc  = .007 

C, = 7.08 Cz =r 5.39 

C, = 1 . 3  C, = 7.91 

Vcc  = 3.0 v o c  = .47 

V O E  = .69 V.,,, = .01 

10c = .32 X I O E  = . 5 1  X IO-" 

rs = 280.0 rC = .54 

n = .68 rn = .61 

k = ,7059 y E  = 40.6 volts" 

K = .7584 yc = 20.7 vo1ts-l 

a ,  = .2 01(u6) = const = .9985 

The remaining circuit elements are variable and  are 
given as follows: 

rS(v5) = Ioc(I - e"7cus) 

IE(u6)  = I O E ( e r Z U e  - 1) 

CdUJ = C T C ( 4  + C D C ( U 5 )  r K / ( u ~  + VOc)" if (us + voc)_z vStOP 
C T C ( ~ ~ )  = last computed value of CTC(u5) 

if + V O C )  < v,,,, 297 
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In Ref. 1 it was  shown that there exists a function P(i, u) 
depending  only on (i, v) such that 

j k / ( u 6  + VOX)" if ( U S  + V O E )  2 V s t o p  P ( i ,  U) = -l 2 V ,  d ip  + / I ,  du,, (A.3) 

where r is  some  curve in Eb (6-dimensional  Euclidean 

( . + a  

p = 1  r , = < + I  

CTE(u6) = last  computed  value of CTE(u6) 1 if (OG + VOC) < Vstop space,  where b is the number of branches of the network) 
? ' E v e  with end point determined by (i, u). Here I ,  is the current 

C D C ( u 5 )  = Y E r O P L Y r C e  through the capacitor with  voltage u,, and V, is the voltage 
RBB is a function of ZE(u6) and is  determined by linear  across the inductor with current i,. using the notation 

interpolation from the following table: (u, w) = x. u, w,, we write Eq. (A.3) as 

IdmA) RBdkQ) 

0 .275 
0.3 .215 
3.0 .123 

10.0 .OS3 
30.0 .067 

P(i ,  U) = [-( 8, dZ) s, 
- ( P, d f )  + (I, dB) + (f, dO)]. 

Using Eqs. (A.l) and (A.2), this  becomes 

The input voltage Vin(t)  is  given  in  Fig. 2. The initial B(i, 0) = P ( i ,  U ) I ; = A ( + ~ ( ~ )  
values  used are t = 0, u1 = 3, uz = 0, u3 = 3,  u4 = 0, 
u6 = 3, and 0 6  = 0. 

i = B i + B ( 1 )  

= -(  r, B d f )  - (P ,  d f )  f (1, Ada) + (f, dD). 

Appendix 2 
From this we read off 

In Ref. 1 it was  shown that the equations of an electrical 
network  could be written in a standard form e= - B T P -  P, 

di 

du, d P  C,(ii,) - = " 
dt du, 

, c = r + 1, 0 . .  , I  + s, However, we also have,  using the elementary laws for 
inductors and capacitors, 

where the i, are the currents through the inductors and 
the u,  are the voltages  across the capacitors.  There, it di  
was assumed that the i,, u, were independent. It is the 

v = -L(i )  - , 
dt  

purpose of this  appendix to derive the form of the equa- 
tions in the case  when the i,, u ,  are not independent. I = -C(u)  - , du 

dt 
We therefore  assume that the u, are related by 

where 

L(i) = diag (LI(iI), , Lr(i,.)) 

and 

8 = AD + a( t ) ,  (A.1) 

where 

Similarly, we assume that 

z = B i  + b(t) ,  

where 

C(u) = diag (C,+,(ul+,), , C,+,(ur+,)). 

We partition these  matrices  as  follows : 

which  gives 
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Substituting these relations into Eq. (A.4) yields 

or 

(i + BTLB) - = - - B T L  - d f  d B  db 
dt df  dt 

We shall take this to be the  standard  form  for  the  equations 
when there is dependence in  the unknown variables. Note 
that  the matrices 

L* = i -I- B ~ L B  
c* = + A ~ C A  
are symmetric. Of course, if there are no time  variable 
elements in the network,  then the  standard  form becomes 

which is identical to the original form except that  the 
matrices L, C are  no longer  diagonal but symmetric. 
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