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Stability of Flexible Tapes in Parallel Flow

Abstract: A stability analysis by the method of normal modes is carried out for a plane Poiseuille flow in a channel with a
free-flying elastic tape in midstream. The effects of transverse and rotary inertia and flexural rigidity of the tape on the
stability criteria are investigated. An increase of transverse inertia due to heavier tapes tends to decrease the critical Reynold’s
number while the addition of flexural rigidity improves the stability criteria by increasing the critical Reynold’s number.

Introduction

Hydrodynamic stability in the presence of moving flexible
boundaries has become an important concern with the
increasing use of thin flexible tapes. This paper addresses
one aspect of that concern by seeking to establish the
instability conditions for the flow in a channel (plane
Poiseuille flow) for the case where there is a “free-flying”
elastic tape in the center of the channel. The tape moves
with the maximum stream velocity and experiences no
shear drag from the fluid. It is also our aim to investigate
the effect of density, rotary inertia, and flexural rigidity
of the tape upon the critical Reynolds number of the flow
above which instability may occur. A similar problem when
the boundary is a non-rigid wall possessing bulk damping
and flexibility has been considered by Hains and Price
[1] in connection with the control of boundary layer and
prevention of turbulence.

For a better understanding of the interaction between
fluid and a moving elastic tape, we recall the basic equa-
tions governing such interactions and properly characterize
the primary (time independent) and perturbation solutions.
The analysis of stability is then made by the method of
normal modes as described by Lin [2].

The resulting equations are, of course, the Orr-Sommer-
feld equation with boundary conditions which reflect the
interaction between tape and the fluid. These equations
are solved by the finite difference method developed by
L. H. Thomas [3] and by a combination of iteration and
searching process. The results generally show an increase
in critical Reynolds number with an increase in flexural
rigidity and/or a decrease in density of the tape; they also
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include neutral stability curves for various values of the
tape parameters.

Formulation of the problem

Let D be a plane region occupied by a viscous incom-
pressible fluid whose component velocities in the direction
of the Cartesian coordinates x;(i = 1, 2) will be denoted by
ui(x;, ) where ¢ is the time. Let the boundary I" of D
comprise two portions, one consisting of rigid walls and
the other consisting of an inextensible elastic tape; the
two are denoted, respectively, by 'z and I'r. The flexible
portion of the boundary may be presented in the parametric
form

Tp:ix: = _,V.'(S, t)’ (1)

where s is the length of arc along T'f, as in Fig. 1. The
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Figure 1 A tape segment: geometry and forces.




equations of fluid motion and the boundary conditions are

du; du, _ _10p  p u .
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o 0, in D; (3)

u; = 0, onT'z; (4)
3y,

u,(yi(s, 0, 1) = 5 (5)

The equations of motion of the inextensible tape are

2

IR, = g

s + fi = pod atz » (6)
oM 9’

E— — N+ pol a2 = 0, and (7)
9y: 9ys _

ds ds L (8)
where

R, = Tt; + Nny, ©
M = —EI(k — k), (10)

T and N are the tangential and normal forces acting on
the tape, and « is the angular inclination of the tangent
(see Fig. 1). The vector f; represents the force per unit area
acting on the tape due to the fluid motion and is given by

f: = _(Tii)x=y n;, (11)
where
au; 6”,’

and where »; is the unit normal vector and is related to ¢,
(that is, to the unit tangential vector) by the equations

- = 9
n; = €;it;, t; = 9s (13)

€1 = €35 = 0, €1g = @31 = 1. (14)

The curvature k and the time rate of change of « may also
be expressed in terms of y; by

_da _ on, 8%y dy:
k= s L os % a5 a5 (15)
d%y; 9y,
da _ yi 0y; (16)

ar % 95t ds

The undeformed curvature is represented by %, and the
constants po, d, E, and I = d°/12 are, respectively, the
density, thickness, Young’s modulus, and moment of
inertia per unit width of the tape. From the equations of
conservation of angular momentum, Egs. (7) and (10),
one can solve for N in terms of k£ and «. The result may

then be substituted into Eq. (9), and the result into Eq. (6),
to obtain

a a
& [Tt,- -— E& (k —_ ko)ni:l - (Tii)x-yni

2 2

= pod G + pol 5 [%’—‘ n] (17)
When 7,; is known, Eq. (17) becomes, with the aid of
Egs. (13) and (15)-(16), two equations involving three
unknowns, T and y;. The necessary third equation is the
inextensibility condition, Eq. (8). The formulation of the
problem is, therefore, complete if we adopt, in addition to
Egs. (2)-(5), Egs. (8) and (17).

