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A Numerical Analysis of the Transient Behavior

of a Transistor Circuit*

Abstract: This paper describes some difficulties encountered in the numerical solution of nonlinear circuit equations. A par-
ticular transistor circuit is analyzed to illustrate the nature of the difficulties and how they may be resolved. In this circuit it
is possible, without sacrificing accuracy of the physical model, to eliminate unimportant stray parameters whose presence de-
stroys the efficiency of most integration routines. A method based on a potential function is used for deriving the circuit equa-
tions and it is shown how these equations can be systematically reduced upon removing the stray parameters. Application of
such techniques to the circuit considered reduced the calculation time (on an 1BM 7094) from 30 minutes to 7 seconds.

Introduction

The purpose of this paper is to describe some results and
observations obtained during the investigation of the
transient behavior of a transistor circuit. Although only
one particular circuit was analyzed, it is felt that under-
standing this example will illuminate many of the dif-
ficulties encountered in the general case.

In the circuit considered, a nonlinear model is used for
the transistor. The problem is to numerically integrate the
nonlinear ordinary differential equations in a reasonable
amount of time and with reasonable accuracy. If the
problem is approached in a straightforward manner,
certain difficulties arise. One is that it takes too long to do
the integration (about thirty minutes on the IBM 7094);
the second is that, in some cases, the calculated response
of the simulated circuit would apparently reach an equi-
librium point which was not substantiated by experimental
evidence.

A thorough understanding of the cause of these dif-
ficulties and of methods for overcoming them allowed
computation time on an IBM 7094 to be reduced from 30
minutes to 7 seconds, with an accuracy of about 19,.

Thus, others involved in circuit analysis are likely to
find it useful to become aware of these kinds of computa-
tional difficulties and their resolution. It will be seen that
certain of the mathematical ideas used in the study repre-
sent an application of previous theoretical work on non-
linear circuits (see, for example, Ref. 1). During this study,
—;—’I‘mrs reported in this paper were obtained in the course of
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also, some slight extensions of the theory of nonlinear
networks were obtained; these make it possible (a) to
derive the differential equations of transistor circuits from
a potential function and (b) to give a uniform method of
reducing the circuit equations when some resistors are
set equal to zero.

The circuit and the circuit equations

The specific circuit under investigation is shown in Figure
1, and a detailed description of the components and their
numerical values is given in Appendix 1. The equivalent
circuit model of the transistor is also shown in Fig. 1,
enclosed in dashed lines. Now, although it is certainly
possible to derive the circuit equations using customary
methods, we choose to use the potential function approach
in order to illustrate its utility. For this purpose we define
a function P as follows:

P(vy, v, s, U4, Vs, Us)
= 3G.(Vee — vs — 02)* + §G,(vs + v))’°
+ 3Gs(s +vs — v1)* + 3G, (Vin — 0y — vs)°
+ 3Gsvh + 3G 10 + 3Geo(vs + vs — vs — v0)°

+ $Gpa(vs — ve)” + ‘/;“ Is(v) dv

+ f“ IE(D) dv + Ivg -+ Iw;,

where the G’s are the reciprocals of the corresponding R’s.




The circuit equations are given by*

Co = —Plrcairson
Ii=a(ve)lE(ve)
GBB=GBB(ve)

where
c, 0 0 0 0 0 (v, |
0 C, 0 0 0 0 vy
c_10 0 G o o0 0 LA
0 0 0 C4 0 0 Uy
0 0 0 0 Cvy) O vs
LO 0 0 0 0  Cylvg) Lo

and where the superscript dot (as in &) represents dif-
ferentiation with respect to time. Explicitly we may put
the circuit equations in the following form:

Co = Gv + |,
where
_ 0 _
G, Vin
f — GL VCC
G, Vin + GLVeo
0
L 0 J
oo | L M ] ’
M"  N(vs,vs)
r_Gs 0 Gs
L = 0 "'(Gg + GB) 0 ’
L Gs 0 —B
(65 0 0
M=|—-G, 0 o |,

