C. Y. Ho

Tensor Analysis of Spatial Mechanisms

Abstract: The position analysis of a general four-bar spatial mechanism is developed using tensor notation and operations. To
exemplify the convenience of tensors in kinematic analysis the solution is obtained for a mechanism containing two revolute

pairs of links and two spherical pairs.

Introduction

Until recently the analysis of spatial mechanisms has not
occupied a prominent place in the work of kinematicians.
Their reluctance to study these mechanisms was perhaps
due to the apparently formidable and tedious tasks of
mathematically formulating problems and obtaining solu-
tions. However, recent publications have applied various
mathematical tools to the analysis of spatial mechanisms
in an effort to simplify the computational process and thus
make the undertaking of work in this field more attractive.
Denavit and Hartenberg! adopted the matrix calculus;
Chace,? Beyer,® and Harrisberger* used the vector tech-
nique; Yang and Freudenstein’ chose quaternions;
and kinematicians in the USSR, for example, Mangeron
and Dregan,’ and Kalitsin,7 applied tensor analysis.

The present paper proposes another approach to the
use of tensor notation and operations in treating such
problems. The first part of the paper reviews the aspects
of tensor algebra that are pertinent to this application.
Then an analysis of a spatial four-bar linkage is used to
demonstrate the technique. The analysis corresponds to
Chace’s®® solution of the vector tetrahedron equation.
As a specific example of applying the technique, a mech-
anism containing two revolute pairs of links and two
spherical pairs (R-S-S-R) is analyzed.

The paper intends to establish a basis for future spatial-
linkage tensor analysis. It emphasizes the comprehensive-
ness and brevity of the tensor notation for this type of
analysis.

Preliminary mathematics®

o Notational conventions

A point in three-dimensional space located with respect
to a Cartesian coordinate system X;, may also be located
with respect to another Cartesian coordinate system, X/, by

the equations

X1 = AnXi + A Xi + Aa X5 + B,

Xy = AnpX{ + An X+ A X{+ B,

X = A Xl + Ap X, 4+ Az Xi + B, 4))

where the 4;;'s are constants of rotation between the axes
of the two coordinate systems and the B,’s are constants
of translation between the origins of the systems.
Expressions like Eq. (1) may be expressed more con-
cisely by adopting the following notational conventions:

Range convention—When an index (subscript) occurs un-
repeated in a term of an expression, it is understood to
take, in turn, each value in the range of that index. In
this paper the values will always be 1, 2, 3.

Summation convention—When an index is repeated in a
term, summation over the range of that index is implied.
Using these conventions, Eq. (1) is rewritten as

X.' = A,,X,’ + B.‘, (2)
and the inverse transformation is written
X: = A,','X,' + B:. (3)

The range and summation conventions will be used
throughout this paper. No confusion should occur if the
reader remembers that they are implicitly present in the
notation used henceforth.

With the orthogonal property of the coordinate systems,
the rotational coefficients have the relation

0 if i .
Ay = by = { i (4)
1 if i=}j,

AikAik =

where §,; is the so-called Kronecker delta.
In the paper the orthogonal transformation is always
positive; i.e., |4;5] = 1.
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o Definition of a tensor

Each number, T, of a set of quantities associated with a
Cartesian coordinate system, X, and with a point, P, is
said to be a component of a tensor of the first rank* if
the quantities transform to any other coordinate system
X! according to the equation

T:" = A;;T;. (5)

It will be seen that a Cartesian tensor of the first rank is
equivalent to an ordinary Cartesian vector.

Tensors of higher rank can also be defined. That is,
quantities T,, which transform according to

Tfi = A A;Ta (6)

are called tensors of the second rank, A tensor of the n**
rank has n indices and transforms through its multiplica-
tion by n coefficients:

Tfiu-k = A;adjp v AreTope.ecn (7)

o Some tensor properties

A tensor is said to be symmetric in two indices, j and k,
if the value of any component is not changed by inter-
changing the positions of j and k. That is, if

T:’---ikn-m = T,'...kj...,,,,

the tensor is symmetric in j and k. The tensor is com-
pletely symmetric if its components retain the same value
when any two indices are interchanged. Similarly, a tensor
is said to be skew-symmetric in the indices j and k if

S;...jk...m = '—S,'...k,-...,,,.

