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Tensor Analysis of Spatial Mechanisms 

Abstract: The  position  analysis of a general  four-bar  spatial  mechanism  is  developed  using  tensor  notation  and  operations. To 
exemplify the convenience  of  tensors in kinematic  analysis  the  solution  is  obtained  for a mechanism  containing  two  revolute 
pairs of links and two spherical  pairs. 

Introduction 

Until recently the analysis of spatial mechanisms has not 
occupied a prominent  place  in the work of kinematicians. 
Their  reluctance to study these  mechanisms  was  perhaps 
due to the apparently formidable and tedious tasks of 
mathematically  formulating  problems and obtaining solu- 
tions.  However,  recent  publications  have  applied  various 
mathematical tools to the analysis of spatial mechanisms 
in an effort to simplify the computational process and thus 
make the undertaking of work  in this field  more  attractive. 
Denavit and Hartenberg1 adopted the matrix  calculus; 
Chace,2  Beyer,s and Harrisbergera  used the vector  tech- 

the equations 

XI = A I I X  Az1-G A31 X; + BI 

Xz = A1s-G Am Xi + Am X; + Bz 
X, A I S X  f Az3-G + A33X + Bs, (1) 

where the A i s  are constants of rotation between the axes 
of the two coordinate systems and the B2s are constants 
of translation between the origins of the systems. 

Expressions  like Eq. (1) may be expressed  more con- 
cisely  by adopting the following notational conventions : 

nique; Yang and Freudenstein'  chose quaternions; 
and kinematicians  in the USSR, for example,  Mangeron 
and Dregan: and Kalitsin,'  applied  tensor  analysis. 

The present  paper  proposes another approach to the 
use of tensor notation and operations in treating such 
problems. The first part of the paper reviews the aspects 
of tensor  algebra that are pertinent to this application. 
Then an analysis of a spatial four-bar linkage  is  used to 
demonstrate the technique. The analysis  corresponds to 
Chace's''' solution of the vector tetrahedron equation. 
As a specific  example  of  applying the technique, a mech- 
anism containing two revolute  pairs of links and two 
spherical  pairs  (R-S-S-R)  is  analyzed. 

The paper intends to establish a basis for future spatial- 
linkage tensor analysis. It emphasizes the comprehensive- 
ness and brevity of the tensor notation for this type of 
analysis. 

Preliminary mathematicss 
I 

Notational conventions 
~ 

A point in  three-dimensional  space  located  with  respect 
to a Cartesian  coordinate  system Xi, may  also  be  located 
with  respect to another Cartesian coordinate system, X : ,  by 

Range  convention-When an index  (subscript)  occurs un- 
repeated  in a term of an expression, it is understood to 
take, in turn, each  value in the range of that index. In 
this paper the values will always  be 1, 2, 3. 
Summation  convention-When an index is repeated in a 
term, summation  over the range of that index is implied. 
Using these conventions, Eq. (1) is rewritten as 

and the inverse transformation is written 

The range and summation  conventions  will  be  used 
throughout this paper. No confusion should occur if the 
reader  remembers that they are implicitly  present in the 
notation used  henceforth. 

With the orthogonal property of the coordinate systems, 
the rotational coefficients  have the relation 

where 6 is the so-called Kronecker delta. 

positive;  i.e., IAiil = 1. 
In  the paper the orthogonal transformation is always 
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Dejnition of a tensor 

Each  number, T i ,  of a set of quantities associated  with  a 
Cartesian coordinate system, X i ,  and with  a point, P, is 
said to be  a component of a  tensor of the first rank* if 
the quantities transform to any other coordinate system 
XI according to the equation 

Ti' = A i i T i .  ( 5 )  

It will be seen that a  Cartesian  tensor of the first rank is 
equivalent to  an ordinary Cartesian  vector. 

Tensors of higher rank can also be  defined. That is, 
quantities Tab which transform according to 

T{i = A i ,  Ai,T,b (6) 

are called  tensors of the second rank. A tensor of the nth 
rank has n indices and transforms through its  multiplica- 
tion by n coefficients: 

T:i . . . k  = AioAib * * AkcTab.. .c.  (7) 

Some tensor properties 

A tensor is said to be  symmetric in two indices, j and k ,  
if the value  of  any  component is not changed  by inter- 
changing the positions of j and k.  That is, if 

Ti . . . ik. . . ,  = Ti. . .k i . . .m,  

the tensor is symmetric in j and k. The tensor  is  com- 
pletely  symmetric if its components retain the same  value 
when any  two  indices are interchanged.  Similarly,  a  tensor 
is said to be  skew-symmetric in the indices j and k if 

Si...jk...m - " S { . . . k i ' . . m .  - 

The tensor is  completely  skew-symmetric if its components 
retain the same  value, but are changed in sign  when  any 
two  indices are interchanged. 