L—B GCC GCC’

In the above, M” denotes the transpose of the matrix M
and

B=GL+Gp+GS+GCC9
Gz(us) = 15(05)1);1,
Gi(vs) = IE(UG)Us—l-

At first, one would be tempted to numerically integrate
the above equations. The problem is that some of the
eigenvalues of the matrix C™'G are very large and negative
(of the order of — 500 nsec” ") while others are relatively
small. In other words, some time constants in the circuit
are very small compared to the most significant ones. The
source of these small time constants can be located in the
three resistances Rg, R,, and R;¢, which range in value
from 5Q to 25Q, while the other resistances are 250Q or
larger.

In Section 3 we discuss why it is important, for numeri-
cal reasons, to eliminate the small time constants. For the
present we simply do so by setting the three resistors Rg,
R,, and R¢. equal to zero. Three capacitor loops are
thereby introduced and the number of differential equa-
tions reduced from six to three. It is possible, of course, to
obtain the reduced equations either from the circuit or
from the original equations ; however, the method for doing
this is not always straightforward and systematic. Using
the potential function approach, there is a natural way of
obtaining this reduction, the basis of which can be found
in Appendix 2. Here, we merely state the results and apply
them to the system under consideration. The reader not
interested in the technique itself can go on to Eq. (2.4) and
make a check of its correctness by using Kirchoff’s laws;
however, we suggest that the reader make use of both
methods of deriving Eq. (2.4) in order to appreciate the
simplicity of the potential function approach. If one first
writes down the six-dimensional equations, it is very diffi-
cult then to reduce those equations by letting R,, R,, and
R,. equal zero. On the other hand, once the potential
function has been obtained for R,, R,, and R,. not zero,
it can be used to derive either the six-dimensional equations
or the reduced ones. The potential function method will
display even greater advantage in the case of more com-
plicated networks containing many capacitor loops and
inductor cut-sets.

* The notation P_|,_,,,, stands for the gradient of P evaluated at
@ = b(v), where a is some parameter appearing in P(v).

_'(B + G, + G+ GBB(UG)) Gee Gee + GBB(UB)
N = Gee —(Gee + Gz(Us)) _(Gcc + a(UG)Gl(UG))
L Gee + GBB(UG) _<Gcc + aiGZ(Us)) "(Gcc -+ GBB(UG) + Gx(Ua)) 293
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Figure 1 Diagram of the transistor circuit. Components and values are as listed in Appendix 1.

The reduction we seek comes about because the un-
known variables are not independent; that is, there is a
relation

5= A6 + b, (2.1)

where v = (":) The equations in terms of v have the form
3

Cb = — P (v), where C is a diagonal matrix which we write
in block form

o)
c {c 0 J _
0 ¢
However, using Eq. (2.1), the resuits derived in Appendix 2
give the reduced equations as
C*p =

—Py(8) — 47Cb(),

where B(8) = P®) |5- 4440y and C* = C + A"CA.
To obtain this reduction in this case, we write

1]
v = .
¥
where
U Uy
5= |vy|, and b = |v;
3 We.

Since Rg = R, = Rg¢ = 0, we have

5= Ab + b(), (2.2)
where
0 1 1] 0
A=|—1 0 0|, and b(») = | V,(0]
-1 1 1 0
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Equation (2.2) is found simply by adding the voltages in
the capacitor loops that were formed when the small R’s
are neglected.