The tensor is completely skew-symmetric if its components
retain the same value, but are changed in sign when any
two indices are interchanged.

The product of any completely symmetric tensor, say
T:;, and any completely skew-symmetric tensor, say S;;, is

T:;S:; = 0. (8)

This property will be used to great advantage in the
application of tensor operations discussed in this paper.
The Kronecker delta defined in Eq. (4) is an example of
a symmetric tensor. It is also called an isotropic tensor
because its components retain the same values in any

coordinate system.
Another tensor which will be very useful in the present
application is the permutational symbol, €;;;. This tensor

*In general (i.e., when a Cartesian coordinate system is not spe-
cified) a tensor of the first rank, also called a contravariant vector, is
defined by the transformation T'J = (9X'#/9X*) T4 The transforma-
tion Tj" = (§X*/9X’?) T+ defines what is called a covariant vector.
However, with Cartesian coordinates, (gX'{/gX*t) = (9X*/3X") =
Ajgs, so the distinction between contravariant and covariant vectors is
eliminated. Throughout this paper, the indices of tensor operation are
written as subscripts only,

Table 1 Comparison of vector operations in vector and
tensor notations.

Operation Vector notation Tensor notation
Denotation T T:
Addition and P=T+4S P;=T;+S;
subtraction Q=T-8 Q:=T;—-S;
Multiplication
by a scalar R=¢T R;=¢T;
Scalar product ¢=T-S o=T:S;
Vector product M=TXS M;=e; 5T ;S
Tensor product N;i=T:S;
Triple scalar ¢=P-M ¢=P;M;
product =P-(TXS) =PieinT;iSk
Triple vector L=PXM L;=e;jPiM,
product =PX(TXS) = €;jtPjerinT1Sm

= eijtertmPiT1Sn
=(8:18jm — 8imd; )P;T1Sm
=BilaimPiTlSm
—8imdi1PiT1Sn
Since in the first term
above, the coefficients of
P;T:iS» will be zero unless
I =jiand j = m, and in
the second term, will be
zero unless | = m and
j = I, we may substitute
indices and write
L;=P;T;S;—P;T;S..

is both isotropic and completely skew-symmetric; the
values of its components are obtained as follows:

0 if any two indices have the same value.

1 if the values of the indices ijk represent
an even permutation* of the sequence
€ijx = 1, 2, 3.

—1 if the values of the indices ijk represent
an odd permutation of the sequence
1,2,3. )

.

An important relation between &;; and e, ; is given by
€ikiCmp; — 8im6kp - aipakm- (10)

For a further understanding of the use of tensor notation,
a brief summary of the operations of vector algebra
written in tensor notation is provided in Table 1.

* A permutation of the sequence 1, 2, ., ., n is even if an even
number of interchanges of adjacent integers is required to attain the
permutation. Similarly, a permutation is odd if an odd number of in-
terchanges is required. Thus,
€123 = €312 = €231 — 1, and e

= €1 = exs = — 1.




Position analysis of the spatial four-bar linkage

o General description

In order to demonstrate the application of the tensor
method to the analysis of spatial mechanisms, a closed-
loop, four-link spatial linkage has been studied. Figure 1
represents the general diagram of the linkage and relation-
ship of the links to the coordinate frames. It is convenient
that each link be determined with respect to its local
coordinate frame by a set of spherical polar coordinates.
The so-called ground link, Ce;, has a length of C units
and is directed along a vector of unit length, c¢;. The com-
ponents of ¢; with respect to the ground coordinate frame
are defined by

¢; = sin ¢ cos 4,

¢, = sin ¢ sin 6,

s = cos ¢, (11)
where ¢ and @ represent the polar and azimuthal angles,
respectively.

Likewise, the first link, Rrf, has magnitude R and is
directed along a unit vector r. which originates at the
first joint. The components of ». with respect to its local
coordinate frame are defined by
= sin ¢I cos 6,

r = sin ¢>I sin ¢,
rt = cos ¢, (12)

where ¢! and 67 represent the polar and azimuthal angles
of the link in the first frame. In the same manner, the
components of the second and third link vectors, si’ and
21T can be expressed in terms of the polar coordinates
of the second and the third frames, respectively.

To derive relationships between the link vectors it is
desirable to specify an arbitrary point to which all the
vectors may be referred. Throughout this paper the ground
joint (see Fig. 1) will serve as the reference point.

