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Stability of Flexible Tapes in Parallel Flow 

Abstract: A stability  analysis by  the  method of normal  modes  is  carried out for a plane  Poiseuille  flow  in a channel  with a 
free-flying  elastic tape in  midstream.  The  effects of transverse  and  rotary  inertia and flexural  rigidity of the  tape  on  the 
stability  criteria  are  investigated. An increase of transverse  inertia  due  to  heavier  tapes  tends  to  decrease  the  critical  Reynold’s 
number  while  the  addition  of  flexural  rigidity  improves  the  stability criteria by  increasing  the critical Reynold’s  number. 

introduction 

Hydrodynamic  stability in the presence of moving  flexible 
boundaries has become an important concern with the 
increasing  use of thin flexible  tapes. This paper  addresses 
one  aspect of that concern by seeking to establish the 
instability  conditions for the flow in a channel (plane 
Poiseuille flow) for the case  where there is a “free-flying” 
elastic tape in the center of the channel. The tape moves 
with the maximum stream velocity and experiences no 
shear drag from the fluid. It is  also our aim to investigate 
the effect  of  density, rotary inertia, and flexural  rigidity 
of the tape upon the critical Reynolds  number of the flow 
above which instability may  occur. A similar  problem when 
the boundary is a non-rigid  wall  possessing  bulk  damping 
and flexibility has been considered by Hains and Price 
[I] in connection  with the control of boundary layer and 
prevention of turbulence. 

For a better understanding of the interaction between 
fluid and a moving  elastic tape, we recall the basic equa- 
tions  governing  such interactions and properly characterize 
the primary  (time  independent) and perturbation solutions. 
The analysis of stability is then  made by the method of 
normal modes as described by Lin [2]. 

The resulting equations are, of course, the Orr-Sommer- 
feld equation with boundary conditions which  reflect the 
interaction between tape and the fluid.  These equations 
are solved  by the finite  difference  method  developed  by 
L. H. Thomas [3] and by a combination of iteration and 
searching  process. The results  generally  show an increase 
in critical Reynolds  number  with an increase in flexural 
rigidity and/or a decrease in density of the tape; they  also 
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include neutral stability  curves for various  values of the 
tape parameters. 

Formulation of the problem 

Let D be a plane  region  occupied  by a viscous incom- 
pressible  fluid  whose  component  velocities  in the direction 
of the Cartesian coordinates xi(i = 1,2) will be denoted by 
u;(xi, t )  where t is the time.  Let the boundary I’ of D 
comprise  two portions, one  consisting of rigid walk and 
the other consisting of an inextensible  elastic tape;  the 
two are denoted, respectively, by rR and rF. The flexible 
portion of the boundary may  be presented  in the parametric 
form 

r F  : xi = ui(s, t ) ,  (1) 

where s is the length of arc along rP,  as  in  Fig. 1. The 
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Figure 1 A tape segment:  geometry  and  forces. 



equations of fluid motion and the boundary conditions are then be substituted into Eq. (9), and  the result into Eq. (6), 
to obtain - - 
a LTti - E -  (k  - ko)ni 

a 
dS 8s 

in D; (3) 

When rij is known, Eq. (17) becomes,  with the  aid of 
Eqs. (13) and (15)-(16), two equations involving three 
unknowns, T and y,. The necessary third equation is the 
inextensibility condition, Eq. (8). The formulation of the 
problem is, therefore, complete if  we adopt, in addition to 
Eqs. (2)-(5), Eqs. (8) and (17). 

When the fluid is in a state of steady motion the flexible 
boundary assumes a shape which does not change with 
time. Therefore, there exists a function F(y,) such that  the 
coordinates y i  satisfy F(y i )  = Const. Differentiation yields 

The  equations of motion of the inextensible tape  are 

a M  aZa 
as 

N + p o l -  - 0 ,  and 
at2 - 

" 

where 

R i  = T t ,  f iVni, 

A4 = -EZ(k - ko), 

and since dF/dyi # 0, the  two plane vectors dy;/dt and 
dyi/ds  are proportional, 

T and N are  the tangential and  normal forces acting on 
the tape, and a is the angular inclination of the  tangent 
(see Fig. 1). The vector f i  represents the force per unit area 
acting on  the tape due to  the fluid motion and is given  by 

The proportionality  factor Vis, of course, the speed and  it 
can be shown that inextensibility condition of Eq. (7) 
implies that  Vis  at most a function of t (independent of s). 
For steady state solutions, V = Const., Eq. (16) implies 
that yi = yi(s + V,) and u and p are functions of x only. 