The new circuit equations are

A LiP-T4
C*p = — By — ATCB(), (2.3)
I=ai;Is(vs)
Ii=a(ve)IE(ve)
Gep=GBB(ve)
where*

15(04, Us,Us) = P(Unl?z, ,Ue)’5=45+b(:>

= %GL( Vee —vs — Ue)z + %GF(U5 -1 UG)2

-+ %GB( Vin — U4)2 + %GTUZ + %GBB(D‘t - Us)z

+ [)vs Is(v) dv + ./;” IE(U) dv + Tvg + 1105,

and
C*=C+ 47C4, with
C, 0 0
C=]0 GCfw) 0 |,
L0 0 Colwe)
‘c, 0 o0
=10 C, 0
L0 0 C;
—;—I;—g;eral, P(v) can be written as P(v) = — X\ 0y —

>, [2# i, dv, where the sum on p is taken over all resistors
(including sources) in the network, and the sum on X\ is taken
over all inductors. Since there are no inductors in this network,
P=—-3%,[tvi,dv,




Writing Eq. (2.3) explicitly, we have the three-dimensional system which has been investigated numerically:

C2 + C3 + C4 "Ca ’_Ca 1'74 GB Vm 'I‘ Cz Vm
-G C.+ C; + Cs(Us) Ci + C; Us | = GLVeo
—C;s C + C; G+ Cs + Ce(vs) Us GLVee
_(GB + Gy + GBB(UG)) 0 GBB(U6> M’ Uy
+ 0 — (G, + G, + G(vs)) —(Gr + G, + a(ve)Gi(ve)) Us | (2.4)

Gyg(ve) —(G, + G, + a;G(vs)) —(Gp + G, + Gpp(ve) + G1(vg)) L ve

For future reference we write the system of Eq. (2.4) in the
matrix form: C*6 = f + G 6, where we will be interested
in the eigenvalues of the matrix C*~'G, which vary con-
tinuously with .

In any difference scheme, it is necessary to obtain &
explicitly. In order to obtain 4 from Eq. (2.4), one would
have to compute C*( z‘:)—l; for a 3 X 3 matrix, this is easy
enough to do analytically, but for larger matrices it may
be necessary to compute C*(8) " at each time step. In
either case, it is advantageous to have C* symmetric. There-
fore, an additional advantage of using the potential func-
tion to derive the differential equations is that C* is auto-
matically a symmetric matrix.

Numerical analysis

If one solves an initial value problem for ordinary dif-
ferential equations numerically, an error is introduced into
the calculation at each integration step due to the in-
accuracy of the formula. The magnitude of this so-called
local truncation error is a measure of the accuracy of the
integration formula. The magnitude of the total error
depends upon the magnitude of the local truncation errors
and their propagation. Even when the local error at each
step is small, the total error may become large due to
accumulation and amplification of these local errors. This
growth phenomenon is called numerical instability.

It is exactly this phenomenon which makes it necessary
to reduce the system of differential equations under investi-
gation. To understand this, consider the following single
first-order linear differential equation:

% = —\y, A> 0. 3.1

With 3(0) = ¢, the solution of this equation is y(/)=ce .

Suppose, however, we try to solve this equation by some
one-step numerical integration method with fixed step
size 4. In any numerical scheme an error is introduced in
the calculation of the solution at each time step. Specif-

ically, let ¥, = Y\ cxacey T € at time 1, = kh, ¢, being the
total truncation error. Let r be the polynomial approxima-
tion to e (for small M) due to replacing the differential
equation by a difference equation. Then the computed

result of one time step is
Yi+1 = Vs
while the correct solution is

- Y
=€ Vhexacty =€ (Ve — 61:)-

Subtracting, we obtain,

yk+1(exa.ct)

€1 = (r— e—)\h)yk(exact) = re;.

Clearly, the error ¢, will be amplified if r > 1, which is
possible for sufficiently large Ak; at time ¢t = (n -+ k)i, it
will have grown by the factor r". Thus, meaningful results
can be obtained only for r < 1. In this case, errors com-
mitted in the past die out exponentially, and the total
truncation error will be of the order of the local truncation
error, (F — € ")V, (oxacr,- The local truncation error can be
interpreted as the error committed by applying the integra-
tion formula to the exact solution at the previous point.
In the Runge-Kutta method, this error is of order 4°. More
precisely, the Runge-Kutta method approximates ™ by
r=1+4 (=M) + H=M)" + H=)® + ()"
One finds that » < 1 only when —2.78 < —MA < 0.