When the fluid is in a state of steady motion the flexible
boundary assumes a shape which does not change with
time. Therefore, there exists a function F(y,) such that the
coordinates y, satisfy F(y,) = Const. Differentiation yields

v os "oy O a8
and since dF/dy; # 0, the two plane vectors dy;/dt and
dy;/ds are proportional,

a_y_i = Vgﬁ. (19)

at ds

The proportionality factor V is, of course, the speed and it
can be shown that inextensibility condition of Eq. (7)
implies that ¥ is at most a function of ¢ (independent of s).
For steady state solutions, V' = Const., Eq. (16) implies
that y; = y.(s -+ V.) and u and p are functions of x only.

Let us now turn to the specific problem, that of hydro-
dynamic stability of Poiseuille flow with a free-flying
elastic tape located in midstream. The free-flying condition
of the tape implies that there is no shear stress acting on
the tape due to fluid motion. In order that this be true,
there must exist the steady state solution

i Vit — (xz/h)z]

ulV _
—= (x:/h) + P 9 (20)
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I

iy = y; = T =0
where V' is the maximum or the mid-stream velocity which
is also the tape velocity, 2/ is the channel width, and Pisa

constant reference pressure. To investigate stability, we
introduce—in the usual fashion—the perturbations

u; = a(x;) + eul(x;, 1) + -
p =Dp(x) + '(x;, 0) + - ]
i =3+ V) + epils, ) + -+~ J
T = T(s + Vi) + eT'(s, £) + -+

(21)
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Growth or decay of the perturbed quantities u%, p’, etc.,
represents the instability or the stability of the primary flow
of the equations of (20).

Adopting Lin’s approach by the theory of normal modes,
the perturbed solutions may be written in the form

{ul, us, p'} = {VY/(0), iwV¥(6), P(6)}

con[ sl ]

where 8 = x,/h, ¥, and P are functions of # only, and
¥'(0) = dy/df. Here w and c represent the wave number
and speed of the disturbance traveling in the x,-direction.
Im (¢) > 0 implies stability, and Im (¢) < 0 instability.
The continuity equation, Eq. (3), is satisfied automatically
by Eq. (22). The equations of motion of Eq. (2) yield the
Orr-Sommerfeld equation for Y(6), —1 < 8 < 1,

(D* =)’y = —iuR{(1 — 6" —c)(D* — )¢ + 29},
(23)
where R = hV/v is the Reynolds number and D" = d"/df".
The boundary conditions of Egs. (4) and (5) give
w&n=w&n=ﬂ
Y(0) = —(1 —¢) J (24)
Y'(0) =0
The above boundary conditions allow (6) to have sym-
metric solutions with respect to 8. Therefore, one may con-
sider the smaller interval 8¢ (0, 1), taking due account of
the forces acting on the tape from the fluid in the region
—1 < 6 < 0. Calculation of Eq. (17) in terms of ¥ com-
pletes the description of the eigenvalue problem /()

satisfying the Orr-Sommerfeld equation (23) for0 < 6§ < 1,
subject to the following boundary conditions:

Y1) = ¢(1) =0

V() =0 ' (m
V(0) — K$(0) = 0
where
K = —%l’wg{<K1 + szz)(l — R — (l—jc)_R K3},
(26)
and
o d
K1 = -; h
_hd L
X - 1, 27
_ Elp
K3 - hﬂz
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The last boundary condition in Eq. (25) is obtained from
Eq. (17) by assuming that y! and T’ are waves which
travel in the positive s-direction and which are in phase
with the wave forms, Eq. (22).