The product of any  completely  symmetric tensor, say 
Ti  ,., and any  completely  skew-symmetric tensor, say Si i, is 

TiiSii = 0 .  (8) 

This property will be used to great advantage in the 
application of tensor operations discussed in this  paper. 

The Kronecker  delta  defined in Eq. (4) is an example of 
a symmetric  tensor. It is  also  called an isotropic tensor 
because its components retain the same values in any 
coordinate system. 

Another  tensor which will be very useful in the present 
application  is the permutational symbol, 6 i i k .  This tensor 

Table 1 Comparison of vector  operations in vector and 
tensor notations. 

Operation Vector notation  Tensor  notation 
-~ 

Denotation T Ti 
Addition and P=T+S Pi = Ti+Si 
subtraction Q=T-S Qi=Ti-Si 
Multiplication 
by a scalar R=+T Ri = +Ti 
Scalar product 4 = T e S 4 = TiSi 
Vector product M =TXS Mi = eijkTjSk 
Tensor product Nii = TiSi 
Triple scalar + = P . M + = PiMi 
product =P*(TXS) =Pi EijkTiSk 
Triple vector L = P X M  LC = sijkPiMk 
product =PX(TXS) eijkPjeklmTlSm 

= eiikeklmPiTlSm 
=(6ir6jm--irnsiz)PiTrS, 
= & I G ~ , P ~ T ~ S ~  

--GimSizPiT~Sm 
Since in the first term 
above, the coefficients of 
PjTzS, will be zero unless 

the second term, will be 
1 = i and j = m, and in 

zero unless i = m and 
j = I ,  we may substitute 
indices and write 
L . - p .T.S ._ p .T.S. 

t - 1 1 )  1 1 a .  

is both isotropic and completely  skew-symmetric; the 
values of its components are obtained as  follows: 

0 if any two indices  have the same  value. 

1 if the values of the indices ijk represent 
an even permutation* of the sequence 

~ i i l :  = ' 1, 2, 3. 

- 1 if the values of the indices ijk represent 
an odd permutation of the sequence . 1, 2, 3. (9) 

An important relation  between 6i i  and c i i k  is  given  by 

EikiEmvi = 6 i m 6 k v  - 6 i v 6 k m *  (10) 

For a further understanding of the use  of tensor notation, 
a brief  summary of the operations of vector  algebra 
written in tensor notation is provided  in Table 1. 

* I n  general (i.e., when  a  Cartesian  coordinate  system  is  not  spe- 
cified) a tensor of the first rank,  also  called a contravariant  vector,  is 

tion T,' = ( a X c / / a X " )  Tc defines what  is  called a covariant vector. 
defined by the  transformation T'j = ( a X ' J / a X * )  Ti. The  transforma- 

* A  permutation of the  sequence 1, 2, . , , , n is even if an even 
H ~ ~ ~ ~ ~ ~ ,  with  Cartesian  coordinates, (@fl/&f*) = (axc//aX'l) 7 number of interchanges of adjacent  integers  is  required  to  attain  the 

so the  distinction between contravariant  and  covariant  vectors IS permutation.  Similarly,  a  permutation  is odd if an odd number of in- 
eliminated.  Throughout  this  paper,  the  indices of tensor  operation  are  terchanges  is  required. Thus, 
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Position  analysis of the spatial four-bar linkage 

General description 

In order to demonstrate the application of the tensor 
method to the analysis of spatial mechanisms, a closed- 
loop,  four-link spatial linkage  has been studied. Figure 1 
represents the general  diagram of the linkage and relation- 
ship of the links to the coordinate frames. It is  convenient 
that each  link  be  determined  with  respect to its local 
coordinate frame by a set of spherical polar coordinates. 
The  so-called  ground  link, Cci,  has a length of C units 
and is  directed  along a vector of unit length, ci. The com- 
ponents of ci with  respect to the ground coordinate frame 
are defined  by 

c1 = sin + cos 8 ,  

c2 = sin + sin 0, 

c3 = cos 4, 
where + and 0 represent the polar and azimuthal  angles, 
respectively. 

Likewise, the first  link, Rrf ,  has  magnitude R and is 
directed  along a unit vector r f  which originates at the 
first joint. The components of rf with  respect to its  local 
coordinate frame are defined  by 

r: = sin +I cos e', 
r: = sin  +'sin e', 
ri  = COS e', 
where + I  and 0' represent the polar and azimuthal angles 
of the link in the first  frame. In the same  manner, the 
components of the second and third link  vectors, s y  and 
tf" can  be  expressed  in  terms of the polar coordinates 
of the second and the third frames,  respectively. 