We note, also, that as —M\A decreases to —2.78, r ap-
proaches 1 while e~ ™ approaches 0.062. This means that,
while the Runge-Kutta method is actually stable as —\A
approaches —2.78, propagation errors die out more
slowly and different asymptotic behavior is obtained for
the computed solution in the neighborhood of —\: =
—2.78. Hence, for reasons of accuracy, one should really
have M < 1, say.

Finally, we observe that the above remarks are valid
for linear multi-step methods also. For these methods the
situation is more complex due to the introduction of so-
called parasitic solutions to the difference equation.

295

TRANSIENT BEHAVIOR OF A TRANSISTOR CIRCUIT




296

In summary, we emphasize that in numerical integra-
tion, the total truncation error is a superposition of local
errors introduced in the various integration steps. The
magnitude of total truncation error thus depends on the
magnitude of the local errors and on whether the latter
are amplified or damped through propagation.

Results

In describing the results we shall first discuss the three-
dimensional system which is a limiting case of the original
six-dimensional system. Then, we shall discuss the six-
dimensional system, briefly indicating why so much com-
puting time must be allowed and why the results may not
always be reliable.

A number of fixed step integrating routines were used
on the three-dimensional system. The Runge-Kutta method
was used with step sizes of 0.25, 0.50, and 1.0 nsec. Also,
several Adams predictor-corrector formulas and a formula
due to Hamming® were tried with step sizes of 0.25 and
0.50. Stable results were obtained for all three step sizes
with the Runge-Kutta method. For 2z = 0.25 and 0.50 the
results were in good agreement with experimental evidence
whereas with # = 1.0 the computed response seemed to
level off to a different equilibrium value. For # = 0.50 both
the Adams and Hamming methods were unstable. How-
ever, for 2 = 0.25 excellent results were obtained with both
methods.

During one of the Runge-Kutta runs, the eigenvalues
of the variable matrix C*™'G of the three-dimensional
system were calculated at each integration step. The eigen-
values were always negative, and the largest negative value,
—3.1 nsec™?, occurred at the initial equilibrium point. By
analogy with the analysis of Eq. (3.1), one should choose,
for stability with the Runge-Kutta method, £ |\|n..< 2.78.
This condition is satisfied for £ = 0.25 and 0.50, but not
for 1.0. In fact, the case # = 1.0 is on the borderline of
numerical stability, and one can expect either an unstable
result or a different asymptotic behavior of the numerical
solution. The latter was observed. For both the Adams and
Hamming formulas it is necessary to choose £ [\ .. < C
for numerical stability. The value of the constant C depends
on the formula used and is less than 1.5. Again, for the
more general nonlinear problem, the modified criteria
using A |\ |m.x gave excellent results.

It was observed that the largest negative eigenvalue of
C*'G increased from —3.1 to —0.55 when the circuit
was forced by V;.(#). Thus, in the transient region, the
various methods would have been stable with larger step
sizes. However, during periods of fast variation, the local
error increases and the step size must be controlled ac-
cordingly. Since the methods used are all quite accurate, it
was found that the fixed step size, chosen on the basis of
the numerical stability requirements, was small enough to
guarantee a reasonably small local error throughout. It is
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interesting that it was more difficult, in terms of step size,
to calculate the solution near the equilibrium value than
in the transient region.

For the six-dimensional system, only the Runge-Kutta
method was used. For step sizes of # = 0.5 and 0.01 the
calculation was unstable. For # = 0.0025, results were
obtained that were within 19, of those for the three-
dimensional system. A preliminary analysis indicated that
the largest negative eigenvalue of the six-dimensional
system was approximately — 500 nsec™'. Again, the simple
criterion £ [\ |n.x < 2.78 yielded a good estimate for the
step size. It seems clear that it is the aspect of numerical
stability that is important for this particular problem.