The ground coordinate system X;, X, X; and the
first-joint coordinate system X1, X7, X! are both taken
to have their origins at the ground joint. The transforma-
tion matrix A;; can be written as the direction cosines
between the axes; that is

4 45 4

Aiy = | Az A3 Az

Asi Az Ass

(cos (XI, X)) cos (X!, Xs) cos (X5, Xs)
= |cos (X5, X)) cos (Xs, X;) cos(Xs, Xs)|.

Lcos (X3, X)) cos (X3, X.) cos (X5, Xs)
(13)

2nd JOINT

X1
3rd JOINT

X,

1st JOINT

X!

Xy

Figure 1 General diagram of four-bar spatial linkage.

o Categorization of the possible solutions

In this paper, a single closed-loop vector equation has
been used:

CC,' + Rr,- + Ssi + Tt, = 0, (14)

Components of unit vectors c;, r;, s, and ¢; are all taken
with respect to the ground frame by the transformations

ri = Ay, (15a)
5= Amisny (15b)
ti= Aait, (15¢)

where AL, AT, and A"L} are the transformation matrixes
relating the ground frame and the first, second, and third
frames, respectively. Equation (14) actually represents
three individual equations (for i = 1, 2, 3); therefore, it is
possible to solve for three arbitrary unknowns. The ground
link is Cc;; its magnitude and direction are always given,
Various possible combinations of unknowns for this four-
bar linkage can be categorized into the four non-coplanar
cases in Table 2. These are the cases used by Chace® in
his vector solution of Eq. 14.

Case 1. R, S, and T unknown. R can be obtained by
multiplying Eq. (14) by e,;.5;7, and eliminating terms
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Table 2 Categorization of the solutions.

Maximum
Unknown possible
Case quantities Known quantities solutions
R’ S’ T C: Ciy Tiy 84y &5
2 RS, 01 Ceiri, i, At T, 9711 2
3 R, 01,9111 C,¢;, ri, AT, AT, S, @1, 4
T, i1
4 61 QI QI C,¢;, Ay, AiiT, Ai1T1 R, ¢, ]
S, 11, T, pI1I

containing the product of a symmetric tensor and a skew-
symmetric tensor. That is, if Eq. (14) is written

Ce”kc,-sitk + Re,-,-kris,-tk + Seiiksisitk + TE,‘,‘kt@'Sjtk = 0,
(16)

the tensor product s.s; results in a symmetric second-rank
tensor Y;;, and f;z, gives a symmetric tensor Z;,. Re-
calling that e;;; is a completely skew-symmetric tensor,
we have

€iin8iSity = € Yyt = 0

€inlSity = €pZus; = 0.

Equation (16) becomes
Ceiikcisitk + RG;jkl'iSjtk = O,
so that

CG,’,‘],C,‘S,'[,‘

,R, - €;ixtiS;t,
ikl 95tk

(17a)
S and T can be similarly obtained by multiplying Eq. (14)
by ety and e;;,r;s; and eliminating terms containing
the product of symmetrical and skew-symmetrical tensors:

Ce;icitits
€:i4lsSity

IS} = (17b)
Cé;ikc«;sirk_
€iinliSity

7| = (17¢)

Only one solution is possible.

Case 2. R, S, and 6""" unknown. In this case the trans-
formation matrix AL} between the third frame and the
ground frame is known. Then #; can be obtained from
Eq. (15¢). Substituting 42X for ¢, into Eq. (14), we
have

Ce; + Rr; + Ss; + TAZ AT = 0. (18)

Multiplying Eq. (18) by ¢; ;7 ;s; and using the symmetrical
and skew-symmetrical tensor products,

Ceiincirisy + Teipurisn Amtl = 0, (19)

where t77 = (sin ¢! cos 0117, sin 17! sin 9111, cos $I1T).
Expanding Eq. (19)

e,;,-kr,-sk(Cc,- + TA?I,fI COSs ¢III)
+ T sin ¢ e;urisi( ATST cos 0 + A5 sin 67°F) = 0,

or
a cos 07 4 bsin ' = ¢, (20)
where a, b, and ¢ are the known quantities

a = Tsin ¢ e;uris, A11 (21a)
b = T sin ¢ e;jris, AsY (21b)
¢ = — ewr;su(Ce; + T A5y cos ¢''h). (21¢)

Two solutions are possible for Eq. (20).