Numerical solution and results

The numerical finite difference method developed by L. H.
Thomas [3] is used to solve the Orr-Sommerfeld equation
(23) and the associated boundary conditions. The method
has been used by Hains and Price in their investigation of
stability of Poiseuille flow between flexible walls [1]. Rather
than describe the details of the finite difference method,
we refer the reader to the above two references.

The homogeneous boundary value problem, Eqs. (23)
and (25), has a solution if and only if the constants w, ¢, R,
K,, K,, K, satisfy a characteristic equation of the form

Alw, ¢, R, Ky, K3, K;3) = 0. (28)

The function A is regarded as a complex-valued function of
the complex variable c.

Of particular interest in the stability analysis is the
condition of neutral stability for which Im (¢) = 0. This
condition, for fixed K, K,, K;, represents a curve in the
w, R plane. In order to plot this curve we set Im (¢) = 0,
and fix the values of the constants K,, K., K; and R.
Setting the real and imaginary parts of Eq. (1) equal to
zero we obtain two equations of the form

A"(w, C,.) = 0,
Afw,c) =0,

(29)

where subscripts r and i refer to real and imaginary parts.
The equations of (29) were solved by a searching method
and, for sufficiently large R, yielded two solutions (w;, ¢.,)
and (w,, ¢,,) which correspond to the intersections of the
upper and lower branches of the neutral stability curve
with the line R = Const. From these known values of w
and ¢, and with slight changes in R, it proved a simple
matter to trace the neutral stability curve. Actually, at
the beginning we used K; = K, = K; = 0 (no tape) and
R = 10000, and constructed the neutral stability curve
for the Thomas problem up to the value of R = 250 X 10.2
This proved the feasibility of our method and, of course,
yielded confirmation of Thomas’s results, as well as an
extension of them. Then we proceeded to construct Shen’s
[4] amplification rates for the plane Poiseuille flow with
rigid walls. These represent curves in w, R plane for which
¢; = Const. < 0. In Fig. 2, the outermost curve is the
neutral stability curve, and the closed curve for which
¢; = —107? js the first amplification rate curve which
closed on itself for R < 240 X 10°. The intermediate curve
represents an amplification rate of ¢; = —2 X 1072, The
results are plotted against R'/? to allow direct comparison
with Fig. 3.1 of Reference 2. We obtain R., = 5775 for




Thomas’s 5780 but we disagree somewhat with Shen’s
results.

Once the case of rigid walls was dispensed with, the
effect of the tape parameters was introduced gradually.
From Eq. (26) it appears that the effect of the rotatory
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Figure 2 Stability characteristics of plane Poiseuille motion.

Figure 3 Effect of flexural rigidity of the tape on the sta-
bility of flow.
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inertia parameter K, is very small compared to K, for
K, ~ K(d/h)" and for a thin tape d < k. It was decided,
therefore, to set K, = 0 in all subsequent computations.
The effect of flexural rigidity parameter K is shown in
Fig. 3. Here we chose K, = 0 and chose for K the sequence
of values 0, 10, 20 - - - 170. The left-most curve is again
Thomas’s neutral stability curve and the other curves show
the gradual increase in stability with increase in K. There
appears to be no tendency to an asymptotic value as Kz;—> 0
other than R,, — o, This seems to show that plane
parallel flow between two rigid walls is unconditionally
stable for the case in which one wall is stationary and the
other moves at the maximum fluid velocity and experiences
no drag.

The effect of increasing transverse inertia K; when the
other parameters K,, K; are set equal to zero is shown
in Fig. 4. Tt is seen that, generally, heavier tapes appear to

Figure 4 Effect of transverse inertia of the tape on the sta-
bility of flow.
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Figure 5 Neutra] stability curve for K; = 10™® and K; = 10.
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be less stable. Also, the upper branch of neutral stability
curve opens up with increasing K, to the point where, at
K, = 6 X 107, it is almost vertical and for larger values
of K, there is no critical R below which the flow is stable.
With the addition of some flexural rigidity, however, such
an unconditionally unstable flow may become stable for
sufficiently small R. This is shown in Fig. 5, where the
neutral stability curve corresponding to the values of
K, = 107% K, = K, = 0is modified by choosing K; = 10.
The resulting neutral stability curve indicates instability
only for R > 5112.
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