A variable step integration routine has been used on
this same circuit by others.®> In that routine, an error
criterion based on the local truncation error was used in
choosing the step size. Essentially, this criterion reduced
the step size in rapidly varying regions and increased it in
slowly varying ones. Our results indicate that since sta-
bility, and not local error, is the limiting factor in this
problem, and since || decreased in the rapidly varying
region, it would have been possible, in fact, to increase
step size in this region.

To indicate why the three-dimensional system is a good
approximation to the six-dimensional system, consider
an analogy with linear systems. In passing to the three-
dimensional system, we deleted three independent solu-
tions associated with eigenvalues less than —100. The
remaining three eigenvalues were negative but greater
than —3.1. Since the general solution to a six-dimensional
linear system has the form fo:l C.c', where the \; are
the eigenvalues, the terms associated with large negative
eigenvalues die out quickly and, therefore, can be ignored.
Hence, the difference between solutions of the three-
dimensional and six-dimensional systems should be negligi-
ble. It should be pointed out that there is a difference in
the equilibrium solution between the three- and six- dimen-
sional models. However, this error is roughly of the order
of the ratio between the resistors neglected and those re-
tained. In any specific problem it would be necessary to
determine if this error is acceptable.

The computing time for the three-dimensional system
was about 7 seconds while that for the six-dimensional
system was about 30 minutes. This reduction is largely
accounted for by the 200-fold (0.5/0.0025) increase in
step size. Thus, by passing to the three-dimensional sys-
tem, one can obtain equally good results and compute
approximately 250 times faster.

Figures 2 and 3 are graphs of the voltages vs and vs.
Superimposed on Fig. 2 is the input voltage V;.(f). In
each of these figures we have plotted the (graphically
identical) output of both the reduced and the full matrix
system. The full system was computed only for 80 nsec
because the integration time took 11 minutes.
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Figure 3 Voltage Vo versus time.
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Conclusions

The difficulties encountered in any attempt to numerically
solve electrical circuit equations can stem from two sources :
the electrical circuit itself, and the numerical integration
routine. Hence, to overcome these difficulties it will not
always be sufficient to be guided purely by physical con-
siderations. For example, numerical computations may be
made inefficient by the existence of certain parameters
that are unimportant to the functioning of the circuit.
Thus, in the circuit analyzed, here, some small resistors
were included; some, in fact, were included purposely
(apparently to eliminate capacitor loops in the circuit).
Their presence forced the choice of a very small time step
in the integration procedure and hence a large amount of
computation time was needed. By eliminating these small

resistors, the computation time was reduced from 30
minutes to 7 seconds with the results agreeing to within
19;. Thus, we conclude that, for numerical reasons: (a)
It is bad practice to insert small resistors in order to elim-
inate capacitor loops; (b) unimportant stray parameters
should not be included in the circuit because they may
introduce a large increase in the computation time; () in
many cases, it is possible, by first making an elementary
analysis of the circuit equations, to decide which are the
unimportant parameters.

Appendix 1

This section presents a detailed description of the circuit
elements in Fig. 1. The units are as follows: resistances are
given in kilohms (kQ); capacitances in picofarads (pF);
voltages in volts (V); currents in milliamperes (mA); and
times in nanoseconds (nsec).

The parameters are as listed below:

R, =101 R, = 10*
Rs = .01 R, = .025
Rz =5 R, = 10*
Ree = .007

C, =708 C,=5.39

C; =13 C, = 17091

VCC = 3.0 VOC’ .47

VOE = .69 Vstop = .01

Ioe = 32X 1070 I,z = .51 X 107"

rs = 280.0 7, = .54

n = .68 m = .61

k = .7059 ve = 40.6 volts™!
K = .7584 ve = 20.7 volts™
a; = .2 a(vs) = const = .9985

The remaining circuit elements are variable and are
given as follows:

]s(Us) = 100(1 - 3_70“)
IE(UG) = IOE(G’YE”B -_ 1)
Cs(vs) = Cre(ts) + Cpe(vs)