Case 3. R, 071, and 0111 ynknown. In this case 4! and
A1 are known. Substituting 4 s and A1 for s,

and t,, respectively, into Eq. (14) results in
Ce; + Rri + SALST + TAEAT = 0. (22)

Multiplying Eq. (22) by e:;r; and, again, eliminating
terms containing a product of symmetric and skew-
symmetric tensors gives

Cessscirs + Sesss Aniristl + Tesn Ainthf’ = 0. (23)
Expanding Eq. (23),
17 (Ce; + S Ay cos ¢ + T Azs' cos ')

+ Seyiir; sin ¢™'(ALE cos 077 4 43 sin 67)

+ Ter;sin g™ (451" cos 0" 4+ A3 sin 6'F) = 0.
(24a)

€2:;7;(Ce; + S Ass cos @' -+ T A3 cos ™)
+ Sea;;r; sin ¢”(A1 cos 07 + A4 sin 01”)

+ Teoisr; sin ™2 A7 cos 677 + A sin §777) = 0.
(24b)

Equations (24) can be written as
d cos 0" + esin 67 + f cos 0" + gsin 67 = &,

(25a)
d’ cos 01 4 ¢’ sin 8" + f cos 8" + g'sin 677 = K/,

(25b)
where d, e, f, g, h, are known quantities written explicitly as
d = Ser; sin ¢’ 417, (26a)
e = Sei,r; sin @' A5, (26b)
f = Tey;r; sin ™ A7, (26¢)
g = Ter; sin ¢’ 437, (26d)
h = —e;r(Ceit 8 AiS cos¢™ + T Azi cos¢™), (26¢)




and the respective primed quantities are written by re-
placing €,;; with €es;;. Four solutions are possible from

Egs. (25).

Case 4. 01, 811 and 0111 ynknown. In this case r;, 5;, and ¢,
in Eq. (14) are replaced by AL .r% AXs"T and 4711,
respectively. Equation (14) then becomes

Ce; + RALsAL + SAET + 7475 = o, (27)

Multiplying Eq. (27) by A;;, 45, and 43} and recalling
from Eq. (4) that 45;4,,; = 83, =0ifm=3and ;3 =1
if m = 3, results in

CAsc; + Rry + SAj; Arish

+ TA, AT =0 (28a)
CAjic; + R A A, + Ssi’

+ TAp AL =0 (28b)
CAe; + RA ALl

+ S5 Apisn + T = 0. (28¢)

Expanding simultaneous Eqgs. (28)
(C Asici+Rri+ 8 Azi+- A3: cos ¢+ T A, A3} cos ¢'™)
+ 8§ A3, sin ¢"'( AL} cos 67 + Al sin 67)
+ T4z, sin ¢/ ( 417 cos 6" 4 437 sin 6) = 0.
(29a)
(C Agic; + Ssi™+ R A3} A3 cos ¢" + T A35 A5 cos ¢™™)
+ R A} sin ¢"( A7, cos 6" + A5, sin 67)

+ T 43 sin ¢"7 (4]} cos 67 + A7 sin 67) = 0.
(29b)

(CAsit; + T+ R A3 45 cos ¢" 4 S AT 421 cos ¢™)
+ R A7 sin ¢'(A45; cos 8" + A3 sin 6)
+ S45i" sin ¢"'(A1; cos 07 + 43 sin ) =

(29c)

Equations (29) can be written as
i cos 87 ++ jsin 6" + k cos 6™

+ Isin 87 = m, (30a)
i cos 8" + j sin 6" + k' cos 8

+ Vsin "7 = m’, (30b)
i’ cos 6 -+ j/'sin @ + k'’ cos 6"

+ I' sin 67 = m'’, (30¢)

where i, j, k, I, m and their primed and double-primed
counterparts are invariants whose explicit expressions can
be obtained in the same way that those for Cases 2 and 3
were obtained. Eight solutions are possible from Egs. (30).

Xz

FOLLOWER

[

Figure 2 R-S-S-R mechanism (after Hartenberg and Dena-
vit'?).