To derive  relationships between the link  vectors it is 
desirable to specify an arbitrary point to which all the 
vectors  may  be  referred. Throughout this  paper the ground 
joint (see  Fig. 1) will  serve as the reference  point. 

The ground coordinate system X , ,  X * ,  Xa and the 
first-joint coordinate system X:, Xi, X ;  are both taken 
to have their origins at the ground joint. The transforma- 
tion matrix Ati  can  be  written as the direction  cosines 
between the axes; that is 

I 
1 2nd JOINT 

x, d 
Figure 1 General diagram of four-bar spatial  linkage. 

Categorization of the possible solutions 

In this paper, a single  closed-loop  vector equation has 
been  used: 

Components of unit vectors ci, ri ,  si, and t i  are all taken 
with  respect to  the ground frame by the transformations 

where A i i ,  A:;, and A:f are the transformation matrixes 
relating the ground frame and the first,  second, and third 
frames,  respectively. Equation (14) actually  represents 
three individual equations (for i = 1,2, 3); therefore, it is 
possible to solve for three arbitrary unknowns. The ground 
link  is Cci; its magnitude and direction are always  given. 
Various  possible  combinations of unknowns for this four- 
bar linkage  can  be  categorized into the four non-coplanar 
cases in Table 2. These are the cases  used by  Chace' in 
his  vector  solution of Eq.  14. 

Case I .  R ,  S ,  and T unknown. R can  be  obtained by 
multiplying  Eq. (14)  by Eiiksitk and eliminating  terms 209 
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Table 2 Categorization of the solutions. where tfn" = (sin 4 1 1 1  cos & I T ,  sin c$II I  sin 0111, cos @ T I ) .  

Expanding  Eq. (19) 
Maximum 

Unknown possible 
Case  quantities Known quantities  solutions 

tensor Yii, and t i t k  gives a  symmetric tensor Z i k .  Re- 
calling that eiik is a  completely  skew-symmetric tensor, 
we have 

Multiplying Eq.  (22)  by aiikri and, again,  eliminating 
terms containing a product of symmetric and skew- 
symmetric  tensors gives 

Only  one solution is possible. 

Case 2. R,  S, and OIrr  unknown. In this case the trans- 
formation matrix A;; between the  third frame and the 
ground frame is known. Then ti  can  be obtained from where d, e, f, g, h, are known quantities written  explicitly as 

(254 

(25b) 
d' COS 0" + e' sin 0'' + f' cos OII' + g' sin # I r  = h', 

Eq. (1%). Substituting Azt'," for t i  into Eq. (14), we 
have d = SEliiri s in4  I I  A l i ,  I I  

I I I  I I I  = 
(1 8) 

e = SEliirj sin + A z i ,  
Cci f Rri -I- Ssi 4- T A m i t m  0.  

Multiplying Eq. (18) by EiikrjSk and using the symmetrical f = Teliiri sin 4 A l i  , 

and skew-symmetrical  tensor  products, g = TElijri sin 4'" A f f ' ,  

I I  I I  

I I I  I I I  
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and the respective  primed quantities are written by re- 
placing B i with E 2; i. Four solutions are possible from 
Eqs. (25). 

Case 4 .  01, 011, and 0"' unknown. In this case r i ,  si, and t i  

in  Eq. (14) are replaced  by ALir;, A s s :  and A m i t ,  , 
respectively. Equation (14) then becomes 

Cci + R  ALirL + SA,'fsf + T A 2 : t r  = 0. (27) 

Multiplying  Eq. (27) by A i i ,  Ai:, and Ai? and recalling 
from  Eq. (4) that A3<Ami = ijam = 0 if m # 3 and = 1 
if m = 3, results in 

I I I  I I I  

C A i i c i  + Rri + S Aii   Ai fs f , '  
I I I  Irr - 

CAiici  + R ASi  Amirm + Ssv 

+ T A ~ , A , J ,  - o (284 
I I  I I 

+ T A 3 ; A m i t ,  = 0 I I  rrI I I I  
(28b) 

CAiYci  + R Aai  Amirm I I I  I I 

+ S A ~ ~ ' A L ~ S F  + T t F  = 0. (284 

Expanding  simultaneous  Eqs. (28) 

(C Aiici+  Rri+ S Aii+  Ai: cos I$'"+ T A j i  Ai? cos 4"') 

+ s ~i~ sin 4"( A:; cos err + A:: sin e") 
+ T A ~ ~  sin +"I( A:? cos e"' + A:? sin err? = 0. 

(294 

(C Aifci + Ssi'+ R A:: Ai i  cos 4' + T Aai  Aai cos +'") I I  r I I  

+ R  if sin 4'( A : ~  COS e' + A Z ~  sin e') 
+ T A:: sin +"I( A:;' cos err' + A::' sin P I )  = 0.  