K/(Us + Voo)* if (vs + Voc). > Veton
Crc(vs) = Ylast computed value of C(vs)

lf (05 + VOC) < Vstop
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CDC(Us) = Yc¢ 1007'.3‘3‘_7 e

Cs(vs) = Crz(vs) + Cpr(ve)
k/(vs + Vor)™ if (06 + Vor) = Vi
Crx(vs) = qlast computed value of C,(vs)
1 if (s + Voo) < Vietop

8

CDC(U5) = 'YEIoEaTceyEv

Ry is a function of Iz(vs) and is determined by linear
interpolation from the following table:

Ig(mA) Rpp(kQ)
0 .275
0.3 .215
3.0 123

10.0 .083
30.0 067

The input voltage V;.(¢) is given in Fig. 2. The initial
values used are t = 0, v, = 3,0, = 0,03 = 3, v, = 0,
Uy = 3, and Vg = 0.

Appendix 2

In Ref. 1 it was shown that the equations of an electrical
network could be written in a standard form

-\ di, _ 9P _
Lp(’p) dt = 6ip s p = 1: s I

d, _ _op _
Cﬂ(oﬂ dt - (")v,, > =r + 1: ,r + S,

where the i, are the currents through the inductors and

the v, are the voltages across the capacitors. There, it

was assumed that the i,, v, were independent. It is the

purpose of this appendix to derive the form of the equa-

tions in the case when the i,, v, are not independent.
We therefore assume that the v, are related by

= At + a), A1)
where
Uri1 {ﬁ}
U = : = -
. b
Ur+a

Similarly, we assume that

1= Bi + b(t), (A.2)
where
i .
1
l - . = .
. U
298 i,
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In Ref. 1 it was shown that there exists a function P(i, v)
depending only on (i, v) such that

r+8

P(i,v) = —fp Z v, di, +fr > Lodv., (A3)

o=r+1

where T’ is some curve in E, (b-dimensional Euclidean
space, where b is the number of branches of the network)
with end point determined by (i, v). Here I, is the current
through the capacitor with voltage v,, and ¥V, is the voltage
across the inductor with current i,. Using the notation
(u, w)y = Z, u, w,, we write Eq. (A.3) as

P(i, 0) =fp[_(’7’ 1)
— (P, di) + (I, db) + (1, db)].

Using Egs. (A.1) and (A.2), this becomes
B, 8) = P(i,v)

F=Ad+a(t)
I=Bi+d(L}

= fr —(V, Bdi) — (V, di) + (I, 4d8) + (I, db).

From this we read off

(A.4)
afj= AT+ ]
db

However, we also have, using the elementary laws for
inductors and capacitors,

) di
V = —L(i) a5
dv
1= _C(D) dr s
where
L(i) = diag (L,(i), -+, L.{(i,)
and

C(U) = diag (Cr+1(vr+1)9 tt Cr+s(ur+s))-
We partition these matrices as follows:

L@:{i@) 0 } C(U)=[C~‘(5) .O
0 L) 0 ()

-

which gives

> Fen 9Ty pdi  db o _pdi
VﬁwL(l)dt— L<Bt+dt>’ V= dt
fe —emd8 - o 420 1@) _ _pds,
I=—c0) t (Adt+dt » 1= =C




Substituting these relations into Eq. (A.4) yields

9P _ <i s”z) p df
af_BLBdt+dt+Ldt

aP _ _ ( do 1@)_ 5 do
a6 ACAdt+dt Cdt’
or
rpmdl _ 9P _ o rodb
(L+BLB)dt~ai B'L—
re 48 _ 3P rxda
(C+ACA)dt— 55— 4 C

We shall take this to be the standard form for the equations
when there is dependence in the unknown variables. Note
that the matrices

L*=L+4+ B"LB
c*=C+ 4"C4
are symmetric. Of course, if there are no time variable
elements in the network, then the standard form becomes

di 9P
*— =
L dt a1
db 9P
* 22—
¢ dt a0’

which is identical to the original form except that the
matrices L, C are no longer diagonal but symmetric.
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