Application to R-S-S-R four-link mechanism

A recent paper by L. Harrisberger+ has treated the mobility
of an R-S-S-R four-link mechanism in detail using the
vector method. Hartenberg and Denavit'® have also
analyzed this mechanism with a matrix technique. Here,
we wish to demonstrate the simplicity of the tensor
method by determining the linkage positions of the same
mechanism. Figure 2 is a diagram of the R-S-S-R mech-
anism with revolute pairs on the ground and first joints,
and with spherical pairs on the second and third joints.
The problem may be stated as follows:

Given

1. The c¢; and the magnitude C.
2. Input angle 67, the polar angle ¢, and the magnitude
R. 4% and r} are known.
. Magnitude S.
4, Polar angle ¢!’ between the ground frame and ¢,
and the magnitude 7.

w

Find

1. Components of unit vector s; with respect to the ground
frame; and the polar and azimuthal angles of the link
Ssi, 77 and 077, with respect to the ground frame.

2. Output azimuthal angle 8771’ with respect to the ground
frame.

From Egs. (14) and (15), the three unknown quantities

can be determined by solving

Ce; + RAniry, + Ss; + Tt; = 0, (31)
where
s; = (sin ¢’ cos 6", sin ¢'" sin 6, cos ¢'")

IIr’ , Sin ¢III’ Sin 0[11" cos ¢III')'

III’

t; = (sin¢ " cos 6

Letting K; = Cc; + RAL r%, a constant vector for any
given input crank angle 67, Eq. (31) can be expanded as

n
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K, + Ssin¢' cos 67

+ T'sin ¢ cos 6" = 0. (32a)
K, + Ssin ¢ sin "7

+ Tsin ¢™" sin §'""" = 0. (32b)
K; + S cos ¢ + T cos ¢”" = 0. (32¢)

Equations (32) are the general scheme for analyzing an
R-S-S-R mechanism. In the R-S-S-R mechanism shown
in Fig. 2 the X, axis of the ground frame is the axis of
rotation of the follower. The angle, ¢:7Z’, between the X,
axis and follower T is a right angle. The X} axis of the
first frame is the axis of rotation of the crank. The angle,
¢!, between the X axis and the crank is also a right angle,
so the input crank vector ! may be written in terms of
polar angle 87 and the input azimuth angle ¢7 of its local
frame as

ri = sin ¢’ cos 6' = cos ¢ (33a)
r; = sin ¢ sin §' = sin 6’ (33b)
rs = cos ¢’ = 0. (33¢)

The orientation of the coordinate frames as shown in
Fig. 2 makes the X? axis and the X, axis parallel, so the
transformation coefficients have the following values:

0 1 0
AL, =|—cosa 0 sinal. (34)
sine 0 cosa

Inserting Eqgs. (33) and (34) into Eq. (15) gives
r; = (—cos a sin #’, sin §7, sin a sin ). (35)

Then the constant vector K; for given input crank angle
01 is

K; = (Cc; — R cos a sin 8,
Ce, + Rsin ¢, (36)
Ccs + R sin a sin 69).

Equations (32) now become

K, + Ssing™ cos 077 + T cos 877 =0 (37a)
K, + Ssin¢™ sin 67 4 T'sin 7 = 0 (37b)
Ks + S cos ¢’ = 0. (37¢)

The solution of Eq. (37¢) is

II’

o2 2
¢~ = arc cos L;& = arc sin—u- (38)

S
Substituting Eq. (38) into Egs. (37a) and (37b),
Ki 4+ /8% — Kicos 077 4+ T cos 67" = 0
K, + /8° — Kisin 6" + Tsin 6" = 0,

(39a)
(39b)

it becomes clear that the output follower angle 6771’ has
two possible solutions. This confirms the statement by
Harrisbergert that the R-S-S-R mechanism has two
degrees of freedom.

Conclusions

This paper has shown that tensor notation provides a
convenient and compact means for expressing relation-
ships in spatial mechanisms. Some tensor operations that
have no counterparts in vector algebra have been demon-
strated as being powerful aids to obtaining problem solu-
tions. Further, the tensor transformations have relieved
the burdens of the tedious and confusing references of the
coordinate frame. It is evident that the tensor notation
lends itself well to programming for computer solution of
problems in spatial kinematics.

The author hopes that others will also find the tensor
method a suitable addition to the existing methods of
exploring the spatial domain of linkages, and that this
paper will stimulate the engineer’s interest in spatial
mechanisms.
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