(29b) 

(C  Ai:& + TtiII+  R Ai? A i i  cos 4' + S Ai? Ai: cos 4") 

+ R ~ i f ' s i n  +I(  ~ 3 1 ~  COS e' + ~i~ sin e') 
+ s A;:' sin +'I( A:: COS err + A:: sin err) = 0. 

(294 
Equations (29) can be written as 

i cos 0" + j sin err + k cos 0''' 

+ I sin err' = m, (304 

i' cos 8' + j' sin 0' + k cos 0"' 

+ I' sin errr = m', (30b) 

i f f  cos 0' + j" sin 8' + k" cos 0'' 

+ I" sin e" = m", (304 

where i, j ,  k, I ,  m and their primed and double-primed 
counterparts are invariants whose  explicit  expressions  can 
be obtained in the same  way that those for Cases 2 and 3 
were obtained.  Eight  solutions are possible from Eqs.  (30). 

FOLLOWER ? 

Figure 2 R-S-S-R mechanism (after Hartenberg  and Dena- 
vit") . 

Application to R-S-S-R four-link mechanism 

A recent paper by L. Harrisberger4 has treated the mobility 
of an R-S-S-R four-link  mechanism  in detail using the 
vector  method. Hartenberg and Denavit"  have  also 
analyzed this mechanism  with a matrix  technique.  Here, 
we  wish to demonstrate the simplicity  of the tensor 
method by determining the linkage  positions of the same 
mechanism. Figure 2 is a diagram of the R-S-S-R mech- 
anism  with  revolute  pairs on the ground and first  joints, 
and with  spherical  pairs on the second and third joints. 
The problem may  be stated as follows: 

Given 

1. The c i  and the magnitude C .  
2. Input angle 01, the polar angle + I ,  and the magnitude 

R.  Af ,  and r: are known. 
3. Magnitude S. 
4. Polar angle between the ground frame and t i ,  

and the magnitude T .  

Find 

1. Components of unit vector s i  with  respect to the ground 
frame; and the polar and azimuthal angles of the  link 
Ssi,  qSI' and P I ' ,  with  respect to the ground frame. 

2. Output azimuthal angle @IZ' with  respect to the ground 
frame. 

From Eqs. (14) and (15), the three unknown  quantities 
can  be  determined by  solving 

Cci + R A i i r i  + Ssi + Tt i  = 0 ,  (3  1) 

where 

si = (sin +'I' cos e"', sin 4"' sin e''', cos 4"') 

ti = (sin 4'"' cos err'', sin +I1'' sin P I ' ,  cos 4'"'). 

Letting Ki = Cci + RALir:, a constant vector for any 
given input crank  angle Or, Eq. (31) can  be  expanded  as 21 1 
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it becomes clear that the output follower  angle @'I' has 
two  possible  solutions.  This  confirms the statement by 

(32a) Harrisbergerd that the R-S-S-R mechanism has two 
degrees of freedom. 

+ T sin 4"" sin e'"' = 0. (32b) Conclusions 

K3 + S cos 4"' + T cos ~ " "  = 0. (32c) This paper has shown that tensor notation provides a 

Equations (32) are the general  scheme for analyzing an 
R-S-S-R mechanism. In the R-S-S-R mechanism  shown 
in Fig. 2 the X s  axis of the ground frame is the axis of 
rotation of the follower. The angle, 4III', between the X I  
axis and follower T is a right  angle. The Xi axis of the 
first  frame is the axis of rotation of the crank. The angle, 
$1, between the Xi axis and the crank is also a right  angle, 
so the input crank  vector r: may be  written in terms of 
polar  angle 0' and the input azimuth  angle 41 of its local 
frame as 

convenient and compact  means for expressing  relation- 
ships in spatial mechanisms.  Some  tensor operations that 
have no counterparts in  vector  algebra  have been demon- 
strated as  being  powerful  aids to obtaining  problem  solu- 
tions. Further, the tensor transformations have  relieved 
the burdens of the tedious and confusing  references of the 
coordinate frame. It is  evident that the tensor notation 
lends  itself  well to programming for computer solution of 
problems  in spatial kinematics. 

The author hopes that others will also  find the tensor 
method a suitable addition to the existing  methods of 

(33a) exploring the spatial domain of linkages, and that this 
paper will stimulate the engineer's  interest in spatial 

(33b) mechanisms. 
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(34) 

L sin a! o cos a1 
Inserting  Eqs. (33) and (34) into Eq. (15) gives 

ri = (-cos ac sin e', sin e', sin a! sin e'). (3 5)  

Then the constant vector K ,  for given input crank  angle 
0' is 

Ki = (Cc, - R cos a! sin e', 
CC, + R sin e', (36) 

cc3 + R sin a sin e'). 
Equations (32)  now  become 
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