Let us now turn  to the specific problem, that of hydro- 
dynamic stability of Poiseuille flow with a free-flying 
elastic tape located in midstream. The free-flying condition 
of the  tape implies that there is no shear stress acting on 
the  tape due to fluid motion. In  order  that this be true, 
there  must exist the steady state solution 

and where ni is the  unit normal vector and is related to  ti 
(that is, to the  unit tangential vector) by the equations 

fi, = V[1 - ( ~ ~ / h ) ~ ]  ) 

e,, = eZ2 = 0 ,  e , ,  = -ez1 = 1. (14) 

The  curvature k and the time rate of change of a may also 
be expressed in terms of y ,  by 

where V is the maximum or  the mid-stream velocity  which 
is also  the tape velocity, 2h is the  channel width, and P is a 
constant reference pressure. To investigate stability, we 
introduce-in the  usual fashion-the perturbations 

The undeformed curvature is represented by k ,  and the 
constants p o ,  d, E, and Z = d 3 / U  are, respectively, the 
density, thickness, Young's modulus, and moment of 
inertia per unit width of the tape. From  the equations of 
conservation of angular momentum, Eqs. (7) and (IO), 
one  can solve for N in terms of k and a. The result may 

ui = E,(.,) + € U I ( X i ,  t) + * * - 
P = P(xJ + € P ' ( X j ,  t )  + * *  

Yi  = Y i ( S  + Vt) + Ey:(S, t) + * * * 

T = T(s + Vt) f rT'(s, t) + 22 1 
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Growth or decay of the perturbed quantities u:, p', etc., The last  boundary  condition in Eq.  (25)  is obtained from 
represents the instability or the stability of the primary flow Eq. (17)  by assuming that y i  and T' are waves  which 
of the equations of  (20). travel in the positive  s-direction and which are in  phase 

the perturbed solutions  may be written  in the form 
Adopting Lin's approach by the theory of normal modes,  with the wave forms,  Eq. (22). 

Numerical  solution  and  results 
The numerical  finite  difference  method  developed by L. H. 
Thomas [3] is  used to solve the Orr-Sommerfeld equation 
(23) and the associated boundary conditions. The method 

{ 4 ,  u:, P'I  = i v#'(e), iw v#(e), P ( e ) }  

x exp [ - i w k  - ?)I, (22) 

where 6 = x,/h, #, and P are functions of 8 only, and 
$'(e) = d#/d8. Here o and c represent the wave number 
and speed of the disturbance  traveling in the x,-direction. 
Im (c)  > 0 implies  stability, and Im (c)  < 0 instability. 
The continuity equation, Eq. (3), is satisfied  automatically 
by  Eq.  (22). The equations of motion of Eq. (2)  yield the 
Orr-Sommerfeld equation for #(e), - 1 < 8 < 1, 

( D ~ - ~ ~ ) ~ $ =  -iw~{(l- e 2 - C ) ( ~ 2 - w 2 ) # + 2 + ) ,  

(23) 

where R = hV/v is the Reynolds  number and D" = d"/dO". 
The boundary conditions of Eqs.  (4) and (5 )  give 

#(=tl) = #'(*1) = 0 

#(O) = - ( 1  - c)  (24) 

#'(O) = 0 

has  been  used  by Hains and Price in their  investigation of 
stability of Poiseuille  flow  between  flexible  walls [l]. Rather 
than describe the details of the finite  difference  method, 
we refer the reader to the above two references. 

The homogeneous boundary value  problem,  Eqs. (23) 
and (23, has a solution if and only if the constants w, c,  R, 
K, ,   K , ,  K 3 ,  satisfy a characteristic equation of the form 

A(w,c, R ,  K1, Kz,  K3) = 0. (28) 

The function A is  regarded  as a complex-valued  function of 
the complex  variable c. 

Of particular interest  in the stability  analysis  is the 
condition of neutral stability for which Im (c) = 0. This 
condition, for fixed K,, Kz ,  Ka ,  represents a curve in the 
w, R plane. In order to plot this curve we set Im (c) = 0, 
and fix the values of the constants K , ,  K z ,  K ,  and R. 
Setting the real and imaginary parts of Eq. (1) equal to 
zero we obtain two equations of the form 

The above boundary conditions  allow #(e) to have  sym- 
metric solutions with  respect to 8. Therefore,  one may con- A,(w, c,) = 0, 

sider the smaller interval 8c  (0, l), taking due  account of 
the forces  acting on the tape from the fluid  in the region 
- 1 < 8 < 0. Calculation of Eq. (17) in terms of # com- 
pletes the description of the eigenvalue  problem #(e) 
satisfying the Orr-Sommerfeld equation (23) for 0 < 0 < 1, 
subject to the following boundary conditions: 

#(1) = #'(1) = 0 

#'(O) = 0 (25) 

#"'(O) - K#(O) = 0 

A&, c,)  = 0, 

where subscripts r and i refer to real and imaginary parts. 
The equations of  (29)  were  solved  by a searching  method 
and, for sufficiently large R, yielded two  solutions (w,, cvI) 
and (wz, cT2) which correspond to the intersections of the 
upper and lower  branches of the neutral stability  curve 
with the line R = Const. From these  known  values of w 
and c, and with  slight  changes  in R, it proved a simple 
matter to trace the neutral stability  curve.  Actually, at 
the beginning we used K ,  = K ,  = K ,  = 0 (no tape) and 

where R = 10000, and constructed the neutral stability  curve 
for the Thomas  problem  up to the value of R = 250 X 

2 

(K, + K,~')(I - C ) R  - w K3>, This  proved the feasibility of our method and, of course, 
(1 - c)R yielded confirmation of Thomas's  results, as well  as an 

and 

(26)  extension of them.  Then we proceeded to construct Shen's 
[4] amplification rates for the plane  Poiseuille  flow  with 
rigid  walls.  These  represent  curves in w, R plane for which 
c; = Const. < 0. In Fig. 2, the outermost curve  is the 
neutral stability curve, and the closed  curve for which 
c; = - lo-' is the first  amplification rate curve  which 

(27) closed on itself for R < 240 X lo3. The intermediate  curve 
represents an amplification rate of ci = -2 X The 
results are plotted against R"3 to allow  direct  comparison 
with  Fig.  3.1  of  Reference  2.  We obtain R,, = 5775 for 
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Thomas’s 5780 but we disagree  somewhat  with  Shen’s 
results. 

Once the case  of  rigid  walls  was  dispensed  with, the 
effect  of the tape parameters was introduced gradually. 
From Eq. (26) it appears that the effect  of the rotatory 
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Figure 2 Stability  characteristics of plane Poiseuille motion. 

Figure 3 Effect of flexural rigidity of the tape  on the  sta- 
bility of flow. 
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inertia parameter K ,  is very small  compared to K1 for 
K ,  - Kl(d/h)2 and for a thin tape d << h. It was  decided, 
therefore, to set K ,  = 0 in all subsequent  computations. 
The effect of flexural  rigidity  parameter K3 is  shown in 
Fig. 3. Here we chose K ,  = 0 and chose for K ,  the sequence 
of values 0, 10, 20 * * 170. The left-most  curve is again 
Thomas’s neutral stability  curve and the other curves  show 
the gradual increase in stability  with  increase in K3. There 
appears to be no tendency to an asymptotic  value as K3-+ 0 
other than R,, -+ 00. This seems to show that plane 
parallel flow between two rigid  walls is unconditionally 
stable for the case in which one  wall  is stationary and the 
other moves at the maximum  fluid  velocity and experiences 
no drag. 

The effect of increasing  transverse inertia K1 when the 
other parameters K , ,   K ,  are set equal to zero  is  shown 
in  Fig. 4. It is  seen that, generally,  heavier  tapes appear to 

Figure 4 Effect 
bility of flow. 

of transverse  inertia of the  tape  on the sta- 
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be  less  stable. Also, the upper branch of neutral stability 
curve  opens up with  increasing K1 to the point where, at 
K1 = 6 X it is almost  vertical and for larger  values 
of K ,  there is no critical R below  which the flow is stable. 
With the addition of some  flexural  rigidity,  however,  such 
an unconditionally unstable flow  may  become stable for 
sufficiently small R. This is shown in Fig. 5 ,  where the 
neutral stability  curve  corresponding to the values of 
K1 = lo-‘, K2 = K3 = 0 is  modified by choosing K 3  = 10. 
The resulting neutral stability  curve  indicates  instability 
only for R > 5112. 
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Figure 5 Neutral stability  curve for Kl = lo4 and K ,  = 10. Received January 19, 1966 
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